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Abstract

We provide a generalization of Wolfowitz’s theorem on the products of stochastic,
indecomposable and aperiodic (SIA) matrices to metric spaces with nonpositive
curvature. As a result we show convergence for a wide class of distributed consensus
algorithms operating on these spaces.
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1 Introduction and Statement of the Result

Wolfowitz’s Theorem. In the course of the present paper we fix a positive integer N
and write [k] := {1, . . . , k} for k ∈ N.

Definition 1.1. A matrix A = (a(i, j))i,j∈[N ] ∈ RN×N is SIA (stochastic, indecomposable,
aperiodic) if

(i) a(i, j) ≥ 0 for all i, j ∈ [N ]

(ii)
∑

j∈[N ] a(i, j) = 1 for all i ∈ [N ]

(iii) The limit
Q = lim

n→∞
An

exists in RN×N and all the rows of Q are the same.

Definition 1.2. A family A = {A1, . . . , Ak} ⊂ RN×N is called SIA-family if every word

Aκ := Aκn · . . . · Aκ2Aκ1

is SIA, where κ ∈ [k]n and n ∈ N0.

∗The research of P. Grohs was partly supported by the European Research Council under grant ERC
AdG 247277, as well as by the Swiss National Fund under grant SNF 200021 140635.
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Consider the quantity

δ(A) := max
j∈[N ]

max
k,l∈[N ]

|A(k, j)− A(l, j)| , (1)

defined for A ∈ RN×N . We are now in a position to formulate the following well-known
theorem by Wolfowitz [23].

Theorem 1.3 (Wolfowitz). Let A be an SIA-family. Then for any ε > 0 there exists ν(ε)
such that

δ(Aκ) < ε for all κ ∈
⋃

n≥ν(ε)

[k]n.

Theorem 1.3 result comes with a number of important implications. For instance,
picking κ ∈ [k]N arbitrarily defines a nonhomogenous Markov chain with transition kernels

Pn−1→n := Aκn .

Wolfowitz’s theorem implies that this Markov chain converges to a stationary state, when-
ever the underlying matrices belong to an SIA family.

Furthermore, Theorem 1.3 is of central importance in control theory and distributed
processing, more precisely the study of convergence properties of consensus algorithms
[21]. Consider N different agents i = 1, . . . , N each observing a common quantity
x(i) ∈ R. Due to several causes (noise, defective sensors, calibration errors, etc.) the
measurements x(i) will be different for different agents i. Several problems within the
context of flocking and multiagent dynamics require the different agents to agree on a
common value of the measurement. A natural choice would be to agree on the value
1
M

∑
i∈[N ] x(i). However, often there are restrictions imposed on the ability for different

agents to communicate with each other, and therefore it is necessary to reach a consensus
value in a distributed fashion.

Let us see how Wolfowitz’s theorem comes into play here. Pick an arbitrary SIA-family
A and an arbitrary κ ∈ [k]N such that each matrix Aκk

is adapted to the underlying
communication structure (meaning that averages are only computed among agents which
can communicate with each other). Then one can iteratively compute averages

xn := Aκnxn−1, x0 := x. (2)

Wolfowitz’s theorem implies that this distributed averaging algorithm converges to a
consensus value, i.e.

lim
n→∞

max
k,l∈[N ]

|xn(k)− xn(l)| = 0. (3)

It also gives quantitative information regarding the speed of convergence.
Observe that in the convergence result, the matrices Aκn can be chosen adaptively,

based on the knowledge of
∏n−1

i=1 Aκix.
A further application is in nonstationary subdivision schemes [7] whose convergence

study leads to analogous problems as for consensus algorithms.
In view of these applications, the aim of the present paper is to generalize Theorem

1.3 to metric spaces.
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Consensus in Metric Spaces. Assume that we are given a metric space (X, d).
The goal of the present paper is to generalize Theorem 1.3 to the X-valued case. In order
to formulate a meaningful result we observe that, due to assumption (i) in Definition 1.1,
the consensus algorithm defined via the iteration (2) can be interpreted as a repeated
averaging of the initial datum x.

