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EXTENSION BY ZERO IN DISCRETE TRACE SPACES:

INVERSE ESTIMATES

RALF HIPTMAIR, CARLOS JEREZ-HANCKES, AND SHIPENG MAO

Abstract. We consider lowest-orderH−

1
2 (divΓ,Γ)- andH−

1
2 (Γ)-conforming

boundary element spaces supported on a part of the boundary Γ of a Lips-
chitz polyhedron. Assuming families of triangular meshes created by regular
refinement, we prove that on these spaces the norms of the extension by zero
operators with respect to (localized) trace norms increase poly-logarithmically
with the mesh width. Our approach harnesses multilevel norm equivalences for
boundary element spaces, inherited from stable multilevel splittings of finite
element spaces.

1. Introduction

We consider a bounded Lipschitz polyhedron Ω ⊂ R3 with trivial topology and
set Γ := ∂Ω to be its compact boundary composed of a small number of flat faces.
Write Γ+ ! Γ for an open part of the boundary of Ω. We assume that it is simply
connected and agrees with the interior of a union of some closed faces of Ω.

Given a function u : Γ+ → R we can consider its extension by zero, Zu : Γ → R,
defined for continuous u by

Zu(x) =

{
u(x), for x ∈ Γ+,

0, for x ∈ Γ \ Γ+ .
(1.1)

For a Sobolev space X of generalized functions on Γ, the domain of this operator
is the subspace

X̃ := {u ∈ X, Zu ∈ X} .(1.2)

The situation is crystal clear for Sobolev spaces L2 and H1: the mapping Z :
L2(Γ+) → L2(Γ) is trivially continuous, whereas Z : H1(Γ+) → H1(Γ) is not
bounded. This impasse is remedied by restricting Z to the closed subspace H1

0 (Γ
+),

which renders Z : H1
0 (Γ

+) → H1(Γ) an isometry, from which we conclude the
isometric isomorphism H̃1(Γ) ∼= H1

0 (Γ
+).

Simplicity ends when considering the fractional Sobolev spacesH
1
2 (Γ) andH

1
2 (Γ+),

which arise from interpolating betweenH1 and L2, e.g.,H
1
2 (Γ+) =

[
L2(Γ+), H1(Γ+)

]
1
2

[33, Ch. 1, 9.1]. These spaces are very important as (localized) trace spaces of

Date: October 22, 2012.
2000 Mathematics Subject Classification. 65N12, 65N15, 65N30.
Key words and phrases. Boundary finite element spaces, inverse estimates, multilevel norm

equivalences,
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2 RALF HIPTMAIR, CARLOS JEREZ-HANCKES, AND SHIPENG MAO

H1(Ω), see, for example [43, Ch. 13] or [33, Sect. 1.8]. As in the case ofH1, the oper-
ator Z turns out to be unbounded as a mappingH

1
2 (Γ+) %→ H

1
2 (Γ), [33, Thm. 11.4].

Even more striking, according to [33, Thm. 11.7]

the space1 H̃
1
2 (Γ+) is a dense subspace of H

1
2 (Γ+), whose graph

norm is strictly stronger than the norm of H
1
2 (Γ+)!

This last fact must be reflected by so-called inverse inequalities connecting the
H

1
2 (Γ+)- and H̃

1
2 (Γ+)-norms of piecewise polynomial functions in H

1
2 (Γ). Con-

cretely, let us imagine that Γ is equipped with a conforming triangular mesh Γh

as described in [41, Sect 4.1.2]. The mesh Γh is supposed to resolve the faces of
Ω in the sense that each face is triangulated by the restriction of Γh to it. In
particular, Γ+

h := Γh|Γ+ provides a mesh of Γ+. On Γh we consider the finite el-
ement space S1(Γh) ⊂ H1(Γ) of Γh-piecewise linear, globally continuous functions
on Γ, see [41, Sect. 4.1.7]. Their restrictions to Γ+ form the space S1(Γ

+
h ). We

write S̃1(Γ
+
h ) for the subspace of functions in S1(Γ

+
h ) that vanish on ∂Γ+. Since

S̃1(Γ
+
h ) ⊂ H1

0 (Γ
+), we certainly have S̃1(Γ

+
h ) ∈ H̃

1
2 (Γ+).

Of course, the H
1
2 (Γ+)- and H̃

1
2 (Γ+)-norms are equivalent on the finite dimen-

sional space S̃1(Γ
+
h ). However, owing to the fact highlighted above, their ratio

must blow up on very fine meshes Γ+
h , because of “asymptotic density” of S̃1(Γ+)

in H̃
1
2 (Γ+) as the mesh width h of Γ+

h tends to zero. Quantifying this blow-up as
a function of h leads to inverse inequalities, which constitute key elements

• in the theory of non-overlapping domain decomposition preconditioners for
second-order elliptic boundary value problems known as sub-structuring
methods [44, Ch. 4] and [46, Sect. 5];

• for gauging the effect of operator preconditioning of discrete boundary inte-
gral operators for screen problems or multi-domain transmission problems,
see [26, 35].

Small wonder, much effort has been devoted to obtaining sharp inverse estimates
of the form:

‖ũh‖
H̃

1
2 (Γ+)

≤ Cb(h) ‖ũh‖
H

1
2 (Γ+)

, ∀ ũh ∈ S̃1(Γ
+
h ),(1.3)

where C > 0 may depend on shape-regularity and quasi-uniformity of Γ+
h , but not

on its mesh width. The goal is to characterize the possible functions b : R+ → R+

as precisely as possible. This has been achieved in the so-called face lemmas in the
theory of sub-structuring domain decomposition methods, see [44, Lemma 4.26] and
[46, Lemma 4.10]. They assert that logarithmic bounds of the form b(h) = 1+| log h|
hold. The occurrence of logarithms in b(h) is not surprising, since the lack of
continuity of extension by zero for H

1
2 (Γ+) is a borderline case in the Sobolev

scale Hs(Γ+), 0 ≤ s ≤ 1: for any s )= 1
2 the norms of H̃s(Γ+) and Hs(Γ+) are

equivalent [33, Thm. 11.4]. Inverse inequalities with logarithmic blow-up in terms
of the mesh width are typical for such borderline cases and piecewise polynomial
finite element spaces of fixed degree [18, Lemma 1.142].

Thus, the case for H
1
2 (Γ) and Lagrangian boundary element spaces is settled,

but similar inverse inequalities have remained unexplored for the trace spaces
H− 1

2 (divΓ,Γ) and H− 1
2 (Γ) of H(curl,Ω) and H(div,Ω), respectively, as well as

1In [33] and other works the space H̃
1
2 (Γ+) is denoted by H

1
2
00(Γ

+).
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for associated piecewise polynomial boundary element spaces. Inverse inequalities
in these settings are important for the very same reasons that account for interest
in (1.3): they are tools for the numerical analysis of domain decomposition methods
for H(curl,Ω)-elliptic boundary value problems [30,31], and they are essential for
the analysis of operator preconditioning in a boundary element context.

In this article we prove inverse inequalities analogous to (1.3) for low order

H− 1
2 (divΓ,Γ)- and H− 1

2 (Γ)-conforming boundary element spaces. Similar as for
H

1
2 (Γ) we achieve (poly-)logarithmic bounds for sequences of meshes created by

successive regular refinements. Our new idea is the use of multilevel norm equiv-
alences for boundary element spaces borrowed from the theory of multilevel pre-
conditioners [27]. They facilitate control over the impact of extension-by-zero by
distributing its effects over all levels in the multilevel hierarchy of spaces. In a
sense, this article can be viewed as a supplement to [27] demonstrating another use
of the multilevel estimates obtained there.

In parts, developments will rely on ideas introduced in [27]. In particular, this
applies to the discrete extension operators analyzed in Section 4 and the reasoning
in Section 5. Section 3 is special, since it addresses known inverse inequalities (1.3).
We have included this section in order to convey the gist of the multilevel approach
and the reader is advised to study Section 3 before turning to the more technical
subsequent sections. Readers interested in the estimates alone will find our main
results at the end of Section 2 in Theorems 2.1 and 2.2, whose proofs are postponed
to Section 6.

Remark 1.1. The considerations presented in this article can be adapted to curvi-
linear polyhedra with general topology. This does not require essentially new ideas,
but would complicate the presentation on the level of technical details. Thus, we
have decided to forgo generality for the sake of clarity of presentation. The same
applies to the use of boundary element spaces of (fixed) higher polynomial degree.

Remark 1.2. We came to the conclusion that no complete proof of the “face lemma”
in the theory of sub-structuring domain decomposition methods is available in the
literature. Indeed, all proofs of [17, Lemma 3], [8, Lemma 4.2], and [46, Lemma 4.8]
rely on a spurious application of an inverse inequality linking H1(Ω)-norms and
L∞(Ω)-norms of piecewise linear continuous functions; the families of (2D slice)
meshes on which these functions are defined lack the required shape-regularity and
quasi-uniformity.

2. Traces and boundary element spaces

In order to keep the article reasonably self-contained, in this section we recall
traces and various low-order boundary element spaces. In passing, we introduce key
notations and closely follow [27, Sect. 3]. For smooth functions and vector fields on
Ω we consider the

pointwise trace Txv(x) := v(x), x ∈ Γ, ∀ v ∈ C∞(Ω),

tangential trace Ttv(x) := v(x)× n(x), x ∈ Γ, ∀v ∈ (C∞(Ω))3,

normal trace Tnv(x) := v(x) · n(x), x ∈ Γ, ∀v ∈ (C∞(Ω))3.

