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ADAPTIVE STOCHASTIC GALERKIN FEM

MARTIN EIGEL, CLAUDE JEFFREY GITTELSON, CHRISTOPH SCHWAB,
AND ELMAR ZANDER

Abstract. A framework for residual-based a posteriori error estimation and
adaptive mesh refinement and polynomial chaos expansion for general second
order linear elliptic PDEs with random coefficients is presented. A paramet-

ric, deterministic elliptic boundary value problem on an infinite-dimensional
parameter space is discretized by means of a Galerkin projection onto finite
generalized polynomial chaos (gpc) expansions, and by discretizing each gpc
coefficient by a FEM in the physical domain.

An anisotropic residual-based a posteriori error estimator is developed. It

contains bounds for both contributions to the overall error: the error due to
gpc discretization and the error due to Finite Element discretization of the
gpc coefficients in the expansion. The reliability of the residual estimator is
established.

Based on the explicit form of the residual estimator, an adaptive refinement
strategy is presented which allows to steer the polynomial degree adaptation
and the dimension adaptation in the stochastic Galerkin discretization, and,
embedded in the gpc adaptation loop, also the Finite Element mesh refinement

of the gpc coefficients in the physical domain. Asynchronous mesh adaptation
for different gpc coefficients is permitted, subject to a minimal compatibility
requirement on meshes used for different gpc coefficients.

Details on the implementation in the software environment FEniCS are
presented; it is generic, and is based on available stiffness and mass matrices
of a FEM for the deterministic, nonparametric nominal problem.

Preconditioning of the resulting matrix equation and iterative solution are
discussed. Numerical experiments in two spatial dimensions for membrane
and plane stress boundary value problems on polygons are presented. They

indicate substantial savings in total computational complexity due to FE mesh

coarsening in high gpc coefficients.
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1. Introduction

The origins of the problems examined here are in uncertainty quantification
(UQ) when elliptic PDEs with random field inputs are considered and the input’s
random coefficients are given in terms of a Karhunen–Loève expansion. By now,
the reduction of a PDE with random inputs to a parametric, deterministic PDE on
a possibly infinite-dimensional parameter space is standard (see, e.g., [22] and the
references therein). In recent years, the efficient numerical solution of such PDEs
has received substantial attention. Two broad classes of algorithms to this end have
emerged: stochastic Galerkin and stochastic collocation discretizations.

Stochastic collocation is algorithmically reminiscent of statistical sampling meth-
ods which require repeated execution of a given, deterministic solver with instances
(similar to Monte Carlo samples) of input data, and is thus termed nonintrusive.
This means that a given forward simulation software does not mandate modifi-
cations in order to execute numerical uncertainty quantification analysis. Recent
progress in mathematical formulation has provided some theoretical basis for the
convergence properties of stochastic collocation (e.g. [2, 4, 5, 22] and the references
therein).

In applications, stochastic Galerkin discretizations have been labelled as intru-

sive since they require reformulation of the problem, and are perceived to require
at least partial redesign of code for the generation and assembly of the stochastic
Galerkin stiffness matrix and the load vector(s). There are also delicate mathe-
matical issues as to what constitutes a proper mathematical stochastic Galerkin

formulation, in particular in connection with probability measures whose densities
are either unbounded or nearly degenerate. We refer to [12] and the references
there for results and (counter) examples as well as for discussion of (nonequivalent)
mathematical formulations of stochastic Galerkin FEM. These issues are absent
in stochastic Galerkin formulations whose random input variables have bounded
supports. In theses cases, there is a solid mathematical foundation of formulation
and convergence of stochastic Galerkin FEM (see, e.g., [16, 14, 15, 22] and the
references therein). In particular, natural advantages of Galerkin discretizations
can be brought to bear: Galerkin orthogonality and weak residuals are available
for a posteriori error estimation and adaptive refinement of discretizations in phys-
ical space (and time, for evolution problems) as well as of truncated polynomial
chaos expansions in probability space are available. These advantages of stochastic
Galerkin FEM are offset, however, to some extent by the seeming substantial addi-
tional coding effort and the need to solve a massive, tensor-structured linear system
of equations which arise from the spectral stochastic Galerkin discretizations.

One purpose of this paper is to demonstrate that at least for elliptic PDEs with
random inputs, this view is not entirely accurate: we derive residual a posteriori

error estimators for stochastic Galerkin Finite Element discretizations and a novel

matrix assembly algorithm for Galerkin discretizations of PDEs with random input
data which, in conjunction with a block-diagonal preconditioning technique used
e.g. in [16], will allow for the efficient iterative solution of the stochastic Galerkin
equations and, in addition, never requires the actual assembly of the entire sto-
chastic Galerkin matrix. In addition, we exhibit a tensor structure of the matrices
which arise in the stochastic Galerkin discretization and explain how Galerkin or-
thogonality in the discretization error allows for error separation in residual error
estimators: the weak residual allows orthogonal (in mean-square) decomposition
into contributions from the stochastic Galerkin discretization and from the Finite
Element approximation of the gpc coefficients. This error separation is verified in
the present paper for a rather straightforward, residual a posteriori error estimator,
which is also found to perform well in our numerical experiments. We emphasize,
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however, that the basic orthogonality property which we used in deriving the error

estimator and the error separation in the weak residual can reasonably be expected

to hold for any of the by now numerous a posteriori error estimation methodologies

which are available in the Finite Element Method. We refer to [7] for a survey
and further references. We show in particular for linear elliptic problems arising
in computational mechanics how the stochastic Galerkin FEM can, indeed, be im-
plemented with complexity that is comparable to that of a stochastic collocation
solution. In addition, we show also how mesh adaptivity with different levels of
Finite Element mesh refinement for each coefficient of an approximate stochastic
Galerkin solution can be realized algorithmically. In numerical experiments we con-
firm the reliability of the adaptive strategy and also the substantial savings gained
by the possibility of nonuniform mesh adaptation for different gpc coefficients which
was theoretically predicted in [9].

The outline of this paper is as follows. In Section 2, we present a class of model
parametric elliptic diffusion problems in a polygonal or polyhedral, “physical” do-
main D (to be distinguished from the “stochastic” domain) whose differential op-
erators depend in an affine fashion on a sequence y = (ym)∞m=1 of parameters.

Section 3 present the gpc expansion of the solution. Specifically, finite spans of
tensorized Legendre polynomials are used for the Galerkin projection. Section 4
presents the stochastic Galerkin formulation. Section 5 presents the derivation of
the weak residual, in particular with a decomposition of the overall weak residual
into a part from gpc discretization and a second, orthogonal part due to FE dis-
cretization of “active” gpc coefficients in the domain D. Section 6 contains the
derivation of the residual error estimator. Section 7 presents the adaptive refine-
ment criteria, in particular the marking of elements for subdivision and new gpc
modes to be appended to the Galerkin approximation. Section 8 discusses the
iterative solver, which consists of a pcg block iteration. Termination criteria are
developed which balance the iteration error with the Finite Element discretization
and the gpc truncation error. Section 9 then discusses the extension of the devel-
oped concepts to general linear elliptic problems in two space dimensions. As an
illustration, the FE discretization of plane, linearized elastostatics with stochastic
Poisson ratio is presented. Section 10 finally adresses the concrete realization of the
Galerkin operator. Due to the iterative solver, the matrix in the stochastic Galerkin

FEM is never explicitly assembled, and we present a “dynamic” assembly which is
realized in the matrix-vector multiplication in our solver. The paper concludes with
several numerical experiments in Section 11, among others a Cook’s membrane test
with stochastic Poisson ratio.

2. A parametric boundary value problem

2.1. Parametric form. We consider the model parametric elliptic boundary value
problem

{

−∇ · (a∇u) = f in D

u = 0 on ∂D
(2.1)

on a bounded Lipschitz domain D ⊂ R
d. Points in the physical domain D shall be

denoted by x with coordinates (x1, . . . , xd). In (2.1), the coefficient a is permitted
to depend on a sequence of scalar parameters ym in an affine fashion

a(y, x) = ā(x) +

∞
∑

m=1

ymam(x) , x ∈ D , (2.2)
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with ā, am ∈ W 1,∞(D) and |ym| ≤ 1, which entails y := (ym)∞m=1 ∈ Γ := [−1, 1]∞.
Parametric coefficients such as (2.2) arise, for example, as Karhunen–Loève expan-
sions of random fields a(ω, x) in D. In order to ensure convergence in (2.2) and
positivity of a, we assume

ess inf
x∈D

ā(x) > 0 , ess sup
x∈D

∞
∑

m=1

∣

∣

∣

∣

am(x)

ā(x)

∣

∣

∣

∣

≤ γ < 1 ; (2.3)

additional summability assumptions are made in Section 5.2. We will use the
notation Σm := supp am ⊂ D.

The variational formulation of (2.1) without the parameter y is set in the space
V := H1

0 (D), which we endow with the ā-dependent scalar product

(w, v)V :=

∫

D

ā(x)∇w(x) ·∇v(x) dx , (2.4)

and the induced norm ‖·‖V . More generally, for any measurable subset G ⊂ D,
we define the semi-definite form (·, ·)V,G and corresponding seminorm |·|V,G by
restricting the integral in (2.4) to G.

The operator

Ā : H1
0 (D) → H−1(D) , v (→ −∇ · (ā∇v) (2.5)

can be interpreted as the Riesz isomorphism from V to V ∗, and is thus boundedly
invertible. We also define the bounded linear maps

Am : H1
0 (D) → H−1(D) , v (→ −∇ · (am∇v) , m ∈ N , (2.6)

through which we can express

A(y) : H1
0 (D) → H−1(D) , v (→ −∇ · (a(y)∇v) , y ∈ Γ , (2.7)

as

A(y) = Ā+

∞
∑

m=1

ymAm , y ∈ Γ , (2.8)

with unconditional convergence in L(V, V ∗). Then equation (2.1) is expressed suc-
cinctly as

A(y)u(y) = f , y ∈ Γ . (2.9)

2.2. Weak formulation. Anticipating the approximation of u by a Galerkin pro-
jection simultaneously in x ∈ D and y ∈ Γ , we integrate (2.9) with respect to a
measure on Γ . This could be a statistically meaningful probability distribution if
a is modeled as a random field, or an auxiliary measure used only for numerical
purposes.

