
!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
! Eidgenössische
Technische Hochschule
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SPARSE TENSOR EDGE ELEMENTS

RALF HIPTMAIR, CARLOS JEREZ-HANCKES, AND CHRISTOPH SCHWAB

Abstract. We consider the tensorized operator for the Maxwell cavity source
problem in frequency domain. We establish a discrete inf-sup condition for its
Ritz-Galerkin discretization on sparse tensor product edge element spaces built
on nested sequences of meshes. Our main tool is a generalization of the edge
element Fortin projector to a tensor product setting. The techniques extend
to the surface boundary edge element discretization of tensorized electric field
integral equation operators.

1. Second moment problem

Let V be a Hilbert space and consider an isomorphism A : V → V ′. If the
right hand side of the operator equation Au = f is “stochastic” in the sense that
it belongs to L2(Ω, V ′) for a probability space (Ω,A,P), then also the solution u
becomes a V -valued square integrale random variable: u ∈ L2(Ω, V ).

Its second moment M2u = E(u⊗u) ∈ L1(V ⊗V ) can be obtained as the solution
of

(A⊗ A)w(2) = M2f ,(1.1)

featuring the tensor product operator A⊗A : V ⊗V → V ′⊗V ′. Well-known results
guarantee existence and uniqueness of solutions this equation, see [10, Section 1]
for a comprehensive exposition.

A stable Ritz-Galerkin discretization of Au = f by means of a finite dimensional
trial space Vh ⊂ V immediately spawns a stable Ritz-Galerkin discretization of

(1.1), when using the “full tensor product” trial and test space V
(2)
h := Vh ⊗ Vh.

Unfortunately, dimV
(2)
h = (dimVh)2, whereas the approximation power of dimV

(2)
h

is usually not better than that of Vh. This is the notorious “curse of dimensionality”.
Taking for granted smoothness of M2u, a remedy is offered by sparse tensor

Galerkin discretization, using subspaces V̂
(2)
h of V

(2)
h with approximation power

almost like that of Vh, but dimensions substantially reduced to dim V̂
(2)
h ≈ dimVh,

see [10, Section 1.4].
However, the stability of sparse tensor Galerkin discretizations can no longer be

inferred from that for Vh applied to A, unless A is positive. Non-positive operators
are invariably encountered in wave propagation phenomena in frequency domain,
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2 RALF HIPTMAIR, CARLOS JEREZ-HANCKES, AND CHRISTOPH SCHWAB

and for them stability of the sparse tensor Galerkin discretization has to be es-
tablished directly. This was done for boundary value problems for the Helmholtz
equation −∆u − k2u = f in [11], see also [10, Sect. 1.4]. In the present article we
are going to tackle the issue for the Maxwell cavity source problem in frequency
domain and its discretization by means of edge elements.

2. Maxwell cavity operator

From now on, V := H0(curl, D) for a Lipschitz polyhedron D ⊂ R3 and the
operator A : V → V ′ is induced by the continuous sesqui-linear form

a(u,v) := (curl u, curl v)L2(D) − k2 (u,v)L2(D) , u,v ∈ V ,(2.1)

where the wave number k > 0 is supposed to be different from a resonant frequency
of D, cf. [6, Ass. 1]. This guarantees that A is bijective, that is, it satisfies an
inf-sup-condition. As explained in [6, Sect. 5.1] the proof of this fact can make use
of the V -orthogonal Helmholtz decomposition1

V = X ⊕ Z , X = H(div 0, D) ∩H0(curl, D) , Z := gradH1
0 (D) .(2.2)

Its components are closed subspaces of V [6, Lemma 2.2], and functions in X
possess extra regularity, which renders the embeddingX ⊂ V compact [6, Thm 4.1].
The Helmholtz decomposition induces two V -orthogonal projectors PX : V → X
and PZ : V → Z, which enter the definition of the sign-flipping isomorphism,
cf. [3, Ass. 1],

Θ := PX − PZ = 2PX − Id : V → V .(2.3)

It is a key ingredient of the following generalized G̊arding inequality, that asserts
the existence of a compact operator K : V → V ′ such that

∣∣a(u,Θu) + 〈Ku,u〉V ′×V

∣∣ ≥ Cstab ‖u‖
2
V ∀u ∈ V ,(2.4)

with Cstab > 0 depending only on k and D, see [6, (5.8)] and [3, (1.1)].