These mappings can be extended to continuous and surjective trace operators
Tx : H1(Ω) −→ H

1
2 (Γ) [34, Thm. 3.3.7], Tt : H(curl,Ω) −→ H− 1

2 (divΓ,Γ) [12,
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Thm. 4.1], and Tn : H(div,Ω) −→ H− 1
2 (Γ) [19, Thm. 2.5]. Here we adopt the

notations of [10] and recall that the norm of H− 1
2 (divΓ,Γ) is defined as

‖ψ‖2
H

− 1
2 (divΓ,Γ)

:= ‖ψ‖2
H

− 1
2

‖
(Γ)

+ ‖divΓ ψ‖2
H

− 1
2 (Γ)

, ψ ∈ H− 1
2 (divΓ,Γ),(2.1)

where H
− 1

2

‖ (Γ) is the L2(Γ)-dual of H
1
2

‖ (Γ), the tangential trace space of H1(Ω).

Notation. We try to distinguish functions from different spaces by font and
typeface. Small regular roman letters will designate functions in H

1
2 (Γ) the corre-

sponding boundary elements spaces. For tangential surface vector fields inH− 1
2 (divΓ,Γ)

we use roman font but bold typeface, whereas elements of H− 1
2 (Γ) are represented

by small Greek letters in normal print. Capital roman characters denote functions
on Ω, with bold typeface reserved for vector fields. All functions in discrete spaces
will bear an integer subscript indicating the refinement level of the mesh on which
they are defined.

As in the Introduction, we fix a triangular surface mesh Γ0 that resolves the faces
of Ω. We make the assumption that there is a tetrahedral mesh Ω0 covering Ω such
that Ω0|Γ = Γ0. For a Lipschitz polyhedron this assumption is not particularly
restrictive. Starting from Ω0 we create a sequence of nested tetrahedral meshes
Ω0 ≺ Ω1 ≺ · · · ≺ Ωl ≺ . . . by global regular refinement as described in [5] or
[32]. Their restrictions to Γ spawn a sequence of nested surface meshes (Γl)

∞
l=0,

Γl := Ωl|Γ. In the sequel, we are going to write V(Ωl), E(Ωl), F(Ωl) for set of
vertices, edges, and faces of these meshes, with a subscript ∂ singling out those
located on Γ.

Appealing to the findings of Bey [5] and Kossaczký [32], we point out that global
regular refinement leads to shape-regular families of meshes [41, Def. 4.1.2], that is,

∃Cs > 0 : max
T∈Γl

hT

ρT
, max

K∈Ωl

hK

ρK
≤ Cs, ∀ l ∈ N0.(2.2)

Here we adopted the conventional notation hT , hK for the diameter of a mesh cell
(element), and ρT , ρK for the radii of the largest inscribed circle or ball. We set
hl = maxT∈Γl

hT for the mesh width on level l. Regular refinement also ensures
quasi-uniformity [41, Def. 4.1.113] in the sense that

∃Cu > 0 : C−1
u ≤

maxT∈Γl
hT

minT∈Γl
hT

,
maxK∈Ωl

hK

minK∈Ωl
hK

≤ Cu, ∀ l ∈ N0.(2.3)

The constants Cs and Cu depend only on Ω0. Regular refinement makes the mesh
width hl satisfy hl ≈ 2−lh0.

Notation. Following [45], we often write ≈, !, and " for two-sided and one-
sided inequalities involving constants that may depend only on Ω0 and Γ+, and,
thus, indirectly, on Ω, Cs, Cu from (2.2) and (2.3).

Let S1(Ωl), ND1(Ωl), and RT 0(Ωl) designate the finite element spaces of
H1(Ω)-conforming, piecewise linear (scalar) Lagrangian finite elements, ofH(curl,Ω)-
conforming lowest order Nédélec elements (edge elements, Whitney-1-forms, [24,
36]), and, H(div,Ω)-conforming lowest order Raviart-Thomas elements (face el-
ements, Whitney-2-forms, [9, Sect. 3.2]), respectively. Recall that these spaces
possess localized nodal bases whose functions are associated with vertices, edges,
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and faces of Ωl, respectively, and that form L2-Riesz bases [24, (3.37)]. A tilde will
tag subspaces of these finite element spaces comprising functions whose (appropri-

ate) traces vanish on Γ \ Γ+, i.e. S̃1(Ωl), ÑD1(Ωl), and R̃T 0(Ωl), accordingly.
The ∼ symbol will also distinguish functions in these subspaces.

Standard boundary element (BE) spaces on Γl arise from taking the natural
traces of finite element functions on Ωl, l ∈ N0, see [27, Sect. 3]:






S1(Γl) := Tx(S1(Ωl)) ⊂ H
1
2 (Γ) := Tx(H

1(Ω)),

RT 0(Γl) := Tt(ND1(Ωl)) ⊂ H− 1
2 (divΓ,Γ) := Tt(H(curl,Ω)),

Q0(Γl) := Tn(RT 0(Ωl)) ⊂ H− 1
2 (Γ) := Tn(H(div,Ω)),

(2.4)

where Q0(Γh) is the space of piecewise constant discontinuous functions on Γh.
Analogous to (2.4) we obtain “localized boundary element spaces”:

S̃1(Γl) := Tx(S̃1(Ωl)), R̃T 0(Γl) := Tt(ÑD1(Ωl)), Q̃0(Γl) := Tn(R̃T 0(Ωl)).

These can be regarded as boundary element spaces on the sub-meshes Γ+
l := Γl|Γ+

satisfying homogeneous boundary conditions on ∂Γ+: functions in S̃1(Γ
+
l ) vanish

on ∂Γ+, whereas those in R̃T 0(Γ
+
l ) feature zero (in plane) normal components on

∂Γ+. Only for Q̃0(Γ
+
l ) no boundary conditions are implied and Q̃0(Γ

+
l ) = Q0(Γ

+
l ).

Hereafter, we do not distinguish between the isometrically isomorphic spaces S̃1(Γ
+
l )

(equipped with H̃
1
2 (Γ+)-norm) and S̃1(Γl) (with H

1
2 (Γ)-norm), and so on.

The localized boundary element spaces are subspaces of localized trace spaces

S̃1(Γ
+
l ) ⊂ H̃

1
2 (Γ+), R̃T 0(Γ

+
l ) ⊂ H̃

− 1
2 (divΓ,Γ

+), Q̃0(Γ
+
l ) ⊂ H̃− 1

2 (Γ+).(2.5)

Following (1.2), the localized trace spaces comprise (generalized) functions on Γ+,
whose extension by zero to Γ belong to the corresponding trace space on Γ (see [34,
Ch. 3], [10, Sect. 2.3]),

H̃
− 1

2 (divΓ,Γ
+) := {u ∈ H− 1

2 (divΓ,Γ
+), ‖Zu‖

H
− 1

2 (divΓ,Γ)
< ∞},(2.6)

H̃− 1
2 (Γ+) := {ϕ ∈ H− 1

2 (Γ+), ‖Zϕ‖
H− 1

2 (Γ)
< ∞},(2.7)

with the extension by zero operator Z defined in (1.1). Norms on these spaces as well
as on H̃

1
2 (Γ+) can be computed by taking the trace norm on Γ of the extensions by

zero. The reader may imagine them as trace spaces on Γ+ with boundary conditions
on ∂Γ+ though this is not the full picture. In order to fully understand the space
H̃− 1

2 (Γ), it is worth remembering the L2(Γ)-dualities [26, Sect. 2.2]

(H
1
2 (Γ+))′ = H̃− 1

2 (Γ+) ⊂ H− 1
2 (Γ+) = (H̃

1
2 (Γ+))′.(2.8)

Now we summarize the main results that extend (1.3) to the boundary element

spaces R̃T 0(Γ
+
l ) and Q0(Γ+) and the corresponding (localized) trace norms.

Theorem 2.1. Under the assumptions on the families of meshes stated in Sec-
tion 2, the following inverse inequality holds true for all L ∈ N0

‖ṽL‖
H̃

− 1
2 (divΓ,Γ+)

≤ C(1 + | log hL|
3
2 ) ‖ṽL‖

H
− 1

2 (divΓ,Γ+)
, ∀ ṽL ∈ R̃T 0(Γ

+
L ),

where C > 0 depends only on Ω, Γ+, and the shape-regularity of Ω0.
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Theorem 2.2. In the setting detailed in Section 2 we find, with C > 0 depending
only on Ω, Γ+, and the shape-regularity of Ω0,

‖ϕ̃L‖
H̃

− 1
2 (Γ+)

≤ C(1 + | log hL|
3
2 ) ‖ϕ̃L‖

H
− 1

2 (Γ+)
∀ ϕ̃L ∈ Q̃0(Γ

+
L), ∀L ∈ N0.

Remark 2.3. We do not claim that the bounds in Theorems 2.1 and 2.2 are sharp.
It might be possible to decrease the powers of | log hL| but this is left to future
investigations. Besides, numerical experiments are difficult to conduct, because
they entail evaluation of localized trace norms. In addition, it is notoriously difficult
to tell a power of | log hL| from numerical measurements.

3. Proof: cut-off inequalities for H
1
2 -conforming BEM spaces

In this section we give a new proof of an inverse inequality related to (1.3), with
a polylogarithmic bound b(h). Admittedly, we merely recover results already used
in domain decomposition theory. Yet, the point of this section is to elucidate the
spirit of our approach in the relatively simple setting of H

1
2 (Γ) and S1(Γl).