For all m ∈ N, let πm be a symmetric Borel probability measure on [−1, 1], i.e.
πm is invariant under the transformation ym (→ −ym. We assume for simplicity
that the support of πm in [−1, 1] has infinite cardinality. Then

π :=

∞
⊗

m=1

πm (2.10)

is a probability measure on Γ with the Borel σ-algebra.
The weak formulation of (2.9) is to find u ∈ L2

π(Γ ;V ) such that
∫

Γ

〈A(y)u(y), v(y)〉 dπ(y) =
∫

Γ

∫

D

f(x)v(y, x) dx dπ(y) ∀v ∈ L2
π(Γ ;V ) . (2.11)

Existence and uniqueness of the solution u are a consequence of the Riesz iso-
morphism since the bilinear form in (2.11) defines a scalar product on L2

π(Γ ;V ).
Furthermore, the solution coincides with that of (2.9) for π-a.e. y ∈ Γ .
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The weak formulation (2.11) can be cast as an operator equation Au = f with

A : L2
π(Γ ;V ) → L2

π(Γ ;V ∗) , v (→ [y (→ A(y)v(y)] . (2.12)

Due to (2.8), identifying L2
π(Γ ;V ) with the Hilbert tensor product L2

π(Γ )⊗V , and
similarly for V ∗ in place of V , A has the tensor product expansion

A = idL2
π
(Γ ) ⊗Ā+

∞
∑

m=1

Km ⊗Am , (2.13)

where Km : L2
π(Γ ) → L2

π(Γ ) refers to multiplication by ym, which has operator
norm at most 1 since |ym| ≤ 1.

We define the energy norm ‖·‖A on L2
π(Γ ;V ) through the scalar product

(w, v)A := 〈Aw, v〉 =
∫

Γ

〈A(y)w(y), v(y)〉 dπ(y) . (2.14)

3. Tensor product polynomial expansion

3.1. Orthonormal polynomials. By definition, for every m ∈ N, πm is a sym-
metric probability measure on [−1, 1] whose support has infinite cardinality. We
denote by (Pm

n )∞n=0 an orthonormal basis of L2
πm

([−1, 1]), where Pm
n is a polynomial

of degree n. Such a basis can be constructed by Gram–Schmidt orthogonalization
of the monomial basis, which leads to a recursion

βm
n Pm

n (ym) = ymPm
n−1(ym)− βm

n−1P
m
n−2(ym) , n ≥ 1 , (3.1)

with the initialization Pm
0 := 1 and βm

0 := 0. The polynomials Pm
n are unique e.g.

if βm
n are chosen as positive for all n ≥ 1.
For example, if dπm(ym) = 1

2 dym is the uniform distribution, then (Pm
n )∞n=0

are Legendre polynomials, and βm
n = (4 − n−2)−1/2. Alternatively, if dπm(ym) =

1
π
(1 − y2m)−1/2 dym, then (Pm

n )∞n=0 are Chebyshev polynomials of the first kind,

with βm
1 = 1/

√
2 and βm

n = 1/2 for n ≥ 2. We refer to [13, 16] for details and
further examples.

More generally, if πm is not symmetric, an additional term appears in (3.1).
Furthermore, if πm is a convex combination of point masses, then L2

πm
([−1, 1]) is

finite dimensional, and thus the polynomial basis is also finite. Our results extend to
these cases, but we restrict to symmetric measures with infinite support to simplify
notation.

3.2. Tensorized basis. Tensor products of the polynomial bases in each coordi-
nate of Γ = [−1, 1]∞ form a basis of L2

π(Γ ). Let F denote the set of finitely
supported sequences in N0,

F := {µ ∈ N
N

0 ; # suppµ < ∞} , (3.2)

where suppµ := {m ∈ N ; µm 0= 0}. For any µ ∈ F , the countable tensor product
polynomial Pµ :=

⊗∞

m=1 P
m
µm

is given by

Pµ(y) =

∞
∏

m=1

Pm
µm

(ym) =
∏

m∈suppµ

Pm
µm

(ym) , y ∈ Γ , (3.3)

since Pm
0 = 1 for all m ∈ N. The countable set (Pµ)µ∈F is an orthonormal basis of

L2
π(Γ ), see e.g. [16, 12].
We denote the element of F consisting only of zeros by 0. The corresponding

basis function is P0 = 1. Also, for any m ∈ N, ǫm := (δmn)
∞
n=1 denotes the

Kronecker sequence for the coordinate m.
Due to (3.1) and (3.3), for any µ ∈ F and m ∈ N,

ymPµ(y) = βm
µm+1Pµ+ǫm(y) + βm

µm
Pµ−ǫm(y) , y ∈ Γ , (3.4)
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where we use the convention Pµ = 0 if any µm < 0. Thus multiplication by ym has
a particularly simple representation with respect to the basis (Pµ)µ∈F .

3.3. Reformulation of the parametric equation. Since (Pµ)µ∈F is an orthonor-
mal basis of L2

π(Γ ), the solution u of (2.11) can be expanded as

u(y, x) =
∑

µ∈F

uµ(x)Pµ(y) , (3.5)

with coefficients uµ in V = H1
0 (D) and convergence in L2

π(Γ ;V ).
Inserting (3.5) and an analogous expansion of v into (2.11) leads to the countably

infinite coupled system of deterministic equations

Āuµ +

∞
∑

m=1

Am(βm
µm+1uµ+ǫm + βm

µm
uµ−ǫm) = fδµ0 ∀µ ∈ F (3.6)

for the coefficient vector (uµ)µ∈F ∈ ℓ2(F ;V ). We refer to [16] for a mathematically
rigorous derivation.

4. Galerkin projection

4.1. General approximation. Let Λ ⊂ F be a finite subset, and for each µ ∈ Λ,
let Vµ ⊂ V be a finite dimensional subspace. Then

VN :=

{

v(y, x) =
∑

µ∈Λ

vµ(x)Pµ(y) ; vµ ∈ Vµ ∀µ ∈ Λ

}

⊂ L2
π(Γ ;V ) (4.1)

is a finite dimensional subspace. The Galerkin approximation of u in VN is the
unique uN ∈ VN satisfying

∫

Γ

〈A(y)uN (y), v(y)〉 dπ(y) =
∫

Γ

∫

D

f(x)v(y, x) dx dπ(y) ∀v ∈ VN , (4.2)

i.e. uN is the orthogonal projection of u onto VN with respect to the scalar product
(·, ·)A.

Let AN : VN → V∗
N be the restriction of A to VN , and let fN be equal to f ,

interpreted as an element of V∗
N . Then the Galerkin projection uN is the solution

of

ANuN = fN . (4.3)

For later use, we also define ĀN : VN → V∗
N as the restriction of idL2

π
(Γ ) ⊗Ā to VN .

We will always tacitly assume 0 ∈ Λ.
As in Section 3.3, the coefficients (uN,µ)µ∈F of uN are characterized by uN,µ = 0

for µ ∈ F \ Λ and

〈ĀuN,µ, v〉+
∞
∑

m=1

〈Am(βm
µm+1uN,µ+ǫm + βm

µm
uN,µ−ǫm), v〉 = 〈fδµ0, v〉 ∀v ∈ Vµ

(4.4)
for all µ ∈ Λ. The coefficent vector (uN,µ)µ∈F can be interpreted as an element of

∏

µ∈Λ

Vµ ⊂ ℓ2(F ;V ) , (4.5)

and equation (4.3) can be interpreted on this space in place of VN . We refrain from
introducing a different notation for this equivalent formulation.
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4.2. Finite element spaces. We construct Vµ for µ ∈ Λ as finite element spaces.
In order to ensure a degree of compatibility between these spaces, and uniform shape
regularity constants, we assume that the underlying meshes Tµ are constructed by

some refinement of a given initial mesh T̊ .
Let T̊ be a conforming simplicial mesh of D. For each element T ∈ T̊ , we

prescribe a sequence of bisections of T into simplices which are uniformly shape
regular. Let the set T consist of all conforming simplicial meshes of D attainable
through the prescribed local refinements. For example, if d = 2, we may consider
triangular meshes generated by newest vertex bisection. We refer to [8] and the
references therein for details.

For any T ∈ T, we consider T to be the set of elements of the mesh, and denote
the set of faces by S. Interior faces are collected in S ∩ D, and the set S ∩ ∂D
consists of all boundary faces. Similarly, for any T ∈ T , the set S ∩ ∂T contains
the faces of T in the boundary of T .

For each µ ∈ Λ, let Tµ ∈ T with faces Sµ. In principle, Vµ may be any conforming
finite element space on Tµ. We focus on the simplest such setting and define Vµ to
be the space of continuous piecewise affine functions on Tµ which vanish on ∂D. In
order to avoid the technicalities of boundary approximations, we assume that D is
a polytope. These assumptions are not critical to our method, and we make them
only to keep the development as clear as possible.

Let T ∈ T. For any T ∈ T and S ∈ S, let hT := diamT and hS := diamS
describe the element and face sizes, and let ω̃T and ω̃S denote the union of all
elements of T sharing at least a vertex with T or S, respectively. We note that the
number of these neighborhoods to which any element T ∈ T belongs is bounded
uniformly on T. Consequently, the Clément interpolation operators Iµ : H

1
0 (D) →

Vµ satisfy

‖ā1/2(v − Iµv)‖L2(T ) ≤ cT hT |v|V,ω̃T
∀T ∈ Tµ (4.6)

and
‖ā1/2(v − Iµv)‖L2(S) ≤ cSh

1/2
S |v|V,ω̃S

∀S ∈ Sµ (4.7)

with uniform constants cT and cS , see e.g. [6]. The weight ā
1/2 does not affect this

standard result since it is uniformly bounded from above and below. Of course, in
the case d = 1, we have hS = 0, and (4.6) holds for the standard nodal interpolant
with T in place of ω̃T .

5. Decomposition of the error

5.1. The residual. For any w ∈ L2
π(Γ ;V ), the residual R(w) ∈ L2

π(Γ ;V ∗) is

R(w) := f −Aw = A(u− w) . (5.1)

By the Riesz representation theorem,

‖u− w‖A = sup
v∈L2

π
(Γ ;V )

〈A(u− w), v〉
‖v‖A

= sup
v∈L2

π
(Γ ;V )

〈R(w), v〉
‖v‖A

, (5.2)

i.e. the error in the energy norm is equal to a dual norm of the residual.

