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CONVERGENCE OF VANISHING CAPILLARITY APPROXIMATIONS
FOR SCALAR CONSERVATION LAWS WITH DISCONTINUOUS FLUXES

G. M. COCLITE, L. DI RUVO, J. ERNEST, AND S. MISHRA

Abstract. Flow of two phases in a heterogeneous porous medium is modeled by a scalar
conservation law with a discontinuous coefficient. As solutions of conservation laws with discon-
tinuous coefficients depend explicitly on the underlying small scale effects, we consider a model
where the relevant small scale effect is dynamic capillary pressure. We prove that the limit of
vanishing dynamic capillary pressure exists and is a weak solution of the corresponding scalar
conservation law with discontinuous coefficient. A robust numerical scheme for approximating
the resulting limit solutions is introduced. Numerical experiments show that the scheme is able
to approximate interesting solution features such as propagating non-classical shock waves as
well as discontinuous standing waves efficiently.

1. Introduction

Scalar conservation laws with spatially dependent and possibly discontinuous coeffi-
cients arise in a wide variety of models in physics and engineering [1, 2] and other ref-
erences therein, for instance in flows in heterogeneous porous media, modeling of the
clarifier-thickener units in the chemical industry and in traffic flows with heterogeneous
surface conditions. The generic form of such equations is given by,

(1.1)

{
∂tu + ∂xf(k(x), u) = 0, t > 0, x ∈ R,

u(0, x) = u0(x). x ∈ R.

Here, u : [0,∞) × R → R is the unknown and k : R → R is the (possibly discontinuous)
coefficient with f being the flux function.

It is well known that solutions of nonlinear conservation laws contain discontinuities
in the form of shock waves, even when the initial data u0 is smooth. Hence, solutions
to conservation laws are sought in the sense of distributions. Such weak solutions are
not unique. Additional admissibility criteria or entropy conditions need to be imposed in
order to single out the physically relevant solution [7]. Uniqueness of entropy solutions for
scalar conservation laws with a smooth (C1) coefficient k follows from the seminal result
of Kruzkhov [7].

As the conservation law (1.1) is derived by neglecting underlying small scale effects such
as diffusion, dispersion, capillarity etc, it is customary to incorporate information about
these small scale effects in the entropy conditions in order to single out the physically
relevant solutions. Again, for smooth coefficients k, entropy solutions (a la Kruzkhov)
encapsulate the vanishing viscosity limit.

The design of suitable entropy conditions for a scalar conservation law with a discon-
tinuous coefficient k has received considerable attention in recent years, see [9, 1, 3, 12, 2]
and references therein. In [1], it was pointed out that the scalar conservation law (1.1)
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2 G. M. COCLITE, L. DI RUVO, J. ERNEST, AND S. MISHRA

with a discontinuous coefficient can have infinitely many L1 contractive semigroups of so-
lutions. In particular, incorporating different underlying small scale effects in (1.1) with
a discontinuous k, can result in different solutions. Thus, physically relevant solutions of
scalar conservation laws with discontinuous coefficients depend on the underlying small
scale effect. This implies that every physical model of interest has to be considered sep-
arately and the resulting semigroup of solutions which arise by neglecting the underlying
small scale effects has to be characterized. We are interested in one such model in this
paper.

A motivating example for scalar conservation laws with discontinuous coefficient is
provided by two-phase flows in a heterogeneous porous medium. A brief derivation of this
model is presented below.

1.1. Modeling two phase flows in a heterogeneous porous medium with dy-
namic capillary pressure. Consider a one dimensional porous medium with (possibly
discontinuous) rock permeability K. We consider the flow of two phases (say water and
oil) in this porous medium. Denoting, water and oil saturations as Sw and So, respectively,
we see that mass conservation for each phase results in

(1.2)
Sw

t + vw
x = 0,

So
t + vo

x = 0.

Here, vw, vo are the phase velocities for the water and oil phases, respectively.
As the total saturation Sw + So = 1, adding the two equations in (1.2) results in

(1.3) vw + vo = q,

with q being the total flow rate (specified for instance by boundary conditions).
The phase velocities are modeled by Darcy’s law [4]:

(1.4)
vw = −KλwPw

x + Kλwρwg,

vo = −KλoP o
x + Kλwρog.

Here, λr = kr(Sr)
µr , r = w, o, are the phase mobilities, given in terms of the relative per-

meabilities kr and the phase viscosities µr, ρr, r = w, o is the phase density and g is the
(constant) acceleration due to gravity.

The phase pressures are denoted by P r, r = w, o. Introducing the capillary pressure
P c = Pw − P o, adding the two equations in (1.4) and using (1.3), we obtain,

(1.5) −KPw
x =

q −K(λwρw + λoρo)g
λw + λo

− Kλo

λw + λo
P c

x .