To begin with, we need uniformly stable discrete extension operators:

Lemma 3.1 (cf. [27, Lemma 5.1]). There exist extension operators E0
l : S1(Γl) →

S1(Ωl) and Ẽ0
l : S̃1(Γl) → S̃1(Ωl) such that

TxE
0
l vl = vl, ∀ vl ∈ S1(Γl), TxẼ

0
l vl = ṽl, ∀ ṽl ∈ S̃1(Γl),

and they are uniformly stable in the sense that
∥∥E0

l vl
∥∥
H1(Ω)

! ‖vl‖
H

1
2 (Γ)

, ∀ vl ∈ S1(Γl),
∥∥∥Ẽ0

l ṽl

∥∥∥
H1(Ω)

! ‖ṽl‖
H̃

1
2 (Γ+)

, ∀ ṽl ∈ S̃1(Γl).

Proof. The proof is standard employing harmonic extension and the famous Scott-
Zhang quasi-interpolation operator [42], see [46, Sect. 4.2.1 & 4.2.2]. #

Another tool is given by the L2-stable “nodal” extension operators:

Lemma 3.2. We can find uniformly stable extension operators N0
l : S1(Γl) →

S1(Ωl) and Ñ0
l : S̃1(Γl) → S̃1(Ωl) that satisfy

TxN
0
l vl = vl, ∀ vl ∈ S1(Γl), TxÑ

0
l vl = ṽl, ∀ ṽl ∈ S̃1(Γl),

and

∥∥N0
l vl

∥∥
L2(Ω)

! h
1
2

l ‖vl‖L2(Γ)
, ∀ vl ∈ S1(Γl),

‖Ñ0
l ṽl‖L2(Ω) ! h

1
2

l ‖ṽl‖L2(Γ), ∀ ṽl ∈ S̃1(Γl).

Proof. Trivial discrete extension supplies both N0
l and Ñ0

l . For instance,

(N0
l vl)(p) :=

{
vl(p), if p ∈ V(Ωl) ∩ Γ,

0, if p ∈ Ω.

Then, simple scaling arguments bear out the estimates of the lemma. #
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A crucial ingredient for our theory are multilevel norm equivalences, which arise
from profound stability results about multilevel decompositions of finite element
spaces. For the case of linear Lagrangian finite elements the relevant multilevel
norms read for VL ∈ S1(ΩL), L ∈ N0,

|‖VL‖|
2
S1(ΩL) := inf

{
L∑

l=0

h−2
l ‖Wl‖

2
L2(Ω) : VL =

L∑

l=0

Wl, Wl ∈ S1(Ωl)

}
,(3.1)

and for ṼL ∈ S̃1(ΩL)

|‖ṼL‖|
2
S̃1(ΩL)

:= inf

{
L∑

l=0

h−2
l ‖W̃l‖

2
L2(Ω) : ṼL =

L∑

l=0

W̃l, W̃l ∈ S̃1(Ωl)

}
.(3.2)

The key result obtained in the study of multilevel preconditioners is the uniform
equivalence of the multilevel norms and the H1(Ω)-norm on the finite element
spaces. This was first proved in [38] and [48], and is further elaborated in [6], [39,
Ch. 4], [45, Appendix], [7], and [28, Sect. 5].

Theorem 3.3. [see [28, Sect. 5]] The following norms are equivalent

|‖VL‖|S1(ΩL) ≈ ‖VL‖H1(Ω) , ∀VL ∈ S1(ΩL),

|‖ṼL‖|S̃1(ΩL) ≈ ‖ṼL‖H1(Ω), ∀ ṼL ∈ S̃1(ΩL).

Similar norm equivalences also hold for boundary element spaces and involve the
multilevel norms

|‖vL‖|
2
S1(ΓL) := inf

{
L∑

l=0

h−1
l ‖wl‖

2
L2(Γ)

: vL =
L∑

l=0

wl, wl ∈ S1(Γl)

}
,(3.3)

for vL ∈ S1(ΓL), L ∈ N0, and

|‖ṽL‖|
2
S̃1(ΓL)

:= inf

{
L∑

l=0

h−1
l ‖w̃l‖

2
L2(Γ)

: ṽL =
L∑

l=0

w̃l, w̃l ∈ S̃1(Γl)

}
,(3.4)

for ṽL ∈ S̃1(ΓL). Please note the different powers of the mesh width –minus 2
versus minus 1– used as weights in (3.1)-(3.2) and (3.3)-(3.4).

Theorem 3.4. On H
1
2 (Γ)-conforming boundary element spaces we have the fol-

lowing equivalent norms

|‖vL‖|S1(ΓL) ≈ ‖vL‖
H

1
2 (Γ)

∀ vL ∈ S1(ΓL),(3.5)

|‖ṽL‖|S̃1(ΓL) ≈ ‖ṽL‖
H̃

1
2 (Γ+)

∀ ṽL ∈ S̃1(ΓL).(3.6)

Proof. Proofs of (3.5) can be found in [1, 21] for a more general setting. Here we
rely on Oswald’s idea [40], which is also discussed in [27, Sect. 2], and transfer the
stability result of Theorem 3.3 to the boundary element spaces.

We restrict ourselves to the (more difficult) norm equivalence (3.6) on S̃1(ΓL)
and pick an arbitrary ṽL ∈ S̃1(ΓL). By a similar reasoning we can infer (3.5). The
proof can be split in two steps:
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! First, we tackle the “!” estimate. We consider the discrete extension E0
LṽL ∈

S̃1(ΩL) from Lemma 3.1 and apply the result of Theorem 3.3 to E0
LṽL, which gives

W̃l ∈ S̃1(Ωl), l = 0, . . . , L, such that

L∑

l=0

W̃l = Ẽ0
LṽL,

L∑

l=0

h−2
l ‖W̃l‖

2
L2(Ω) ! ‖Ẽ0

LṽL‖
2
H1(Ω) ! ‖ṽL‖

2

H
1
2 (Γ)

.

We define w̃l := TxW̃l ∈ S̃1(Γl) and find

L∑

l=0

w̃l =
L∑

l=0

TxW̃l = TxẼ
0
LṽL = ṽL,(3.7)

L∑

l=0

h−1
l ‖w̃l‖

2
L2(Γ)

(∗)

!
L∑

l=0

h−2
l ‖W̃l‖

2
L2(Ω) ! ‖Ẽ0

LṽL‖
2
H1(Ω) ! ‖ṽL‖

2

H
1
2 (Γ)

,

where the estimate (∗) is a consequence of the simple scaling inequality

‖TxVl‖L2(Γ)
! h

− 1
2

l ‖Vl‖L2(Ω) , ∀Vl ∈ S1(Ωl).(3.8)

Thus, in (3.7) we have found a candidate splitting of ṽL, which realizes the estimate
“!” claimed in the theorem.

" Now, we establish the estimate “"”. Pick arbitrary w̃l ∈ S̃1(Γl) that add up
to ṽL, i.e.,

L∑

l=0

w̃l = ṽL.

By trivial extension according to Lemma 3.2, we obtain W̃l := Ñ0
l w̃l ∈ S̃1(Ωl), with

the property:

TxṼL = ṽL for ṼL :=
L∑

l=0

W̃l ∈ S̃1(ΩL).

By continuity of the trace operator Tx, it holds

‖ṽL‖
2

H
1
2 (Γ)

!
∥∥∥ṼL

∥∥∥
2

H1(Ω)

Thm. 3.3
!

L∑

l=0

h−2
l ‖W̃l‖

2
L2(Ω)

Lemma 3.2
!

L∑

l=0

h−1
l ‖w̃l‖

2
L2(Γ)

,

which concludes the proof. #

The localized trace norm of boundary element functions also allows an equivalent
characterization through multilevel splittings:

|‖vL‖|
2
S1(Γ

+
L
) := inf

{
L∑

l=0

h−1
l ‖wl‖

2
L2(Γ)

: vL =

(
L∑

l=0

wl

)∣∣∣∣∣
Γ+

, wl ∈ S1(Γl)

}
.(3.9)

The precise statement is made in the next lemma. At this point note that the norms
for the terms in the splitting for (3.9) are computed on the entire boundary Γ. In
addition, we remind that we deal with three different multilevel norms |‖·‖|S1(ΓL),
|‖·‖|S̃1(ΓL), and |‖·‖|S1(Γ

+
L
).

Lemma 3.5. On S1(Γ
+
L) we have equivalence of norms according to

‖vL‖
H

1
2 (Γ+)

≈ |‖vL‖|S1(Γ
+
L
) ∀ vL ∈ S1(Γ

+
L).
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Proof. By the standard definition of Sobolev norms on sub-domains and the conti-
nuity of the trace operator, we obtain

‖vL‖
H

1
2 (Γ+)

≈ inf{‖v̂‖
H

1
2 (Γ)

: v̂ ∈ H
1
2 (Γ), v̂|Γ+ = vL}

≈ inf{‖V̂ ‖H1(Ω) : V̂ ∈ H1(Ω), TxV̂
∣∣∣
Γ+

= vL}.

Next, we take the cue from the proof of Lemma 3.1 and apply Scott-Zhang quasi-
interpolation to V̂ . We make use of the fact that Γ+ is a union of (closed) triangles
on all levels. Thus, the continuity of quasi-interpolation in H1(Ω) and the preser-
vation of boundary values on Γ+ permit us to conclude

‖vL‖
H

1
2 (Γ+)

≈ inf{‖V̂L‖H1(Ω) : V̂L ∈ S1(ΩL), TxV̂L

∣∣∣
Γ+

= vL},

≈ inf{‖v̂L‖
H

1
2 (Γ)

: v̂L ∈ S1(ΓL), v̂L|Γ+ = vL}.

