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Abstract. Based on the parametric deterministic formulation of Bayesian inverse
problems with unknown input parameter from infinite dimensional, separable
Banach spaces proposed in [28], we develop a practical computational algorithm
whose convergence rates are provably higher than those of Monte-Carlo (MC)
and Markov-Chain Monte-Carlo methods, in terms of the number of solutions
of the forward problem. In the formulation of [28], the forward problems are
parametric, deterministic elliptic partial differential equations, and the inverse
problem is to determine the unknown, parametric deterministic coefficients from
noisy observations comprising linear functionals of the solution.

Sparsity of the generalized polynomial chaos (gpc) representation of the posterior
density being implied by sparsity assumptions on the class of the prior [28], we
design, analyze and implement a class of adaptive, deterministic sparse tensor
Smolyak quadrature schemes for the efficient approximate numerical evaluation
of expectations under the posterior, given data. The proposed algorithm is based
on a greedy, iterative identification of finite sets of most significant, “active”
chaos polynomials in the the posterior density analogous to recently proposed
algorithms for adaptive interpolation [7, 8]. Convergence rates for the quadrature
approximation are shown, both theoretically and computationally, to depend only
on the sparsity class of the unknown, but are bounded independently of the number
of random variables activated by the adaptive algorithm.

Numerical results for a model problem of coefficient identification with point
measurements in a diffusion problem confirm the theoretical results.

1. Introduction

The problems of calibration of partial differential equations, given large sets of
noisy input data, and of prediction of responses, is a key problem in applied
mathematics, statistics and in the sciences. Of particular interest in this context
are predictive simulations and uncertainty quantification, i.e. the prediction of
systems’ responses and their uncertainty under the calibrated parameters, given
noisy observational data. Currently, the most widely used numerical methods for
the numerical treatment of these problems are sampling, ie. Monte-Carlo (MC)
type algorithms, in particular the so-called Markov-Chain Monte-Carlo (MCMC)
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methods (eg. [19, 20, 25, 26]). MCMC methods can be interpreted as quadrature
methods for the approximate numerical evaluation of the conditional expectations
of system responses, given observational data. Being sampling algorithms in nature,
MCMC based methods are limited to low convergence rates, but are amenable to
parallelization.

It has been argued for some time (eg. [21, 23, 22]) that deterministic approaches
which are based on gpc representations of the posterior measure, given data, could
be more efficient than MCMC methods, at least in situations where the posterior
admits such representations. Inspired by N. Wiener’s “spectral” view of random
fields [33], algorithms based on sparse, deterministic, gpc-based representation of
random fields inputs and outputs of PDEs have undergone rapid computational and
theoretical development in recent years, see [32, 27] and the references there. The
principal motivation for these methods stems from the perspective to undercutting
the asymptotic complexity of MC and MCMC methods. Their application to the
numerical solution of inverse problems has been proposed recently (we refer to
[21, 22, 23] for the first proposal of this approach), with promising numerical results
in several problem classes of engineering interest.

In [28], it was shown for a model diffusion problem with unknown coefficient,
that for rather general classes of priors taking values in function spaces, the posterior
measure admits a density whose representation in terms of a countable number of
so-called gpc coordinates is numerically sparse, i.e., a large number of coefficients
in this representation are negligible at small thresholds. The result in [28] is not
limited to linear, elliptic PDEs: analogous results hold for forward maps of a rather
wide range of mathematical models (e.g. [15] for large, parametric systems arising
in biological systems identification, and [14] and the references there for time-
dependent PDEs).

These sparsity results opened the perspective of novel, deterministic computa-
tional approaches to inverse problems for identification of parameters in differential
equations from noisy measurements. Specifically, we considered the case when un-
known resp. uncertain parameters in function spaces are of interest. In this setting,
statistical parameter estimation can be performed using Bayesian methods, suitably
generalized to (infinite-dimensional) function space settings (see [31] and the refer-
ences there for further details).

An alternative approach to Bayesian inverse problems in PDEs is via techniques
of optimal control (e.g. [1]); however this does not lead naturally to quantification
of uncertainty. A Bayesian approach to the inverse problem [19, 31] allows the
observations to map a possibly simple prior probability distribution on the input
parameters into a posterior distribution. This posterior distribution is typically
much more complicated than the prior, involving many correlations and without
a useable closed form. The posterior distribution completely quantifies the
uncertainty in the system’s response, under given prior and structural assumptions
on the system and given observational data. It allows, in particular, the Bayesian



Smolyak Quadrature for Inverse Problems 3

statistical estimation of unknown system parameters and responses by integration
with respect to the posterior measure, which is of interest in many applications.

MCMC methods probe this posterior probability distribution for the
computation of estimates of uncertain system responses conditioned on given, noisy
observation data. However, MCMC methods suffer from the same limitations of
computational complexity as straightforward Monte Carlo methods. It is hence
of interest to investigate whether sparse approximation techniques can be used
to approximate the posterior density and conditional expectations given the data.
In this paper we study this question in the context of a model elliptic inverse
problem. Elliptic problems with random coefficients have provided an important
class of model problems for the uncertainty quantification community, see, for
example, [3, 27] and the references therein. In the context of inverse problems
and noisy observational data, the corresponding elliptic problem arises naturally
in the study of groundwater flow (see [24]) where hydrologists wish to determine
the transmissivity (diffusion coefficient) from the head (solution of the elliptic PDE).
The elliptic inverse problem hence provides a natural model problem within which
to study sparse representations of the posterior distribution.

The outline of this paper is as follows: in Section 2, we present the Bayesian
approach to inverse problems for PDEs set in function spaces. Section 3 then
presents the concrete setting of a linear, elliptic PDE with unknown diffusion
coefficient which we use here to develop our ideas. Section 4 recapitulates results
from [28] on sparsity of the posterior density. Section 5 then contains the main
results of the present paper: formulation and convergence analysis of a sparse,
adaptive Smolyak quadrature approach. Several concrete families of univariate
quadratures which can be used in the Smolyak construction are presented. Section
6 develops detailed numerical experiments which confirm the theoretical results
and which, in particular, also allow to compare the performance of the proposed
sparse quadrature methods in terms of the total number of PDE solutions necessary.
Finally, in Section 7 we collect the major conclusions from the present work and
indicate generalizations to other problem classes.

2. Bayesian Inverse Problems

Let G : X → R denote a “forward” response map from some separable Banach space
X of unknown parameters into another separable Banach space R of responses.
In the present paper, “responses” will comprise solutions of a (partial) differential
equation model of the system to be described, for a given realization of an uncertain
input function u. We equip X and R with norms ‖ · ‖X and with ‖ · ‖R, respectively.
In addition, we assume given O(·) : R → RK denoting a bounded linear observation
operator on the space R of system responses, i.e. O ∈ R∗ of the space R of system
responses. We assume that the number of observations is finite so that K < ∞, and
equip RK with the Euclidean norm, denoted by | · |.
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We wish to determine the unknown data u ∈ X from the noisy observations

δ = O(G(u)) + η

where η ∈ RK represents the observation noise. We assume that realization of the
noise process is not known to us, but that it is a draw from the Gaussian measure
N (0, Γ), for some positive (known) covariance operator Γ on RK. If we define
G : X → RK by G = O ◦ G then we may write the equation for the observations
as

δ = G(u) + η.

According to Bayes’ formula, we define the least squares functional (also referred to
as “potential” in what follows) Φ : X × RK → R by

Φ(u; δ) =
1
2
|δ − G(u)|2Γ (1)

where | · |Γ = |Γ− 1
2 · | so that

Φ(u; δ) =
1
2

(
(δ − G(u))(Γ−1(δ − G(u))

)
.

In [31] it is shown that, under appropriate conditions on the forward and
observation model G and the prior measure on u, the posterior distribution on u
is absolutely continuous with respect to the prior with Radon-Nikodym derivative
given by an infinite dimensional version of Bayes rule. Posterior uncertainty is
then determined by integration of suitably chosen functions against this posterior.
At the heart of the deterministic approach proposed and analyzed here lies the
reformulation of the forward problem with unknown stochastic input data as an infinite
dimensional, parametric deterministic problem. We are thus interested in expressing
the posterior distribution in terms of a parametric representation of the unknown
coefficient function u. To this end we assume that, under the prior distribution, this
function admits a parametric representation of the form

u = ā + ∑
j∈J

yjψj (2)

where y = (yj)j∈J is an i.i.d sequence of real-valued random variables yj ∼
U (−1/2, 1/2) and ā and the ψj are elements of X. Here and throughout, J denotes
a finite or countably infinite index set, i.e. either J = {1, 2, ..., J} or J = N. All
assertions proved in the present paper hold in either case, and all bounds are in
particular independent of the number J of parameters.

The basis for our Smolyak quadrature approach to Bayes’ formula is a
parametric, deterministic representation of the derivative of the posterior measure with
respect to the prior µ0. To fix notation, we denote by

U = (−1/2, 1/2)J
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the space of all sequences (yj)j∈J of real numbers yj ∈ (−1/2, 1/2). Denoting
the sub σ-algebra of Borel subsets on R which are also subsets of (−1/2, 1/2) by
B1(−1/2, 1/2), the pair

(U,B) =



(−1/2, 1/2)J,
⊗

j∈J

B1(−1/2, 1/2)



 (3)

is a measurable space. With λ1 denoting the Lebesgue measure on the real line R1,
we equip (U,B) with the uniform probability measure

µ0(dy) :=
⊗

j∈J

λ1(dyj) .