Theorem 5.1. Let VN ⊂ L2
π(Γ ;V ) be a closed subspace, wN ∈ VN , and let uN

denote the Galerkin projection of u onto VN . Then for any bounded linear map

Q : L2
π(Γ ;V ) → VN ,

‖wN − u‖2A ≤
(

1√
1− γ

sup
v∈L2

π
(Γ ;V )

|〈R(wN ), v −Qv〉|
‖v‖L2

π
(Γ ;V )

+ cQ‖wN − uN‖A
)2

+ ‖wN − uN‖2A ,

(5.3)

where cQ is the operator norm of id−Q with respect to the energy norm ‖·‖A.
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Proof. Since uN is the A-orthogonal projection of u onto VN ,

‖wN − u‖2A = ‖uN − u‖2A + ‖wN − uN‖2A .

Using Galerkin orthogonality again, the first term can be written as

‖uN − u‖A = sup
v∈L2

π
(Γ ;V )

〈R(uN ), v〉
‖v‖A

= sup
v∈L2

π
(Γ ;V )

inf
vN∈VN

〈R(uN ), v − vN 〉
‖v‖A

Furthermore, by Cauchy–Schwarz,

|〈R(uN )−R(wN ), v − vN 〉| = |〈A(wN − uN ), v − vN 〉| ≤ ‖wN − uN‖A‖v − vN‖A .

Finally, ‖v‖2A ≥ (1− γ)‖v‖2L2
π
(Γ ;V ) due to (2.3), see [16], and the claim follows with

vN := Qv. !

5.2. Projection errors. We represent the residual R(w) ∈ L2
π(Γ ;V ∗) with re-

spect to the tensorized polynomial basis (Pµ)µ∈F . If (wµ)µ∈F ∈ ℓ2(F ;V ) are the
coefficients of w, then the coefficients of R(w) are

[R(w)]µ = fδµ0 − Āwµ −
∞
∑

m=1

Am(βm
µm+1wµ+ǫm + βm

µm
wµ−ǫm) , µ ∈ F . (5.4)

Let VN be of the form (4.1). For every pair µ, ν ∈ Λ, let Πν
µ : Vν → Vµ be an

arbitrary map, and let Πν
µ := 0 if either µ or ν is in F \ Λ. We think of Πν

µ as a
projection of Vν into Vµ, but do not require this property rigorously since the spaces
need not be nested. For example, Πν

µ could be a nodal interpolation operator.
For wN ∈ VN with coefficients wN,µ ∈ Vµ, we approximate [R(wN )]µ by

rµ(wN ) := fδµ0 − ĀwN,µ −
∞
∑

m=1

Am(βm
µm+1Π

µ+ǫm
µ wN,µ+ǫm + βm

µm
Πµ−ǫm

µ wN,µ−ǫm)

(5.5)
for µ ∈ Λ and rµ(wN ) := 0 for µ ∈ F \ Λ.

Lemma 5.2. For any wN ∈ VN and any µ ∈ F ,

‖rµ(wN )− [R(wN )]µ‖V ∗ ≤ δµ(wN ) (5.6)

for

δµ(wN ) :=

∞
∑

m=1

∥

∥

∥

am
ā

∥

∥

∥

L∞(D)

(

βm
µm+1|Π

µ+ǫm
µ wN,µ+ǫm − wN,µ+ǫm |V,Σm

+ βm
µm

|Πµ−ǫm
µ wN,µ−ǫm − wN,µ−ǫm |V,Σm

)

.

(5.7)

Proof. The claim follows by triangle inequality using the estimate ‖Amv‖V ∗ ≤
‖am/ā‖L∞(D)|v|V,Σm

for v ∈ V . !

Although the vector (rµ(wN ))µ∈F ∈ ℓ2(F ;V ∗) is supported on the finite set Λ,
δµ(wN ) 0= 0 also for some µ ∈ F \ Λ. In fact, for any µ ∈ F \ Λ,

δµ(wN ) =
∞
∑

m=1

∥

∥

∥

am
ā

∥

∥

∥

L∞(D)

(

βm
µm+1|wN,µ+ǫm |V,Σm

+ βm
µm

|wN,µ−ǫm |V,Σm

)

. (5.8)

The infinite series in (5.7) and (5.8) are actually finite sums since wN,ν 0= 0 only
for ν ∈ Λ.

Let

suppΛ :=
⋃

µ∈Λ

suppµ = {m ∈ N ; ∃µ ∈ Λ : µm 0= 0} (5.9)

be the set of active dimensions of Λ. For any m ∈ N, let

∂mΛ := [(Λ+ ǫm) ∪ (Λ− ǫm)] ∩ F = {µ± ǫm ∈ F ; µ ∈ Λ} , (5.10)
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and define

∂iΛ :=
⋃

m∈suppΛ

∂mΛ and ∂oΛ :=
⋃

m∈N\suppΛ

∂mΛ . (5.11)

Then δµ(wN ) takes the general form (5.7) on the finite set Λ and the simplified
form (5.8) on the finite set ∂iΛ.

If ν ∈ ∂oΛ, then there is exactly one µ ∈ Λ and one m ∈ N \ suppΛ such that
νn = µn for all n 0= m, and νm = 1, i.e. ν = µ + ǫm. Consequently, ∂oΛ can be
decomposed into the finite disjoint union

∂oΛ =
⊔

µ∈Λ

∂oµ , ∂oµ := {µ+ ǫm ; m ∈ N \ suppΛ} . (5.12)

For each µ ∈ Λ, due to (5.8),

∑

ν∈∂oµ

δν(wN )2 =
∑

m∈N\suppΛ

(

βm
1

∥

∥

∥

am
ā

∥

∥

∥

L∞(D)
|wN,µ|V,Σm

)2

≤ ‖wN,µ‖2V
∑

m∈N\suppΛ

(

βm
1

∥

∥

∥

am
ā

∥

∥

∥

L∞(D)

)2

. (5.13)

The infinite sum remaining in the last term of (5.13) is independent of µ, and thus

∑

ν∈∂oΛ

δν(wN )2 ≤
(

∑

µ∈Λ

‖wN,µ‖2V
)

∑

m∈N\suppΛ

(

βm
1

∥

∥

∥

am
ā

∥

∥

∥

L∞(D)

)2

. (5.14)

We are thereby led to require that (βm
1 ‖am/ā‖L∞(D))

∞
m=1 is in ℓ2. We also assume

that this sequence is arranged in decreasing order.

Remark 5.3. If the functions am are locally supported, the estimate (5.13) can be
sharpened, and the resulting summability requirement weakened. We assume that
N can be decomposed into countably many disjoint finite sets ∆l in such a way that
there is only a fixed finite overlap between the supports Σm of the functions am in
each level l. Also, we assume that βm

1 ‖am/ā‖L∞(D) ≤ αl for all m ∈ ∆l for some
αl > 0. For all l ∈ N, let

nl(Λ) := max
x∈D

∑

m∈∆l\suppΛ

1Σm
(x) . (5.15)

This denotes the maximal overlap within ∆l of sets Σm for currently inactive di-
mensions m, and is uniformly bounded in l by assumption. By (5.13), for each
µ ∈ Λ,

∑

ν∈∂oµ

δν(wN )2 ≤ ‖wN‖2V
∞
∑

l=1

nl(Λ)α
2
l , (5.16)

and thus

∑

ν∈∂oΛ

δν(wN )2 ≤
(

∑

µ∈Λ

‖wN,µ‖2V
) ∞
∑

l=1

nl(Λ)α
2
l . (5.17)

Therefore, we only need to assume (αl)l ∈ ℓ2 in order to ensure convergence in
(5.17).
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6. Error estimator

6.1. A residual-based error estimator. We derive a reliable estimator for rµ(wN )
from (5.5) following the standard argument from [20, 1, 23], see also [14]. For all
µ ∈ Λ, let

σµ(wN ) := ā∇wN,µ +

∞
∑

m=1

am∇(βm
µm+1Π

µ+ǫm
µ wN,µ+ǫm + βm

µm
Πµ−ǫm

µ wN,µ−ǫm) .

(6.1)
The sum in (6.1) is finite since only finitely many wN,ν are different from zero.
Then the residual rµ(wN ) is given by

〈rµ(wN ), v〉 =
∫

D

fδµ0v − σµ(wN ) ·∇v dx , v ∈ H1
0 (D) . (6.2)

For any T ∈ Tµ, let

ηµ,T (wN ) := hT ‖ā−1/2(fδµ0 +∇ · σµ(wN ))‖L2(T ) . (6.3)

Since wN,µ and Πν
µwN,ν are affine on T , the divergence of σµ(wN ) on T is

∇ · σµ(wN ) = ∇ā ·∇wN,µ

+

∞
∑

m=1

∇am ·∇(βm
µm+1Π

µ+ǫm
µ wN,µ+ǫm + βm

µm
Πµ−ǫm

µ wN,µ−ǫm) .

(6.4)
Also, for any S ∈ Sµ, let

ηµ,S(wN ) := h
1/2
S ‖ā−1/2[[σµ(wN )]]‖L2(S) , (6.5)

where [[·]] denotes the normal jump over S, i.e. if S = T̄1 ∩ T̄2 and ni is the exterior
unit normal to Ti, then

[[σ]] := σ|T1
· n1 + σ|T2

· n2 , (6.6)

and if S ∈ S ∩ ∂D, then [[σ]] := σ · nD, where nD is the exterior unit normal to D.
These terms combine to

ηµ(wN ) :=

(

∑

T∈Tµ

ηµ,T (wN )2 +
∑

S∈Sµ

ηµ,S(wN )2
)1/2

. (6.7)

Theorem 6.1. For all wN ∈ VN , µ ∈ Λ and v ∈ H1
0 (D),

|〈rµ(wN ), v − Iµv〉| ≤ cηηµ(wN )‖v‖V (6.8)

with a constant cη depending only on ā and the shape regularity of T.