3. Edge element spaces

We start from a shape-regular sequence of nested tetrahedral triangulations of
D: T0 ≺ T1 ≺ · · · ≺ Tl ≺ . . . , for instance, created by successive global regular
refinement of T0. Thus, the index l should be read as a “level of refinement”. The
sequence of mesh-widths (hl)l of (Tl)l is supposed to decrease geometrically:

hl ≤ h0q
l for some 0 < q < 1.(3.1)

We write W1
h(Tl) for the finite-dimensional space of lowest order edge elements

on Tl [6, Sect. 3.2] (also known as Whitney-1-forms or lowest order Nédélec elements
of the first family [8]) and will often use the abbreviation Vl := W1

h(Tl). We point
out that these spaces are nested in the sense that Vl−1 ⊂ Vl and that they are
asymptotically dense in V . Thus, the sequence (Pl)l of V -orthogonal projectors
Pl : V → Vl converges to Id pointwise, cf. [6, Lemma 5.5].

The spaces Vl, l ∈ N0, provide an asymptotically stable Ritz-Galerkin discretiza-
tion of the bilinear form a from (2.1) [6, Thm. 5.7]. As highlighted in [6, Sect. 5.2],
commuting projectors are instrumental for the proof. They will also play a pivotal
role in our considerations; we rely on particular specimens, called Fortin projec-
tors [6, Sect. 4.2] introduced by D. Boffi in [2].

1We adopt the customary notations for function spaces also used in [6].
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To define them, let us write W2,0
h (Tl) := curlW1

h(Tl) ⊂ H0(div 0, D) and,

slightly abusing notation, W1,0
h (Tl) := W1

h(Tl) ∩ H(curl 0, D) for spaces of irro-
tational finite element functions. The L2(D)-orthogonal projections onto these

spaces are denoted by Ql : (L2(D))3 → W2,0
h (Tl) and Q̃l : (L2(D))3 → W1,0

h (Tl).
The fact that the L2(D)-orthogonal discrete Helmholtz decompositions

W1
h(Tl) = Xl ⊕W1,0

h (Tl) ,(3.2)

are l-uniformly V -stable [6, Thm. 4.7], guarantees the existence of l-uniformly
bounded surjective lifting operators

Ll : W
2,0
h (Tl) → Xl such that curl ◦Ll = Id .(3.3)

Then, we define Fortin projectors2 Fl : V → Vl as

Fl := Ll ◦ Ql ◦ curl+Q̃l .(3.4)

The projectors inherit uniform stability from the liftings3:

‖Flu‖V ≤ C ‖u‖V ∀u ∈ V , ∀l ∈ N0 ,(3.5)

and fullfil the obvious commuting diagram property

curl ◦Fl = Ql ◦ curl on V .(3.6)

Since curl ◦Q̃l = 0 and Q̃l ◦ Ll = 0, Fl is a surjective projector:

Fl ◦ Fl = Fl and Fl(vl) = vl ∀vl ∈ W1
h(Tl) .(3.7)

A deeper result about Fortin projectors is their approximation property in X :

Lemma 3.1. There is C > 0 and some 0 < ε ≤ 1 such that
∥∥(Id−Fl)u

⊥
∥∥
L2(D)

≤ Chε
l

∥∥u⊥
∥∥
V

∀u⊥ ∈ X , ∀l ∈ N0 .(3.8)

Proof. We point out that Q̃l(X) = {0} and Ll◦Ql◦curl agrees with the operator Fh

introduced in [6, (4.10)]. Then we can appeal to [6, Thm. 4.8] or the approximation
results from [2]. !

Fortin projectors on different levels commute:

Lemma 3.2. Fl−1 ◦ Fl = Fl−1 = Fl ◦ Fl−1 for all l ∈ N0.

Proof. Nested meshes lead to nested spacesW2,0
h (Tl−1) ⊂ W2,0

h (Tl) andW1,0
h (Tl−1) ⊂

W1,0
h (Tl), with the simple consequence that for the L2-projections

Ql−1 ◦ Ql = Ql−1 , Q̃l−1 ◦ Q̃l = Q̃l−1 , Q̃l−1 ◦ Ll = 0 .(3.9)

From curl ◦Q̃l = 0 and (3.3) we conclude the assertion. !