Since the countable product of probability measures is again a probability measure,
(U,B, µ0) is a probability space. We assume in what follows that the prior measure on
the uncertain input data, parametrized in the form (2), is µ0(dy). We add in passing
that unbounded parameter ranges as arise, e.g., in lognormal random diffusion
coefficients in models for subsurface flow [24], can be treated by the techniques
developed here, at the expense of additional technicalities. With U as in (3), we
define Ξ : U → RK by

Ξ(y) = G(u)
∣∣∣
u=ā+∑j∈J yjψj

.

In the following theorem, from [28] (see also [31]), we view U as a bounded subset
in !∞(J), the Banach space of bounded sequences, and thereby introduce a notion
of continuity in U.

Theorem 2.1. Assume that Ξ : Ū → RK is bounded and continuous. Then µδ(dy), the
distribution of y given δ, is absolutely continuous with respect to µ0(dy). Furthermore, if

Θ(y) = exp
(
−Φ(u; δ)

)∣∣∣
u=ā+∑j∈J yjψj

, (4)

then
dµδ

dµ0
(y) =

1
Z

Θ(y) (5)

where the normalization constant Z is given by

Z =
∫

U
Θ(y)µ0(dy) . (6)

The goal of computation is, for given (noisy) data δ, to compute the expectation
of a prediction function φ : X → S (sometimes also referred to as Quantity of Interest
(QoI)), taking values in some Banach space S. In particular the choices φ(u) = G(u)
and φ(u) = G(u)⊗ G(u) facilitate computation of the mean and covariance of the
response.

We associate with the function φ, the (infinite-dimensional) parametric mapping

Ψ(y) = exp
(
−Φ(u; δ)

)
φ(u)

∣∣∣
u=ā+∑j∈J yjψj

: U → S . (7)
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and define

Z′ =
∫

U
Ψ(y)µ0(dy) =

∫

U
exp

(
−Φ(u; δ)

)
φ(u)

∣∣∣
u=ā+∑j∈J yjψj

µ0(dy) (8)

so that the expectation of the quantity of interest is given by Z′/Z ∈ S. Thus our
aim is to approximate Z′ and Z. A widely used algorithm to approximate the infinite
dimensional integrals Z, Z′ is MCMC which has, in general, low convergence rates.
Here, we propose a deterministic quadrature based on sparse, adaptive quadratures
of Smolyak type. In the next sections we will study the elliptic problem and deduce,
from known results concerning the parametric forward problem, the joint analyticity
of the posterior density Θ(y), and also Ψ(y), as a function of the parameter vector
y ∈ U. From these results, we deduce sharp estimates on size of domain of analyticity of
Θ(y) (and Ψ(y)) as a function of each coordinate yj, j ∈ N. We focus on the estimation
of mean fields. The ensuing analysis can be extended to other choices of Ψ.

3. Model Parametric Elliptic Problem

3.1. Function Spaces

Let D ⊂ Rd be a bounded interval if d = 1 or a bounded Lipschitz domain in Rd,
d ≥ 2, with Lipschitz boundary ∂D. Let further

(
H, (·, ·), ‖ ·‖

)
denote the Hilbert

space L2(D) which we will identify throughout with its dual space, i.e. H . H∗.
As in [28], we denote by

(
V, (∇·,∇·), ‖ · ‖V

)
the Hilbert space H1

0(D)

(everything that follows will hold for rather general, elliptic problems with affine
parameter dependence and “energy” space V). The dual space V∗ of all continuous,
linear functionals on V is isomorphic to the Banach space H−1(D) which we equip
with the dual norm to V, denoted ‖ · ‖−1. We shall assume for the (deterministic)
data f ∈ V∗.

3.2. Forward Problem

In the bounded Lipschitz domain D for given f ∈ L2(D), we consider the following
elliptic PDE:

−∇ ·
(
u∇p

)
= f in D, p = 0 in ∂D. (9)

Given data u ∈ L∞(D), a weak solution of (9) for any f ∈ V∗ is a function p ∈ V
which satisfies∫

D
u(x)∇p(x) ·∇q(x)dx =V 〈q, f 〉V∗ for all q ∈ V . (10)

Here V〈·, ·〉V∗ denotes the dual pairing between elements of V and V∗.
For the well-posedness of the forward problem, we shall work under

Assumption 3.1. There exist constants 0 < amin ≤ amax < ∞ so that

0 < amin ≤ u(x) ≤ amax < ∞, x ∈ D, (11)
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Under Assumption 3.1, the Lax-Milgram Lemma ensures the existence and
uniqueness of the response p of (10). Thus, in the notation of the previous section,
R = V and G(u) = p. Moreover, this variational solution satisfies the a-priori
estimate

‖G(u)‖V = ‖p‖V ≤ ‖ f ‖V∗

amin

. (12)

We assume that the observation function O : V → RK comprises K linear functionals
ok ∈ V∗, k = 1, . . . , K. In the notation of the previous section, we denote by
X = L∞(D) the Banach space in which the unknown input parameter u takes values.
It follows that

|G(u)| ≤ ‖ f ‖V∗

amin

( K

∑
k=1

‖ok‖2
V∗
) 1

2 .

3.3. Structural Assumptions on Diffusion Coefficient

As discussed in section 2 we introduce a parametric representation of the unknown
u via an affine representation with respect to y, which means that the parameters yj
are the coefficients of the function u in the formal series expansion

u(x, y) = ā(x) + ∑
j∈J

yjψj(x), x ∈ D, (13)

where ā ∈ L∞(D) and (ψj)j∈J ⊂ L∞(D). We are interested in the effect of
approximating the solutions input parameter u(x, y), by truncation of the series
expansion (13) in the case J = N, and on the corresponding effect on the forward
(resp. observational) map G(u(·)) (resp. G(u(·))) to the family of elliptic equations
with the above input parameters. In the decomposition (13), we have the choice to
either normalize the basis (e.g., assume they all have norm one in some space) or to
normalize the parameters. It is more convenient for us to do the latter. This leads
us to the following assumptions which shall be made throughout:

i) For all j ∈ J : ψj ∈ L∞(D) and ψj(x) is defined for all x ∈ D,
ii) y = (y1, y2, . . .) ∈ U = [−1/2, 1/2]J,

i.e. the parameter vector y in (13) belongs to the ball of radius 1/2 of the
sequence space !∞(J),

iii) for each u(x, y) to be considered, (13) holds for every x ∈ D and every y ∈ U.

We will, on occasion, use (13) with J ⊂ N, as well as with J = N (in the latter
case the additional Assumption 3.2 below has to be imposed). In either case, we
will work throughout under the assumption that the ellipticity condition (11) holds
uniformly for y ∈ U.
Uniform Ellipticity Assumption: there exist 0 < amin ≤ amax < ∞ such that for all
x ∈ D and for all y ∈ U

0 < amin ≤ u(x, y) ≤ amax < ∞. (14)
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We refer to assumption (14) as UEA(amin, amax) in the following. In particular,
UEA(amin, amax) implies amin ≤ ā(x) ≤ amax for all x ∈ D, since we can choose yj = 0
for all j ∈ N. Also observe that the validity of the lower and upper inequality in
(14) for all y ∈ U are respectively equivalent to the conditions that

1
2 ∑

j∈J

|ψj(x)| ≤ ā(x)− amin, x ∈ D,

and
1
2 ∑

j∈J

|ψj(x)| ≤ amax − ā(x), x ∈ D .

We shall require in what follows a quantitative control of the relative size of the
fluctuations in the representation (13). To this end, we shall impose

Assumption 3.2. The functions ā and ψj in (13) satisfy

1
2 ∑

j∈J

‖ψj‖L∞(D) ≤
κ

1 + κ
amin,

with amin = minx∈D ā(x) > 0 and κ > 0.

Assumption 3.1 is then satisfied by choosing (eg. [9, 10])

amin := amin −
κ

1 + κ
amin =

1
1 + κ

amin.

3.4. Inverse Problem

The inverse problem consists of determining the unknown diffusion coefficient u
from given noisy observation data δ in order to compute the expectation of a
quantity of interest (8), given this data. As was shown in [28], the forward maps
G : X → V and G : X → RK are Lipschitz. Specifically (see [28, Lemma 3.3, Theorem
3.4]) if p and p̃ are solutions of (10) with the same right hand side f and with
coefficients u and ũ, respectively, and if these coefficients both satisfy Assumption
3.1 then the forward solution map u → p = G(u) is Lipschitz as a mapping from X
into V with Lipschitz constant defined by

‖p − p̃‖V ≤ ‖ f ‖V∗

a2
min

‖u − ũ‖L∞(D).

Moreover the forward solution map can be composed with the observation operator
to prove that the observed response map u → G(u) = (O ◦ G)(u) is Lipschitz as a
mapping from X into RK with Lipschitz constant defined by

|G(u)− G(ũ)| ≤ ‖ f ‖V∗

a2
min

( K

∑
k=1

‖ok‖2
V∗
) 1

2‖u − ũ‖L∞(D).

and there holds (see [28] for the proof)
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Theorem 3.3. Under the UEA(amin, amax) and Assumption 3.2 it follows that the Bayesian
posterior measure µδ(dy) on y conditioned on noisy observation data δ is absolutely
continuous with respect to the prior measure µ0(dy) with Radon-Nikodym derivative given
explicitly by (4) and (5).

4. Sparse Polynomial Chaos Approximations of the Posterior

Building on Theorem 3.3, we now present from [28] sparsity results for the posterior
density Θ(z), viewed as a holomorphic functional over z ∈ CJ, in so-called
polynomial chaos representations. Exactly the same results on analyticity and on N-
term approximation of Ψ(z) hold, cp. [28]. We omit details for reasons of brevity
of exposition and confine ourselves to establishing rates of convergence of N-term
truncated representations of the posterior density Θ. In the following, we analyze
the convergence rate of N-term truncated Legendre gpc-approximations of Θ and, with
the aim of an adaptive sparse quadrature approximation to efficiently evaluate the
expectation of interest with respect to the posterior Θ(y) in U in Section 5 ahead,
we analyze also N-term truncated monomial gpc-approximations of Θ(y).