To finish the proof we appeal to the estimate from Theorem 3.4. #

Now we are in a position to prove our version of the “face lemmas” [44, Lemma 4.26]
and [46, Lemma 4.10] for piecewise linear continuous boundary element spaces. We
rely on a nodal cut-off 2 operator Z0

l that sets a function to zero in all vertices of
Γl outside Γ+. Concretely, on S1(Γl) this cut-off is defined by

Z0
l vl ∈ S̃1(Γl) : (Z0

l vl)(p) =

{
vl(p), for p ∈ V∂(Γl) ∩ Γ+,

0, for p ∈ V∂(Γl), p )∈ Γ+.
(3.10)

Theorem 3.6. Under the assumptions on the families of meshes stated in Section 2
the following inverse inequality holds true

∥∥Z0
LvL

∥∥
H̃

1
2 (Γ+)

! (1 + | log hL|) ‖vL‖
H

1
2 (Γ+)

, ∀ vL ∈ S1(Γ
+
L).

Proof. We start with the crucial observation that owing to Theorem 3.4 and Lemma 3.5
the proof boils down to showing

∣∣∥∥Z0
LvL

∥∥∣∣2
S̃1(ΓL)

! L2 |‖vL‖|
2
S1(Γ

+
L
) ,(3.11)

where the multilevel norm on the left hand side is defined in (3.4) while that on
the right hand side is from (3.9). Fix vL ∈ S1(Γ

+
L) and pick arbitrary ŵl ∈ S1(Γl)

such that

vL =

(
L∑

l=0

ŵl

)∣∣∣∣∣
Γ+

.(3.12)

This will play the role of the minimizing multilevel decomposition on the right hand
side of (3.11). To establish the assertion of the theorem we have to show that we
can find w̃l ∈ S̃1(Γl) with

Z0
LvL =

L∑

l=0

w̃l,(3.13)

such that

L∑

l=0

h−1
l ‖w̃l‖

2
L2(Γ)

! L2
L∑

l=0

h−1
l ‖ŵl‖

2
L2(Γ+) .(3.14)

2For the cut-off operator [46] uses the notation I0
Γ
, whereas [44] writes Ih.
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The construction of the w̃l starts with the accumulation of multilevel contributions
to vL:

q̂l :=
l∑

k=0

ŵk ∈ S1(Γl), l = 0, . . . , L,(3.15)

which then undergo the cut-off to zero

q̃l = Z0
l q̂l ∈ S̃1(Γl), l = 0, . . . , L.(3.16)

The next steps are inspired by a trick invented by P. Oswald in [37, Cor. 30]. We
define

w̃l := q̃l − q̃l−1 ∈ S̃1(Γl), l = 1, . . . , L, w̃0 = q̃0 = Z0
0ŵ0 ∈ S̃1(Γ0).(3.17)

Setting q̃−1 := 0 we can rewrite

w̃l = (q̃l − q̃l−1)− (q̂l − q̂l−1) + ŵl,

= (q̃l − q̂l)− (q̃l−1 − q̂l−1) + ŵl.
(3.18)

Hence, in order to deal with the left hand side of (3.14) we have to estimate
‖q̃l − q̂l‖L2(Γ+) =

∥∥(Z0
l − Id)q̂l

∥∥
L2(Γ+)

. Notice that on Γ+ only basis functions lo-

cated on the boundary ∂Γ+ contribute to (Z0
l − Id)q̂l. Also recall, the uniform

L2-stability of the nodal bases, from which we conclude by elementary scaling ar-
guments:

‖q̃l − q̂l‖
2
L2(Γ+) ! hl ‖q̂l‖

2
L2(∂Γ+) ! hl

∥∥∥∥∥

l∑

k=0

ŵk

∥∥∥∥∥

2

L2(∂Γ+)

,

! hl

(
l∑

k=0

‖ŵk‖L2(∂Γ+)

)2

! hl

(
l∑

k=0

h
− 1

2

k ‖ŵk‖L2(Γ+)

)2

,

! hl l ·
l∑

k=0

h−1
k ‖ŵk‖

2
L2(Γ+) ,

(3.19)

by using the Cauchy-Schwarz inequality on Rl+1 in the last step. Simple rearrange-
ment of summations shows (3.14),

L∑

l=0

h−1
l ‖w̃l‖

2
L2(Γ)

!
L∑

l=0

h−1
l

(
‖q̃l − q̂l‖

2
L2(Γ+) + ‖ŵl‖

2
L2(Γ+)

)

(3.19)

!
L∑

l=0

l
l∑

k=0

h−1
k ‖ŵk‖

2
L2(Γ+) +

L∑

l=0

h−1
l ‖ŵl‖

2
L2(Γ+)

! L2
L∑

k=0

h−1
k ‖ŵk‖

2
L2(Γ+) ,

thereby finishing the proof. #

Obviously, in our setting, (1.3) is a corollary of Theorem 3.6. Of course, we
could have stated the theorem like Theorem 2.1, namely for functions in S̃1(ΓL)
dispensing with the cut-off operator Z0

L. Yet, we have come to the conclusion that
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it is illuminating to grasp what prevents us from achieving a cut-off inverse esti-
mate analogous to that of Theorem 3.6 also forH− 1

2 (divΓ,Γ)-conforming boundary
elements. This will be discussed in Remark 6.1 in Section 6.

Remark 3.7. A closer scrutiny of results on multilevel decompositions for H1(Ω)-
conforming finite element spaces [39, Sect. 4.2.2] and of the arguments of this section
reveals that Theorem 3.6 remains valid in settings where the meshes Ωl arise from
local refinement.

4. Discrete extension operators

The stable discrete extension from Lemma 3.1 played a key role in the proof of
the multilevel decomposition Theorem 3.4 forH

1
2 (Γ)-conforming boundary element

spaces. This section is dedicated to the counterparts of Lemmas 3.1 and 3.2 for
H− 1

2 (divΓ,Γ)- and H− 1
2 (Γ)-conforming boundary element spaces RT 0(Γl) and

Q0(Γl).
To begin with, the very analogues of the trivial nodal extensions that underly

Lemma 3.2 also work for the other finite element spaces.

Lemma 4.1. There are extension operators N1
l : RT 0(Γl) → ND1(Ωl) and Ñ1

l :

R̃T 0(Γl) → ÑD1(Ωl) that satisfy

Tt(N
1
l vl) = vl, ∀vl ∈ RT 0(Γl), Tt(Ñ

1
l vl) = ṽl, ∀ ṽl ∈ R̃T 0(Γl),

and
∥∥N1

l vl

∥∥
L2(Ω)

! h
1
2

l ‖vl‖L2(Γ)
, ∀vl ∈ RT 0(Γl),

‖Ñ1
l ṽl‖L2(Ω) ! h

1
2

l ‖ṽl‖L2(Γ), ∀ ṽl ∈ R̃T 0(Γl).

Proof. Choose both N1
l and Ñ1

l as trivial nodal extension. Then use scaling argu-
ments, see [27, Sect. 5.2] for details. #

Lemma 4.2. There are extension operators N2
l : Q0(Γl) → RT 0(Ωl) and Ñ2

l :

Q̃0(Γl) → R̃T 0(Ωl) that satisfy

Tt(N
2
lϕl) = ϕl, ∀ϕl ∈ Q0(Γl), Tt(Ñ

2
l ϕl) = ϕ̃l, ∀ ϕ̃l ∈ Q̃0(Γl),

and
∥∥N2

lϕl

∥∥
L2(Ω)

! h
1
2

l ‖ϕl‖L2(Γ)
, ∀ϕl ∈ Q0(Γl),

‖Ñ2
l ϕ̃l‖L2(Ω) ! h

1
2

l ‖ϕ̃l‖L2(Γ), ∀ ϕ̃l ∈ Q̃0(Γl).

Proof. Again, use trivial nodal extension and appeal to scaling arguments as in [27,
Sect. 5.2]. #

Surprisingly, the corresponding stable extensions are by no means standard
and require sophisticated techniques; finding a stable discrete extension for sur-
face edge elements RT 0(Γl) was one of the main challenges encountered in [27]
and [2, Sect. 3], and our approach here closely follows [27, Sect. 5].

Outside the H1(Ω)-H
1
2 (Γ) setting treated in Section 3, difficulties are com-

pounded by the lack of Scott-Zhang type quasi-interpolation operators ontoND1(Ωh)
and RT 0(Ωh) that preserve boundary values, cf. [14]. Instead we have to resort
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to the nodal projectors ΠRt
l onto RT 0(Ωl) that are based on the normal fluxes

through the faces of the tetrahedral mesh Ωl –the degrees of freedom for RT 0(Ωl).
From [24, Sect. 3.2] remember the crucial commuting diagram property

div ◦ΠRt
l = ΠQ

l ◦ div,(4.1)

for sufficiently smooth functions, where ΠQ
l is the L2(Ω)-orthogonal projection onto

the space of piecewise constant functions on Ωl. Further, recall a special version of
the interpolation error bound from [24, Thm. 3.16]:

Lemma 4.3. For any ε ∈ (0, 12 ] the nodal interpolation operators ΠRt
l : (C∞(Ω))3 →

RT 0(Ωl) can be extended to continuous mappings ΠRt
l : {V ∈ (Hε(Ω))3 : divV =

0} → {Vl ∈ RT 0(Ωl) : divVl = 0} that satisfy the interpolation error estimate
∥∥V −ΠRt

l V
∥∥
L2(Ω)

! hε
l ‖V‖Hε(Ω) , ∀V ∈ {V ∈ (Hε(Ω))3 : divV = 0}.(4.2)

This estimate is instrumental in constructing various discrete extension opera-
tors for both boundary element spaces Q0(Γl) and RT 0(Γl). We start with the
“simpler” case of Q0(Γl), where the extension specifically maps into

H(div 0,Ω) := {V ∈ H(div,Ω) : divV = 0}.