2Our Fortin projector agrees with the operator F̃h defined on Page 311 of [6], but not the
operator Fh defined on Page 297 of that survey.

3As usual, generic constants will be denoted by C. They may depend only on D or the
shape-regularity of the triangulations. Specific constants may be tagged with subscript.
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4. Sparse tensor space

As regards the Ritz-Galerkin discretization of (1.1) with A from (2.1) more
economical finite dimensional subspaces of the full tensor edge element spaces VL⊗
VL ⊂ V ⊗ V , VL := W1

h(TL), V = H0(curl, D), are the sparse tensor edge element
spaces, cf. [11, Def. 5.1] and [10, Def. 1.17],

V̂L,L0 :=
∑

(l,k)∈SL,L0

Vl ⊗ Vk ,

SL,L0 := {(l, k) ∈ {0, . . . , L}2, l + k ≤ L+ L0} , 0 ≤ L0 ≤ L ,

(4.1)

of resolution L and base level L0, see Figure 1.

VL ⊗ VL

VL

VL

L0

L0

V0

V0

V1

V1

V2

V2

V3

V3

V4

V4

V5

V5

l

k

V0 ⊗ VL

VL ⊗ V0

Figure 1. Visualization of sparse tensor space V̂L,L0 (hatched area)

Remark 4.1. The base level L0 ensures a minimal resolution “in both directions”
in the sense that VL0 ⊗VL, VL⊗VL0 ⊂ V̂L,L0. As discovered in [11, Sect. 5], thus we
can accommodate the minimal resolution requirement, which is typical of the stable
Ritz-Galerkin discretization of coercive, but non-positive variational problems [9].
Below in Section 5 the possibility to adjust L0 will be crucial.

The sparse tensor space also allows a direct sum representation by means of the
“surplus spaces”

Wl := (Fl − Fl−1)(Vl) , l ≥ 1 , W0 := V0 ,(4.2)

where Fl are the Fortin projectors introduced in (3.4). Thanks to Lemma 3.2
VL = W0 + · · ·+WL is a direct splitting, which implies that

V̂L,L0 =
∑

(l,k)∈SL,L0

Wl ⊗Wk ,(4.3)
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is direct, as well.
The linchpin of our approach is a “Fortin-type projector” onto the sparse tensor

product space. Taking the cue from (4.2) and (4.3) we define

F̂
(2)
L,L0

:=
∑

(l,k)∈SL,L0

∆Fl ⊗∆Fk , ∆Fl := Fl − Fl−1 , ∆F0 := F0 .(4.4)

Lemma 4.2. The linear operator F̂(2)
L,L0

: V ⊗V → V̂L,L0 is a bounded and surjective
projector.

Proof. Boundedness of F̂
(2)
L,L0

follows from (3.5). Owing to Lemma 3.2 we find
∆Fl ◦∆Fm = 0 for l 1= m, from which we infer the projector property. Surjectivity
is immediate from (4.3). !

Hardly, surprising the commuting diagram property (3.6) gives rise to similar al-

gebraic properties of F̂(2)
L,L0

. They connect F̂(2)
L,L0

and several other auxiliary bounded
and surjective projectors

Ĝ
(2)
L,L0

:=
∑

(l,k)∈SL,L0

∆Ql ⊗∆Qk : L2(D)⊗ L2(D) → (curl⊗ curl)V̂L,L0 ,(4.5)

Ĥ
(2)
L,L0

:=
∑

(l,k)∈SL,L0

∆Fl ⊗∆Qk : V ⊗ L2(D) → (Id⊗ curl)V̂L,L0 ,(4.6)

Ĵ
(2)
L,L0

:=
∑

(l,k)∈SL,L0

∆Ql ⊗∆Fk : L2(D)⊗ V → (curl⊗ Id)V̂L,L0 ,(4.7)

where ∆Ql := Ql − Ql−1, l ≥ 1, ∆Q0 := Q0. Their properties follow by similar
arguments as in the proof of Lemma 4.2. Simple computations show that they
commute with tensorized version of curl on V ⊗ V