Hence, by substituting (1.5) in the first equation of (1.4), we eliminate the phase pressure
Pw and obtain,

vw =
(

qλw

λw + λo
− Kλwλo(ρw − ρo)g

λw + λo

)
− Kλwλo

λw + λo
P c

x .

Substituting for vw in the first equation for mass conservation (1.2) results in,

(1.6) Sw
t +

(
qλw

λw + λo
− Kλwλo(ρw − ρo)g

λw + λo

)

x

=
(

Kλwλo

λw + λo
P c

x

)

x

.

As λw, λo are given (smooth functions) of Sw, the mass conservation equation is completed
once the capillary pressure P c is specified. In standard models of capillary pressure [4],

(1.7) P c = P c(Sw).

Here, P c is a smooth monotone increasing function of the saturation. However, this model
of the capillary pressure was found to be inadequate in explaining dynamic behavior of
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the flow. Instead, we follow the model proposed in [11] (see also [10]) and introduce a
dynamic capillary pressure:

(1.8) P c = P
c(Sw) + τSw

t .

Here P
c(Sw) is a smooth and monotone increasing function of the saturation. Hence, the

capillary pressure also depends on the dynamics of moving fronts.
The model is completed by substituting the expression of the capillary pressure (1.8)

in (1.6) to obtain the following equation:

Sw
t +

(
qλw

λw + λo
− Kλwλo(ρw − ρo)g

λw + λo

)

x

=
(

Kλwλo

λw + λo
(P c(Sw))x

)

x

+ τ

(
Kλwλo

λw + λo
Sw

xt

)

x

.

(1.9)

As the capillary pressure is supposed to be very small, we can rescale the above mass
conservation equations with a small scale ν and obtain the following PDE:

Sw
t +

(
qλw

λw + λo
− Kλwλo(ρw − ρo)g

λw + λo

)

x

= ν

(
Kλwλo

λw + λo
(P c(Sw))x

)

x

+ τν2

(
Kλwλo

λw + λo
Sw

xt

)

x

.

(1.10)

Furthermore, we observe that the rock permeability K can vary (discontinuously) in
space. Our aim is to obtain information about the limit as ν → 0, even when the coefficient
K is discontinuous. Hence, we will recover the physically relevant solutions, obtained using
the correct small scale information (including the dynamic capillary pressure).

1.2. Aims and scope of the current paper. The main aim of the current paper is to
investigate mathematically the flow of two phases in a heterogeneous porous medium, in
the limite of vanishing dynamic capillary pressure. For notational simplicity, we rename
the water saturation by Sw = u and consider the following Cauchy problem;
(1.11)





∂tuν + ∂xf(kν , uν) = ν∂x(g(&ν , uν)∂xuν) + ν2∂x(h(mν , uν)∂2
txuν), t > 0, x ∈ R,

∂tkν = ν∂2
xxkν , t > 0, x ∈ R,

∂t&ν = ν∂2
xx&ν , t > 0, x ∈ R,

∂tmν = ν∂2
xxmν , t > 0, x ∈ R,

uν(0, x) = u0,ν(x), x ∈ R,

kν(0, x) = k0,ν(x), x ∈ R,

&ν(0, x) = &0,ν(x), x ∈ R,

mν(0, x) = m0,ν(x), x ∈ R,

where 0 < ν ≤ 1. The case h ≡ 0, g ≡ 1 has been studied in [6].
By identifying the functions f, g and h with their counterparts in (1.10), we can assume

that f, g, h : R2 → R, are smooth functions such that

(1.12) α ≤ g(·, ·), h(·, ·)

for some constant α > 0. In addition, f(k, ·) is assumed to be genuinely nonlinear for
every k ∈ R, namely the map u ∈ [0, 1] (→ f(k, u) is not affine on any nontrivial interval for
every k ∈ R. This assumption is satisfied by most physically relevant relative permeability
functions in (1.10).
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On the functions k0,ν , &0,ν , m0,ν , u0,ν : R → R we assume that

k0,ν , &0,ν , m0,ν ∈ C∞(R) ∩W 1,1(R), u0,ν ∈ C∞(R) ∩ L1(R) ∩ L∞(R), 0 ≤ u0,ν ≤ 1,

and that there exist

k, &, m ∈ BV (R) ∩ L1(R), u0 ∈ L1(R) ∩ L∞(R), 0 ≤ u0 ≤ 1,

such that

u0,ν → u0, k0,ν → k, &0,ν → &, m0,ν → m, a.e. and in Lp(R), 1 ≤ p < ∞,

‖uν,0‖L2(R) ≤ ‖u0‖L2(R) , ∀ν,

‖k0,ν‖L∞(R) ≤ ‖k‖L∞(R) , ‖k0,ν‖L2(R) ≤ ‖k‖L2(R) , ‖∂xk0,ν‖L1(R) ≤ TV (k), ∀ν,

‖&0,ν‖L∞(R) ≤ ‖&‖L∞(R) , ‖&0,ν‖L2(R) ≤ ‖&‖L2(R) , ‖∂x&0,ν‖L1(R) ≤ TV (&), ∀ν,

‖m0,ν‖L∞(R) ≤ ‖m‖L∞(R) , ‖m0,ν‖L2(R) ≤ ‖m‖L2(R) , ‖∂xm0,ν‖L1(R) ≤ TV (m), ∀ν.