Lemma 4.4. We can find discrete extension operators E2
l : Q0(Γl) → RT 0(Ωl) ∩

H(div 0,Ω), Ẽ2
l : Q̃0(Γl) → R̃T 0(Ωl)∩H(div 0,Ω), and Ê2

l : Q0(Γ
+
l ) → RT 0(Ωl)∩

H(div 0,Ω) such that for all l ∈ N0

TnE
2
lϕl = ϕl, on Γ, ∀ϕl ∈ Q0(Γl),

TnẼ
2
l ϕ̃l = ϕ̃l, on Γ, ∀ ϕ̃l ∈ Q̃0(Γl),

TnÊ
2
l ϕ̂l = ϕ̂l, on Γ+, ∀ ϕ̂l ∈ Q0(Γ

+
l ),

and they are uniformly stable in the sense that
∥∥E2

lϕl

∥∥
H(div,Ω)

! ‖ϕl‖
H− 1

2 (Γ)
, ∀ϕl ∈ Q0(Γl), ∀ l ∈ N0,(4.3)

∥∥∥Ẽ2
l ϕ̃l

∥∥∥
H(div,Ω)

! ‖ϕ̃l‖
H− 1

2 (Γ)
, ∀ ϕ̃l ∈ Q̃0(Γl), ∀ l ∈ N0,(4.4)

∥∥∥Ê2
l ϕ̂l

∥∥∥
H(div,Ω)

! ‖ϕ̂l‖
H− 1

2 (Γ+)
, ∀ ϕ̂l ∈ Q0(Γ

+
l ), ∀ l ∈ N0.(4.5)

Proof. We restrict ourselves to Ê2
l , because the proofs for the other two extension

operators are so similar that they can safely be left to the reader.
Pick ϕ̂l ∈ Q0(Γ

+
l ) and let U be the solution of the boundary value problem






−∆U = 0, in Ω,
∂U

∂n
= ϕ̂l, on Γ+,

U = 0, on Γ \ Γ+.

(4.6)

Thanks to an elliptic lifting result [20, Thms. 2.6.1, 2.6.3], there exists a unique
solution U ∈ H1+ε(Ω) for any ε ∈ [0, εΩ) for some 1

4 < εΩ < 3
4 that depends on Ω

and Γ+. Let us fix an eligible ε > 1
4 , then

‖U‖H1+ε(Ω) ! ‖ϕ̂l‖
Hε− 1

2 (Γ+)
.(4.7)

Next, recall a slightly modified version of the inverse inequality of [27, Lemma 5.4]

‖ν̂l‖
Hε− 1

2 (Γ+)
! h−ε

l ‖ν̂l‖
H− 1

2 (Γ+)
, ∀ νl ∈ Q0(Γ

+
l ).(4.8)
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Its proof runs parallel to Part (ii) of the proof of [27, Lemma 5.4].
Then we setW = gradU and conclude W ∈ H(div 0,Ω)∩(Hε(Ω))3. Therefore,

Lemma 4.3 implies for Wl := ΠRt
l W that

‖W −Wl‖L2(Ω) ! hε
l ‖W‖Hε(Ω) ! hε

l ‖U‖H1+ε(Ω)

(4.7)

! hε
l ‖ϕ̂l‖

Hε− 1
2 (Γ+)

(4.8)

! ‖ϕ̂l‖
H− 1

2 (Γ+)
.

(4.9)

In addition, the commuting diagram property (4.1) ensuresWl ∈ H(div 0,Ω) since

divWl = divΠRt
l W

(4.1)
= ΠQ

l divW = 0.

There is another commuting diagram property involving nodal projectors and trace
operators

Tn ◦ΠRt
l = ΠQ

l ◦Tn,(4.10)

for sufficiently smooth functions, where we slightly abused notations and still wrote
ΠQ

l for the L2(Γ)-orthogonal projection onto Q0(Γl). The latter projection is com-
pletely local, which means

TnWl = TnΠRt
l W

(4.10)
= ΠQ

l (TnW) = ΠQ
l (Tn gradU)

(4.7)
= ΠQ

l (ϕ̂l) = ϕ̂l on Γ+.

Eventually, we can set Ê2
l ϕ̂l := Wl, because

‖Wl‖H(div,Ω) = ‖Wl‖L2(Ω) ≤ ‖Wl −W‖L2(Ω) + ‖W‖L2(Ω)

(4.9), (4.7)

! ‖ϕ̂l‖
H

− 1
2 (Γ+)

.

#

Lemma 4.5. There exist operators E1
l : RT 0(Γl) → ND1(Ωl), Ẽ1

l : R̃T 0(Γl) →

ÑD1(Ωl), and Ê1
l : RT 0(Γ

+
l ) → ND1(Ωl) that are extensions for all l ∈ N0:

TtE
1
l vl = vl, on Γ, ∀vl ∈ RT 0(Γl),

TtẼ
1
l ṽl = ṽl, on Γ, ∀ ṽl ∈ R̃T 0(Γl),

TtÊ
1
l v̂l = v̂l, on Γ+, ∀ v̂l ∈ RT 0(Γ

+
l ),

and that enjoy the l-uniform stability properties
∥∥E1

l vl

∥∥
H(curl,Ω)

! ‖vl‖
H

− 1
2 (divΓ,Γ)

, ∀vl ∈ RT 0(Γl), ∀ l ∈ N0,(4.11)
∥∥∥Ẽ1

l ṽl

∥∥∥
H(curl,Ω)

! ‖ṽl‖
H

− 1
2 (divΓ,Γ)

, ∀ ṽl ∈ R̃T 0(Γl), ∀ l ∈ N0,(4.12)
∥∥∥Ê1

l v̂l

∥∥∥
H(curl,Ω)

! ‖v̂l‖
H

− 1
2 (divΓ,Γ+)

, ∀ v̂l ∈ RT 0(Γ
+
l ), ∀ l ∈ N0.(4.13)

Proof. The assertion for the operators E1
l and Ẽ1

l is covered by [27, Lemma 5.5].

Mere alterations of the proof are sufficient to deal with Ê1
l , but we elaborate them

for the sake of completeness.
Given v̂l ∈ RT 0(Γ

+
l ), we know divΓ v̂l ∈ Q0(Γ

+
l ), which makes it possible to

invoke the discrete extension Ê2
l from Lemma 4.4 on divΓ v̂l. We have assumed
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trivial topology of Ω. Thus, as Ê2
l divΓ v̂l ∈ RT 0(Ωl) ∩ H(div 0,Ω) we conclude

from [24, Thm. 3.1] and [24, Cor. 4.4] that there is a stable discrete vector potential:

∃Ul ∈ ND1(Ωl) :






curlUl = Ê2
l divΓ v̂l,

‖Ul‖H(curl,Ω) !
∥∥∥Ê2

l divΓ v̂l

∥∥∥
L2(Ω)

.
(4.14)

Next, we exploit another commuting diagram property analogous to (4.10):

divΓ ◦Tt = Tn ◦ curl,(4.15)

which naturally holds on ND1(Ωl). It allows us to conclude

divΓ(v̂l − TtUl) = divΓ vl − Tn curlUl

= divΓ v̂l − TnÊ
2
l divΓ v̂l

Lemma 4.4
= 0 on Γ+.

(4.16)

As a consequence, as Γ+ is simply connected, we find p̂l ∈ S1(Γ
+
l ) such that

curlΓ p̂l = v̂l − TtUl.

According to Proposition 6.2 of [11], curlΓ+ : H
1
2 (Γ+) → H− 1

2 (divΓ,Γ+) is con-
tinuous and injective with closed range, which implies

‖p̂l‖
H

1
2 (Γ+)

! ‖curlΓ p̂l‖
H

− 1
2

‖ (Γ+)
= ‖v̂l − TtUl‖

H
− 1

2
‖ (Γ+)

!
(
‖vl‖

H
− 1

2
‖

(Γ+)
+ ‖Ul‖H(curl,Ω)

) (4.14)

! ‖vl‖
H

− 1
2 (divΓ,Γ+)

.

Now, we consider an H1(Ω)-extension of p̂l defined as the solution V ∈ H1(Ω) of
the auxiliary boundary value problem






−∆V + V = 0, in Ω,
TxV = p̂l, on Γ+,
∂V

∂n
= 0, on Γ \ Γ+,

(4.17)

which satisfies the regularity estimate

(4.18) ‖V ‖H1(Ω) ≤ C ‖p̂l‖
H

1
2 (Γ+)

,

where the constant C > 0 depends only on the domain Ω and Γ+. Use this boundary
value problem to define Vl := QlV , where Ql : H1(Ω) → S1(Ωl) stands for the clas-
sical Scott-Zhang quasi-interpolation operator, which is continuous and preserves
boundary values in S1(Γ

+
l ), see [42].

Eventually, we can define Ê2
l v̂l := Ul + grad Vl, which gives the desired stable

discrete extension operator, because
∥∥∥Ê2

l v̂l

∥∥∥
H(curl,Ω)

! ‖Ul‖H(curl,Ω) + ‖Vl‖H1(Ω)

(4.14)

! ‖divΓ v̂l‖
H− 1

2 (Γ+)
+ ‖p̂l‖

H
1
2 (Γ+)

! ‖v̂l‖
H

− 1
2 (divΓ,Γ+)

,

and

TtÊ
1
l v̂l = TtUl + Tt(grad Vl)

(4.19)
= TtUl + curlΓ(TxVl) = TtUl + p̂l on Γ+,

where we relied on a third commuting diagram property for traces

Tt ◦ grad = curlΓ ◦Tx.(4.19)
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#

5. Equivalent multilevel norms

Armed with the extension operators of Section 4 we can resort to the abstract
procedure of [27, Sect. 2] to transfer stable multilevel splittings from the domain
to the boundary. Its concrete application was already demonstrated in the proof of
Theorem 3.4 and we essentially follow these lines.