(curl⊗ curl) ◦ F̂(2)
L,L0

= Ĝ
(2)
L,L0

◦ (curl⊗ curl) ,(4.8)

(Id⊗ curl) ◦ F̂(2)
L,L0

= Ĥ
(2)
L,L0

◦ (Id⊗ curl) ,(4.9)

(curl⊗ Id) ◦ F̂(2)
L,L0

= Ĵ
(2)
L,L0

◦ (curl⊗ Id) .(4.10)

5. Discrete inf-sup conditions

Out ultimate goal is to show that, asymptotically, the spaces V̂L,L0 offer a uni-
formly stable Ritz-Galerkin discretization of the tensor product Maxwell operator
arising from (2.1).

Theorem 5.1. There is threshold level L0 ∈ N and C > 0 such that

sup
v̂(2)∈V̂L,L0

|a(û(2), v̂(2))|∥∥v̂(2)
∥∥
V

≥ C
∥∥∥û(2)

∥∥∥
V

∀û ∈ V̂L,L0 , ∀L ≥ L0 .(5.1)

Remark 5.2. The so-called discrete inf-sup condition claimed in Theorem 5.1 di-
rectly implies the asymptotic quasi-optimality of sparse tensor Ritz-Galerkin solu-
tions of the second moment equation (1.1) for the Maxwell operator [1]. Thus, a
priori estimates can be obtained from best approximation estimates. The latter for
sparse tensor finite element spaces are discussed in [10, Sect. 1.4] and they carry
over to edge elements.
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5.1. Non-tensor setting. In order to elucidate the idea behind the proof of The-
orem 5.1 let us recall how to establish an asymptotic discrete inf-sup condition
for a(·, ·) from (2.1) on VL, see [6, Sect. 5.2] for a more detailed presentation
or [3, Sects. 3 & 4.1] for a more abstract treatment. We start from the gener-
alized G̊arding inequality (2.4), which reveals that, given a fixed u ∈ V ,

c[u] := (Θ+ T)u , T := A−1K : V → V ,(5.2)

is a suitable “candidate function” for the continuous inf-sup condition for a(·, ·) on
V [6, (5.11)].

Now, in the discrete setting we fix uL ∈ VL, pick

cL := FLΘuL + PLTuL ∈ VL ,(5.3)

and find

‖cL − c[uL]‖V ≤ ‖(FL − Id)ΘuL‖V + ‖(PL − Id)TuL‖V .(5.4)

Since T : V → V is compact and PL − Id → 0 pointwise for L → ∞, we can
apply [6, Lemma 5.4] to the second term, which yields uniform convergence4

‖(PL − Id) ◦ T‖V ≤ ν(l) ,(5.5)

for a sequence ν : N0 → R+ with limL→∞ ν(L) = 0.
To deal with the first term in (5.4) observe that, thanks to the commuting dia-

gram property (3.6), curl(FL−Id)ΘuL = (QL−Id) curlΘuL = (QL−Id) curl uL =
0 so that we merely need to estimate its L2(D)-norm. Since

(FL − Id)ΘuL
(2.3)
= (FL − Id)(2PX − Id)uL

(3.7)
= 2(FL − Id)PXuL ,(5.6)

Lemma 3.1 gives the desired result that, with CF > 0,

‖(FL − Id)ΘuL‖L2(D) ≤ CFh
ε
L ‖PXuL‖V ≤ CFh

ε
L ‖uL‖V ∀L ∈ N0 ,(5.7)

for some CF > 0 and with 0 < ε ≤ 1 from (3.8).
By (3.5) and the continuity of the other operators involved, we have ‖cL‖V ≤

Cc ‖uL‖V and ‖cL‖V ≤ Cc ‖c[uL]‖V , L ∈ N0, and combining all these estimates
we obtain

sup
vL∈VL

|a(uL,vL)|

‖vL‖V
≥

1

Cc

(
|a(uL, c[uL])|

‖c[uL]‖V
− ‖A‖V→V ′ ‖cL − c[uL]‖V

)

≥
1

Cc

(Cstab − ‖A‖V→V ′ (ν(L) + CFh
ε
L)) ‖uL‖V ,

(5.8)

and, by (3.1), the discrete inf-sup conditions follows when L is sufficiently large.