(1.13)

Our first aim in this paper is to study the behavior of solutions of (1.11) as ν → 0 and
in particular, whether these solutions converge to a weak solution of the conservation law
(1.1). We answer this fundamental question by stating the main result of this paper.

Theorem 1.1. There exist a sequence {νn}n ⊂ (0, 1], νn → 0, a sequence {uνn}n∈N of
solutions of (1.11), and a distributional solution u of (1.1) such that

(1.14) uνn → u, in Lp
loc((0,∞)× R), 1 ≤ p < ∞, and a.e. in (0,∞)× R.

The second aim of this paper is to study the limit solutions of (1.11) as ν → 0 nu-
merically. We design an efficient numerical scheme and compute the limit solutions that
will approximate the physically relevant (vanishing dynamic capillary pressure limit) so-
lutions of the scalar conservation law with discontinuous coefficient, arising in a model of
two phase flows in a heterogeneous porous medium.

The rest of the paper is organized as follows. In Section 2, we present the proof of
Theorem 1.1. The numerical scheme and numerical results are presented in Section 3 and
a summary of the results is presented in Section 4.

2. Proof of Theorem 1.1

Let us assume that (1.11) admits a smooth solution (uν , kν , &ν , mν) such that

0 ≤ uν ≤ 1.

Lemma 2.1. The following estimates hold

‖kν‖L∞((0,∞)×R) ≤ ‖k‖L∞(R) , ‖∂xkν(t, ·)‖L1(R) ≤ TV (k),

‖&ν‖L∞((0,∞)×R) ≤ ‖&‖L∞(R) , ‖∂x&ν(t, ·)‖L1(R) ≤ TV (&),

‖mν‖L∞((0,∞)×R) ≤ ‖m‖L∞(R) , ‖∂xmν(t, ·)‖L1(R) ≤ TV (m),

‖kν(t, ·)‖2L2(R) + 2ν

∫ t

0
‖∂xkν(s, ·)‖2L2(R) ds ≤ ‖k‖2L2(R) ,

‖&ν(t, ·)‖2L2(R) + 2ν

∫ t

0
‖∂x&ν(s, ·)‖2L2(R) ds ≤ ‖&‖2L2(R) ,

‖mν(t, ·)‖2L2(R) + 2ν

∫ t

0
‖∂xmν(s, ·)‖2L2(R) ds ≤ ‖m‖2L2(R) ,

for every t ≥ 0 and ν > 0.

Following [5, Lemma 4.2], let us show this result.
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Lemma 2.2. Let ν > 0. Fixed T > 0, we have
i) the family {uν}ν is bounded in L∞(0, T ;L2(R));

ii) the families {
√

ν∂xuν}ν , {ν
3
2 ∂2

txuν}ν , {
√

ν∂tuν}ν are bounded in L2((0, T )× R).

Proof. Let B be a positive constant that will be specified later. Multiplying (1.11) by
uν + νB∂tuν , we have

(uν + νB∂tuν)∂tuν =ν(uν + νB∂tuν)∂x(g(&ν , uν)uν)

+ ν2(uν + νB∂tuν)∂x(h(mν , uν)∂2
txuν)

− (uν + νB∂tuν)∂xf(kν , uν).
(2.1)

Since ∫

R
(uν + νB∂tuν)∂tuνdx =

1
2

d

dt

∫

R
u2

νdx + νB

∫

R
(∂tuν)2dx,

ν

∫

R
(uν + νB∂tuν)∂x(g(&ν , uν)∂xuν)dx

= −ν

∫

R
g(&ν , uν)(∂xuν)2dx− ν2B

∫

R
g(&ν , uν)∂xuν∂

2
txuνdx,

ν2
∫

R
(uν + νB∂tuν)∂x(h(mν , uν)∂2

txuν)dx

= −ν2
∫

R
h(mν , uν)∂2

txuν∂xuνdx− ν3B

∫

R
h(mν , uν)(∂2

txuν)2dx,

integrating (2.1) over R, thanks to (1.12)

1
2

d

dt

∫

R
u2

νdx + να

∫

R
(∂xuν)2dx + ν3αB

∫

R
(∂2

txuν)2dx + νB

∫

R
(∂tuν)2dx

≤− νB

∫

R
∂tuν∂xf(kν , uν)dx− ν2

∫

R
h(mν , uν)∂2

txuν∂xuνdx

−
∫

R
uν∂xf(kν , uν)dx− ν2B

∫

R
g(&ν , uν)∂xuν∂

2
txuνdx.