4.1. gpc Representations of Θ

With the index set J from the parametrization (13) of the input, we associate the
countable index set

F = {ν ∈ N
J
0 : |ν|1 < ∞}

of multiindices where N0 = N ∪ {0}. For ν ∈ F , we denote by Iν = {j ∈ N : νj 4=
0} ⊂ N the “support” of ν ∈ F , i.e. the finite set of indices of nonvanishing entries
of ν ∈ F and by ℵ(ν) := #Iν < ∞, ν ∈ F the “support size” of ν, i.e. the cardinality
of Iν.

For the deterministic approximation of the posterior density Θ(y) in (4)
we shall use tensorized polynomial bases similar to what is done in so-called
“polynomial chaos” expansions of random fields. We shall consider two particular
polynomial bases, Legendre and monomial bases.

4.1.1. Legendre Expansions of Θ Since we assumed that the prior measure µ0(dy) is
built by tensorization of the uniform probability measures on (−1/2, 1/2), we build
the bases by tensorization as follows: let Lk(zj) denote the kth Legendre polynomial
of the variable zj ∈ C, normalized such that

∫ 1/2

−1/2
(Lk(t))2dt = 1, k = 0, 1, 2, ... (15)

Since L0 ≡ 1, the Legendre polynomials Lk in (15) can be tensorized on the (possibly
infinite-dimensional) parameter domains U via

Lν(z) = ∏
j∈J

Lνj(zj), z ∈ CJ, ν ∈ F . (16)
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The normalization (15) implies that the polynomials Lν(z) in (16) are well-defined
for any z ∈ CJ since the finite support of each element of ν ∈ F implies that Lν

in (16) is the product of only finitely many nontrivial polynomials. It moreover
implies that the set of tensorized Legendre polynomials

P(U, µ0(dy)) := {Lν : ν ∈ F} (17)

forms a countable orthonormal basis in L2(U, µ0(dy)). This observation suggests,
by virtue of the square integrability discussed below, the use of mean square
convergent gpc-expansions to represent Θ and Ψ. Such expansions can also serve
as a basis for sampling of these quantities with draws that are equidistributed with
respect to the prior µ0. In particular, the density Θ : U → R is square integrable
with respect to the prior µ0(dy) over U, i.e. Θ ∈ L2(U, µ0(dy)

)
. Moreover, if the

function φ(·) : U → S in (7) is bounded, then
∫

U
‖Ψ(y)‖2

Sµ0(dy) < ∞, (18)

i.e. Ψ ∈ L2(U, µ0(dy); S
)
.

Remark 4.1. It is a consequence of (12) that in the case where φ(u) = G(u) = p ∈ V
we have ‖Ψ(y)‖V ≤ ‖ f ‖V∗/amin for all y ∈ U. Thus Ψ ∈ L2(U, µ0(dy); S

)
holds for

calculation of the expectation of the pressure under the posterior distribution on u.
Indeed the assertion holds for all moments of the pressure, the concrete examples
which we concentrate on here.

Since P(U, µ0(dy)) in (17) is a countable orthonormal basis of L2(U, µ0(dy)),
the density Θ(y) of the posterior measure given data δ ∈ Y, and the posterior
reweighted pressure Ψ(y) can be represented in L2(U, µ0(dy)) by (parametric and
deterministic) generalized Legendre polynomial chaos expansions. We first address
the representation of the scalar valued function Θ(y).

Θ(y) = ∑
ν∈F

θνLν(y) in L2(U, ρ(dy)) (19)

where the gpc expansion coefficients θν are defined by

θν =
∫

U
Θ(y)Lν(y)µ0(dy) , ν ∈ F .

By Parseval’s equation and the normalization (15), it follows immediately from (19)
and (18) with Parseval’s equality that the second moment of the posterior density
with respect to the prior

‖Θ‖2
L2(U,µ0(dy)) = ∑

ν∈F
|θν|2 (20)

is finite.
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4.1.2. Monomial Expansions of Θ We next consider expansions of the posterior
density Θ with respect to monomials

yν = ∏
j≥1

y
νj
j , y ∈ U, ν ∈ F .

Once more, the infinite product is well-defined since, for every ν ∈ F , it contains
only ℵ(ν) many nontrivial factors. In the subsequent section, the analyticity of Θ(y)
in U will be shown, based on the results in [7, 28] which implies that in U, the
density Θ(y) can be represented by an unconditionally convergent (in U) monomial
expansion about the section y = 0 ∈ U with uniquely determined Taylor coefficients
τν ∈ V which coincide, by uniqueness of the analytic continuation, with the Taylor
coefficients of Θ at 0 ∈ U:

∀y ∈ U : Θ(y) = ∑
ν∈F

τνyν , τν :=
1
ν!

∂ν
yΘ(y) |y=0 . (21)

4.2. N-term gpc Approximations of Θ

The efficient numerical evaluation of expectations Z′ as in (8) under the posterior
requires evaluation of the integrals (6) and (8). Our strategy is to approximate
these integrals by truncating the spectral respresentation (19), as well as a similar
expression for Ψ(y), to a finite number N of significant terms, and to estimate the
error incurred by doing so. We first introduce a class of subsets Λ ⊂ F which
contain, on the one hand, N-term gpc approximations which converge at the best
possible rates afforded by Θ and, on the other hand, allow for convenient recursive
construction in the quadrature algorithm. As in [7, 15], we shall use the notion of
monotone sets of multiindices.

Defintion 4.2. A subset ΛN ⊂ F of finite cardinality N is called monotone if (M1)
{0} ⊂ ΛN and if (M2) ∀0 4= ν ∈ ΛN it holds that ν − ej ∈ ΛN for all j ∈ Iν, where
ej ∈ {0, 1}J denotes the index vector with 1 in position j ∈ J and 0 in all other positions
i ∈ J\{j}.

Note that for monotone index sets ΛN ⊂ F properties (M1) and (M2) in
Definition 4.2 imply

PΛN(U) = span{yν : ν ∈ ΛN} = span{Lν : ν ∈ ΛN} .

By (20), the coefficient sequence (θν)ν∈F must necessarily decay. If this decay
is sufficiently strong, possibly high convergence rates of N-term approximations of
the integrals (6), (8) occur.

4.2.1. L2(U; µ0) Approximation Denote by ΛN ⊂ F a set of indices ν ∈ F
corresponding to N largest gpc coefficients |θν| in (19), and denote by

ΘΛN(y) := ∑
ν∈ΛN

θνLν(y) (22)
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the Legendre expansion (19) truncated to this set of indices. Using a standard result
of Stechkin with q = 2 (see (3.13) in [10]), Paseval’s equation (20) and 0 < σ ≤ 1 we
obtain for all N

‖Θ(y)− ΘΛN(y)‖L2(U,µ0(dy)) ≤ N−s‖(θν)‖!σ(F ), s :=
1
σ
− 1

2
. (23)

We infer from (23) that a mean-square convergence rate s > 1/2 of the approximate
posterior density ΘΛN can be achieved provided that (θν) ∈ !σ(F ) for some 0 < σ < 1.

4.2.2. L1(U; µ0) and Pointwise Approximation of Θ The analyticity of Θ(y) in U
implies that Θ(y) can be represented by the Taylor exansion (21). This expansion
is unconditionally summable for all y ∈ U: for any sequence (ΛN)N∈N ⊂ F which
exhausts F ‡, the corresponding sequence of N-term truncated partial Taylor sums

TΛN(y) := ∑
ν∈ΛN

τνyν , τν :=
1
ν!

∂ν
yΘ(y) |y=0 (24)

converges pointwise in U to Θ. Since for y ∈ U and ν ∈ F we have |yν| =

∏j≥1 |yνj | ≤ ∏j≥1 |2−νj | = 2−|ν|1 , for any ΛN ⊂ F of cardinality not exceeding
N holds

sup
y∈U

∣∣Θ(y)− TΛN(y)
∣∣ = sup

y∈U

∣∣∣∣∣∣
∑

ν∈F\ΛN

τνyν

∣∣∣∣∣∣
≤ ∑

ν∈F\ΛN

2−|ν|1 |τν| .

Similarly, we have

∥∥Θ − TΛN

∥∥
L1(U,µ0)

=

∥∥∥∥∥∥
∑

ν∈F\ΛN

τνyν

∥∥∥∥∥∥
L1(U,µ0)

≤ ∑
ν∈F\ΛN

|τν| ‖yν‖L1(U,µ0)
.

For ν ∈ F , we calculate

‖yν‖L1(U,µ0)
=

∫

y∈U
|yν|µ0(dy) = ∏

j∈Iν

∫ 1
2

yj=− 1
2

|yj|νj λ1(dyj) = ∏
j∈Iν

1
(νj + 1)2νj

so that we find

∥∥Θ − TΛN

∥∥
L1(U,µ0)

≤ ∑
ν∈F\ΛN

|τν|
∏j∈Iν

(νj + 1)2νj
= ∑

ν∈F\ΛN

1
(ν + 1)!2ν |∂

ν
yΘ(y) |y=0 | .