5.2. Tensorized setting.

Proof of Theorem 5.1. Let us emulate the policy of Section 5.1 for the tensor prod-
uct operator. As before, initially we fix a “discrete” function û(2) ∈ V̂L,L0 in the
sparse tensor product trial space. The corresponding “candidate function” that
realizes the continuous inf-sup condition for A⊗ A : V ⊗ V → (V ⊗ V )′ is

c(2)[û(2)] = ((Θ+ T)⊗ (Θ+ T))û(2) ∈ V ⊗ V ,(5.9)

4For linear operators V → V we retain the notation ‖·‖
V

for their norm. The norms of more
general linear operators mapping between normed spaces X → Y will bear a subscript X → Y :
‖·‖

X→Y
.
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cf. the proof of [11, Thm. 5.2]. As above, we have to apply suitable projectors to
this function, in order to map it into V̂L,L0 , and, again as in Section 5.1, we may
apply different projectors to different terms, and, as above, commuting diagrams
for some of the projectors will prove essential. In detail, we start with the splitting

c(2)[û(2)] = (Θ⊗Θ)û(2) + (Θ⊗ T)û(2) + (T⊗Θ)û(2) + (T⊗ T)û(2) .(5.10)

The last three terms can be tackled along the lines of the proof of [11, Thm. 5.2],
whereas for the first we have to resort to the particular sparse tensor Fortin projector

F̂
(2)
L,L0

introduced in (4.4); we try the “discrete candidate function”

ĉ(2) := F̂
(2)
L,L0

(Θ⊗Θ)û(2) + (FL0 ⊗ PL)(Θ ⊗ T)û(2)+

(PL ⊗ FL0)(T ⊗Θ)û(2) + (PL ⊗ PL0)(T⊗ T)û(2) .
(5.11)

Now we reap the benefit of the base resolution L0 in the definition (4.1) of the
sparse tensor edge element space V̂L,L0 , because it ensures both

VL0 ⊗ VL ⊂ V̂L,L0 and VL ⊗ VL0 ⊂ V̂L,L0 ,(5.12)

see Figure 1, which implies that (5.11) actually defines a function ĉ(2) ∈ V̂L,L0 . Re-

member the arguments underlying (5.8); ĉ(2) ∈ V̂L,L0 provides a suitable candidate
function for the discrete inf-sup condition, if we manage to show

∥∥∥ĉ(2) − c(2)[û(2)]
∥∥∥
V⊗V

≤ ν(L0)
∥∥∥û(2)

∥∥∥
V ⊗V

,(5.13)

with a sequence ν : N0 → R+ that is independent of û(2) and converges to 0. This
amounts to estimating four different projection errors.

We deal with all terms in (5.11) involving the compact operator T in the spirit
of [11, Sect. 5] and begin by noting that, for instance,

(Id⊗ Id−FL0 ⊗ PL) ◦ (Θ⊗ T) = ((Id−FL0) ◦Θ)⊗ T+ (FL0 ◦Θ)⊗ ((Id−PL) ◦ T) .

Therefore, as all operators are bounded in V and the norm of a tensor product of
operators is bounded by the product of their norms, we can estimate

‖(Id⊗ Id−FL0 ⊗ PL) ◦ (Θ⊗ T)‖V ⊗V ≤

‖(Id−FL0) ◦Θ‖V︸ ︷︷ ︸
→0 by (5.7)

‖T‖V + ‖FL0‖V ‖Θ‖V ‖(Id−PL) ◦ T‖V︸ ︷︷ ︸
→0 by (5.5)

→ 0 for L0, L → ∞ .

It remains to examine the V ⊗ V -norm of

((Id⊗ Id)− F̂
(2)
L,L0

)(Θ ⊗Θ)û(2) (2.3)
= 4((Id⊗ Id)− F̂

(2)
L,L0

)(PX ⊗ PX)û(2)−(5.14a)

2((Id⊗ Id)− F̂
(2)
L,L0

)(Id⊗PX)û(2)−(5.14b)

2((Id⊗ Id)− F̂
(2)
L,L0

)(PX ⊗ Id)û(2)+(5.14c)

((Id⊗ Id)− F̂
(2)
L,L0

)(Id⊗ Id)û(2)

︸ ︷︷ ︸
=0 !