Lemma 2.1 and (1.13) give

−
∫

R
uν∂xf(kν , uν)dx =−

∫

R
uν∂kf(kν , uν)∂xkνdx−

∫

R
uν∂uf(kν , uν)∂xuνdx

=−
∫

R
uν∂kf(kν , uν)∂xkνdx−

∫

R
∂x

( ∫ uν

0
ξ∂uf(kν , ξ)dξ

)
dx

+
∫

R

( ∫ uν

0
ξ∂2

ukf(kν , ξ)∂xkνdξ
)
dx

≤
(
‖∂kf‖L∞(I) +

∥∥∂2
ukf

∥∥
L∞(I)

)
TV (k) =

C

2
,

where

C = 2
( ∥∥∂2

ukf
∥∥

L∞(I)
+ ‖∂kf‖L∞(I)

)
TV (k),

I =
(
−‖k‖L∞(R) , ‖k‖L∞(R)

)
× (0, 1).

Then
1
2

d

dt

∫

R
u2

νdx + να

∫

R
(∂xuν)2dx + ν3αB

∫

R
(∂2

txuν)2dx + νB

∫

R
(∂tuν)2dx
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≤− νB

∫

R
∂tuν∂xf(kν , uν)dx− ν2

∫

R
h(mν , uν)∂2

txuν∂xuνdx

− ν2B

∫

R
g(&ν , uν)∂xuν∂

2
txuνdx +

C

2

=− νB

∫

R
∂uf∂xuν∂tuνdx− νB

∫

R
∂kf∂xkν∂tuνdx

− ν2
∫

R
(Bg(&ν , uν) + h(mν , uν))∂xuν∂

2
txuνdx +

C

2
.

Using the Young’s inequality,

−Bν

∫

R
∂uf(kν , uν)∂xuν∂tuνdx

≤ν

∣∣∣∣
∫

R
B∂uf(kν , uν)∂xuν∂tuνdx

∣∣∣∣

≤ν

∫

R
|B∂uf(kν , uν)∂xuν ||∂tuν |dx

=ν

∫

R

∣∣∣∣
B∂uf(kν , uν)∂xuν

D1

∣∣∣∣ |∂tuνD1|dx

≤
νB2 ‖∂uf‖2L∞(I)

2D2
1

∫

R
(∂xuν)2dx + ν

D2
1

2

∫

R
(∂tuν)2dx,

−Bν

∫

R
∂kf(kν , uν)∂xkν∂tuνdx

≤ν

∣∣∣∣
∫

R
B∂kf(kν , uν)∂xkν∂tuνdx

∣∣∣∣

≤ν

∫

R
|B∂kf(kν , uν)∂xkν ||∂tuν |dx

=ν

∫

R

∣∣∣∣
B∂uf(kν , uν)∂xkν

D2

∣∣∣∣ |∂tuνD2|dx

≤
νB2 ‖∂kf‖2L∞(I)

2D2
2

∫

R
(∂xkν)2dx + ν

D2
2

2

∫

R
(∂tuν)2dx,

−ν2
∫

R
(Bg(&ν , uν) + h(mν , uν))∂xuν∂

2
txuνdx

≤ν2
∣∣∣
∫

R
(Bg(&ν , uν) + h(mν , uν))∂xuν∂

2
txuνdx

∣∣∣

=
∫

R
ν

1
2 |D3∂xuν |ν

3
2

∣∣∣∣
(Bg(&ν , uν) + h(mν , uν))∂2

txuν

D3

∣∣∣∣ dx

≤νD2
3

2

∫

R
(∂xuν)2dx +

ν3

2D2
3

∫

R
(Bg(&ν , uν) + h(mν , uν))2(∂2

txuν)2dx

≤νD2
3

2

∫

R
(∂xuν)2dx +

ν3 ‖Bg + h‖2L∞(J1)

2D2
3

∫

R
(∂2

txuν)2dx,
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where D1, D2, D3 are three positive constants that will be specified later and
J1 = I1 ∪ J,

I1 =
(
−‖&‖L∞(R) , ‖&‖L∞(R)

)
× [0, 1],

J =
(
−‖m‖L∞(R) , ‖m‖L∞(R)

)
× (0, 1).

(2.2)

Thus,

d

dt

∫

R
u2

νdx + ν
(
2α−

B2 ‖∂uf‖2L∞(I)

D2
1

−D2
3

) ∫

R
(∂xuν)2dx

+ ν3
(
2αB −

‖Bg + h‖2L∞(J1)

D2
3

) ∫

R
(∂2

txuν)2dx

+ ν
(
2B −D2

1 −D2
2

) ∫

R
(∂tuν)2dx

≤ν
B2 ‖∂kf‖2L∞(I)

D2
2

∫

R
(∂xkν)2dx + C.