In the following, we will establish the summability of the coefficient sequence
(τν)ν∈F in (21) in order to derive convergence rates of N-term approximations of
the integrals (6), (8). The theoretical results derived in the remainder of this section
ensure the existence of a sequence of monotone index sets (ΛN)N≥1 for which the
quadrature operator will recover optimal convergence rates (as compared with the

‡ A sequence (ΛN)N∈N ⊂ F of index sets ΛN whose cardinality does not exceed N exhausts F if
any finite Λ ⊂ F is contained in all ΛN for N ≥ N0 with N0 sufficiently large.
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best N-term benchmark). Thus, an important issue to be addressed concerns the
identification of the sequence of monotone index sets (ΛN)N≥1 leading to optimal
convergence rates. In Subsection 5.3, we will present a greedy strategy which
adaptively identifies the most significant polynomials in the gpc representation of
the posterior density.

4.3. Sparsity of the Posterior Density Θ

The analysis in the previous section shows that the convergence rate of the truncated
gpc-type approximations (22), (24) on the parameter space U is determined by
the σ-summability of the corresponding coefficient sequences (|θν|)ν∈F , (|τν|)ν∈F .
We now show that summability (and, hence, sparsity) of Legendre and Taylor
coefficient sequences in the expansions (19), (21) is determined by that of the
sequence (‖ψj‖L∞(D))j∈N in the input’s fluctuation expansion (13). Throughout,
Assumptions 3.1 and 3.2 will be required to hold.

We now impose a sparsity requirement for the unknown coefficient function u in the
forward problem (9). It is formalized in terms of decay of the ψj in (2) by imposing
σ-summability in the following form.

Assumption 4.3. There exists 0 < σ < 1 such that for the parametric representations (13),
(2) it holds that

∞

∑
j=1

‖ψj‖σ
L∞(D) < ∞ .

Under assumption 4.3, it was shown in [28] that the posterior density Θ(y) in
(4) admits unconditionally convergent polynomial chaos expansions with the same
sparsity in the coefficient sequences.

The strategy of establishing sparsity of the sequences (|θν|)ν∈F , (|τν|)ν∈F in [28]
is based on estimating the sequences by Cauchy’s integral formula applied to the
analytic continuation of Θ. Sparsity of polynomial chaos expansions of the posterior
density Θ in turn implies best N-term approximation rates.

4.4. Best N-term Convergence Rates

Theorem 4.4. ([28]) If Assumptions 3.1, 3.2 and 4.3 hold then there exists a monotone
sequence (ΛN)N∈N ⊂ F of index sets with cardinality not exceeding N (depending σ and
on the data δ) such that the corresponding N-term truncated gpc Legendre expansions ΘΛN

in (22) satisfy

‖Θ − ΘΛN‖L2(U,µ0(dy)) ≤ N−( 1
σ−

1
2 )‖(θν)‖!σ(F ;R) .

Likewise, for q = 1, ∞ and for every N ∈ N, there exist monotone sequences (ΛN)N∈N ⊂
F of index sets (depending, in general, on σ, q and the data) whose cardinality does not
exceed N such that the N-term truncated Taylor sums (24) converge with rate 1/σ − 1, i.e.

‖Θ − TΛN‖Lq(U,µ0(dy)) ≤ N−( 1
σ−1)‖(τν)‖!σ(F ;R) .
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Here, for q = ∞ the norm ‖ ◦ ‖L∞(U;µ0) is the supremum over all y ∈ U.

5. Sparse Polynomial Quadrature

5.1. Univariate Quadrature and Tensorization

By (Qk)k≥0 we denote a sequence of univariate quadrature formulas associated with
the quadrature points (zk

j )
nk
j=0 ⊂ (−1/2, 1/2) with zk

j ∈ [− 1
2 , 1

2 ] , ∀j, k and zk
0 = 0 , ∀k

and weights wk
j , 0 ≤ j ≤ nk, ∀k ∈ N0.

The univariate quadrature operators associated with the sequences (zk
j )

nk
j=0 are

of the form

Qk(g) =
nk

∑
i=0

wk
i · g(zk

i ) ,

where g is a function g : [− 1
2 , 1

2 ] 8→ S , taking values in some Banach space S . In the
following, we will work under several assumptions on the quadrature formulas:

Assumption 5.1.

(i) (I − Qk)(vk) = 0 , ∀vk ∈ Sk := Pk ⊗ S , Pk = span{yj : j ∈ N0, j ≤ k},
with I(vk) =

∫
[− 1

2 , 1
2 ]

vk(y)λ1(dy).

(ii) wk
j > 0 , 0 ≤ j ≤ nk, ∀k ∈ N0.

Note that Assumption 5.1 (ii) implies Qk(1) = 1 for all k. With the convention
that Q−1 is the null operator,
i.e.

Q−1 = 0 (25)

and z0
0 = 0, w0

0 = 1, so that

Q0(g) = g(0) (26)

we define the univariate quadrature difference operator by

∆j = Qj − Qj−1, j ≥ 0 .

Then, the univariate quadrature formula Qk can be rewritten as telescoping sum

Qk =
k

∑
j=0

∆j ,

where Z k = {zk
j : 0 ≤ j ≤ nk} ⊂ [− 1

2 , 1
2 ] denotes the set of points corresponding to

Qk. We emphasize that so far, arbitrary sequences of quadrature points (zk
j )

nk
j=0 can

be used (satisfying, however, Assumptions A.1 and A.2). In particular, the ensuing
Smolyak construction is not limited to univariate families (Qk)k≥0 of quadratures
which are based on nested sequences of quadrature points.
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For ν ∈ F , tensorized multivariate operators are defined by

Qν =
⊗

j≥1
Qνj , ∆ν =

⊗

j≥1
∆νj . (27)

with associated set of multivariate points Zν = ×j≥1Zνj ∈ U. The tensorization can
be defined inductively: for a S-valued function g defined on U,

• If ν = 0F , then ∆νg = Qνg denotes the integral over the constant polynomial
with value g(z0F ) = g(0F ).

• If 0F 4= ν ∈ F , then denoting by ν̂ = (νj)j 4=i

Qνg = Qνi(t 8→
⊗

j≥1
Qν̂j gt) , i ∈ Iν

and

∆νg = ∆νi(t 8→
⊗

j≥1
∆ν̂j gt) , i ∈ Iν ,

for g ∈ Z , gt is the function defined on ZN by gt(ŷ) = g(y), y =
(. . . , yi−1, t, yi+1, . . .) , i > 1 and y = (t, y2, . . .) , i = 1, see [8].

By (25) and (26), since ν ∈ F , the countable product quadrature Qν in (27) is well-
defined and corresponds to "anchoring" the integrals at yj = 0 for all j /∈ Iν, which
means that u (and hence p) is independent of these yj (cf. (13)).

5.2. Sparse Quadrature Operator

For any finite monotone set Λ ⊂ F , the quadrature operator is defined by

QΛ = ∑
ν∈Λ

∆ν = ∑
ν∈Λ

⊗

j≥1
∆νj ,

with associated collocation grid

ZΛ = ∪ν∈ΛZν .

Theorem 5.2. For any monotone index set ΛN ⊂ F , the sparse quadrature QΛN is exact
for any polynomial g ∈ SΛN , i.e. there holds

QΛN(g) = I(g), ∀g ∈ SΛN := PΛN ⊗ S ,

with PΛN = span{yν : ν ∈ ΛN} , i.e. SΛN = span
{

∑ν∈ΛN
sνyν : sν ∈ S

}
, and

I(g) =
∫

U g(y)µ0(dy).

Proof. We proceed by induction over N.
For N = 1, the index set is given by Λ1 = {0F} (due to the monotonicity of Λ).

Given g ∈ SΛ1 = span{yν : ν ∈ Λ1}⊗S = span{y0F }⊗S , it follows g ≡ const. ∈ S
which implies

QΛ1(g) =
⊗

j≥1
∆0(g) =

⊗

j≥1
Q0(g) = g(z0F ) = I(g) .
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Induction step N − 1 → N: For N > 1, we assume for any monotone index set ΛN−1
it has been shown that

QΛN−1(g) = I(g), ∀g ∈ SΛN−1 = span{yν : ν ∈ ΛN−1}⊗S .

We denote by ϑ ∈ F \ ΛN−1 the new index so that ΛN = ΛN−1 ∪ {ϑ}. Then,

SΛN = span{yν : ν ∈ ΛN}⊗S
= span{yν : ν ∈ ΛN−1}⊗ S ⊕ span{yϑ}⊗S .

Hence, g ∈ SΛN can be uniquely expressed as g = g1 + g2 with g1 ∈ SΛN−1 and
g2 ∈ Sϑ. Then, we have

QΛN(g) = ∑
ν∈ΛN

∆ν(g) = ∑
ν∈ΛN

∆ν(g1 + g2)

= ∑
ν∈ΛN

∆ν(g1) + ∑
ν∈ΛN

∆ν(g2) = I. + II.

The induction hypothesis gives

I. = I(g1).

In the following, we show II. = I(g2) by case distinction.
We first consider the case |ϑ| = 1, i.e. the case when a new dimension is added

to the sparse grid ΛN−1. For simplicity of exposition, we assume ϑ1 = 1, ϑj = 0, j ≥
2. Therefore, g2 is of the form

g2(y) = c · y1,

where c ∈ S is a constant factor, i.e.

g2 =
⊗

j≥1
gj

2, g1
2 ∈ span{y1}⊗S , gj

2 ≡ 1 , for j ≥ 2 .