Proof. We abbreviate z := v−Iµv and σµ := σµ(wN ), and denote by nT the exterior
unit normal to T ∈ T . Integrating (6.2) by parts on each T ∈ Tµ leads to

〈rµ(wN ), z〉 =
∑

T∈Tµ

∫

T

fδµ0z − σµ ·∇z dx

=
∑

T∈Tµ

[
∫

T

(fδµ0 +∇ · σµ)z dx−
∑

S∈Sµ∩∂T

∫

S

σµ · nT z dS

]

=
∑

T∈Tµ

∫

T

(fδµ0 +∇ · σµ)z dx−
∑

S∈Sµ

∫

S

[[σµ]]z dS .
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By the Cauchy–Schwarz inequality,

|〈rµ(wN ), z〉| ≤
∑

T∈Tµ

‖ā−1/2(fδµ0 +∇ · σµ)‖L2(T )‖ā1/2z‖L2(T )

+
∑

S∈Sµ

‖ā−1/2[[σµ]]‖L2(S)‖ā1/2z‖L2(S) ,

and due to (4.6) and (4.7),

|〈rµ(wN ), z〉| ≤ cT
∑

T∈Tµ

hT ‖ā−1/2(fδµ0 +∇ · σµ)‖L2(T )|v|V,ω̃T

+ cS
∑

S∈Sµ

h
1/2
S ‖ā−1/2[[σµ]]‖L2(S)|v|V,ω̃S

≤ (cT + cS)
∑

T∈Tµ

[

hT ‖ā−1/2(fδµ0 +∇ · σµ)‖L2(T )

+
∑

S∈Sµ∩∂T

h
1/2
S ‖ā−1/2[[σµ]]‖L2(S)

]

|v|V,ω̃T
.

Since the number of domains ω̃T and ω̃S that overlap at any point is uniformly
bounded on T,

|〈rµ(wN ), z〉| ≤ C

(

∑

T∈Tµ

[

hT ‖ā−1/2(fδµ0 +∇ · σµ)‖L2(T )

+
∑

S∈Sµ∩∂T

h
1/2
S ‖ā−1/2[[σµ]]‖L2(S)

]2
)1/2

‖v‖V

≤ cηηµ(wN )‖v‖V . !

6.2. Upper bound of the total error. We combine Theorems 5.1 and 6.1 to
derive an upper bound for the global error in the energy norm.

Let the space VN be as in (4.1), and let Q : L2
π(Γ ;V ) → VN be given by

Qv :=
∑

µ∈Λ

(Iµvµ)Pµ , v =
∑

µ∈F

vµPµ ∈ L2
π(Γ ;V ) . (6.9)

Then the constant cQ from Theorem 5.1 is bounded uniformly on T. We continue
to denote by uN the Galerkin projection of u onto VN .

Theorem 6.2. For any wN ∈ VN ,

‖wN − u‖2A ≤
[

cη√
1− γ

(

∑

µ∈Λ

ηµ(wN )2
)1/2

+
cQ√
1− γ

(

∑

µ∈F

δµ(wN )2
)1/2

+ cQ‖wN − uN‖A
]2

+ ‖wN − uN‖2A .

(6.10)

Proof. For any v ∈ L2
π(Γ ;V ), using (6.9),

〈R(wN ), v −Qv〉 =
∑

µ∈F

〈[R(wN )]µ, vµ − Iµvµ〉

≤
∑

µ∈Λ

〈rµ(wN ), vµ − Iµvµ〉

+
∑

µ∈F

‖rµ(wN )−R(wN )‖V ∗‖vµ − Iµvµ‖V .
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Applying Cauchy–Schwarz, Theorem 6.1 and Lemma 5.2 leads to

|〈R(wN ), v −Qv〉|
‖v‖L2

π
(Γ ;V )

≤ cη

(

∑

µ∈Λ

ηµ(wN )2
)1/2

+ cQ

(

∑

µ∈F

δµ(wN )2
)1/2

.

Then the claim follows from Theorem 5.1. !

Remark 6.3. The estimate in (6.10) contains a sum over the infinite set F . As
described in Section 5.2, this can be reduced to a finite sum and the sum over
N\suppΛ from (5.14), which can be approximated more easily. See also Remark 5.3
for a similar reduction for locally supported am.

7. Refinement strategy

7.1. A finite element marking strategy. Following [10, 20], we use a Dörfler
strategy to mark elements of Tµ for refinement, based on the estimators ηµ. For
every S ∈ Sµ, let

η̂µ,S(wN ) :=

(

ηµ,S(wN )2 +
1

d+ 1

∑

T : S∈S∩∂T

ηµ,T (wN )2
)1/2

, (7.1)

such that
ηµ(wN )2 =

∑

S∈Sµ

η̂µ,S(wN )2 . (7.2)

For a parameter 0 < ϑη < 1, let Ŝη ⊂
⊔

µ∈Λ{µ}× Sµ be a subset satisfying
∑

(µ,S)∈Ŝη

η̂µ,S(wN )2 ≥ ϑ2
η

∑

µ∈Λ

ηµ(wN )2 . (7.3)

Ideally, Ŝη should be chosen as small as possible such that (7.3) holds, but we
make no formal restrictions. We collect the elements of Tµ for all µ ∈ Λ in the set
TN :=

⊔

µ∈Λ{µ}× Tµ, where each element T ∈ Tµ is encoded as a pair (µ, T ). Let

T̂η be the set of elements in TN with at least one face in Ŝη. These elements are
marked for refinement.

Remark 7.1. It may be useful to mark additional elements of T0 for refinement
based on unresolved components of f ; we refer to [20] for details. Similar data
oscillation contributions for ā and am could also be incorporated, but we disregard
this in the present work.

7.2. Localization of projection errors. We also mark elements for refinement
based on the projection errors δµ(wN ) from (5.7), which we decompose into local
contributions. For all µ ∈ Λ, T ∈ Tµ and m ∈ N, let

ζ
µ+ǫm
µ,T,m(wN ) :=

∥

∥

∥

am
ā

∥

∥

∥

L∞(D)
βm
µm+1|Π

µ+ǫm
µ wN,µ+ǫm − wN,µ+ǫm |V,Σm∩T , (7.4a)

ζ
µ−ǫm
µ,T,m(wN ) :=

∥

∥

∥

am
ā

∥

∥

∥

L∞(D)
βm
µm

|Πµ−ǫm
µ wN,µ−ǫm − wN,µ−ǫm |V,Σm∩T (7.4b)

and ζνµ,T,m := 0 for all other ν ∈ F . Then

δµ(wN ) =

∞
∑

m=1

(

∑

T∈Tµ

ζ
µ+ǫm
µ,T,m(wN )2

)1/2

+
∑

m∈suppµ

(

∑

T∈Tµ

ζ
µ−ǫm
µ,T,m(wN )2

)1/2

. (7.5)

Unfortunately, (7.5) does not decompose into a sum over T ∈ Tµ. However, moti-
vated by (7.5), we define the local error indicators

ζµ,T (wN ) :=

∞
∑

m=1

ζ
µ+ǫm
µ,T,m(wN ) +

∑

m∈suppµ

ζ
µ−ǫm
µ,T,m(wN ) (7.6)
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for µ ∈ Λ and T ∈ Tµ. The infinite series in (7.6) is actually a finite sum due to
the definition of Πν

µ . By triangle inequality,

δµ(wN ) ≤
∑

T∈Tµ

ζµ,T (wN ) . (7.7)

Instead of a Dörfler marking strategy as in Section 7.1, we suggest to mark elements
of TN for refinement for which ζµ,T (wN ) exceeds a certain threshold. This threshold
can be used also to activate indices in F \ Λ. Let 0 < ϑζ < 1, and let

ζ̄ := max{ζµ,T (wN ) ; (µ, T ) ∈ TN} , (7.8)

i.e. the maximum of ζµ,T (wN ) for any T ∈ Tµ and any µ ∈ Λ. We mark the
elements

T̂ζ := {(µ, T ) ∈ TN ; ζµ,T (wN ) ≥ ϑζ ζ̄} (7.9)

for refinement.

Remark 7.2. One motivation for separating the refinement based on projection er-
rors from the more typical finite element refinement process described in Section 7.1
lies in potential difficulties in applying a Dörfler marking strategy caused by the
infinitely many error indicators (7.4), which leads to an infinite sum in the Dörfler
property and an infinite set of possible refinements. Furthermore, the separation
of these marking steps removes the dependence on the relative scaling of the error
indicators ηµ and ζµ,T .

7.3. Selection of new indices. The marking strategy from Section 7.2 extends
to µ ∈ F \ Λ. In this case, there is no need to decompose δµ(wN ) into local
contributions. For a parameter ϑδ > 0, we select the new indices

Λ̂δ := {µ ∈ F \ Λ ; δµ(wN ) ≥ ϑδ ζ̄} . (7.10)

Using the same ζ̄ in (7.10) as in (7.9) should balance the refinement of the active
set Λ with the spatial mesh refinements. To avoid pathological examples and to
improve stability, we enforce an upper bound Nδ on the size of Λ̂δ proportional to
#Λ, selecting only the Nδ indices µ with the largest values of δµ(wN ) if this bound
is reached.

Remark 7.3. Although Λ̂δ is itself a finite set as a consequence of (δµ(wN )) ∈
ℓ2(F), its construction as a subset of the infinite set F is not trivial. To find the
contribution of the infinite set ∂oΛ from (5.12), we note that for fixed µ ∈ Λ and
all m ∈ N \ suppΛ,

δµ+ǫm(wN ) = βm
1

∥

∥

∥

am
ā

∥

∥

∥

L∞(D)
|wN,µ|V,Σm

≤ βm
1

∥

∥

∥

am
ā

∥

∥

∥

L∞(D)
‖wN,µ‖V . (7.11)

By assumption, am are arranged in decreasing order of βm
1 ‖am/ā‖L∞(D). Therefore,

for each µ ∈ Λ, we can iterate through µ + ǫm in increasing order of m until
βm
1 ‖am/ā‖L∞(D)‖wN,µ‖V drops below the threshold ζ̄, which ensures that no more

indices µ+ ǫm will contribute to Λ̂δ.

7.4. Local mesh refinements. Using the marking strategies from Sections 7.1
and 7.2, we refine at least the elements in T̂ := T̂η ∪ T̂ζ .