An integration over (0, t) and Lemma 2.1 give

‖uν(t, ·)‖2L2(R) + ν
(
2α−

B2 ‖∂uf‖2L∞(I)

D2
1

−D2
3

) ∫ t

0
‖∂xuν(s, ·)‖2L2(R) ds

+ ν3B
(
2αB −

‖Bg + h‖2L∞(J1)

D2
3

) ∫ t

0

∥∥∂2
txuν(s, ·)

∥∥2

L2(R)
ds

+ ν
(
2B −D2

1 −D2
2

) ∫ t

0
‖∂tuν(s, ·)‖2L2(R) ds

≤Ct +
B2 ‖∂kf‖2L∞(I)

D2
2

‖k‖2L2(R) + ‖u0‖2L2(R) .

Let us consider, now, the following system:

(2.3)






2α−
B2 ‖∂uf‖2L∞(I)

D2
1

−D2
3 > 0,

2αB −
‖Bg + h‖2L∞(J1)

D2
3

> 0,

2B −D2
1 −D2

2 > 0.

We note that the constants D1, D2, D3 do exist because B can be taken very big, and up
to rescaling we can have α = B3.
Therefore, the proof is done. !

To prove Theorem 1.1, the following technical lemma is needed [16].

Lemma 2.3. Let Ω be a bounded open subset of R2. Suppose the sequence {Ln}n∈N of
distributions is bounded in W−1,∞(Ω). Suppose also that

Ln = L1,n + L2,n,

where {L1,n}n∈N lies in a compact subset of H−1
loc (Ω) and {L2,n}n∈N lies in a bounded

subset of Mloc(Ω). Then {Ln}n∈N lies in a compact subset of H−1
loc (Ω).
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Proof of Theorem 1.1. Let c ∈ R be fixed, we claim that the family

{∂t|uν − c|+ ∂x(sign (uν − c) (f(k, uν)− f(k, c)))}ν>0

is compact in H−1
loc ((0,∞)× R). For the sake of notational simplicity we write

η0(u) = |u− c|−| c|,
Q0(k, u) = sign (u− c) (f(k, u)− f(k, c))− sign (−c) (f(k, 0)− f(k, c)).

Observe that
η0(0) = Q0(k, 0) = 0,

and
∂t|uν − c|+ ∂x(sign (uν − c) (f(k, uν)− f(k, c)))

=∂tη0(uν) + ∂xQ0(k, uν)
+ sign (−c) ∂x(f(k, 0)− f(k, c)).

(2.4)

Let {(ην , Qν)}ν>0 be a family of maps such that

ην ∈ C∞(R), Qν ∈ C∞(R2),

∂uQν(k, u) = ∂uf(k, u)η′ν(u), η′′ν ≥ 0,

‖ην − η0‖L∞(0,1) ≤ ν,
∥∥η′ν − η′0

∥∥
L1(0,1)

≤ ν,
∥∥η′ν

∥∥
L∞(0,1)

≤ 1, ην(0) = Qν(k, 0) = 0,

(2.5)

for each ν ≥ 0. Since

Q0(k, u) =
∫ u

0
∂uf(k, u)η′0(ξ)dξ, Qν(k, u) =

∫ u

0
∂uf(k, u)η′ν(ξ)dξ,

we also have

‖∂kQν‖L∞(I) ≤
∥∥∂2

u,kf
∥∥

L∞(I)
, ‖Qν −Q0‖L∞(I) ≤ ‖∂uf‖L∞(I) ν.

By (1.11),

∂tη0(uν) + ∂xQ0(k, uν)
=∂tην(uν) + ∂xQν(kν , uν) + ∂t(η0(uν)− ην(uν))

+ ∂x(Q0(k, uν)−Qν(k, uν)) + ∂x(Qν(k, uν)−Qν(kν , uν))

=ν∂x
(
η′ν(uν)g(&ν , uν)∂xuν

)
− νη′′ν (uν)g(&ν , uν)(∂xuν)2

+ ν2∂x
(
η′ν(uν)h(mν , uν)∂2

txuν
)
− ν2η′′ν (uν)h(mν , uν)∂xuν∂

2
txuν

− (η′ν(uν)∂uf(kν , uν)− ∂kQ(kν , uν))∂xkν

+ ∂t(η0(uν)− ην(uν)) + ∂x(Q0(k, uν)−Qν(kν , uν))
+ ∂x(Qν(k, uν)−Qν(kν , uν)).