Given weights a : [N ] → R+ such that
∑

i∈[N ] a(i) = 1, a natural choice of a weighted
average of points x(i), i ∈ [N ], is the barycenter x̄a, which is defined by

x̄a := argmin
z∈X

∑

i∈[N ]

a(i)d(x(i), z)2.

In the literature, this definition is usually referred to as Fréchet-mean or Karcher-mean if
X is a finite dimensional Riemannian manifold [14]. Provided that the barycenter oper-
ation is well-defined we can now formulate an iterative averaging algorithm generalizing
the one defined above via (2):

Definition 1.4. For an SIA matrix A and x : [N ] → X we define the operator AX by

AXx(i) := argmin
z∈X

∑

j∈[N ]

A(i, j)d(x(j), z)2. (4)

For an SIA-family A and κ ∈ [k]N define iteratively

xn := AX
κn
xn−1, x0 := x. (5)

The natural question to ask is whether the iteration as defined in (5) converges to
consensus, e.g., does

lim
n→∞

max
k,l∈[N ]

d (xn(k), xn(l)) = 0

hold?
Consensus algorithms in nonlinear spaces have been the subject of intense studies in

recent years, see for instance [18] and the references therein. Closely related is the study
of subdivision schemes operating in metric spaces [9, 10, 12, 22, 24].

Hadamard Spaces. We restrict our attention to a specific class of metric spaces in
which barycenters are globally defined. These are so-called Hadamard spaces.

Definition 1.5. A metric space (X, d) is called Hadamard space if for x1, x1 ∈ X there
exists y ∈ X such that for all z ∈ X one has

d(z, y)2 ≤ 1

2
d(z, x0)

2 +
1

2
d(z, x1)

2 − 1

4
d(x0, x1)

2 (6)

The Hadamard inequality (6) can be interpreted as nonpositivity condition for the
curvature, see [1, 2]. A basic fact about Hadamard spaces is that barycenters are globally
well-defined [20]. Hadamard spaces include Cartan-Hadamard manifolds, Trees, Euclidean
Bruhat-Tits buildings, spaces L2(M,N) with N Hadamard, certain spaces of Riemannian
and Kähler metrics or spaces of connections [15]. Hadamard spaces also arise in several
important applications, such as the study of phylogenetric trees [5], diffusion tensor MRI
[17] or cost-minimizing networks [8].
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Definition 1.6. For x : [N ] → X define the diameter

D(x) := max
k,l∈[N ]

d(x(k), x(l)).

Our main theorem reads as follows.

Theorem 1.7. Let A be an SIA-family and (X, d) Hadamard. Then there exists ν ∈ N
and 0 < γ < 1 such that for all κ ∈ [k]n, n ≥ ν, and x : [N ] → X we have the contractivity
property

D
(
AX

κ1
AX

κ2
. . . AX

κn
x
)
≤ γD(x). (7)

It should be clear that Theorem 1.7 is a natural generalization of Theorem 1.3. In
particular we have the following corollary, where we define for κ ∈ [k]n the operator

AX
κ x := AX

κn
AX

κn−1
. . . AX

κ1
x

acting on x : [N ] → X.

Corollary 1.8. Let A be an SIA-family. Then for any ε > 0 there exists ν(ε) such that
for all x : [N ] → X

D(AX
κ x) < εD(x) for all κ ∈

⋃

n≥ν(ε)

[k]n.

Proof. This follows immediately from Theorem 1.7.

In view of nonlinear consensus in Hadamard spaces we have the following result.

Corollary 1.9. The algorithm defined by (5) for a SIA-family converges geometrically to
a consensus configuration: There exists γ < 1, C ≥ 0 such that

D(xn) ≤ CγnD(x0).

Proof. This result is an immediate consequence of Theorem 1.7.

Section 2 below is devoted to the proof of Theorem 1.7. Finally, in Section 3 we treat
several extensions of our main result and apply them to show convergence for a wide class
of consensus algorithms in Hadamard spaces.

2 Proof of the Main Result

Our main result will be proven by utilizing results related to Markov chains in Hadamard
spaces. This connection has been exploited in [9, 10] for related problems. Our work is
inspired by the aforementioned articles.