Let µ ∈ Λ, T̂µ := {T ; (µ, T ) ∈ T̂ }, and Ŝµ := {S ; (µ, S) ∈ Ŝη}. As in [20], to

which we refer for details, we refine Tµ to an element of T for which each T ∈ T̂µ
and each S ∈ Ŝµ contain at least one interior node.

We also augment Λ by Λ̂δ. For all µ ∈ Λ̂δ, Tµ is initialized as T̊ with some uniform
refinements applied to it such that the oscillations of the coefficient amax(suppΛ) are
resolved. This refinement procedure is encoded into the routine Refine which

is based on the refinement indicators η̂, ζ̂ and δ̂ from the evaluation of the error
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estimator in Error, see Section 10.4 for further details. We suppress the dependence
on the parameters ϑη, ϑζ and ϑδ. Note that, in order to obtain good starting values
for the solver iteration, the vector wN is prolongated to the refined meshes.

Algorithm 1: Refine[VN , wN , ηN , ζN , δN , ζ̄N ] (→ V̄N , w̄N

T̂η ← construct(ηN ) // residual indicators according to (7.3)

T̂ζ ← construct(ζN , ζ̄N ) // projection indicators according to (7.4)

for µ ∈ Λ do

Tµ̄ ← Tµ

for T ∈ {T ∈ Tµ | (µ, T ) ∈ T̂η ∪ T̂ζ} do

refine T in Tµ̄

w̄N,µ := Π
µ
Tµ̄
wN,µ

Λ̂δ ← construct(δN , ζ̄N )

for µ̂ ∈ Λ̂δ do

w̄N,µ̂ ← initialize on T̊ // new multi-indices according to (7.3)

add w̄N,µ̂ to w̄N

8. An adaptive solver

8.1. Conjugate gradient iteration. We use the conjugate gradient method with
preconditioner ĀN to approximate the Galerkin projection uN ∈ VN . A version
of this iteration is given in PCG. We note that one application of Ā−1

N amounts to
independent finite element solves in Vµ for all µ ∈ Λ with the operator Ā.

Algorithm 2: PCG[VN , w0, ǫ] (→ wN , ζN

̺0 := f −ANw0

s0 := Ā−1
N ̺0

v0 := s0

ζ0 := 〈̺0, s0〉
for i ∈ N do

if ζi−1 ≤ ǫ2 then

return wN := wi−1, ζN := ζi−1

zi−1 := ANvi−1

αi−1 := 〈zi−1, vi−1〉
wi := wi−1 + ζi−1

αi−1 v
i−1

̺i := ̺i−1 − ζi−1

αi−1 z
i−1

si := Ā−1
N ̺i

ζi := 〈̺i, si〉
vi := si + ζi

ζi−1 v
i−1

Lemma 8.1. For all i ∈ N0,

1

1 + γ
ζi ≤ ‖wi − uN‖2A ≤ 1

1− γ
ζi . (8.1)
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Proof. By definition, using the residuals ̺i = AN (wi − uN ),

‖wi − uN‖2A = 〈̺i,A−1
N ̺i〉 and ζi = 〈̺i, Ā−1

N ̺i〉 .

The claim follows using (1 + γ)−1Ā−1
N ≤ A−1

N ≤ (1 − γ)−1Ā−1
N in the sense of

self-adjoint operators, see [16, Prop. 2.10]. !

Theorem 8.2. The method PCG[VN , w0, ǫ] returns wN and ζN satisfying

‖wN − uN‖A ≤
√

ζN

1− γ
≤ ǫ√

1− γ
. (8.2)

At most

1 +

⌊

log(2ǫ−1
√
1 + γ ‖w0 − uN‖A)

log(γ−1 +
√

γ−2 − 1)

⌋

(8.3)

iterations are performed.

Proof. Equation (8.2) follows from Lemma 8.1 and the termination criterion of PCG.
By [18, Satz 9.4.14], for all i ∈ N0,

‖wi − uN‖A ≤ 2
qi

1 + q2i
‖w0 − uN‖A , q =

γ

1 +
√

1− γ2
,

see also [16, Thm. 3.7]. Let the final iterate be wN = wj . Then provided j ≥ 1,
again using Lemma 8.1,

‖wj−1 − uN‖A ≥
√

ζj−1

1 + γ
≥ ǫ√

1 + γ
.

Consequently,

ǫ ≤
√

1 + γ‖wj−1 − uN‖A ≤ 2
√

1 + γ ‖w0 − uN‖Aqj−1 ,

and solving for j leads to (8.3). !

Remark 8.3. The exact computation of zi = ANvi requires the assembly of matrix
representations of Am with different domains and codomains, i.e. as maps from Vν

to Vµ with ν 0= µ. To circumvent this costly procedure, we suggest first projecting
onto the codomain. Let (viµ)µ∈Λ be the coefficients of vi, with viµ ∈ Vµ. We

approximate zi by the element of V∗
N with coefficients

ziµ := Āviµ +
∑

m∈suppΛ

Am(βm
µm+1Π

µ+ǫm
µ viµ+ǫm

+ βm
µm

Πµ−ǫm
µ viµ−ǫm

) , (8.4)

interpreted as an element of V ∗
µ , for µ ∈ Λ, and similarly for the application of

AN in the definition of ̺0. Let AΠ
N denote this approximation of AN . It follows

by induction that, if AN is replaced by AΠ
N in PCG, then ̺i = f − AΠ

Nwi, i.e. the
residuals can still be computed recursively. Although we expect the effects of this
approximation on the convergence of the conjugate gradient method to be small,
especially if only a few iterations are performed, and it has been used successfully
in [14, 15], it does break the symmetry of the operator AN , and Theorem 8.2 is no
longer guaranteed to hold.
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8.2. An adaptive solver. We combine the conjugate gradient iteration from Sec-
tion 8.1 with the error estimate in Theorem 6.2 and the refinement strategy from
Section 7 to construct an adaptive solver for (2.11). Let

Error[wN , ζN ] :=

[

c̄η√
1− γ

(

∑

µ∈Λ

ηµ(wN )2
)1/2

+
c̄Q√
1− γ

(

∑

µ∈F

δµ(wN )2
)1/2

+ c̄Q

√

ζN

1− γ

]2

+
ζN

1− γ

(8.5)
for wN ∈ VN and ζN ≥ 0, with constants c̄Q ≥ cQ and c̄η ≥ cη.

Algorithm 3: Solve[ǫ,V1
N , w0

N , ξ0] (→ uǫ

for i ∈ N do

w̃i
N , ζiN := PCG[Vi

N , wi−1
N ,χξi−1

N ]

ξiN , ηiN , δiN := Error[wi
N , ζiN ]

if ξiN ≤ ǫ then

return uǫ := wi
N

Vi+1
N , wi

N := Refine[Vi
N , w̃i

N , ηiN , δiN ]

The total error of the a posteriori error estimator is denoted by ξN while the
residual and the projection parts are denoted by ηN and δN , respectively. We
assume that the inputs of Solve satisfy ǫ > 0, w0

N ∈ V1
N for V1

N of the form (4.1)
with finite element spaces Vµ as in Section 4.2, and ‖w0

N − u‖A ≤ ξ0. For example,

V1
N may have a single active coefficient 0 ∈ F , with T0 = T̊ , and w0

N := 0. In this

case, we can set ξ0 := (1− γ)−1/2‖f‖V ∗ .
Due to Theorems 6.2 and 8.2, if Solve terminates, then ‖uǫ−u‖A ≤ ǫ. However,

convergence of the solver is not proven. It is likely that the parameter 0 < χ < 1
must be chosen sufficiently small.

Further details of the implementation are provided in Sections 10.2 and 10.4.

9. Extensions to more general problems

The proposed approach can be used for Galerkin (primal and mixed) FEM for
any linear elliptic system in divergence form, for instance the Helmholtz equation
(in which case the perturbation of the operator A(y) must be such that it “stays
away” from resonance), Reissner–Mindlin plate models and several other equations.
The general algorithmic structure remains unchanged and can thus be understood
as a generic numerical approach.

9.1. Inhomogeneous boundary conditions. If inhomogeneous Dirichlet bound-
ary conditions u = g are imposed on ∂D for a g ∈ H1/2(∂D), then the solution u
is in ḡ+L2

π(Γ ;V ) for any extension ḡ of g to H1(D), rather than in L2
π(Γ ;V ). All

of the above goes through in this setting if u and its approximations uN and wN

are taken to be in the affine space ḡ + L2
π(Γ ;V ) or suitable subspaces of the form

ḡ + VN .
However, in practice approximate solutions lie in g̃+VN for an extension g̃ of e.g.

a piecewise linear interpolant of g on the exterior faces of T0. This nonconformity
introduces an additional error that is not captured by the error estimator. We refer
to [3] for a priori and a posteriori estimates of the error induced by this additional
approximation.
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The adaptive method also extends to other typed of boundary conditions. For
example, if Neumann boundary conditions are imposed on a part or all of ∂D,
the space V and right-hand side f are modified in the usual way. The right-hand
side remains deterministic if am = 0 on the Neumann part of the boundary for all
m ∈ N. Neumann boundary data enters the residual error estimator in ηµ,S from
(6.5) for µ = 0 and faces S in the appropriate part of ∂D.

9.2. Stochastic forcing. In order to handle right-hand sides f that depend on
the parameter y ∈ Γ , it is necessary to assume that the expansion

f(y) =
∑

µ∈F

fµPµ(y) (9.1)

with fµ ∈ V ∗ is known. Replacing fδµ0 by fµ in (5.4) for all µ ∈ F and in (5.5)
for all µ ∈ F \ Λ, estimate (5.6) becomes

‖rµ(wN )− [R(wN )]µ‖V ∗ ≤ δµ(wN ) + ‖fµ‖V ∗ (9.2)

if µ ∈ F \ Λ. The residual error estimator only needs to be modified by replacing
fδµ0 by fµ in (6.3), but the bound on the total error in Theorem 6.2 becomes

‖wN − u‖2A ≤
[

cη√
1− γ

(

∑

µ∈Λ

ηµ(wN )2
)1/2

+
cQ√
1− γ

(

∑

µ∈F

δµ(wN )2
)1/2

+
cQ√
1− γ

(

∑

µ∈F\Λ

‖fµ‖2V ∗

)1/2

+ cQ‖wN − uN‖A
]2

+ ‖wN − uN‖2A .