,(5.14d)

where we used Θ = 2PX − Id from (2.3). Pay attention that the last term vanishes

due to the projector property of F̂(2)
L,L0

.
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Estimating the V ⊗ V -norm of the other terms turns out to be challenging. To
begin with, remember that this norm comprises four parts

∥∥∥v(2)
∥∥∥
2

V⊗V
=
∥∥∥(curl⊗ curl)v(2)

∥∥∥
2

L2(D)⊗L2(D)
+(5.15a)

∥∥∥(curl⊗ Id)v(2)
∥∥∥
2

L2(D)⊗L2(D)
+(5.15b)

∥∥∥(Id⊗ curl)v(2)
∥∥∥
2

L2(D)⊗L2(D)
+(5.15c)

∥∥∥(Id⊗ Id)v(2)
∥∥∥
2

L2(D)⊗L2(D)
.(5.15d)

Inevitably, we have to examine the various combinations of terms in (5.14) and
contributions to the norm in (5.15). Inherent symmetries make several of them
amenable to the same arguments and we are going to skip parallel developments.
! (5.14a) & (5.15d): With convergence of the infinite sum understood pointwise in
V ⊗ V , we have the error representation

(Id⊗ Id)− F̂
(2)
L,L0

=
∑

(l,k) )∈SL,L0

∆Fl ⊗∆Fk ,(5.16)

which we conclude from the direct sum decomposition of V : u =
∑∞

l=0 ∆Flu,
u ∈ V , along with the pointwise convergence Fl → Id for l → ∞ [6, Lemma 5.5].

∥∥∥∥∥∥

∑

(l,k) )∈SL,L0

(∆Fl ⊗∆Fk)(PX ⊗ PX)û(2)

∥∥∥∥∥∥
L2(D)⊗L2(D)

=

∥∥∥∥∥∥

∑

(l,k) )∈SL,L0

((∆Fl ◦ PX)⊗ (∆Fk ◦ PX))û(2)

∥∥∥∥∥∥
L2(D)⊗L2(D)

Lemma 3.1
≤ C

∑

(l,k) )∈SL,L0

hε
lh

ε
k

∥∥∥û(2)
∥∥∥
V⊗V

(3.1)
≤ Ch2ε

0

∥∥∥û(2)
∥∥∥
V⊗V

∑

(l,k) )∈SL,L0

qε(l+k)

︸ ︷︷ ︸
→0 for L0→∞

.

" (5.14a) & (5.15b): The commuting diagrams underlying (4.8) is key to handling
this contribution, because they pave the way for reformulating

(curl⊗ Id) ◦ (Id⊗ Id−F̂
(2)
L,L0

) ◦ (PX ⊗ PX)û(2)

(A)
=

∑

(l,k)"∈SL,L0
l≤L

((∆Ql ◦ curl)⊗ (∆Fk ◦ PX))û(2)

(B)
=

L∑

l=0

∞∑

k=1+L0+L−l

((∆Ql ◦ curl)⊗ (∆Fk ◦ PX))û(2)

(C)
=

L∑

l=0

((∆Ql ◦ curl)⊗ ((Id−FL0+L−l) ◦ PX))û(2) .

The identity (A) arises from using (4.8), curl ◦PX = curl, together with an error
representation analogous to (5.16). Moreover, the extra restriction l ≤ L on the
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index range results from the trivial fact that (curl⊗PX)û(2) ∈ W2,0
h (TL) ⊗ V and

∆Ql(W
2,0
h (TL)) = 0, whenever l > L. Identity (B) is a consequence of the definition

of SL,L0 , and (C) reflects a telescopic sum. Invoking (5.7) we obtain
∥∥∥(curl⊗ Id) ◦ (Id⊗ Id−F̂

(2)
L,L0

) ◦ (PX ⊗ PX)û(2)
∥∥∥
L2(D)⊗L2(D)

≤
L∑

l=0

‖∆Ql ◦ curl‖V →L2(D)︸ ︷︷ ︸
≤1

‖(Id−FL0+L−l) ◦ PX‖V →L2(D)︸ ︷︷ ︸
apply (5.7)

∥∥∥û(2)
∥∥∥
V ⊗V

≤ C
∥∥∥û(2)