We have

II. = ∑
ν∈ΛN−1

∆ν(g2) + ∆ϑ(g2)

= ∑
ν∈ΛN−1

(∆ν1 ⊗
⊗

j≥2
∆νj)(g2) + ∆ϑ(g2)

= ∑
ν∈ΛN−1

∆ν1(g1
2) ·

⊗

j≥2
∆νj(⊗j≥2gj

2) + ∆ϑ(g2)

= Q0(g1
2) ∑

ν∈ΛN−1

⊗

j≥2
∆νj(⊗j≥2gj

2) + ∆ϑ1(g1
2)·

⊗

j≥2
∆ϑj(⊗j≥2gj

2)

= I(⊗j≥2gj
2) · (Q

0(g1
2) + Q1(g1

2)− Q0(g1
2))

= I(g2) .

We next consider the case |ϑ| > 1:
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The function g2 can expressed by g2 = ⊗j≥1gj
2, gj

2 ∈ span{y
ϑj
j }⊗S .

II. = ∑
ν∈ΛN−1

∆ν(g2) + ∆ϑ(g2)

= ∑
ν∈ΛN−1

∆ν(g2) +
⊗

j≥1
(∆ϑj(gj

2))

= ∑
ν∈ΛN−1

⊗

j≥1
∆νj(g2) +

⊗

j≥1
((Qϑj − Qϑj−1)(gj

2))

= ∑
ν∈ΛN−1

⊗

j≥1
(Qνj(gj

2)− Qνj−1(gj
2)) +

⊗

j≥1
(I(gj

2)− Qϑj−1(gj
2))

Due to the monotonicity of ΛN, ϑj − 1 ∈ ΛN−1 and with Qν = ∑µ≤ν ∆µ, it holds

II. = I(g2)

Thus, we have

QΛN(g) = ∑
ν∈ΛN

∆ν(g) = ∑
ν∈ΛN

∆ν(g1) + ∑
ν∈ΛN

∆ν(g2) = I(g1) + I(g2) = I(g) .

We are now in position to state the main theorem in this section. It takes the form
of a convergence result for quadrature of functions of countably many variables,
fulfilling the following assumptions.

Assumption 5.3.
Let g : U 8→ S denote a bounded, continuous function of countably many variables y1, y2, ...
which is defined on U = [− 1

2 , 1
2 ]

N and which admits an extension to the complex domain,
i.e. g : U 8→ S, with U :=

⊗
j≥1{zj ∈ C : |zj| ≤ 1

2}, and S is replaced by its extension to
the coefficient field C. This extension (again denoted by g) satisfies:

(i) g admits an analytic extension to the polydisc Uρ := {z = (zj)j≥1 ∈ CN : |zj| ≤
1
2 ρj, j ∈ N} for a vector ρ = (ρj)j≥1 of radii ρj > 1.

(ii) The function g : Uρ 8→ S satisfies an a priori estimate

sup
z∈Uρ

‖g(z)‖S ≤ B(ρ) ,

where the ρ-dependent bound satisfies for every J ∈ N

B(ρ1, . . . , ρJ , 1, . . .) ≤ B0

J

∏
j=1

eαjρj

for some constant B0 independent of ρ and J for certain positive real numbers αj.
(iii) The poly-radii ρ satisfy

∑
j≥1

ρjLj < ∞
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for some fixed sequence (Lj)j≥1 of positive real numbers and it holds

(αj)j∈N, (Lj)j∈N ∈ lσ(N) , 0 < σ < 1 .

The sequence ρ is called admissible poly-radii. We say that an admissible sequence of
poly-radii ρ is (b, r)-admissible, if ∑j≥1 ρjαj ≤ b− r with a constant b and some r > 0.

The Assumption 5.3 implies that g can be represented by the Taylor expansion,

g(z) = ∑
ν∈F

τvzν , τν :=
1
ν!

∂ν
z g(z)

∣∣
z=0 , ∀z ∈ Uρ ,

which is unconditionally summable in Uρ and for any (not necessarily monotone
sequence) (ΛN)N∈N ⊂ F which exhausts F , the corresponding sequence of N-term
truncated partial Taylor sums

TΛN(g(z)) := ∑
ν∈ΛN

τνzν (28)

converges pointwise in Uρ to g. In [15], it is shown in this general setting that the
sequence (τν)ν∈F of Taylor coefficients τν = 1

ν! ∂
νg(0) ∈ S of the function g is σ-

summable, i.e. (‖τν‖S)ν∈F ∈ lσ(F ). Due to Stechkin’s Lemma (see e.g. [10], Section
3.3), we have

sup
z∈Uρ

‖g(z)− TΛN(g(z))‖S ≤ C N−s , s :=
1
σ
− 1 .

Further, this rate is achieved even if the sequence (ΛN)N∈N of index sets are
constrained to be monotone index sets, cf. [7].

We will now show that there exists a sequence (ΛN)N≥1 of monotone sets
ΛN ⊂ F such that #ΛN ≤ N and such that, for some C > 0 independent of N,

‖I(g)−QΛN(g)‖S ≤ CN−s , s =
1
σ
− 1 ,

with I(g) =
∫

U g(y)µ0(dy). Since QΛN is exact for every ΥN ∈ SΛN , we have

‖(I −QΛN)(g)‖S = ‖(I −QΛN)(g − ΥN)‖S
≤ (|||I|||+ |||QΛN |||) · inf

Υn∈SΛN

‖g − Υn‖L∞(U;S)

≤ (1 + CQΛN
) · CN−s ,

where we used |||I||| = µ0(U) = 1 and |||QΛN ||| =: CQΛN
. Using the triangle inequality

gives
CQΛN

= ||| ∑
ν∈ΛN

⊗

j≥1
∆νj ||| ≤ ∑

ν∈ΛN

∏
j≥1

|||∆νj ||| ,

with

|||∆νj ||| = sup
0 4=g∈C([− 1

2 , 1
2 ];S)

‖∆νjg‖S
‖g‖L∞([− 1

2 , 1
2 ];S)

≤ |||Qνj |||+ |||Qνj−1|||

=: cνj + cνj−1 ,
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with ck = 1 , k ≥ 0 (note that |||Qk||| = 1 by Assumption 5.1 (ii)) and c−1 := 0. Thus,
we get the bound

CQΛN
≤ ∑

ν∈ΛN

∏
j≥1

(cνj + cνj−1) . (29)

Bound (29) is pessimistic in the tensor product case, since in this case the exact value
of the constant CRν is given by

CRν = ∏
j≥1

cνj = 1 , with Rν = {µ ∈ F : µ ≤ ν}.

Lemma 5.4. The constant CQΛ satisfies

CQΛ ≤ #Λlog2 3 .

Proof. For ν ∈ Λ, we have

∏
j≥1

(cνj + cνj−1) = ∏
j∈Iν

(1 + 1) = 2#Iν .

In order to derive a bound of the maximum cardinality of Iν , ν ∈ Λ for arbitrary
monotone index sets Λ, we consider a binary monotone index set Λ̃ of the following
form

Λ̃ ⊂ {ν ∈ {0, 1}J : |ν|1 < ∞} and #Λ̃ = #Λ.

The support of each index ν ∈ Λ can be bounded by maxν∈Λ̃ #Iν due to the
monotonicity of Λ and Λ̃. Therefore, it holds

max
ν∈Λ

#Iν ≤ max
ν∈Λ̃

#Iν.

The monotonicity of the index set Λ̃ implies that all predecessors of each index
ν ∈ Λ̃ are contained in Λ̃, i.e. it holds that ν − ej ∈ Λ̃ for all j ∈ Iν, cf. Definition
4.2. Therefore, we can associate the binary monotone index set Λ̃ with a complete
binary tree, where the number of leaf nodes corresponds to the cardinality of the
index set Λ̃ and a path from the root to the leaf nodes represents an index ν ∈ Λ̃.
Thus, the maximum cardinality of Iν with ν ∈ Λ̃ can be bounded by the height of a
complete binary tree. We have maxν∈Λ #Iν ≤ :log2 #Λ; and hence, we may estimate

CQΛ = ∑
ν∈Λ

∏
j≥1

(cνj + cνj−1) ≤
:log2 #Λ;

∑
k=0

(
:log2 #Λ;

k

)
· 2k

= (1 + 2):log2 #Λ; = 3:log2 #Λ; ≤ #Λlog2 3 .

The preceding result allows to derive a convergence estimate of the form

‖I(g)−QΛN(g)‖S ≤ CN−s+log2 3 , s =
1
σ
− 1 .

Relating the quadrature error with the Taylor coefficients τν of u = ∑ν∈F τνyν, the
approximation error can be bounded as follows:
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Lemma 5.5. Assume that TΛN g(y) = ∑ν∈F τνyν in the sense of unconditional convergence
in L∞(U,S). Then, we have

‖I(g)−QΛ(g)‖S ≤ 2 · ∑
ν/∈Λ

pν‖τν‖S

for any monotone set Λ, where pν := ∏j≥1(1 + νj)2.

Proof. Due to the unconditional convergence of the Taylor series, we have

QΛ(g) = QΛ( ∑
ν∈F

τνyν) = ∑
ν∈F

τνQΛ(yν) = ∑
ν∈Λ

τν I(yν) + ∑
ν/∈Λ

τνQΛ∩Rν(y
ν) .

Therefore,

I(g)−QΛ(g) = ∑
ν/∈Λ

τν(I −QΛ∩Rν)(y
ν) ,

which results in

‖I(g)−QΛ(g)‖S ≤ ∑
ν∈F\Λ

‖τν‖S(1 + CQΛ∩Rν
) ≤ 2 · ∑

ν/∈Λ
‖τν‖S (#Rν)

2
︸ ︷︷ ︸

=pν

.

Theorem 5.6. If Assumption 5.3 is satisfied, (pν‖τν‖S)ν∈F ∈ lσ(F ).