(9.3)

for any wN ∈ VN . Thus some computable bounds on the norms ‖fµ‖V ∗ must be
available, and these should be used in Section 7.3 similarly to δµ(wN ) to select new
indices µ ∈ F \ Λ in the refinement process.

For example, if f(y) has the form f −A(y)z(y) for a given

z(y, x) =
∑

µ∈F

zµ(x)Pµ(y) , (9.4)

coming e.g. from boundary data or from a domain decomposition method, then

fµ = fδµ0 − Āzµ −
∞
∑

m=1

Am(βm
µm+1zµ+ǫm + βm

µm
zµ−ǫm) (9.5)

for all µ ∈ F , and the series in (9.5) is only a finite sum if the expansion (9.4) is
finite. The norm of fµ can be estimated by triangle inequality.

Alternatively, as in the discussion of inhomogeneous Dirichlet boundary condi-
tions, the equation can be formulated as A(z + u) = f with a deterministic f , and
a solution z+u in the affine space z+L2

π(Γ ;V ). This circumvents the need for the
extra terms in (9.2) and (9.3), and leads to a sharper bound on the error since it
does not use the triangle inequality to estimate the norm of (9.5).

9.3. Linearized elasticity.

9.3.1. Navier–Lamé equations. Consider an elastic body D ⊂ R
2 with boundary

∂D = ∂DD ∪ ∂DN which is loaded by applied volume forces f ∈ L2(D;R2)
and surface traction g ∈ L2(∂DN ;R2) on some relatively open part ∂DN of the
boundary ∂D with exterior unit normal n. The elastic body is supported on the
Dirichlet part ∂DD := ∂D \ ∂DN where the displacement field is prescribed by
uD ∈ V := H1(D;R2). In order to obtain uniqueness and existence of weak solu-
tions, ∂DD is assumed to be closed and to have positive surface measure.
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Within the theory of linearized elasticity, the material behavior is modeled with
the positive Lamé parameters λ and µ which define the fourth-order isotropic ma-
terial tensor C. With the displacement field u ∈ H1(D;R2), the stress tensor
σ ∈ L2(D;R2×2

sym) is a linear function of the linear Green strain ε(u) := (Du +

(Du)T )/2. Here, Du = (uj,k)j,k=1,2 is the matrix of all first-order partial deriva-
tives uj,k := ∂uj/∂xk. With an isotropic but possibly inhomogeneous constitutive
law with random coefficient λ of the form (2.2), the stress is defined by

σ(u;λ, µ) := Cε(u) := λ tr(ε(u))I + 2µε(u). (9.6)

We assume λ̄,λm ∈ W 1,∞(D) such that (2.3) holds. The Green strain and the
stress tensor are symmetric 2 × 2 matrices. A different set of material parameters
is given by the Young modulus E > 0 and the Poisson ratio 0 < ν < 1/2. These
parameters are related to the Lamé parameters by

λ =
Eν

(1 + ν)(1− 2ν)
and µ =

E

2(1 + ν)
. (9.7)

The boundary value problem of the Navier–Lamé equations in linear elasticity
reads











− div σ(u;λ, µ) = f in D,

σ(u;λ, µ)n = g on ∂DN ,

u = uD on ∂DD.

(9.8)

The variational formulation of (9.8) is set in the space V := H1
0 (D;R2) which

we endow with the scalar product

(w, v)V :=

∫

D

σ(w; λ̄, µ) : ε(v) dx (9.9)

where C̄ε(w) = σ(w; λ̄, µ) and ‖·‖V is the induced norm. Note that for u ∈ V

‖u‖V = ‖C̄1/2ε(u)‖L2(D). (9.10)

9.3.2. Parametric Operator. In analogy to Section 2.1, we define the operator

Ā : V → V ∗ , v (→ − div σ(v; λ̄, µ) (9.11)

which is boundedly invertible. Moreover, we define the bounded linear maps

Am : V → V ∗ , v (→ − div σ(v;λm, 0) , m ∈ N , (9.12)

through which we can express

A(y) : V → V ∗ , v (→ − div σ(v;λ(y), µ) , y ∈ Γ , (9.13)

as

A(y) = Ā+

∞
∑

m=1

ymAm , y ∈ Γ , (9.14)

with unconditional convergence in L(V, V ∗). Thus, equation (9.8) is expressed
succinctly as

A(y)u(y) = f , y ∈ Γ . (9.15)
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9.3.3. Residual estimator. The residual error estimator is defined in the same way
as in Section 6.1 for the Poisson model problem. Assume Cmε(w) = σ(w;λm, µ).
For all µ ∈ Λ, define

σµ(wN ) := C̄ε(wN,µ) +

∞
∑

m=1

Cmε(βm
µm+1Π

µ+ǫm
µ wN,µ+ǫm + βm

µm
Πµ−ǫm

µ wN,µ−ǫm)

(9.16)

= σ(wN,µ; λ̄, µ) +

∞
∑

m=1

σ(βm
µm+1Π

µ+ǫm
µ wN,µ+ǫm + βm

µm
Πµ−ǫm

µ wN,µ−ǫm ;λm, 0) .

(9.17)

Then, as in (6.2), the approximate residual rµ(wN ) reads

〈rµ(wN ), v〉 =
∫

D

f · δµ0v − σµ(wN ) : ε(v) dx , v ∈ H1
0 (D;R2) . (9.18)

For any T ∈ Tµ, let

ηµ,T (wN ) := hT ‖C̄−1/2(fδµ0 + div σµ(wN ))‖L2(T ) (9.19)

and note that on T the divergence of σµ(wN ) is

div σµ(wN ) = div C̄ε(wN,µ)

+

∞
∑

m=1

divCmε(βm
µm+1Π

µ+ǫm
µ wN,µ+ǫm + βm

µm
Πµ−ǫm

µ wN,µ−ǫm) .

(9.20)
In particular, for any affine wN,µ on T ,

divCmε(wN,µ) = (∇λ) tr(ε(wN,µ)). (9.21)

Moreover, for any S ∈ Sµ, let

ηµ,S(wN ) := h
1/2
S ‖C̄−1/2[[σµ(wN )]]‖L2(S) . (9.22)

For faces S ∈ Sµ on the Neumann boundary, i.e. |S ∩ ∂DN | > 0, the jump term
in (9.22) is defined by g+σ(wN ) ·n. With this, the residual error estimator ηµ(wN )
is defined as in (6.7).

10. Implementation

The implementation is based on a new open-source framework for numerical
methods in uncertainty quantification [11]. It relies on the public domain FEM
package FEniCS [19]. The aim of the framework is to provide means to easily test
novel numerical methods. Moreover, it enables the comparison of different existing
methods within a single programming environment. Although the framework is in
an early state of development, all common components for stochastic Galerkin FEM
(SGFEM) are readily available. A more in-depth review regarding the efficient and
flexible application of SGFEM which also elaborates on aspects of the software
design is in preparation.

For the adaptive solver described in Section 8, some specific requirements had
to be implemented. In particular, the management of different meshes for different
active µ ∈ Λ and the transfer of vectors between them is required.

In the following, we give a brief overview of some key aspects of the implemen-
tation which was used to run the numerical experiments of Section 11. The focus
lies on the ingredients of the residual error estimator of Section 6 and the adaptive
solver of Section 8.

Since some quantities are very difficult to compute in practice, simplifying as-
sumptions were made where appropriate or necessary.
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10.1. Environment. The implementation of the stochastic Galerkin discretization
is mainly carried out in the programming language Python with an embedded C++
library for the FEM part. The nature of Python allows for rapid prototyping as
well as for convenient and efficient development of new numerical techniques. The
object-oriented software design enables the separation of generic components which
allows for the reuse of tested code. In order to ensure correctness, unit tests are
part of the code in many cases. Abstraction is used whenever possible to facilitate
a generic implementation of algorithms without having to resort to specific data
structures.

For the FEM part, the framework FEniCS provides the management of meshes,
the construction of discrete spaces and a versatile definition and evaluation of weak
forms. In fact, the interface between the stochastic and the discrete discretisation
is such that different equations can easily be implemented and tested. A large
variety of finite element spaces are available and can be chosen according to the
problem at hand. Moreover, coefficients may be inhomogeneous or anisotropic and
the iterative solution of nonlinear problems is supported in a general interface.

10.2. Computation of the discrete operator. In reference to (4.1), a vector
wN ∈ VN includes components wN,µ ∈ Vµ for µ ∈ Λ. These are based on different
discretisation meshes Tµ, respectively. The meshes and spatial vectors of all wN,µ in
some vector wN are managed in a dictionary data structure. A projection between
two meshes Πν

µ : Vν → Vµ is provided by nodal interpolation or by L2 projection.
For interpolation, a search tree structure is used in case of different meshes to
efficiently identify the cells of interpolation points. The projection between meshes
is employed in the evaluation of the discrete operator (4.4) and in the evaluation of
the projection error (7.4a) and (7.4b). The evaluation of the discrete system (4.4)
in practice bears the difficulty that the bilinear form cannot be computed in the
original form. This is due to the different meshes for trial and test spaces which
occur simultaneously on the left-hand side.

Different approaches to remedy this problem are possible. Recall the discrete
operator equation

〈ĀuN,µ, v〉+
∞
∑

m=1

〈βm
µm+1AmuN,µ+ǫm , v〉+〈βm

µm
AmuN,µ−ǫm , v〉 = 〈fδµ0, v〉, v ∈ Vµ.