∥∥∥
V⊗V

( L∑

l=L0

hε
l

)

︸ ︷︷ ︸
→0 for L0→∞

The next term (5.14a) & (5.15c) has a similar structure and can be treated alike.
# The final term (5.14a) & (5.15a) is killed by the commuting diagram property
(4.8):

(curl⊗ curl)(Id⊗ Id−F̂
(2)
L,L0

)(PX ⊗ PX)û(2)

= (Id⊗ Id−Ĝ
(2)
L,L0

)(curl⊗ curl)(PX ⊗ PX)û(2)

= (Id⊗ Id−Ĝ
(2)
L,L0

)(curl⊗ curl)û(2) = 0 ,

thanks to the projector property of Ĝ(2)
L,L0

, see (4.5).
$ (5.14c) & (5.15d): We start from the error representation (5.16) and, as in Step
("), continue with the identity

(Id⊗ Id−F̂
(2)
L,L0

)(PX ⊗ Id)û(2) =
∑

(l,k) )∈SL,L0

(∆Fl ⊗∆Fk)(PX ⊗ Id)û(2)

=
∑

(l,k)"∈SL,L0
k≤L

((∆Fl ◦ PX)⊗∆Fk)û
(2)

=
L∑

k=0

∞∑

l=1+L0+k−L

((∆Fl ◦ PX)⊗∆Fk)û
(2)

=
L∑

k=0

(((Id−FL0+k−L) ◦ PX)⊗∆Fk)û
(2) .

Combined with (5.7) it yields the bound
∥∥∥(Id⊗ Id−F̂

(2)
L,L0

)(PX ⊗ Id)û(2)
∥∥∥
L2(D)⊗L2(D)

≤
L∑

k=0

‖(Id−FL0+L−k) ◦ PX‖V→L2(D)︸ ︷︷ ︸
apply (5.7)

‖∆Fk‖V︸ ︷︷ ︸
bounded

∥∥∥û(2)
∥∥∥
V⊗V

≤ C
∥∥∥û(2)

∥∥∥
V⊗V

L0+L∑

k=L0

hε
k

︸ ︷︷ ︸
→0 for L0→∞

.
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% (5.14c) & (5.15c): Here we use the commuting diagram behind (4.9) and, as in
Step ("), get

(Id⊗ curl)(Id⊗ Id−F̂
(2)
L,L0

)(PX ⊗ Id)û(2)

=
∑

(l,k)"∈SL,L0
k≤L

((∆Fl ◦ PX)⊗ (∆Qk ◦ curl))û(2)

=
L∑

k=0

∞∑

l=1+L0+L−k

((∆Fl ◦ PX)⊗ (∆Qk ◦ curl))û(2)

=
L∑

k=0

(((Id−FL0+L−k) ◦ PX)⊗ (∆Qk ◦ curl))û(2)

As before, this permits us to continue
∥∥∥(Id⊗ curl)(Id⊗ Id−F̂

(2)
L,L0

)(PX ⊗ Id)û(2)
∥∥∥
L2(D)⊗L2(D)

≤
L∑

k=0

‖(Id−FL0+L−k) ◦ PX‖V→L2(D)︸ ︷︷ ︸
apply (5.7)

‖∆Qk ◦ curl‖V →L2(D)︸ ︷︷ ︸
≤1

∥∥∥û(2)
∥∥∥
V ⊗V

≤ C
∥∥∥û(2)

∥∥∥
V⊗V

L0+L∑

k=L0

hε
k

︸ ︷︷ ︸
→0 for L0→∞

.

& (5.14c) & (5.15b): We recall the commuting diagram (4.8), which delivers

(curl⊗ Id)(Id⊗ Id−F̂
(2)
L,L0

)(PX ⊗ Id)û(2)

= (Id⊗ Id−Ĵ
(2)
L,L0

)(curl⊗ Id)(PX ⊗ Id)û(2)

= (Id⊗ Id−Ĵ
(2)
L,L0

)(curl⊗ Id)û(2) = 0 ,

due to the projector property of Ĵ(2)L,L0
, see (4.7).