The theory of (local) multilevel preconditioning for edge elements developed
in [23, 25, 29] and [47, Sect. 5] suggests the following counterparts of the multilevel
norms (3.1)-(3.2) for H(curl,Ω)-conforming finite elements:

|‖VL‖|
2
ND1(ΩL) := inf






L∑

l=0

h−2
l

(
‖Wl‖

2
L2(Ω) + ‖Ul‖

2
L2(Ω)

)
, Wl ∈ ND1(Ωl),

Ul ∈ S1(Ωl),
L∑

l=0

Wl + gradUl = VL






,

(5.1)

for VL ∈ ND1(ΩL), and

|‖ṼL‖|
2
ÑD1(ΩL)

:= inf






L∑

l=0

h−2
l

(
‖W̃l‖

2
L2(Ω) + ‖Ũl‖

2
L2(Ω)

)
, W̃l ∈ ÑD1(Ωl),

Ũl ∈ S̃1(Ωl),
L∑

l=0

W̃l + grad Ũl = ṼL






,

(5.2)

for ṼL ∈ ÑD1(ΩL). The underlying splittings are stable in the sense of norm
equivalence, cf. Theorem 3.3:

Theorem 5.1. The following norms are equivalent:

|‖VL‖|ND1(ΩL) ≈ ‖VL‖H(curl,Ω) , ∀VL ∈ ND1(ΩL),

|‖ṼL‖|ÑD1(ΩL) ≈ ‖ṼL‖H(curl,Ω), ∀ ṼL ∈ ÑD1(ΩL).

Proof. Results that can be combined into a proof of this theorem can be found
in [13, 23, 25, 47], in particular, see [29, Lemma 5.2 & Thm. 4.2]. #

Similar norm equivalences also hold for the edge boundary element spacesRT 0(ΓL)
relying on the multilevel norms

|‖vL‖|
2
RT 0(ΓL) := inf






L∑

l=0

h−1
l

(
‖wl‖

2
L2(Γ)

+ ‖ql‖
2
L2(Γ)

)
,wl ∈ RT 0(Γl),

ql ∈ S1(Γl),
L∑

l=0

(wl + curlΓ ql) = vL






,

(5.3)
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for vL ∈ RT 0(ΓL), and

|‖ṽL‖|
2
R̃T 0(ΓL)

:= inf






L∑

l=0

h−1
l (‖w̃l‖

2
L2(Γ)

+ ‖q̃l‖
2
L2(Γ)

); w̃l ∈ R̃T 0(Γl),

q̃l ∈ S̃1(Γl),
L∑

l=0

(w̃l + curlΓ q̃l) = ṽL






,(5.4)

for ṽL ∈ R̃T 0(ΓL).
The multilevel norms play roles similar to those of (3.1) and (3.2) in Section 3.

Accordingly, we obtain the following norm equivalences.

Theorem 5.2. The following uniform norm equivalences hold for surface edge
elements

|‖vL‖|RT 0(ΓL) ≈ ‖vL‖
H

− 1
2 (divΓ,Γ)

, ∀vL ∈ RT 0(ΓL) ,(5.5)

|‖ṽL‖|R̃T 0(ΓL) ≈ ‖ṽL‖
H̃

− 1
2 (divΓ,Γ+)

, ∀ ṽL ∈ R̃T 0(ΓL) .(5.6)

Proof. We use the extension operators provided by Lemmas 4.1, 4.5, and 3.2, 3.1
together with Theorem 5.1 in the very same fashion as in the proof of Theorem 3.4,
see also [27, Sect. 6].

We only give a proof of (5.6); (5.5) can be inferred by a similar argument.

! In order to prove the “!” estimate, pick an arbitrary ṽL ∈ R̃T 0(ΓL). Then,

by Lemma 4.5, we know that Ẽ1
LṽL ∈ ÑD1(ΩL) satisfies

(5.7) TtẼ
1
LṽL = ṽL,

∥∥∥Ẽ1
LṽL

∥∥∥
H(curl,Ω)

! ‖ṽL‖
H

− 1
2 (divΓ,Γ)

≈ ‖ṽL‖
H̃

− 1
2 (divΓ,Γ+)

,

which, together with the trace inequality,

(5.8) ‖ṽL‖
H̃

− 1
2 (divΓ,Γ+)

≈ ‖ṽL‖
H

− 1
2 (divΓ,Γ)

!
∥∥∥Ẽ1

LṽL

∥∥∥
H(curl,Ω)

,

and Theorem 5.1, implies that

(5.9) ‖ṽL‖
H̃

− 1
2 (divΓ,Γ+)

≈
∥∥∥Ẽ1

LṽL

∥∥∥
H(curl,Ω)

≈ |‖Ẽ1
LṽL‖|ÑD1(ΩL).

Thus, we need only prove

(5.10) |‖ṽL‖|R̃T 0(ΓL) ! |‖Ẽ1
LṽL‖|ÑD1(ΩL).

For any splitting of Ẽ1
LṽL of the form:

L∑

l=0

(W̃l + grad Ũl) = Ẽ1
LṽL,

we can define

w̃l := TtW̃l ∈ R̃T 0(Γl), q̃l := TxŨl ∈ S̃1(Γl),

which, by the commuting diagram property (4.19), means curlΓ q̃l = Tt grad Ũl so
that we have

L∑

l=0

(w̃l + curlΓ q̃l) = TtẼ
1
LṽL = ṽL.
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By a simple scaling argument we verify that

(5.11) ‖w̃l‖
2
L2(Γ)

+ ‖q̃l‖
2
L2(Γ)

! h−1
l (‖W̃l‖L2(Ω) + ‖Ũl‖L2(Ω)) ,

which implies the “!” estimate in (5.10).
" We next establish the “"” estimate. For any splitting of ṽL with

L∑

l=0

w̃l + curlΓ q̃l = ṽL , w̃l ∈ R̃T 0(Γl) , q̃l ∈ S̃1(Γl) ,

we apply the results of Lemmas 3.2 and 4.1 by setting

W̃l := Ñ1
l w̃l ∈ ÑD1(Ωl), Ũl := Ñ0

l q̃l ∈ S̃1(Ωl) ,

with the obvious property

Tt

(
L∑

l=0

W̃l + grad Ũl

)
= ṽL .

Then, by the continuity of the trace operator Tt, we can derive

L∑

l=0

h−1
l

(
‖w̃l‖

2
L2(Γ)

+ ‖q̃l‖
2
L2(Γ)

)

Lemmas 3.2,4.1

"
L∑

l=0
h−2
l

(∥∥∥Ñ1
l w̃l

∥∥∥
2

L2(Ω)
+
∥∥∥Ñ0

l q̃l

∥∥∥
2

L2(Ω)

)

infimum

" |‖
L∑
l=0

(W̃l + grad Ũl)‖|2
ÑD1(ΩL)

Theorem 5.1
" ‖

L∑
l=0

(W̃l + grad Ũl)‖2H(curl,Ω)

"

∥∥∥∥Tt

(
L∑

l=0
(W̃l + grad Ũl)

)∥∥∥∥
H

− 1
2 (divΓ,Γ)

" ‖ṽL‖
2

H
− 1

2 (divΓ,Γ)
≈ ‖ṽL‖2

H̃
− 1

2 (divΓ,Γ+)
.

proving the desired inequality. #

In Section 3 we relied on a third multilevel norm (3.9) to deal with localized
trace norms. Here, we follow the same idea and consider

|‖vL‖|
2
RT 0(Γ

+
L
) := inf






L∑

l=0

h−1
l

(
‖wl‖

2
L2(Γ)

+ ‖ql‖
2
L2(Γ)

)
,wl ∈ RT 0(Γl),

ql ∈ S1(Γl),

(
L∑

l=0

(wl + curlΓ ql)

) ∣∣∣∣∣
Γ+

= vL






.

(5.12)

Note that the norms for the terms in the splitting are computed on the entire
boundary Γ. Then a counterpart of Lemma 3.5 holds:

Theorem 5.3. On RT 0(Γ
+
L) the following norms are equivalent

‖vL‖
H

− 1
2 (divΓ,Γ+)

≈ |‖vL‖|RT 0(Γ
+
L
), ∀vL ∈ RT 0(Γ

+
L) .
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Proof. With the extension operators of Lemma 4.5 at our disposal, the proof largely
follows that of Lemma 3.5 with a minor change: we have to employ discrete exten-
sion operator Ê1

l from Lemma 4.5 instead of the Scott-Zhang quasi-interpolation
operator. #

Concerning lowest-orderH(div,Ω)-conforming finite elements (Raviart-Thomas
elements, face elements), the theory of (local) multilevel preconditioning was devel-
oped in [4, 22] and [47, Theorem 5.8]. The results suggest the following definition
of multilevel norms in analogy to (5.3) and (5.4):

|‖XL‖|
2
RT 0(ΩL) := inf






L∑

l=0

h−2
l

(
‖Yl‖

2
L2(Ω) + ‖Zl‖

2
L2(Ω)

)
, Yl ∈ RT 0(Ωl),

Zl ∈ ND1(Ωl),
L∑

l=0

(Yl + curl Zl) = XL






,

(5.13)

for XL ∈ RT 0(ΩL), and

|‖X̃L‖|
2
R̃T 0(ΩL)

:= inf






L∑

l=0

h−2
l

(
‖Ỹl‖

2
L2(Ω) + ‖Z̃l‖

2
L2(Ω)

)
, Ỹl ∈ R̃T 0(Ωl),

Z̃l ∈ ÑD1(Ωl),
L∑

l=0

(Ỹl + curl Z̃l) = X̃L






,

(5.14)

for X̃L ∈ R̃T 0(ΩL). The underlying splittings are stable in the sense of norm
equivalence, cf. Theorem 3.3:

Theorem 5.4. The following norms are equivalent

|‖XL‖|RT 0(ΩL) ≈ ‖XL‖H(div,Ω) , ∀XL ∈ RT 0(ΩL) ,

|‖X̃L‖|R̃T 0(ΩL) ≈ ‖X̃L‖H(div,Ω), ∀ X̃L ∈ R̃T 0(ΩL) .