Then, for (2.5),

∂t|uν − c|+ ∂x(sign (uν − c) (f(k, uν)− f(k, c)))
=I1,ν + I2,ν + I3,ν + I4,ν + I5,ν + I6,ν + I7,ν + I8,ν + I9,

where

I1,ν =ν∂x
(
η′ν(uν)g(&ν , uν)∂xuν

)
,

I2,ν =− νη′′ν (uν)g(&ν , uν)(∂xuν)2,

I3,ν =ν2∂x
(
η′ν(uν)h(mν , uν)∂2

txuν
)
,
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I4,ν =− ν2η′′ν (uν)h(mν , uν)∂xuν∂
2
txuν ,

I5,ν =− (η′ν(uν)∂uf(k, uν)− ∂kQ(k, uν))∂xkν ,

I6,ν =∂t(η0(uν)− ην(uν)),
I7,ν =∂x(Q0(k, uν)−Qν(k, uν)),
I8,ν =∂x(Qν(k, uν)−Qν(kν , uν)),
I9 =sign (−c) ∂x(f(k, 0)− f(k, c).

Let us show that

(2.6) I1,ν → 0 in H−1((0, T )× R), T > 0.

Thanks to Lemma 2.2,
∥∥νη′ν(uν)g(&ν , uν)∂xuν

∥∥2
L2((0,T )×R)

≤
∥∥η′ν

∥∥2
L∞(0,1)

‖g‖2L∞(I1) ν2
∫ T

0
‖∂xuν(s, ·)‖2L2(R) ds

≤
∥∥η′ν

∥∥2
L∞(0,1)

‖g‖2L∞(I1) νC1(T + 1) → 0,

where C1 > 0 is independent on ν and T , and I1 is defined in (2.2).
Let us show that

{I2,ν}ν>0 is bounded in L1((0, T )× R).
Again for Lemma 2.2,

∥∥νη′′ν (uν)g(&ν , uν)(∂xuν)2
∥∥

L1((0,T )×R)

≤
∥∥η′′ν

∥∥
L∞(0,1)

‖g‖L∞(I1) ν

∫ T

0
‖∂xuν(s, ·)‖2L2(R) ds

≤
∥∥η′′ν

∥∥
L∞(0,1)

‖g‖L∞(I1) C2(T + 1),

where C2 > 0 is independent on ν and T .
We claim that

(2.7) I3,ν → 0 in H−1((0, T )× R), T > 0.

Thanks to Lemma 2.2,
∥∥ν2η′ν(uν)h(mν , uν)∂2

txuν

∥∥2

L2((0,T )×R)

≤
∥∥η′ν

∥∥2
L∞(0,1)

‖h‖L∞(J) ν4
∫ T

0

∥∥∂2
txuν(s, ·)

∥∥2

L2(R)
ds

≤
∥∥η′ν

∥∥2
L∞(0,1)

‖h‖L∞(J) νC3(T + 1) → 0,

where C3 > 0 is independent on ν and T , and J is defined in (2.2). Let us show that

{I4,ν}ν>0 is bounded in L1((0, T )× R).

Again for Lemma 2.2,
∥∥ν2η′′ν (uν)h(mν , uν)∂xuν∂tuν

∥∥
L1((0,T )×R)

≤
∥∥η′′ν

∥∥
L∞(0,1)

‖h‖L∞(J) ν2
∫ T

0

∫

R
|∂xuν ||∂2

txuν |dsdx

≤
∥∥η′′ν

∥∥
L∞(0,1)

‖h‖L∞(J)

∫ T

0

∫

R
ν

1
2 |∂xuν |ν

3
2 |∂2

txuν |dsdx
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≤
‖η′′ν‖L∞(0,1) ‖h‖L∞(J)

2
ν

∫ T

0
‖∂xuν(s, ·)‖2L2(R) ds

+
‖η′′ν‖L∞(0,1) ‖h‖L∞(J)

2
ν3

∫ T

0

∥∥∂2
txuν(s, ·)

∥∥2

L2(R)
ds

≤
∥∥η′′ν

∥∥
L∞(0,1)

‖h‖L∞(J) C4(T + 1),

where C4 > 0 is independent on ν and T .
Moreover, thanks to (2.5),

{I5,ν}ν>0 is bounded in L1((0, T )× R) for each T > 0,

I6,ν → 0, I7,ν → 0 in H−1
loc ((0,∞)× R,

{I8,ν}ν>0 is compact in in H−1
loc ((0,∞)× R,

I9 ∈Mloc((0,∞)× R).

Therefore, Lemma 2.3, [18], and [17, Theorem 5] give (1.14).
Let us show that u is a distributional solution of (1.1). Let φ ∈ C∞(R2) be a test

function with compact support, we have to prove that

(2.8)
∫ ∞

0

∫

R
(u∂tφ + f(k, u)∂xφ)dtdx +

∫

R
u0(x)φ(0, x)dx = 0.