Proof. Due to the summability of (αj)j∈N and (Lj)j∈N, it holds

∑
j≥1

αj ≤ b − r

for some sufficiently large constant b and r > 0, so that we may choose an integer
J0 ∈ N such that

∑
j>J0

γj ≤
1
e2

r
12

with γj = max(αj, Lj), where it is assumed that the indexing is chosen such that the
sequence (γj)j≥1 is non-decreasing. We follow [15] and present the details. We set
E := {j : 1 ≤ J0} and F := N \ E and choose κ > 1 such that

(κ − 1) ∑
j≤J0

γj ≤
r
6

.

For each ν ∈ F , we denote by νE and νF the restrictions of ν on E and F and define
the sequence ρ = ρ(ν) by

ρj = κ , j ∈ E ; ρj = max(1,
rνj

4|νF|γj
) + e2 , j ∈ F ,

with |νF| = ∑j>J0
νj (with the convention νj

|νF|
= 0, if |νF| = 0).

Then, the sequence ρ is ( r
2)-admissible, since
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∑
j≥1

ρjαj = κ ∑
j≤J0

αj + ∑
j>J0

(
max(1,

rνj

4|νF|γj
) + e2

)
αj

≤ (κ − 1) ∑
j≤J0

γj + ∑
j≤J0

αj + ∑
j>J0

(1 +
rνj

4|νF|γj
)αj + ∑

j>J0

e2αj

≤ r
6
+ ∑

j≥1
αj +

r
4
+

r
12

≤ b − r
2

.

Hence, we have

pν‖τν‖S ≤ C r
2 ∏

j≤J0

(1 + νj)2

κνj ∏
j>J0

(1 + νj)2

ρνj
.

Similar to the proof of Theorem 4.2 in [8], we get

pν‖τν‖S ≤ C · α(νE) · β(νF) ,

where

α(νE) := ∏
j≤J0

(
1 + κ

2κ

)νj

, β(νF) := ∏
j>J0

(
|νF|dj

νj

)νj

with dj := 4e2γj
r . It holds ∑j>J0

dj < 1
3 . The desired result follows then with

Subsection 3.2 in [10].

Theorem 5.7. Let Assumption 5.3 be satisfied, then there exists a sequence (ΛN)N≥1 of
monotone sets ΛN ⊂ F such that #ΛN ≤ N and

‖I(g)−QΛN(g)‖S ≤ CN−s , s =
1
σ
− 1 .

Proof. The lσ-summability of (pν‖τν‖S)ν∈F implies the existence of a sequence
(ΛN)N≥1 of sets ΛN ⊂ F with #ΛN ≤ n such that

∑
ν/∈ΛN

pv‖τν‖S ≤ CN−s , s =
1
σ
− 1 .

With the same argument as in [8] Section 4.2, the sequence (ΛN)N≥1 can be chosen
to be monotone and nested.

Based on the results discussed in Sections 3 and 4, we next show that the
functions of the forward problem G(·) ,G(·), the potential Φ(u(·); δ) as well as
the posterior Θ(·) and Ψ(·) of the model parametric elliptic problem defined in
Section 3 fulfill Assumption 5.3, and, hence, the quantities of interest Z and Z′ can
be efficiently approximated with convergence rate s.

Since the sparsity and quadrature error analysis is based on arguments from
complex analysis, we extend (for purposes of error analysis only) all functions to
the complex domain. Accordingly, we replace UEA(amin, amax) by a complex-valued
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counterpart: Uniform Ellipticity Assumption in C: there exist 0 < amin ≤ amax < ∞
such that for all x ∈ D and for all z ∈ U

0 < amin ≤ R(u(x, z)) ≤ |u(x, z)| ≤ amax < ∞.

We refer to [9, 10] for a detailed derivation of the ensuing results.

Lemma 5.8. Under UEAC(amin, amax) and if (‖ψj‖L∞(D))j≤1 ∈ lσ(N), the solution
G : U → V of the parametric forward problem (9) and G : U → Rk satisfy the Assumption
5.3.

Proof. In [10], it is shown that UEAC(amin, amax) implies analyticity of the V-valued
forward map z 8→ G(u(z)) in Uρ := {z = (zj)j≥1 ∈ CN : |zj| ≤ 1

2 ρj, j ∈ N} for a
vector ρ = (ρj)j≥1 of (R(ā(x)), r)-admissible radii ρj > 1 satisfying the estimate

sup
z∈Uρ

‖G(z)‖V ≤ ‖ f ‖V∗

r
,

where 0 < r < amin. Choosing αj = 1
2 |ψj(x)| , x ∈ D, Lj = 1

2‖ψj‖L∞(D) and
b = R(ā(x)), 5.3 (i)-(v) are fulfilled.

For every bounded linear observation operator O ∈ V∗, G admits an analytic
continuation to the domain Uρ with

sup
z∈Uρ

|G(z)| ≤ ‖ f ‖V∗

r

K

∑
k=1

‖ok‖V∗ ,

cf. [28]. With the same choice of αj =
1
2 |ψj(x)| , x ∈ D, Lj =

1
2‖ψj‖L∞(D) and with

b = R(ā(x)), G satisfies 5.3 (i)-(v).

Lemma 5.9. Under UEAC(amin, amax) and if (‖ψj‖L∞(D))j≥1 ∈ lσ(N), the functions
Φ(u(·); δ), Θ and Ψ (with φ(u(z)) = G(u(z))m) satisfy the Assumption 5.3.

Proof. As was shown in [28], due to UEAC(amin, amax) and (‖ψj‖L∞(D))j≤1 ∈ lσ(N), it
follows with Lemma 5.8 that G and G are analytic in a domain Uρ := {z = (zj)j≥1 ∈
CN : |zj| ≤ 1

2 ρj, j ∈ N} for a vector ρ = (ρj)j≥1 of (R(ā(x)), r)-admissible radii
ρj > 1 , 0 < r < amin, so that Φ(u(·); δ) is analytic as a composition of a quadratic
(hence analytic) and an analytic function. Further, the domain of the analytic
continuation of the potential Φ(u(·); δ) coincides with the domain of holomorphy of
G and G, respectively. Based on Lemma 5.8, as in [28], we can derive the following
bound

sup
z∈Uρ

|Φ(u(z); δ)| ≤ C(Γ, δ)
‖ f ‖2

V∗

r2

K

∑
k=1

‖ok‖2
V∗ ,

with a constant C(Γ, δ) depending on the observations δ and with the covariance
operator Γ, 0 < r < amin. Then, due to the analyticity of the exponential function,
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it follows that the posterior density Θ admits analytic continuations to the same
domain of holomorphy as G and it holds

sup
z∈Uρ

|Θ(z)| ≤ exp

(
C(Γ, δ)

‖ f ‖2
V∗

r2

K

∑
k=1

‖ok‖2
V∗

)
.

Thus, the analyticity of Ψ, again with the same domain of holomorphy, follows from
the analyticity of the product of two analytic functions. The analytic continuation of
Ψ admits the bounds

sup
z∈Uρ

‖Θ(z)(p(z))m‖V(m) ≤
‖ f ‖m

V∗

rm exp

(
C(Γ, δ)

‖ f ‖2
V∗

r2

K

∑
k=1

‖ok‖2
V∗

)
.

Choosing again αj =
1
2 |ψj(x)| , x ∈ D, Lj =

1
2‖ψj‖L∞(D) and b = R(ā(x)), 5.3 (i)-(v)

are fulfilled for Φ(u(·); δ), Θ and Ψ.

5.3. Adaptive Construction of the Monotone Index Set

We now discuss the adaptive construction of the monotone index set (ΛN)N≥1.
The results in the previous subsection ensure the existence of a nested sequence of
monotone index sets (ΛN)N≥1, which exhausts F , such that the sparse quadrature
operator QΛN = ∑ν∈ΛN

∆ν applied to the function Θ and Ψ given by (6) and (7) to
compute the infinite dimensional parametric integrals of the form

Z =
∫

y∈U
Θ(y)µ0(dy)

and

Z′ =
∫

y∈U
Ψ(y)µ0(dy)

gives

|Z −QΛN(Ψ)| ≤ CZN−s , s =
1
σ
− 1 , (30)

‖Z′ −QΛN(Ψ)‖V(m) ≤ CZ′N−s , s =
1
σ
− 1 , (31)

respectively, with #ΛN ≤ N.
The idea is to successively identify the index set ΛN corresponding to the N

largest contributions of the sparse quadrature operator to the approximation of the
integral Z and Z′, i.e. the N largest

‖∆ν(X )‖S = ‖
⊗

j≥1
∆νj(X )‖S , ν ∈ F

with X = Θ , S = R or X = Ψ , S = V(m), minimizing the approximation error
(30) and (31), respectively (cf. [8, 16, 13]).



Smolyak Quadrature for Inverse Problems 24

Note that the approach leads to a nested but not necessarily monotone index
set Λ and, further, that a priori knowledge on the size of ‖∆ν(Ψ)‖V(m) is required
for this approach which is generally not available.

Therefore, following [8], we consider a (finite) set of reduced neighbors

N (Λ) := {ν /∈ Λ : ν − ej ∈ Λ, ∀j ∈ Iν and νj = 0 , ∀j > j(Λ) + 1}

for any monotone set Λ, where j(Λ) = max{j : νj > 0 for some ν ∈ Λ}. The index
set Λ is adaptively chosen as follows:

1: function ASG
2: Set Λ1 = {0} , k = 1 and compute ∆0(X ).
3: Determine the set of reduced neighbors N(Λ1).
4: Compute ∆ν(X ) , ∀ν ∈ N(Λ1).
5: while ∑ν∈N(Λk) ‖∆ν(X )‖S > tol do
6: Select ν from N(Λk) with largest ‖∆ν‖S and set Λk+1 = Λk ∪ {ν}.
7: Determine the set of reduced neighbors N(Λk+1).
8: Compute ∆ν(X ) , ∀ν ∈ N(Λk+1).
9: Set k = k + 1.