Proof. A proof of this theorem can be built by combining results provided in [3,4,22]
and [47, Theorem 5.8]. #

Norm equivalences as expressed in Theorem 5.2 also hold for spaces of piecewise
constant functions on ΓL. They rely on multilevel norms corresponding to (5.3)
and (5.4)

|‖ϕL‖|
2
Q0(ΓL) := inf






L∑

l=0

h−1
l

(
‖ηl‖

2
L2(Γ)

+ ‖ql‖
2
L2(Γ)

)
, ηl ∈ Q0(Γl),

ql ∈ RT 0(Γl),
L∑

l=0

(ηl + divΓ ql) = ϕL






,(5.15)
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for ϕL ∈ Q0(ΓL), and

|‖ϕ̃L‖|
2
Q̃0(ΓL)

:= inf






L∑

l=0

h−1
l

(
‖η̃l‖

2
L2(Γ)

+ ‖q̃l‖
2
L2(Γ)

)
η̃l ∈ Q̃0(Γl),

q̃l ∈ R̃T 0(Γl),
L∑

l=0

(η̃l + divΓ q̃l) = ϕ̃L






,(5.16)

for ϕ̃L ∈ Q̃0(ΓL).

Theorem 5.5. The following L-uniform norm equivalences hold

|‖ϕL‖|Q0(ΓL) ≈ ‖ϕL‖
H

− 1
2 (Γ)

, ∀ϕL ∈ Q0(ΓL) ,(5.17)

|‖ϕ̃L‖|Q̃0(ΓL) ≈ ‖ϕ̃L‖
H̃− 1

2 (Γ+)
, ∀ ϕ̃L ∈ Q̃0(ΓL) .(5.18)

Proof. The proof is very similar to that of Theorem 5.2 and we merely outline
minor modifications.

In order to prove the “!” estimate of (5.18), by Lemma 4.4, the trace inequality
and Theorem 5.4 we have to establish

(5.19) |‖ϕ̃L‖|Q̃0(ΓL) ! |‖Ẽ2
Lϕ̃L‖|R̃T 0(ΩL) ,

which can be proved as above in the first part of the proof of Theorem 5.2 after we
define

η̃l = TnỸl ∈ Q̃0(Γl), q̃l := TtZ̃l ∈ R̃T 0(Γl) ,

where Ẽ2
Lϕ̃L =

L∑
l=0

(Ỹl + curl Z̃l) is a stable multilevel splitting according to Theo-

rem 5.4.
To show the estimate “"” of (5.18) we again apply the trivial local extension

operators of Lemma 4.2 to the terms of a multilevel splitting of ϕ̃L. Then, in
analogy to the second part of the proof of Theorem 5.2, we use the continuity of
the trace operator and the norm equivalence from Theorem 5.4. #

The following theorem, gives a multilevel characterization of the localizedH− 1
2 (Γ+)-

trace norm of piecewise constant functions on Γ+.

Theorem 5.6. On Q0(Γ
+
L) the following norms are equivalent

‖ϕL‖
H

− 1
2 (Γ+)

≈ |‖ϕL‖|Q0(Γ
+
L
), ∀ϕL ∈ Q0(Γ

+
L) ,

where the multilevel splittings norm is defined by

|‖ϕL‖|
2
Q0(Γ

+
L
) := inf






L∑

l=0

h−1
l

(
‖ηl‖

2
L2(Γ)

+ ‖ql‖
2
L2(Γ)

)
, ηl ∈ Q0(Γl),

ql ∈ RT 0(Γl),

(
L∑

l=0

ηl + divΓ ql

) ∣∣∣∣∣
Γ+

= ϕL






.(5.20)

Proof. We exactly follow the reasoning of the proof of Theorem 5.3, this time using
the discrete extension operator Ê2

l provided by Lemma 4.4. #
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6. Proof: cut-off inequalities for H− 1
2 (divΓ,Γ)- and

H− 1
2 (Γ)-conforming BEM spaces

Finally, we are in a position to provide proofs of Theorems 2.1 and 2.2. In fact,
a substantial portion of the work was already done in the two previous sections
and now we have to adapt the arguments from the proof of Theorem 3.6. At one
step, additional difficulties will crop up, and to deal with them we have to resort
to the spaces S1(∂Γ

+
l ), l = 0, . . . , L, of piecewise linear continuous functions on the

curve ∂Γ+ with respect to the mesh ∂Γ+
l := Γ+

l

∣∣
∂Γ+ . These are simple C0-finite

element spaces on the one-dimensional domain ∂Γ+. These spaces come equipped
with the standard nodal interpolation operators Π̌l that amount to piecewise linear
interpolation in one dimension.

Differences of linear interpolants define the hierarchical decomposition of v̌L ∈
S1(∂Γ

+
L). It enjoys an elementary but interesting orthogonality property with re-

spect to the H1(∂Γ+)-semi-norm:

‖grad∂Γ+ v̌L‖
2
L2(∂Γ+) =

L∑

l=0

∥∥grad∂Γ+(Π̌l − Π̌l−1)v̌L
∥∥2

L2(∂Γ+)
,(6.1)

where grad∂Γ+ is the gradient along the curve ∂Γ+, i.e. the tangential derivative
along ∂Γ+, and we set Π̌−1 := 0.

Another tool in the proof will be the nodal cut-off for functions in RT 0(Γl)
defined in analogy to Z0

l as

Z1
l vl ∈ RT 0(Γl) :

∫

e

(Z1
l vl) · d's =

{∫
e
vl · d's, for e ∈ E(Γl) ∩ Γ+ ,

0, for e ∈ E(Γl), e )⊂ Γ+ .
(6.2)

Proof of Theorem 2.1. ! The initial reasoning is the same as in the proof of
Theorem 3.6. According to Theorems 5.3 and (5.6) of Theorem 5.2, the assertion
of Theorem 2.1 is equivalent to

(6.3) |‖ṽL‖|
2
R̃T 0(ΓL)

! L3 |‖ṽL‖|
2
RT 0(Γ

+
L
) ∀ ṽL ∈ R̃T 0(Γ

+
L ) ,

compare with (3.11). This means that for any ṽL ∈ R̃T 0(ΓL) ⊂ RT 0(ΓL) and a
splitting:

(6.4) ṽL =
L∑

l=0

(wl + curlΓ ql), wl ∈ RT 0(Γl), ql ∈ S1(Γl),

we have to find a corresponding multilevel decomposition into functions that vanish
outside Γ+:

(6.5) ṽL =
L∑

l=0

(w̃l + curlΓ q̃l) , w̃l ∈ R̃T 0(Γl), q̃l ∈ S̃1(Γl) ,

and satisfy

L∑

l=0

h−1
l (‖w̃l‖

2
L2(Γ)

+ ‖q̃l‖
2
L2(Γ)

) ! L3
L∑

l=0

h−1
l (‖wl‖

2
L2(Γ)

+ ‖ql‖
2
L2(Γ)

) ,(6.6)

which corresponds to (3.14) in the proof of Theorem 3.6.
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" Now we deviate from the proof of Theorem 3.6 and take into account that
ṽ ∈ R̃T 0(ΓL) involves

(6.7) ṽL · n∂Γ+ = 0 on ∂Γ+ ,

where n∂Γ+ is the “in-plane exterior unit normal” on ∂Γ+. However, in general
L∑

l=0

wl · n∂Γ+ )= 0,
L∑

l=0

ql|∂Γ+ )= 0.(6.8)

The following manipulations serve the purpose of altering both these sums such
that they become zero on ∂Γ+ and still sum up to ṽL. We rely on an auxiliary
hierarchical basis decomposition on ∂Γ+: it follows from (6.7) that

(6.9)
L∑

l=0

wl · n∂Γ+ = − grad∂Γ+ šL , šL :=
L∑

l=0

ql|∂Γ+ ∈ S1(∂Γ
+
L).