' (5.14c) & (5.15a): Here we rely on (4.8) and get

(curl⊗ curl)(Id⊗ Id−F̂
(2)
L,L0

)(PX ⊗ Id)û(2)

= (Id⊗ Id−Ĝ
(2)
L,L0

)(curl⊗ curl)(PX ⊗ Id)û(2)

= (Id⊗ Id−Ĝ
(2)
L,L0

)(curl⊗ curl)û(2) = 0 ,

where we used that Ĝ(2)
L,L0

is a surjective projector onto (curl⊗ curl)V̂L,L0 .
!

6. Extensions

We deliberately restricted ourselves to a simple setting in order to keep technical
complexity at bay. Nevertheless the developments in this article convey all the main
ideas needed to tackle other situations:
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6.1. Higher order moments. It is straightforward but tedious to extend the
estimates to the case of k-fold tensor product operators

A(k) = A⊗ . . .⊗ A︸ ︷︷ ︸
k times

, k > 2 .

For the Helmholtz operator this case was treated in [10, Sect. 1].

6.2. Electric field integral equation (EFIE). In this case we work in the trace
space V := H− 1

2 (divΓ,Γ) [5, Sect. 2] on a closed orientable polyhedral surface Γ
and deal with the non-positive sesqui-linear form, see [5, Sect. 7], and [4],

a(ξ,η) =

∫

Γ

∫

Γ

exp(−ik|x− y|)

4π|x− y|

(
ξ(x)η(y)

− k−2 divΓ ξ(x) divΓ η(y)
)
dS(y)dS(x) , ξ,η ∈ V ,

which is discretized using surface edge elements (also known as Raviart-Thomas
boundary elements or RWG elements) [5, Sect. 8].

Parallel to the considerations of Section 3 we can consider L2(Γ)-orthogonal
discrete Hodge decompositions [7, Sect. 6] and use them to define 2D analogues of
the Fortin projectors Fl. A key observation from [7, Lemma 2.3] is that the range of
the H− 1

2 (divΓ,Γ)-counterpart of the projection PX will be compactly embedded in
the space L2

t(Γ) of square-integrable tangential vector fields on Γ. In addition
[7, Lemma 6.2] provides an approximation result that can replace Lemma 3.1;
basically, [7] is about adapting the developments of Sections 3 and 5.1 to the EFIE.
Appealing to these results, all estimates from Section 5 essentially remain valid
and no new ideas are required. Thus, asymptotic quasi-optimality of sparse tensor
Ritz-Galerkin approximation of the tensorized EFIE-operator can be regarded as
settled.

6.3. Curvilinear polyhedra and higher order edge elements. Also in this
case “nil novi sub sole”: Mapping techniques will take care of non-polyhedral do-
mains. Higher order edge elements [6, Sect. 3.4] allow for exactly the same tech-
niques as discussed for the lowest order case. Beware that all constants will depend
on the polynomial degree, however.
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[1] I. Babuška, Error bounds for the finite element method, Numer. Math., 16 (1971), pp. 322–
333.

[2] D. Boffi, Fortin operator and discrete compactness for edge elements, Numer. Math., 87
(2000), pp. 229–246.

[3] A. Buffa, Remarks on the discretization of some non-positive operators with application to

heterogeneous Maxwell problems, SIAM J. Numer. Anal., 43 (2005), pp. 1–18.
[4] A. Buffa and S. Christiansen, The electric field integral equation on Lipschitz screens:

Definition and numerical approximation, Numer. Math., 94 (2002), pp. 229–267.
[5] A. Buffa and R. Hiptmair, Galerkin boundary element methods for electromagnetic

scattering, in Topics in Computational Wave Propagation. Direct and inverse Problems,
M. Ainsworth, P. Davis, D. Duncan, P. Martin, and B. Rynne, eds., vol. 31 of Lecture
Notes in Computational Science and Engineering, Springer, Berlin, 2003, pp. 83–124.

[6] R. Hiptmair, Finite elements in computational electromagnetism, Acta Numerica, 11 (2002),
pp. 237–339.

[7] R. Hiptmair and C. Schwab, Natural boundary element methods for the electric field integral

equation on polyhedra, SIAM J. Numer. Anal., 40 (2002), pp. 66–86.



12 RALF HIPTMAIR, CARLOS JEREZ-HANCKES, AND CHRISTOPH SCHWAB
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