Preliminaries on Markov Chains. We start with some basic facts related to
Markov chains.

Definition 2.1. A family pm→n : [N ]× [N ] → R, m ≤ n is called a family of transition
kernels if

4



(i)
∑

j∈[N ] pm→n(i, j) = 1 for all i ∈ [N ] and pm→n(i, j) ≥ 0 for all i, j ∈ [N ]

(ii) pn→n(i, j) = δi,j

(iii) Putting Pm→n := (pm→n(i, j))i,j∈[N ] we have the Chapman-Kolmogorov equations

Pm→n = Pm→lPl→n for all m ≤ l ≤ n. (8)

Remark 2.2. Clearly, for A an SIA-family and κ ∈ [k]N we can put

Pn−1→n := Aκn

and use (8) to define a family of transition kernels.

A family of transition kernels leads to an associated Markov chain as follows: Define
the state space Ω := [N ]N0 endowed with the sigma algebra F :=

⊗
n∈N0

P([N ]), where P
denotes the power set.

Picking an initial probability distribution α on [N ] we define a probability distribution
P on (Ω,F) by its restriction to cylinder sets defined as

P ({i0}× {i1}× · · ·× {in}× [N ]× . . . ) := α({i0})p0→1(i0, i1)p1→2(i1, i2) . . . pn−1→n(in−1, in)1.

Consider the filtration

Fn := σ
(
{i0}× {i1}× · · ·× {in}× [N ]× · · · : (i0, . . . , in) ∈ [N ]n+1

)
, n ≥ 0,

as well as the discrete stochastic process (Xn)n≥0 defined by

Xn : Ω → [N ]; ω )→ ωn,

which is adapted to the filtration (Fn)n≥0. The process (Xn)n≥0 is called Markov chain
associated to the transition kernel (Pm→n)m≤n.

It is straightforward to verify the following linear Markov property

E (f(Xn)|Fm) (ω) =
∑

j∈[N ]

pm→n(Xm(ω), j)f(j), ω ∈ Ω, (9)

valid for any nonnegative function f : [N ] → R.
Markov Chains in Hadamard Spaces. Here we collect some results concerning

Markov processes in Hadamard spaces. It is remarkable that the convexity properties of
the distance in a Hadamard space allow for far-reaching extensions of central concepts in
probability theory to the Hadamard setting [19, 20]. We only collect the results needed
for our purpose, see [4, 19, 20] for further information.

We start with the concept of conditional expectation in Hadamard spaces. Let (Ω,F,P)
be a probability space, and Y : Ω → X measurable and square-integrable, meaning that

∫

Ω

d(Y (ω), x)2P(dω) < ∞

1The well-definedness of P follows by extension and the fact that cylinder sets span the sigma algebra.
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for some (then all) x ∈ X. For Y, Z : Ω → X we define the L2-distance via

dL2(Y, Z) :=

(∫

Ω

d(Y (ω), Z(ω))2P(dω)
)1/2

.

Now we can define conditional expectations:

Definition 2.3. Let G be a subalgebra of F. Then for a square-integrable Y : Ω → X
with separable image, the conditional expectation of Y given G is defined as

E(Y |G) := argmin
Z:Ω→X

E(dL2(Y, Z)).

Existence and uniqueness of the conditional expectation is shown in [20]. Nonlin-
ear conditional expectations lack the usual associativity property enjoyed by the linear
definition. Motivated by this, K.T. Sturm introduced the following concept of filtered
conditional expectation in his article [20].

Definition 2.4. Suppose Fm ⊂ F1 ⊂ · · · ⊂ Fn, m ≤ n, is a sequence of subalgebras of
F and let Y : Ω → X be Fn-measurable. Then the filtered conditional expectation of Y
given (Fk)m≤k≤n is defined as

E(Y |||Fm) := E(. . . E(E(Y |Fn−1)|Fn−2) . . . |F0).

The filtered conditional expectation satisfies a conditional Jensen inequality as shown
in [20]. The statement requires the notion of convexity of a function ψ : X → R, meaning
that

ψ(xt) ≤ (1− t)ψ(x0) + tψ(x1),

where (xt)t∈[0,1] denotes the unique geodesic connecting two points x0, x1 ∈ X. An
important example of a convex function is the function

x )→ d(x, z0)

for any z0 ∈ X, as shown in [20].
The conditional Jensen inequality now reads as follows.