Next we consider the hierarchical decomposition of řL

šL =
L∑

l=0

řl , řl := (Π̌l − Π̌l−1)šL ∈ S1(∂Γ
+
l ) ,(6.10)

with Π̌l the nodal interpolation onto S1(∂Γ
+
l ) introduced in the beginning of this

Section.
Modifiers for the ql will be provided by trivial extensions of the řl to functions

r̂l ∈ S1(Γl) defined by

r̂l(p) =

{
řl(p), p ∈ V(Γl) ∩ ∂Γ+ ,

0, otherwise ,
(6.11)

which satisfy

(6.12) ‖curlΓ r̂l‖
2
L2(Γ+) = ‖gradΓ r̂l‖

2
L2(Γ+) ! hl ‖grad∂Γ+ řl‖

2
L2(∂Γ+) .

Furthermore, for any triangle T ∈ Γ+
l and T

⋂
Γ+ )= ∅, by the definition of r̂l, there

exists at least one vertex pT , such that r̂l(pT ) = 0. Thus, noting that r̂l is a linear
function on T , simple scaling arguments confirm

‖r̂l‖
2
L2(T ) ! h2

T ‖gradΓ r̂l‖
2
L2(T ) ,(6.13)

which immediately implies

‖r̂l‖
2
L2(Γ+) ! h2

l ‖curlΓ r̂l‖
2
L2(Γ+) .(6.14)

Now we have the means to switch from the splitting (6.4) to the modified decom-
position

(6.15) ṽL =
L∑

l=0

ŵl + curlΓ q̂l , ŵl ∈ RT 0(Γl), q̂l ∈ S1(Γl),

with

ŵl := wl − curlΓ r̂l , q̂l = ql + r̂l .

Thanks to (6.10) it is clear that

(6.16)

(
L∑

l=0

ŵl · n∂Γ+

) ∣∣∣∣∣
∂Γ+

= 0 ,

(
L∑

l=0

q̂l

) ∣∣∣∣∣
∂Γ+

= 0 .
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Now we appeal to the orthogonality property (6.1) for (6.10) in order to verify that
the modification does not destroy the stability of the multilevel decompositions as
follows

(6.17)
L∑

l=0

h−1
l ‖curlΓ r̂l‖

2
L2(Γ+)

(6.12)

!
∑L

l=0 ‖grad∂Γ+ řl‖
2
L2(∂Γ+)

(6.1)
= ‖grad∂Γ+ šL‖

2
L2(∂Γ+)

(6.16)
=

∥∥∥
∑L

l=0 wl · n∂Γ+

∥∥∥
2

L2(∂Γ+)
!

(∑L
l=0 ‖wl · n∂Γ+‖L2(∂Γ+)

)2

! L
∑L

l=0 ‖wl · n∂Γ+‖2L2(∂Γ+) ! L
∑L

l=0 h
−1
l ‖wl‖

2
L2(Γ+) ,

where we used only scaling arguments and the Cauchy-Schwarz inequality in RL+1.
Combined with (6.14) this permits us to conclude the stability estimate

(6.18)
L∑

l=0

h−1
l

(
‖ŵl‖

2
L2(Γ+) + ‖q̂l‖

2
L2(Γ+)

)
! L

L∑

l=0

h−1
l (‖wl‖

2
L2(Γ+) + ‖ql‖

2
L2(Γ+)) .

# Now we return to the reasoning of the proof of Theorem 3.6; in analogy to
(3.15) we define ûl ∈ RT 0(Γ

+
l ) and p̂l ∈ S1(Γ

+
l ) by

ûl :=
l∑

k=0

ŵl , p̂l :=
l∑

k=0

q̂l, l = 0, 1, 2, . . . , L .(6.19)

Next, taking the cue from (3.17) we introduce w̃l ∈ R̃T 0(Γl) , q̃l ∈ S̃1(Γl), l =
0, . . . , L, according to

w̃l :=

{
Z1
0û0, for l = 0 ,

Z1
l ûl − Z1

l−1ûl−1, for l > 0 ,
(6.20)

q̃l :=

{
Z0
0q̂0, for l = 0 ,

Z0
l q̂l − Z0

l−1q̂l−1, for l > 0 .
(6.21)

Recall the reasoning and manipulations underlying (3.18) and (3.19). In exactly
the same way, we can show that

L∑

l=0

h−1
l ‖w̃l‖

2
L2(Γ)

! L2
L∑

l=0

h−1
l ‖ŵl‖

2
L2(Γ)

! L3
L∑

l=0

h−1
l (‖wl‖

2
L2(Γ+) + ‖ql‖

2
L2(Γ+)) ,

(6.22)

with

L∑

l=0

w̃l = Z1
LûL = Z1

L

(
L∑

l=0

ŵl

)
=

L∑

l=0

ŵl .

Here, owing to (6.16), we could drop the cut-off operator. This apparently insignif-
icant step forced us to include part " of the proof.



EXTENSION BY ZERO IN DISCRETE TRACE SPACES: INVERSE ESTIMATES 23

The same techniques can be used to obtain the required estimate for the q̂l’s:

L∑

l=0

h−1
l ‖q̃l‖

2
L2(Γ)

! L2
L∑

l=0

h−1
l ‖q̌l‖

2
L2(Γ)

! L3
L∑

l=0

h−1
l (‖wl‖

2
L2(Γ+) + ‖ql‖

2
L2(Γ+)) .

(6.23)

with

L∑

l=0

q̃l = Z0
L

(
L∑

l=0

q̂l

)
(6.16)
=

L∑

l=0

q̂l .

From (6.15), (6.20), and (6.21) we see that w̃l ∈ R̃T 0(Γl) and q̃l ∈ S̃1(Γl) really
provide a valid multilevel decomposition of ṽL in the sense of (6.5). Then (6.3)
results from combining (6.22) and (6.23). !

Remark 6.1. What is the obstacle to obtain a cut-off estimate in Theorem 2.1? It is
the fact that the cut-offs Z0

l , Z
1
l and curlΓ do not commute. Hence, applying Z0

L to∑L
l=0 ql in Step " of the proof would also affect edge associated degrees of freedom

in the interior of Γ+. This difficulty is connected with the need to rely on discrete
scalar potential functions (ql/q̃l) in the multilevel characterizations of the norms
‖·‖

H
− 1

2 (divΓ,Γ)
and ‖·‖

H
− 1

2 (divΓ,Γ+)
on RT 0(ΓL) and RT 0(Γ

+
L), respectively, cf.

Theorems 5.1 and 5.2.
This obstruction to extending Theorem 3.6 to RT 0(Γ

+
L) also enforces the use of

so-called “barbed wire baskets” in sub-structuring domain decomposition methods
for edge elements [15, 16, 30, 31].

Proof of Theorem 2.2. Of course, we follow the ideas in the proofs of Theorems
3.6 and 2.1. Appealing to Theorems 5.6 and 5.5, and analogous to (3.11) and (6.3),
we have to prove that

(6.24) |‖ϕ̃L‖|
2
Q̃0(ΓL)

! L3 |‖ϕ̃L‖|
2
Q0(Γ

+
L
) ∀ ϕ̃L ∈ Q̃0(Γ

+
L ) .

Given ϕ̃L ∈ Q̃0(Γ
+
L) consider a multilevel decomposition

(6.25) ϕ̃L|Γ+ =

(
L∑

l=0

(ηl + divΓ ql)

) ∣∣∣
Γ+

, ηl ∈ Q0(Γl),ql ∈ RT 0(Γl) ,

of the form relevant for the definition of |‖ϕ̃L‖|Q0(Γ
+
L
) in (5.20).

Parallel to step " of the proof of Theorem 2.1 we note that, in general,

(wL · n∂Γ+)|∂Γ+ )= 0 for wL :=
L∑

l=0

ql ,(6.26)

cf. (6.8). Again, we aim to modify the ql’s in order to enforce vanishing normal
component on ∂Γ+ for their sum. To begin with, we find c0 ∈ RT 0(Γ

+
0 ) (on the

coarsest level!) such that
∫

∂Γ+

wL · n∂Γ+ dl =

∫

∂Γ+

c0 · n∂Γ+ dl ,(6.27)

and, abusing notation, replace η0 ← η0+divΓ c0, q0 ← q0−c0. Hence for this new
decomposition (6.25) still holds, and, since the modifications has been confined to
level 0, the change of the h−1

l weighted sum of the squared L2-norms occurring in
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(5.16) and (5.20) remains under control. Reusing the definition of wL from (6.26)
we now know ∫

∂Γ+

wL · n∂Γ+ dl = 0 ,

which ensures the existence of šL ∈ S1(∂Γ
+
L) such that

grad∂Γ+ šL = (wL · n∂Γ+)|∂Γ+ .(6.28)

Next, we use the hierarchical decomposition of šL as introduced in the beginning
of this section, and invoke (6.1)

šL =
L∑

l=0

řl ,
L∑

l=0

‖grad∂Γ+ řl‖
2
L2(∂Γ+) = ‖grad∂Γ+ šL‖

2
L2(∂Γ+) .(6.29)

We denote by r̂l ∈ S1(Γ
+
l ) the trivial nodal extension of řl according to (6.11) and

recall the estimate (6.12). Using it, we can proceed as in (6.17) and end up with

L∑

l=0

h−1
l ‖curlΓ r̂l‖

2
L2(Γ+) ! L

L∑

l=0

h−1
l ‖ql‖

2
L2(Γ+) .(6.30)

Now set q̂l := ql − curlΓ r̂l ∈ RT 0(Γl), which, as divΓ curlΓ r̂l = 0, yields a
modified decomposition

ϕ̃L|Γ+ =

(
L∑

l=0

(ηl + divΓ q̂l)

)∣∣∣∣∣
Γ+

,(6.31)

which, by (6.30), still enjoys the stability

L∑

l=0

h−1
l ‖q̂l‖

2
L2(Γ+) ! L

L∑

l=0

h−1
l ‖ql‖

2
L2(Γ+) ,(6.32)

and for which
(

L∑

l=0

q̂l · n∂Γ+

)∣∣∣∣∣
∂Γ+

= 0 .(6.33)

Now we just follow Part # of the proof of Theorem 2.1, as in (6.20) and (6.21)
modify the q̂l in order to enforce zero normal components on ∂Γ+, pay with another
factor of L2 in the estimate, as in (6.22), and we are done. !
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