10: end while
11: end function

This greedy strategy attempts to control the global approximation error by
locally collecting indices of the current set of reduced neighbors with the largest
error contributions. The convergence of the algorithm with a convergence rate
comparable to that of an optimal choice has not yet been proven and there exist
test cases, where this approach may fail to converge (cf. [8]). However, excellent
results based on this approach could be observed in many numerical experiments,
see e.g.[8, 7, 16, 13].

In order to construct the sparse quadrature operator, we consider three choices
for the univariate sequence (zk

j )
nk
j=0 of quadrature points

• Clenshaw-Curtis (CC),

zk
j = −cos

(
π j

nk − 1

)
, j = 0, . . . , nk − 1, if nk > 1 and

zk
0 = 0 , if nk = 1

with n0 = 1 and nk = 2k + 1, for k ≥ 1

• symmetrized Leja abscissas (L),

zk
0 = 0 , zk

1 = 1 , zk
2 = −1 , if j = 0, 1, 2 and
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zk
j = argmaxz∈[−1,1]

j−1

∏
l=1

|z − zk
l | , j = 3, . . . , nk, if j odd ,

zk
j = −zk

j−1 , j = 3, . . . , nk, if j even

with nk = 2 · k + 1, for k ≥ 0.
• R-Leja sequence (RL),

projection on [−1, 1] of a Leja sequence for the complex unit disk initiated at i

zk
0 = 0 , zk

1 = 1 , zk
2 = −1 , if j = 0, 1, 2 and (32)

zk
j = R(ẑ), with ẑ = argmax|z|≤1

j−1

∏
l=1

|z − zk
l | , j = 3, . . . , nk, if j odd ,

zk
j = −zk

j−1 , j = 3, . . . , nk, if j even ,

with nk = 2 · k + 1, for k ≥ 0, see [5].

The Clenshaw-Curtis points fulfill Assumption 5.1, whereas the quadrature weights
based on the Leja sequences are not all positive, that means Assumption 5.1 (ii) is
not satisfied. However, the positivity assumption on the quadrature weights can be
weakened to the case of R-Leja points due to the moderate, algebraic growth of the
Lebesgue constants of the univariate quadrature operators (cp. [4, 5, 6]).

Lemma 5.10. Let QRL
Λ denote the sparse quadrature operator for any monotone set Λ based

on the univariate quadrature formulas associated with the Leja sequence defined by (32).
Under Assumption 5.3, it follows that there exists a sequence (ΛN)N≥1 of monotone sets
ΛN such that #ΛN ≤ N and

‖I(g)−QRL
ΛN

(g)‖S ≤ CN−s , s =
1
σ
− 1 . (33)

Proof. We denote by Ik
RL the univariate polynomial interpolation operator of the

form

Ik
RL(g) =

nk

∑
i=0

g

(
zk

i
2

)
· lk

i ,

associated with the Leja sequence (zk
j )

nk
j=0 defined by (32), where g is a function

g : [− 1
2 , 1

2 ] 8→ S , taking values in some Banach space S and lk
i (y) := ∏nk

i=0i 4=j
2y−zi
zj−zi

are the Lagrange polynomials. Since we have

Ik
RL(vk) = vk , ∀vk ∈ Sk := Pk ⊗ S , Pk = span{yj : j ∈ N0, j ≤ k} ,

the univariate quadrature operators Qk
RL associated with the sequences defined by

(32) satisfy

(I − Qk
RL)(vk) = (I − I[Ik

RL])(vk) = I(vk − Ik
RL(vk)) = 0

∀vk ∈ Sk := Pk ⊗ S , Pk = span{yj : j ∈ N0, j ≤ k}. Hence, Assumption 5.1 (i) is
fulfilled.

In [4, 5], an asymptotic bound
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of the Lebesgue constants for Lagrange interpolation in Leja points is proved.
It takes the form

|||Ik
RL||| = sup

0 4=g∈C([− 1
2 , 1

2 ];S)

‖Ik
RL(g)‖L∞([− 1

2 , 1
2 ];S)

‖g‖L∞([− 1
2 , 1

2 ];S)
≤ Ck3 log k .

This bound has been improved in [6] to

|||Ik
RL||| ≤ 3(k + 1)2 log(k + 1) .

Therefore, we have

|||Qk
RL||| = sup

0 4=g∈C([− 1
2 , 1

2 ];S)

‖Qk
RL(g)‖S

‖g‖L∞([− 1
2 , 1

2 ];S)

≤ sup
0 4=g∈C([− 1

2 , 1
2 ];S)

‖Ik
RL(g)‖L∞([− 1

2 , 1
2 ];S)

‖g‖L∞([− 1
2 , 1

2 ];S)
≤ 3(k + 1)2 log(k + 1) .

Since |||Qk
RL||| ≤ (k + 1)θ for some θ ≥ 1, we obtain from Lemma 3.1 and Lemma 4.1

in [8]

‖I(g)−QRL
Λ (g)‖S ≤ 2 · ∑

ν/∈Λ
pν‖τν‖S

for any monotone set Λ, where pν := ∏j≥1(1 + νj)θ+1 and TΛN g(y) = ∑ν∈F τνyν

denotes the Taylor expansion of g, cp. (28). The summability of the sequence
(pν‖τν‖S)ν∈F , i.e. (pν‖τν‖S)ν∈F ∈ lσ(F ), can be proven with the same arguments as
in Theorem 5.6, which implies the existence of a sequence (ΛN)N≥1 of sets ΛN ⊂ F
with #ΛN ≤ N such that (33) holds.

Remark 5.11. As the proof of Lemma 5.10 indicates, Assumption 5.1 (ii) can be
relaxed to the condition |||Qk||| ≤ Ckθ for a given θ ≥ 1. The polynomial bound of the
univariate quadrature operators allows to derive a similar algebraic bound for the
operator norm of the sparse quadrature quadrature QΛ, for any monotone set Λ,
of the form |||QΛ||| ≤ (#Λ)θ+1, cp. Lemma 3.1 in [8]. By slight modifications of the
arguments presented in Section 5, the quadrature error can be related to the Taylor
coefficients of the underlying function g denoted by TΛN g(y) = ∑ν∈F τνyν in the
following way: ‖I(g)−QΛ(g)‖S ≤ 2 · ∑ν/∈Λ pν‖τν‖S for any monotone set Λ, with
pν := ∏j≥1(1 + νj)θ+1 and with u satisfying Assumption 5.3. The lσ summability of
the sequence (pν‖τν‖S)ν∈F , which follows with the same arguments as in the proof
of Theorem 5.6, implies then the desired convergence result ‖I(g) −QΛN(g)‖S ≤
CN−s with s = 1

σ − 1.
For 0 < σ < 2/3, this analysis yields s > 1/2, i.e. the rate of convergence is,

asymptotically, superior to the rate afforded by MCMC, in terms of the number N
of solutions of the forward problem. As we shall see in the numerical experiments
below, in fact even s > 1/σ appears to hold. This, in turn, would imply the rate
s > 1/2 even for σ < 2.
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6. Numerical Experiments

We consider the model parametric elliptic boundary value problem

−div(u∇p) = f in D := [0, 1] , p = 0 in ∂D ,

with f (x) = 100 · x. The diffusion coefficient is defined as

u(x, y) = ā +
64

∑
j=1

yjψj , where ā = 1 and ψj = αjχDj

with Dj = [(j − 1) 1
64 , j 1

64 ], y = (yj)j=1,...,64 and αj = 1.8
jζ , ζ = 2, 3, 4. The

forward problem is numerically solved by a finite element method using continuous,
piecewise linear ansatz functions on a uniform mesh with meshwidth h = 2−18.
LAPACK’s DPTSV routine is used to compute the solution of the resulting
symmetric positive definite tridiagonal system.

The goal of computation is, for given (noisy) data δ,

δ = G(u) + η ,

with η ∼ N (0, Γ) and G : L∞(D) → RK, with K = 2NK − 1 , NK = 2, 3, 4, to compute
the expectation of the observed solution of the forward model, i.e. our aim is to
approximate

Z′ =
∫

U
exp

(
−Φ(u; δ)

)
φ(u)

∣∣∣
u=ā+∑64

j=1 yjψj
µ0(dy) ,

with φ(u) = G(u), and with the normalization constant Z given by

Z =
∫

U
exp

(
−Φ(u; δ)

)∣∣∣
u=ā+∑64

j=1 yjψj
µ0(dy) ,

so that the expectation of interest is given by Z′/Z. The noise η = (ηj)j=1,...,K is
assumed to be independent and identically distributed with ηj ∼ N (0, 1), ηj ∼
N (0, 0.52) and ηj ∼ N (0, 0.12), respectively. The observation operator O consists of
K system responses at K equispaced observation points in D with spacing τO

N = 2−N

at xk =
k

2NK
, k = 1, . . . , 2NK − 1, ok(·) = δ(·− xk) with K = 2NK − 1 , NK = 2, 3, 4.