Lemma 2.5. Suppose that ψ : X → R is convex and lower semicontinuous. More-
over, suppose that (Fn)n≥0 is a filtration on the probability space (Ω,F,P). Then for each
bounded, Fn-measurable Y : Ω → X we have

ψ (E (Y |||(Fk)m≤k≤n)) ≤ E (ψ(Y )|Fm) . (10)

The following nonlinear Markov property holds for (X, d) a Hadamard space. It is
shown in [10, Proposition 6].

Proposition 2.6. Let (Xn)n≥0 be a Markov chain as above and let x : [N ] → X. Then
for any m ≤ n we have

E (x(Xn)|Fm) (ω) = argmin
z∈X

∑

j∈[N ]

pm→n(Xm(ω), j)d(x(j), z)
2, (11)

where E is the nonlinear conditional expectation for the probability space (Ω,F,P) associ-
ated with the Markov chain.
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Proof of the Main Result. We have now assembled all the tools needed to establish
our main result. First we state the following lemma.

Lemma 2.7. Let A be an SIA-family and κ ∈ [k]N0. Consider the Markov chain (Xn)n≥0

defined as in Remark 2.2. Then we have

AX
κ1
AX

κ2
. . . AX

κn
x ◦X0 = E (x ◦Xn|||F0) . (12)

Proof. The proof uses Proposition 2.6, as well as the definition of the filtered conditional
expectation. To this end, we first compute

E(x ◦Xn|Fn−1)(ω) = argmin
z∈X

∑

j∈[N ]

pn−1→n(Xn−1(ω), j)d(x(j), z)
2

= argmin
z∈X

∑

j∈[N ]

aκn(Xn−1(ω), j)d(x(j), z)
2

= AX
κn
x ◦Xn−1(ω).

Consequently, by the same argument

E(E(x ◦Xn|Fn−1)|Fn−2)(ω) = E(AX
κn
x ◦Xn−1|Fn−2)(ω) = AX

κn−1
AX

κn
x ◦Xn−2(ω).

Iterating this argument we arrive at the desired statement.

We proceed with the

proof of Theorem 1.7. Consider the function

X → R+; z )→ d(z, z0).

Clearly, this function is continuous and convex. We can therefore apply Jensen’s inequality
(10), as well as (12) to obtain

d
(
AX

κ1
AX

κ2
. . . AX

κn
x ◦X0, z0

)
= d (E (x ◦Xn|||F0) , z0) ≤ E (d(x ◦Xn, z0)|F0) . (13)

Using the linear Markov property (9), we see that the right-hand-side of (13) is equal to

E (d(x ◦Xn, z0)|F0) (ω) =
∑

k∈[N ]

p0→n (X0(ω), k) d (x(k), z0) ,

and we arrive at the inequality

d
(
AX

κ1
AX

κ2
. . . AX

κn
x(i), z0

)
≤

∑

k∈[N ]

p0→n (i, k) d (x(k), z0) (14)

for all i ∈ [N ], z0 ∈ X. Now we can put

z0 := AX
κ1
AX

κ2
. . . AX

κn
x(j)

7



and, by the same argument leading to (14), obtain the symmetric inequality

d
(
AX

κ1
AX

κ2
. . . AX

κn
x(i), AX

κ1
AX

κ2
. . . AX

κn
x(j)

)
≤

∑

k,l∈[N ]

p0→n (i, k) p0→n (j, l) d (x(k), x(l)) .

(15)
Denote the right-hand side of (15) by B. Then we have

B =
∑

k,l∈[N ]

p0→n (1, k) p0→n (1, l) d (x(k), x(l))

+
∑

k,l∈[N ]

(p0→n (i, k)− p0→n (1, k)) p0→n (j, l) d (x(k), x(l))

+
∑

k,l∈[N ]

p0→n (1, k) (p0→n (j, l)− p0→n (1, l)) d (x(k), x(l))

≤
∑

k,l∈[N ]

p0→n (1, k) p0→n (1, l) d (x(k), x(l))

+2δ(P0→n)D(x)

≤




∑

k,l∈[N ], k (=l

p0→n (1, k) p0→n (1, l) + 2δ(P0→n)



D(x)

=



1−
∑

k∈[N ]

p0→n(1, k)
2 + 2δ(P0→n)



D(x).