We have
∫ ∞

0

∫

R
(uνn∂tφ + f(kνn , uνn)∂xφ)dtdx +

∫

R
u0,νn(x)φ(0, x)dx

+ νn

∫ ∞

0

∫

R
g(&νn , uνn)∂xuνn∂xφdtdx− νn

2
∫ ∞

0

∫

R
h(mνn , uνn)∂2

txuνn∂xφ = 0.

Therefore, (2.8) follows from (1.14), (1.13), Lemma 2.2, and the Dominated Convergence
Theorem. !

3. Numerical Results

Theorem 1.1 establishes that the limit of solutions of the two phase flows in a hetero-
geneous porous medium with vanishing dynamic capillary pressure exists and is a weak
solution of the scalar conservation law (1.1). We aim to characterize this limit in this
section using numerical experiments.

3.1. Numerical Scheme. We will consider the regularized problem (1.11) and discretize
it using a finite difference scheme. Consider a spatial domain [Xl, Xr] and discretize it
(for simplicity) into N equally spaced points xj = Xl + j ∗h with h = (Xr−Xl)/h. Then
the approximate solution is defined as

uj(t) ≈ u(t, xj).

Similarly the coefficients are represented on the grid as,

(kj(t), &j(t), mj(t)) ≈ (k(t, xj), &(t, xj), m(t, xj)).
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The approximate solution is computed using the following semi-discrete finite difference
scheme:

(3.1)

(uj)t =− f(kj+1, uj+1)− f(kj−1, uj−1)
2∆x

+
ν

(∆x)2

{
g(&j , uj) + g(&j+1, uj+1)

2
(uj+1 − uj)

−g(&j , uj) + g(&j−1, uj−1)
2

(uj − uj−1)
}

+
τν2

(∆x)2

{
h(mj , uj) + h(mj+1, uj+1)

2
(uj+1 − uj)t

−h(mj , uj) + h(mj+1, uj+1)
2

(uj+1 − uj)t

}
.

We take the time-dependent terms to the left-hand side of the equation, apply transparent
boundary conditions and then invert the matrix to obtain a semi-discrete formulation of
the form

Ut = L(U).
Here U = {uj}j is the vector of unknowns. In order to discretize the above ODE system,
we will use a third-order Runge-Kutta time stepping of the form:

U (1) = Un + ∆tL (Un) ,

U (2) =
3
4
Un +

1
4
U (1) +

1
4
∆tL

(
U (1)

)
,(3.2)

Un+1 =
1
3
Un +

2
3
U (2) +

2
3
∆tL

(
U (2)

)
.

3.2. Numerical Experiments. We will focus on results when the scheme is applied
to the flow of two phases in a heterogeneous porous medium with vanishing dynamic
capillary pressure (1.10). The following identifications,

u(x, t) = Sw(x, t),
k(x) = l(x) = m(x) ≡ K,

f(k, Sw) =
qλw

λw + λo
− Kλwλo(ρw − ρo)g

λw + λo
,

g(l, Sw) =
Kλwλo

λw + λo
P̄ c,′(Sw),

h(m, Sw) =
Kλwλo

λw + λo
,

are used to represent two phase flows in the form (1.11) and we can apply the scheme
(3.1) to these equations.

For the rest of this section, we will use the following parameters,

q = 1,

λw = (Sw)2,

λo = (So)2 = (1− Sw)2,
ρw = 1, ρo = 0.9, g = 10 → (ρw − ρo)g = 1,

P̄ c(s) =
(
s−4/3 − 1

)1/4
.
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The above relative permeability and capillary pressure functions are taken from [10].
For the numerical experiments, we compute on a uniform grid on the interval [0, 2] and

use the following parameter settings:

τ = 1,
ν = 6∆x,

CFL = 0.45,

(Sw)0 = 0.8 · 1{x≤0.25} + 0.2 · 1{x>0.25},

T = 0.6.

Thus, we set the small scale parameter in terms of the mesh width and expect to capture
the small scale limit as the mesh is refined.

3.2.1. Flow in a homogeneous medium. In order to test the numerical schemes, we start
with a simple homogeneous medium (single rock type) by setting the rock permeability
as

K ≡ 1.

The results of a mesh refinement study for the above Riemann problem are presented in
Figure 1. In this figure, we show the water saturation at time T = 0.6 for a series of mesh
resolutions ranging between 200 and 1600 mesh points. In the absence of an exact solution,
we notice that the simulations converge to a weak solution of the scalar conservation (1.11)
that consists of a leading classical shock wave (satisfying the Lax entropy condition) as
well as a trailing non-classical shock wave with an intermediate state in between. The
non-classical shock violates the Lax entropy condition and is a consequence of the fact that
the flux function f in (1.1) is non-convex. Non-classical shocks for two phase flows with
dynamic capillary pressure have also been studied in [8] and [13]. A detailed discussion
on non-classical shocks is presented in [14]. The results presented in Figure 1 clearly show
that the scheme (3.1) provides a good approximation of the equation (1.1) in the case
of a homogeneous medium and is able to resolve interesting small scale dependent shock
waves such as non-classical shock waves. Note that a good resolution of the non-classical
shock wave (in particular of the intermediate state) is provided, even on a fairly coarse
resolution of 200 mesh points.