(10.1)
Denote by Nµ = dimVµ the dimension of the discrete space associated with multi-
index µ ∈ Λ and set N =

∑

µ∈Λ Nµ. Written as the product of a block matrix

A ∈ R
N×N with a block vector u ∈ R

N , the discrete system Au = f takes the form





























. . .
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Aµ−ǫm · · · C
µ
µ−ǫm

· · · 0
...
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· · · Bµ−ǫm
µ · · · Aµ · · · Cµ+ǫm

µ · · ·
...
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uµ+ǫm
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fµ−ǫm

...
fµ
...

fµ+ǫm
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. (10.2)
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Here, the matrices Aµ, B
µ−ǫm
µ and Cµ+ǫm

µ are defined by

[Aµ]ij = 〈ĀΦ
µ
i ,Φ

µ
j 〉, A ∈ R

Nµ×Nµ ,
[

Bµ−ǫm
µ

]

ij
= βm

µm
〈AmΦ

µ
i ,Φ

µ−ǫm
j 〉, B ∈ R

Nµ×Nµ−ǫm ,
[

Cµ+ǫm
µ

]

ij
= βm

µm+1〈AmΦ
µ
i ,Φ

µ+ǫm
j 〉, C ∈ R

Nµ×Nµ+ǫm ,

where Φν
i is the basis of Vν for ν ∈ {µ, µ ± ǫm}. The full Galerkin matrix is

symmetric, since
[

Bµ−ǫm
µ

]

ji
= βm

µm
〈AmΦ

µ
j ,Φ

µ−ǫm
i 〉 = βm

µm
〈AmΦ

µ−ǫm
i ,Φµ

j 〉 =
[

C
µ
µ−ǫM

]

ij
.

However, the computation of the matrices Bµ−ǫm
µ and Cµ+ǫm

µ is not feasible
efficiently as it involves integration over basis functions defined on incompatible
meshes. In the used implementation, these matrices can be approximated in differ-
ent ways.

The most efficient approach is to assume

B̃µ−ǫm
µ = Aµ

mΠµ−ǫm
µ and C̃µ+ǫm

µ = Aµ
mΠµ+ǫm

µ , (10.3)

which coincides with (8.4), see also Remark 8.3. Since the resulting consistency
error, which basically requires interpolation error estimates for arbitrary (non-
hierarchical) discrete spaces, can not be quantified without further restrictive as-
sumptions, we choose a more elaborate approach which requires the construction
of a union of meshes. Denote by Tµ̃ the union of Tµ and Tµ∓ǫm ,1 i.e. Tµ̃ ⊆ Tµ
and Tµ̃ ⊆ Tµ∓ǫm which means that for each T̃ ∈ Tµ̃ there exists some T ∈ Tµ (or

T ∈ Tµ∓ǫm , respectively) such that T̃ ⊆ T . Assume the approximations

B̃µ−ǫm
µ = Π µ̃

µA
µ̃
mΠ

µ−ǫm
µ̃ and C̃µ+ǫm

µ = Π µ̃
µA

µ̃
mΠ

µ+ǫm
µ̃ . (10.4)

It is shown in [21] that this approach does not adversely affect the order of conver-
gence of the Galerkin method. Note however that the computation of the union of
the meshes Tµ̃ and the assembly of Aµ̃

m can be computationally expensive.

10.3. Inhomogeneous Dirichlet boundary conditions. For the proposed solver
in Section 8.1, the incorporation of Dirichlet boundary conditions in the spatially
discretised form has to be carried out in such a way that the symmetry of the
operator is retained. Furthermore, if the Dirichlet boundary conditions are inho-
mogeneous, care has to be taken that the right hand side is appropriately modified.

Let A be the discrete (assembled) form of the operator A and denote by f and g

the discrete right-hand side and the boundary values. A and f are assumed to be
assembled with no boundary conditions applied yet. Typically, FEM codes modify

the operator and right-hand side, resulting in a modified matrix Â and vector f̂

such that the system

Âu = f̂ (10.5)

can be solved at once for the discrete solution u and the boundary conditions are
fulfilled on the Dirichlet nodes.

To describe the action of the incorporation of Dirichlet boundary conditions into
the discrete equations, let ID denote a projection (nodal interpolation) onto the
Dirichlet nodes and II a projection onto the inner and Neumann nodes. Note that
ID + II = I and that IDu + IIu = u. In many FEM codes, the inclusion of the

1Note that Tµ̃ is a slight abuse of notation since µ̃ does not indicate a valid multi-index.

However, using T̃µ instead would make the notation for projections too unwieldy.
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Dirichlet boundary conditions (e.g. assemble_system in FEniCS) transforms the
discrete system into

Â = IIAII +DID

f̂ = IIf +DIDg − IIAIDg, (10.6)

where D is some non-singular, diagonal and positive definite matrix.2 In FEniCS,
for example, [D]ii equals the number of elements that contain node i, due to the
implementation of the assembly process. In other FEM codes it may also be the
identity. Note that symmetry and positive definiteness of the discrete operator is
kept in this transformation.

In the stochastic case the operators and functions take on the form

A = A0 +
∑

m

AM , f = f0P0(y), g = g0P0(y) and u =
∑

uµPµ(y). (10.7)

However, the transforms in (10.6) need to be applied to the complete discrete sys-
tem, i.e. we should have

Â = II(A0 +
∑

m

Amym)II +DID (10.8)

for the discrete operator and

f̂ = IIf0P0 +DIDg0P0 − II(A0 +
∑

m

Amym)IDg0P0

= IIf0P0 +DIDg0P0 − IIA0IDg0P0 −
∑

m

IIAmIDg0ymP0

= IIf0P0 +DIDg0P0 − IIA0IDg0P0 −
∑

m

IIAmIDg0(β
m
0 Pǫm + αm

0 P0) (10.9)

for the right-hand side with included boundary conditions. We denote the matrices
assembled by the FEM code with included boundary conditions by a hat. It follows

Â = Â0 +
∑

m

(Âm −DID)ym. (10.10)

Equivalently,

Â = Â0 +
∑

m

ÂmIIym, (10.11)

since

ÂII = (IIAII +DID)II

= IIAII = Â−DID (10.12)

This means that either the diagonal elements corresponding to boundary nodes
can be set to zero in Âm or, in order to apply Âm to some vector v, the boundary
degrees of freedom in v are first set to zero and then Âm is applied.

For the right-hand side, denote the action of the FEM code by ϕ, i.e.,

f̂ = ϕ(f ,g,A) = IIf +DIDg − IIAIDg. (10.13)

The stochastic right-hand side can then be written as

f̂ =ϕ(f0,g0,A0)P0(y) +
∑

m

αm
0 IIϕ(0,g0,Am)P0(y)

+
∑

m

βm
0 IIϕ(0,g0,Am)Pǫm(y) (10.14)

2This can be seen from combining the equations IIAu = IIA(IIu+ IDg)II f and IDu = IDg

into one system of equations.
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Set ĝ0,m := IIϕ(0,g0,Am). Collecting the terms for each multi-index µ ∈ Λ yields

f̂0 = ϕ(f0,g0,A0) +
∑

m

αm
0 ĝ0,m,

f̂ǫm = βm
0 ĝ0,m and f̂µ = 0 for |µ| ≥ 2. (10.15)

One concern in this presentation is that it does not explicitly treat the case that
the solutions live on different meshes depending on the multi-index µ. This however,
does not pose a real problem since the operators II and ID can be considered to
act on the mesh at hand. For some expression like IIv this means

IIv = II
∑

µ

vµPµ(y)
∑

µ

= IIµvµPµ(y) (10.16)

where Iµ indicates the interior nodes of mesh Tµ.

10.4. Computation of the error estimator. The evaluation of the residual error
estimator consists of different components according to (7.1), (7.4) and (7.11). In
the actual computation, we ensure that for each µ ∈ Λ the mesh Tµ is sufficiently fine
to resolve the oscillations of the coefficients in the operator. Moreover, we assume
availability of an in general higher-order projection Π̂

µ1

Tµ2

: V (Tµ1
) → Vk(Tµ2

) where

k ≥ 1 indicates the polynomial degree. For the numerical examples we choose
Tµ2

⊆ Tµ1
and k = 2. The implemented computation is depicted in Algorithm 4.

Algorithm 4: Error[wi
N , ζiN ] (→ ξiN , η̂iN , ζ̂iN , δ̂iN

initialize empty sets η̂iN , ζ̂iN , δ̂iN
for µ ∈ Λ do

// residual part (7.1)

η̂µ(w
i
N ) := {(η̂µ,S , S) ; S ∈ Sµ}

η̂iN := η̂iN ∪ {(µ, η̂µ(w
i
N ))}

// projection part (7.4)

for m ∈ N do

refine Tµ to obtain Tµ̃ with Tµ̃ ⊆ Tµ∓ǫm

for T ∈ Tµ̃ do

ζ
µ∓ǫm
µ,T,m(wN ) :=

‖am

ā ‖L∞(D)β
m
µm+δ1∓1

|Π̂µ
Tµ̃
Πµ∓ǫm

µ wN,µ∓ǫm − Π̂
µ∓ǫm
Tµ̃

wN,µ∓ǫm |V,Σm

ζ̂µ(w
i
N ) :=

{

(
∑

T̂⊆T

T̂∈Tµ̃

ζ̂µ,T̂ (w
i
N ), T ) ; T ∈ Tµ

}

ζ̂iN := ζ̂iN ∪ {(µ, ζ̂µ(w
i
N ))}

// new multi-indices µ ∈ F \ Λ (7.11)

δµ := {(δµ∓ǫm(wi
N ), µ∓ ǫm) ; m ∈ N}

δ̂ :=
{

(
∑

(δ̃,µ̃)∈{(δ∗,µ∗)∈δµ ; µ∗=µ̃, µ∈Λ} δ̃, µ̃) ; µ̃ ∈ F \ Λ
}

// total error (8.5)

ξiN ← evaluate(η̂iN , ζ̂iN , δ̂iN )

11. Numerical Experiments

This section is devoted to several benchmark problems which illustrate the per-
formance of the residual error estimator. With the implementation described in
Section 10, numerical experiments for the Poisson model problem (2.1) and for the
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Navier–Lamé equations (9.8) of linearized elasticity in a plane, polygonal domain
D ⊂ R

2 are examined. Recall from Section 2.1 that x = (x1, x2) ∈ D denotes points
in D and y = (y1, y2, . . . ) ∈ Γ denotes the parameter sequence in the coefficient
(2.2).