It remains to show that for n large enough, the constant

γn := 1−
∑

k∈[N ]

p0→n(1, k)
2 + 2δ(P0→n) < 1.

As a first step towards this goal we observe that

∑

k∈[N ]

p0→n(1, k)
2 ≥ 1√

N

∑

k∈[N ]

|p0→n(1, k)| =
1√
N
. (16)

Furthermore, we note that by definition we have

P0→n = Aκ1Aκ2 . . . Aκn = A←−κ ,

where ←−κ simply means the word κ with its indices reversed. By Wolfowitz’s theorem 1.3,
there exists ν ≥ 0 such that whenever n ≥ ν we have

δ(A←−κ ) ≤
1

4
√
N
. (17)

Putting together (16) and (17) we arrive at

γn ≤ 1− 1

2
√
N

< 1, for all n ≥ ν,

and this proves the result.
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3 Some Extensions

We close with some extensions of our main result. In particular we will establish conver-
gence of a class of consensus algorithms studied in [13] which is not covered by Theorem
1.7.

3.1 Block SIA-Families

We consider the following, more general case: Assume that the family A is not an SIA-
family but that we can block together elements in A to get an SIA-family.

Definition 3.1. Let A = {A1, . . . , Ak} ⊂ RN×N and assume that there exists a family
of words K = (κi)i≥0 of lengths (Li)i≥0 such that L := supi Li < ∞ and the family

AK :=
{
Aκi :=

∏Li

j=1 Aκi
j
: i ≥ 0

}
is an SIA-family (observe that K is a finite set by the

assumption that all words κi are of uniformly bounded length). Then A is called a block
SIA-family.

In the Euclidean case, it is a direct consequence of Theorem 1.3 that for each ε > 0
there exists ν(ε) such that

δ

(
n∏

i=1

Aκi

)
≤ ε for all n ≥ ν(ε). (18)

For a block SIA-family consider the consensus algorithm

xni
j
:= Aκi

j
xni

j−1, x0 = x, (19)

where

ni
j :=

i−1∑

l=1

Li + j, j = 1, . . . , Li.

This consensus algorithm does not come from an SIA-family, but it consists of block
matrices which form an SIA-family. In that sense the algorithm (19) is more general than
(2). Nevertheless, it is easy to show that also the algorithm (19) converges, see e.g., [13].

We can establish the following result:

Theorem 3.2. Let A be a block SIA-family. Then for each ε > 0 there exists ν(ε) such
that

D

(
n∏

i=1

Li∏

j=1

AX
κi
j
◦ x

)
≤ εD(x) for all n ≥ ν(ε), x : [N ] → X. (20)

Here, the product symbol
∏n

i=1

∏Li

j=1 A
X
κi
j
denotes the composition operation of operators.

Proof. The proof follows the exact same arguments as the proof of Theorem 1.7, only
with (18) replacing the application of Theorem 1.3.

9



We can also consider the nonlinear consensus algorithm defined for x : [N ] → X via

xni
j
:= AX

κi
j
xni

j−1, x0 = x, (21)

and ni
j as above. We have the following result.

Theorem 3.3. The consensus algorithm defined by (21) converges for a block SIA-family
A. In particular we have

lim
n→∞

D(xn) → 0 for all x : [N ] → X.

Proof. As in the proof of Theorem 1.7 we can deduce that

D(xni
Li
) ≤ εD(x)

for i ≥ ν(ε) sufficiently large. To complete our theorem, we now show that

D(AX
l x) ≤ CD(x), for all x : [N ] → X, l ∈ [k]. (22)

This follows from continuity: By assumption there exists z ∈ X such that

sup
i

d(x(i), z) = O(D(x)).

We abuse notation and call z the function [N ] → X which is constant and equal to z.
Clearly for all l ∈ [k] we have

AX
l z = z.