3.2.2. Flow in a heterogeneous medium. Next, we consider a heterogeneous medium by
using the rock permeability:

(3.3) K = 1 · 1{x≤0.6} + 1.2 · 1{x>0.6}.

Thus, we consider flow in a medium that has two rock types with a sharp interface at
x = 0.6. We use the same parameters and initial data as in the previous numerical
experiment and show the results of a mesh convergence study in Figure 2. The figure
shows that the approximate solutions generated by the scheme (3.1) converge to a weak
solution of the scalar conservation law with discontinuous coefficient (1.11) that consists of
the following three waves: i) a leading classical shock wave on the right, ii) a non-classical
shock wave in the middle, and iii) a discontinuity at the rock type interface at x = 0.6.
It is easy to check that the standing wave at x = 0.6 satisfies flux continuity conditions
(Rankine-Hugoniot conditions for the scalar conservation law with discontinuous flux).
Again, the results show the robustness of the scheme and its ability to resolve interesting
solution features, even at coarse resolutions.
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Figure 1. Water saturation at time T = 0.6 for the homogeneous medium with
a single rock permeability K = 1. Results of a mesh convergence study showing
convergence to a non-classical solution of the underlying scalar conservation law.

3.2.3. Comparison. We conclude this section by providing a comparison between a ho-
mogeneous and a heterogeneous medium. The parameters are from the two previous
numerical experiments and the water saturation, computed with scheme (3.1), is plotted
in Figure 3. The figure brings out the role of the discontinuity quite well. The discontinu-
ity creates the standing wave at the interface and changes the speeds of both the classical
as well as the non-classical shock waves. Thus, it is essential to consider the effect of the
discontinuity in rock permeability as it has a major effect on the wave structure of the
flow. Also, the effect of dynamic capillary pressure is crucial as it generates non-classical
shock waves in the vanishing capillary pressure limit. This should be contrasted with the
solutions obtained with a static capillary pressure, as were considered in [1, 15], where
only classical shock waves were present away from the interface.

4. Conclusion

We considered a scalar conservation law with a spatially dependent and possibly dis-
continuous coefficient. It is well known that these equations contain infinitely many L1

contractive semigroups of solutions and the standard Kruzkhov entropy conditions do
not suffice to single out a physically relevant solution. It has also been established in
[1, 2] and references therein that the solutions to such equations depend explicitly on the
underlying small scale effects. Here, we consider a concrete model of two phase flows in
a heterogeneous porous medium. The relevant small scale effect is a dynamic capillary
pressure term, that was introduced in [11]. Compared to the standard capillary pressure
models [4], the addition of the new term resulted in a model that contain higher-order
mixed spatio-temporal derivatives.
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Figure 2. Water saturation in a heterogeneous porous medium with discontin-
uous rock permeability (3.3), computed with the scheme (3.1) at time T = 0.6.
Note the resolution of both the non-classical shock wave as well as the standing
wave at the interface x = 0.6.
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Figure 3. Comparison of water saturation for a homogeneous medium with con-
stant rock permeability and a heterogeneous medium with discontinuous rock.
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In the current paper, we considered the regularized problem corresponding to the dy-
namic capillary pressure as well as a discontinuous spatial coefficient in the flux, diffusion
and dispersion terms. We showed rigorously that the limit under vanishing capillary
pressure exists and is a weak solution of the corresponding scalar conservation law with
discontinuous coefficient. Thus, it makes sense to talk about the semigroup of solutions
for the scalar conservation law with discontinuous coefficients that arises as a limit of
vanishing dynamic capillary pressure.

We introduced a finite difference scheme in order to approximate the regularized prob-
lem. The numerical scheme was tested on a suite of numerical experiments and was shown
to be robust. It enabled us to characterize the vanishing dynamic capillary pressure limit,
in some concrete examples. In particular, we found that the limit solution can contain
non-classical shock waves as well as standing waves at the interface between different rock
types. This numerical scheme can be employed to identify the vanishing dynamic capillary
pressure limit in a large number of cases.

In the future, we would like to extend the methods of this paper to models of multi-
dimensional porous medium flows. The numerical scheme will also be extended in this
setting to characterize the vanishing dynamic capillary pressure limit in several space
dimensions.
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(Siddhartha Mishra)
Seminar for Applied Mathematics (SAM)
ETH Zürich,
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