Figures 1, 2 and 3 show the quadrature error of the normalization constant Z
with respect to the cardinality of the monotone index set ΛN, which is adaptively
determined by Agorithm 5.3. The quadrature error is estimated by the contributions
of the reduced neighbor set of the current index set ΛN, cp. Section 5.3. The
results are based on the three choices CC, L and RL of the univariate sequences
(zk

j )
nk
j=0. Furthermore, a variation of the noise, i.e. ηj ∼ N (0, 1), ηj ∼ N (0, 0.52) and

ηj ∼ N (0, 0.12) , as well as of the parameter ζ is considered in order to investigate
the convergence behavior of the proposed approach.
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Figure 1. Comparison of the error curves of the normalization constant Z with
respect to the cardinality of the index set Λn based on the sequences CC, L and RL
with K = 2NK − 1 , NK = 2, 3, 4, η ∼ N (0, 1) and ζ = 2 (left), ζ = 3 (middle) and
ζ = 4 (right).
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Figure 2. Comparison of the error curves of the normalization constant Z with
respect to the cardinality of the index set Λn based on the sequences CC, L and RL
with K = 2NK − 1 , NK = 2, 3, 4, η ∼ N (0, 0.52) and ζ = 2 (left), ζ = 3 (middle) and
ζ = 4 (right).
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Figure 3. Comparison of the error curves of the normalization constant Z with
respect to the cardinality of the index set Λn based on the sequences CC, L and RL
with K = 2NK − 1 , NK = 2, 3, 4, η ∼ N (0, 0.12) and ζ = 2 (left), ζ = 3 (middle) and
ζ = 4 (right).

We can observe a convergence order of (#Λ)−ζ for the three choices of the
univariate sequences (zk

j )
nk
j=0, which is independent of the number of observation

points K and of the variance of the noise. In the case of Clenshaw-Curtis points, the
results indicate an even higher convergence order of (#Λ)−ζ−1. However, comparing
the error curves with respect to the number of PDE solves needed, we notice that,
in the case of Clenshaw-Curtis points, a higher number of quadrature points is
needed to achieve the same accuracy as in the case of Leja points (due to the
exponential growth of the number of Clenshaw-Curtis points), cp. Figures 4, 5
and 6, respectively.
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Figure 4. Comparison of the error curves of the normalization constant Z with
respect to the number of PDE solves needed based on the sequences CC, L and RL
with K = 2NK − 1 , NK = 2, 3, 4, η ∼ N (0, 1) and ζ = 2 (left), ζ = 3 (middle) and
ζ = 4 (right).
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Figure 5. Comparison of the error curves of the normalization constant Z with
respect to the number of PDE solves needed based on the sequences CC, L and RL
with K = 2NK − 1 , NK = 2, 3, 4, η ∼ N (0, 0.52) and ζ = 2 (left), ζ = 3 (middle) and
ζ = 4 (right).
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Figure 6. Comparison of the error curves of the normalization constant Z with
respect to the number of PDE solves needed based on the sequences CC, L and RL
with K = 2NK − 1 , NK = 2, 3, 4, η ∼ N (0, 0.12) and ζ = 2 (left), ζ = 3 (middle) and
ζ = 4 (right).

The same observations can be made for the approximation of the quantity Z′.
The following figures display the maximum error of the quantity Z′ with respect to
the cardinality of the current index set Λn based on the sequences CC, L and RL
with variations of the variance of the noise as well as of the number of observations
points K.
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Figure 7. Comparison of the L∞ error curves of the quantity Z′ with respect
to the cardinality of the index set Λn based on the sequences CC, L and RL with
K = 2NK − 1 , NK = 2, 3, 4, η ∼ N (0, 1) and ζ = 2 (left), ζ = 3 (middle) and ζ = 4
(right).
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Figure 8. Comparison of the L∞ error curves of the quantity Z′ with respect to
the cardinality of the index set Λn based on the sequences CC, L and RL with
K = 2NK − 1 , NK = 2, 3, 4, η ∼ N (0, 0.52) and ζ = 2 (left), ζ = 3 (middle) and
ζ = 4 (right).
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Figure 9. Comparison of the L∞ error curves of the quantity Z′ with respect to
the cardinality of the index set Λn based on the sequences CC, L and RL with
K = 2NK − 1 , NK = 2, 3, 4, η ∼ N (0, 0.12) and ζ = 2 (left), ζ = 3 (middle) and
ζ = 4 (right).

Especially for large values of the parameter ζ indicating the sparsity of the
unknown parameter, the Clenshaw-Curtis quadrature seems to be superior to the
Leja based quadrature. However, comparing the error with respect to total number
of boundary value problems which have been solved, a similar behavior as in the
approximation of the normalization constant Z can be observed, see Figures 10, 11
and 12.
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Figure 10. Comparison of the L∞ error curves of the quantity Z′ with respect
to the number of PDE solves needed based on the sequences CC, L and RL with
K = 2NK − 1 , NK = 2, 3, 4, η ∼ N (0, 1) and ζ = 2 (left), ζ = 3 (middle) and ζ = 4
(right).
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Figure 11. Comparison of the L∞ error curves of the quantity Z′with respect
to the number of PDE solves needed based on the sequences CC, L and RL with
K = 2NK − 1 , NK = 2, 3, 4, η ∼ N (0, 0.52) and ζ = 2 (left), ζ = 3 (middle) and ζ = 4
(right).
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Figure 12. Comparison of the L∞ error curves of the quantity Z′ with respect
to the number of PDE solves needed based on the sequences CC, L and RL with
K = 2NK − 1 , NK = 2, 3, 4, η ∼ N (0, 0.12) and ζ = 2 (left), ζ = 3 (middle) and ζ = 4
(right).

Due to the exponential growth of the number of quadrature points with
the order of CC sequences, the Leja based sequences show a better performance
especially in cases with high sparsity of the unknown parameters.

Finally, we investigate the convergence order with respect to the L2 error.
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Figure 13. Comparison of the L2 error curves of the quantity Z′ with respect
to the cardinality of the index set Λn based on the sequences CC, L and RL with
K = 2NK − 1 , NK = 2, 3, 4, η ∼ N (0, 1) and ζ = 2 (left), ζ = 3 (middle) and ζ = 4
(right).
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Figure 14. Comparison of the L2 error curves of the quantity Z′ with respect
to the cardinality of the index set Λn based on the sequences CC, L and RL with
K = 2NK − 1 , NK = 2, 3, 4, η ∼ N (0, 0.52) and ζ = 2 (left), ζ = 3 (middle) and ζ = 4
(right).
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Figure 15. Comparison of the L2 error curves of the quantity Z′ with respect
to the cardinality of the index set Λn based on the sequences CC, L and RL with
K = 2NK − 1 , NK = 2, 3, 4, η ∼ N (0, 0.12) and ζ = 2 (left), ζ = 3 (middle) and ζ = 4
(right).

The following major observations may be drawn from the error curves
presented in this section:

• The proposed algorithm to adaptively construct the monotone index set Λ
shows a robust performance for the three choices of the univariate sequence
(zk

j )
nk
j=0 of quadrature points. Furthermore, the variations of the number of

observation points as well as of the noise do not affect the convergence order.
This behavior is consistent with the theoretical results discussed in Section 5.
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• The error curves with varying sparsity of the input parameter indicate a
convergence order of (#Λ)−ζ for the three choices CC, L and RL of the
univariate sequences (zk

j )
nk
j=0. The theoretical result derived in Theorem 5.7

suggests a convergence order of (#Λ)−s with s < ζ − 1, which is one order
smaller than the observed convergence order in the numerical results. In
addition, we notice that the sparse quadrature based on Clenshaw-Curtis points
seems to outperform the Leja sequences. However, comparing the error with
respect to the total number of boundary value problems which have been
solved, the Leja based sequences show a better performance especially in cases
with ζ = 4, which can be attributed to the exponential growth of the number of
quadrature points within the order of CC sequences.

7. Conclusions

For Bayesian inverse problems in partial differential equations, we have presented
and analyzed a new class of sparse, adaptive tensor quadrature methods for the
efficient numerical evaluation of the expectations of system responses under the
posterior measure given noisy data δ. The approach is based on the reformulation
of this expectation as an infinite dimensional iterated integral with respect to the
posterior density with respect to the prior measure. The analysis was developed
for prior measures which are countable product measures of the univariate uniform
probability measure. The proposed sparse, adaptive quadrature algorithms were
shown mathematically to converge with a dimension-independent rate depending
only on the sparsity in the density of the posterior measure. This, in turn, is
completely determined by the sparsity in model for the unknown density u, by
the result in [28]. Numerical experiments confirmed the predicted performance of
the algorithms, and indicated that the convergence rates are, in fact, one order better
than can be shown by current error analysis. The adaptive quadrature schemes are
based on families of numerical integration formulas in R1. Among several choices
of univariate families of quadrature rules, nested families interpolatory quadrature
Newton-Cotes formulas based on Leja abscissas in (−1, 1) were found to be optimal,
in terms of accuracy versus number of forward solves. The (algebraic in the order
quadrature) ill-conditioning due to the appearance of negative quadrature weights
in such quadrature formulas did not cause instability in the overall algorithm.

The Smolyak quadrature algorithm being a collocation algorithm in nature is
nonintrusive and can be combined with any given PDE solver for the forward
problem.

The convergence and error analysis for the quadrature algorithm was developed
here in the specific case of a linear, elliptic PDE with unknown, inhomogeneous
coefficient for which sparsity of the PDEs response map had recently been shown
in [9, 10]. Similar sparsity results are, however, available also for several other large
classes of forward models: we mention only large systems of parametric initial
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value ODEs [15, 16] semilinear elliptic PDEs, parabolic and hyperbolic evolution
PDEs. The present analysis, as well as [28], was based on uniform prior measure.
All components of the analysis and the algorithm can, however, be generalized to
the case of nonuniform priors with separable density ρ(y) whose factor densities
ρj(yj) have compact supports in the coordinates yj.
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