The expansion coefficients of the stochastic field (2.2) are chosen to be

am(x) := αm cos(2πβ1(m)x1) cos(2πβ2(m)x2) (11.1)

where αm is of the form Am−σ with σ > 1 and some 0 < A < 1/ζ(σ). Here, ζ is
the Riemann zeta function and (2.3) holds with γ = Aζ(σ). Moreover,

β1(m) = m− k(m)(k(m) + 1)/2 and β2(m) = k(m)− β1(m) (11.2)

with k(m) = ⌊−1/2 +
√

1/4 + 2m⌋, i.e., the coefficient functions am enumerate
all planar Fourier sine modes in increasing total order. To illustrate the influence
which the stochastic coefficient plays in the adaptive algorithm, we examine the
expansion with slow and fast decay of αm, setting σ in (11.1) to either 2 or 4.
An overview of the activated multi-indices with the dimensions of the respective
discrete spaces is depicted in Table 1.

For experimental verification of the reliability of the error estimator, a reference
error is computed by Monte Carlo simulations. For this, a set of M indepen-
dent, identically distributed realizations {y(i)}Mi=1 of the stochastic parameters is

computed. The y
(i)
m are sampled according to the probability measure πm of the

random variable ym. The mean-square error e of the parametric SGFEM solution
uN ∈ VN is approximated by a Monte Carlo sample average

‖e‖2V =

∫

Ω

‖e(·,ω)‖2V dP (ω)

=

∫

Ω

‖A−1(y(ω))f − uN (y(ω))‖2V dP (ω)

≈ 1

M

M
∑

i=1

‖A−1(y(i))f − uN (y(i))‖2V . (11.3)

Here, the samples y(i) ∈ Γ of parameter sequences are assumed to be statistically
independent, and identically distributed with law P in Γ . Note that the sampled
solutions A−1(y(i))f are only computed approximately since the operator is dis-
cretized on a mesh which is a uniform refinement of the joint mesh generated from
the SGFEM discretization of the final iteration. Moreover, the expansion (2.2) of
the random field a(y, x) is truncated to the same length as for the approximate
parametric solution.

The ensuing numerical experiments are based on the following standard param-
eter choices for the adaptive algorithm of Section 8.2,

c̄Q = 1, c̄η = 1, ϑη = 2/5, ϑζ = 10 and ϑδ = 1 . (11.4)

The initial mesh T̊ for activated µ ∈ F \ Λ is sufficiently fine to approximate the
solution with respect to the oscillating coefficient am with good accuracy.

11.1. Poisson model problem.

11.1.1. Square domain. The first example is the Poisson model problem (2.1) on
the unit square D = (0, 1)2 with homogeneous Dirichlet boundary conditions and
with right-hand side f = 1. The results of the adaptive algorithm of Section 8.2 for
a slow decay of the coefficients with σ = 2 and a fast decay with σ = 4 are shown in
Figure 1. The amplitude A in (11.1) was chosen as γ/ζ(σ) with γ = 0.9, resulting in
A ≈ 0.547 for σ = 2 and A ≈ 0.832 for σ = 4. Depicted is the residual estimator, the
reference error obtained by Monte Carlo sampling, the efficiency of the estimator



ADAPTIVE STOCHASTIC GALERKIN FEM 25

Figure 1. Convergence of the error estimator and the MC error
for the Poisson model problem with homogeneous Dirichlet bound-
ary conditions in the energy norm for slow (σ = 2, left) and fast
(σ = 4, right) decay. Number of activated multi-indices and ef-
ficiency of the error estimator with respect to the MC reference
error.

Figure 2. Convergence of the estimated and the MC error for the
Poisson model problem with Neumann boundaries on the square
(left) and with homogeneous Dirichlet boundary condition on the
L-shaped domain (right). Number of activated multi-indices and
efficiency of the error estimator.

and the number of active multi-indices. The observed convergence rate of 1/2 with
respect to the total number of degrees of freedom, which is the convergence rate for
a single deterministic problem, coincides with the approximation rates predicted
by [9, 17].

In addition to the homogeneous Dirichlet problem, we also consider the Poisson
model problem with homogeneous Neumann boundary conditions on the three sides
x2 = 0, x2 = 1, x1 = 1 of the unit square and a homogeneous Dirichlet boundary
condition on the side x1 = 0 as before. The convergence graphs for slow coefficient
decay in the coefficient expansion (2.2) are presented in Figure 2 (left). We observe
that the estimator is slightly more accurate in this setting than with complete
Dirichlet boundary conditions.

The number of active stochastic modes in the set Λ after a fixed number of
iterations is significantly larger in the case of a slower decay rate of the coefficient
amplitude due to the influence of higher modes on the solution. This can also be
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Figure 3. Adapted meshes for the Poisson model problem
on the L-shaped domain of Section 11.1.2. Determinis-
tic mesh (top left) and meshes for some active stochastic
modes after 15 iterations (from top left to bottom right):
(1), (0 0 0 1), (2), (0 0 0 0 0 1), (0 0 0 0 0 0 0 1).

seen in the data of Table 1. In particular, modes of higher (polynomial) degree
are favoured in case of fast decay. As is common for residual error estimators
in deterministic FEM, the overestimation of the error amounts to approximately
10. This could be considered quite large, but is, in part, due to the fact that the
residual error bounds are uniform with respect to the stochastic parameters. It is
to be expected that with other a posteriori error bounds better reliability constants
could be achieved.

11.1.2. L-shaped domain. A standard benchmark problem for deterministic a pos-
teriori error estimators is the Poisson problem (2.1) on the L-shaped domain D =
(−1, 1)2 \ (0, 1) × (−1, 0). The solution exhibits a well-known singularity at the
reentrant corner at (0, 0) which is resolved by a pronounced mesh refinement in its
vicinity. In this example, the adaptive algorithm is thus assumed to also show this
behavior for the deterministic part and the most significant stochastic modes which
is illustrated with the meshes in Figures 3. The convergence results are depicted
in Figure 2 (right). Since the singularity is the main contribution to the error esti-
mator as long as it is not resolved adequately, the adaptive algorithm first focuses
on the residual before also refining with regard to the stochastic dimensions. Thus,
the number of active multi-indices is smaller than in the problem of the previous
section. More details can be found in Table 1.

11.1.3. Cook’s membrane example. This common benchmark problem for bending
dominated elastic response defines the tapered panel D which is clamped at the
side x1 = 0 and subjected to a shearing load g = (0, 1)⊤on the opposite side
x1 = 48 with vanishing volume force f = (0, 0)⊤. The geometry is defined by
D = conv{(0, 0), (48, 44), (48, 60), (0, 44)}, see Figure 5 (top left). We assume the
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square L-shape Cook

multi-index σ = 2 σ = 4 σ = 2 σ = 4 σ = 2 σ = 4

(0) 93599 102397 116262 104456 25262 27222

(1) 15539 24667 10982 17454 56848 98886

(2) 2701 10919 405 4105 ∗ 2020

(3) 121 3073 ∗ ∗ ∗ ∗

(4) ∗ 1039 ∗ ∗ ∗ ∗

(0 1) 7009 5963 5028 3462 25622 19522

(0 2) 531 121 ∗ ∗ ∗ ∗

(1 1) 2397 4255 21 819 ∗ ∗

(2 1) 391 2057 ∗ ∗ ∗ ∗

(3 1) ∗ 819 ∗ ∗ ∗ ∗

(0 0 1) 2561 2025 4759 21 17990 ∗

(1 0 1) 1415 1277 ∗ ∗ ∗ ∗

(1 1 1) 749 ∗ ∗ ∗ ∗ ∗

(0 0 0 1) 1929 867 1667 ∗ 3246 ∗

(1 0 0 1) 841 ∗ ∗ ∗ ∗ ∗

(0 0 0 0 1) 1579 351 2164 ∗ 486 ∗

(1 0 0 0 1) 677 ∗ ∗ ∗ ∗ ∗

(0 0 0 0 0 1) 873 ∗ ∗ ∗ ∗ ∗

(1 0 0 0 0 1) 221 ∗ ∗ ∗ ∗ ∗

(0 0 0 0 0 0 1) 783 ∗ ∗ ∗ ∗ ∗

(0 0 0 0 0 0 0 1) 749 ∗ ∗ ∗ ∗ ∗

(0 0 0 0 0 0 0 0 1) 505 ∗ ∗ ∗ ∗ ∗

(0 0 0 0 0 0 0 0 0 1) 437 ∗ ∗ ∗ ∗ ∗

(0 0 0 0 0 0 0 0 0 0 1) 333 ∗ ∗ ∗ ∗ ∗

other indices (dofs) 2 (342) ∗ ∗ ∗ ∗ ∗

cardΛ 26 16 8 6 6 4

overall dofs 141824 160584 141288 130317 129454 147650

Table 1. Activated multi-indices and dimensions of discrete
spaces for benchmark problems. The number of iterations for the
two different decay rates is fixed per experiment.

nominal Young modulus E = 2900 and nominal Poisson ratio ν = 0.4 which corre-
sponds to plexiglass. These values determine the mean field of the Lamé parameters
µ̄ ≈ 4142.9 and λ̄ ≈ 1035.7. As noted in Section 9.3, the parameter λ is modeled
as spatially heterogeneous random field according to (2.2). For the coefficient func-
tions am the same model as in (11.1) has been chosen with A = λ̄γ/ζ(σ) resulting
in A ≈ 2266.7 for σ = 2 and A ≈ 3445.0 for σ = 4, given that γ = 0.9.

The convergence graphs for the error estimator and for the MC reference error
in the energy norm for slow and fast decay are depicted in Figure 4. The efficiency
of the estimator again is in the expected range with an overestimation by a factor
of approximately 10 in both examples. Again, the activation rate is significantly
lower for faster decay of the coefficient weights. More details about the activated
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Figure 4. Convergence of the error estimator and the MC error in
the energy norm for Cook’s membrane of Section 11.1.3. Number of
activated multi-indices and efficiency of the error estimator for slow
(σ = 2, left) and fast (σ = 4, right) decay.

multi-indices and the dimension of the corresponding discrete spaces can be found
in Table 1. Some adaptively refined meshes for the deterministic part and some
stochastic modes are pictured in Figure 5.
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Figure 5. Adaptively refined meshes (deterministic and stochas-
tic) for Cook’s membrane example of Section 11.1.3. Depicted
meshes are for active multi-indices (top left to bottom right):
(0), (1), (0 0 0 1), (0 0 0 0 0 1), (0 0 0 0 0 0 0 0 1).
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