Applying AX
l and applying the same arguments as in the proof of Theorem 1.7 we get

d(AX
l x(i), z) = d(AX

l x(i), A
X
l z)

≤
∑

k,m∈[N ]

al(i, k)al(1,m)d(x(k), z)

≤ CD(x).

This implies (22) and we can deduce that

D(xni
Li

+l) ≤ CLεD(x), l ∈ [Li+1]

and consequently for any ε > 0 there exists ν ′(ε) such that

D(xn) ≤ εD(x) for all n ≥ ν ′(ε).

This proves the theorem.
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3.2 Examples

Leaderless Coordination. To illustrate the usefulness of considering block SIA-
families we briefly treat an algorithm studied in [13] under the name leaderless coordina-
tion. Consider an undirected, simple graph Γ with vertex set [N ]. An edge (i, j) in Γ
corresponds to the ability of the agents i, j to communicate with each other. Denoting
NΓ(i) the set of neighbors of i we can formulate the following algorithm for a family of
undirected simple graphs (Γn)n≥0

xn(i) :=
1

1 + |NΓn−1(i)|



xn−1(i) +
∑

j∈NΓn−1 (i)

xn−1(j)



 , x0 = x, (23)

which can be concisely written as

xn = AΓn−1xn−1

for a suitable matrix AΓn ∈ RN×N in an obvious way.
Intuitively it is clear that in order to have a chance that (23) converges to a consensus

value, at some point every two nodes need to communicate with each other at some point.
The following definition takes this into account.

Definition 3.4. A set {Γ1, . . . ,Γp} of simple graphs with vertex set [N ] is called jointly
connected if the union graph

⋃p
j=1 Γj is connected.

The next result establishes convergence of a large class of consensus algorithms when-
ever the underlying family of graphs can be partitioned into jointly connected families,
i.e., any two agents can communicate every few steps of the algorithm.

Theorem 3.5. Assume that (Γn)n≥0 is a family of graphs such that there exists a parti-
tioning 0 = n0 < n1 < n2 < · · · < ∞, ni ∈ N with supi |ni − ni−1| = L < ∞ such that all
sets κi := {Γni , . . . ,Γni+1−1} are jointly connected. Let

A = {AΓ : Γ simple, undirected graph on [N ]} .

Then AK is a block SIA-family where K = (κi)i. In particular, the corresponding consen-
sus algorithm (23) converges on an arbitrary Hadamard space.

Proof. The fact that AK is a block SIA-family is Lemma 1 of [13]. The rest follows from
Theorem 3.3.

Binary Averages. Given a consensus algorithm defined by an SIA-family A, in ap-
plying the corresponding algorithm in a Hadamard space, one faces the question of solving
the optimization problems in the averaging procedure in Definition 1.4. If X possesses
a differentiable structure, this can be done with a gradient-descent scheme. However,
the class of Hadamard spaces is much richer than that of Riemannian manifolds with
nonpositive curvature. For instance, the space of phylogenetic trees, or more generally of
CAT (0)-cubical complexes [5, 6]. Even though it is of considerable interest e.g., to com-
pute averages of phylogenetic trees, it seems to difficult to solve (4) directly. On the other
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hand, it is possible to compute weighted binary averages of two points in CAT (0)-cubical
complexes [3, 6, 11, 16]. Also, it is well-known and not difficult to see that every linear
averaging operation ∑

i∈[N ]

a(i)x(i),
∑

i∈[N ]

a(i) = 1

can be written as a sequence of binary averages, see e.g., [22]. Therefore, every consensus
algorithm based on successive averages can be written as a consensus algorithm based
on successive binary averages. The same can be done for the corresponding nonlinear
algorithm operating in a Hadamard space. We have the following result.

Theorem 3.6. Assume that A is a block SIA-family. Consider the corresponding X-
valued consensus algorithm with all averaging operations factored into (nonlinear) binary
averages. Then this algorithm converges in X.

Proof. The theorem follows by observing that in the linear case, the family A′ which
consists of the binary factorizations of A is a block SIA-family. Therefore, the result
follows from Theorem 3.3.
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