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STABILIZED GALERKIN METHODS FOR MAGNETIC

ADVECTION

HOLGER HEUMANN AND RALF HIPTMAIR

Abstract. Taking the cue from stabilized Galerkin methods for scalar ad-
vection problems, we adapt the technique to boundary value problems mod-
eling the advection of magnetic fields. We provide rigorous a priori error es-
timates for both fully discontinuous piecewise polynomial trial functions and
H (curl,Ω)-conforming finite elements.

Keywords. Magnetic advection, discontinuous Galerkin, stabilized Galerkin
MSC2010. 65M60,65M12

1. Introduction

The behavior of electromagnetic fields in the stationary flow field of a conducting
fluid can be modelled by the (non-dimensional) advection-diffusion equation [15,
Section 5]

curl ν curlA
︸ ︷︷ ︸

diffusion

+ αA
︸︷︷︸

dissipation

+ curlA× β + grad (A · β)
︸ ︷︷ ︸

advection

= f in Ω .(1.1)

Here Ω ⊂ R3 is a bounded domain scaled such that diam(Ω) ≈ 1, and the vector field
A = A(x) stands for the magnetic vector potential. The fluid velocity is β = β(x),
of which we assume β ∈ W 1,∞ (Ω) and a scaling that achieves max

x
|β(x)| ≈ 1. The

coefficient ν = ν(x) ≥ 0 controls the strength of magnetic diffusion, whereas the
conductivity of the fluid enters through the bounded scalar function α = α(x). The
model underlying (1.1) is known as quasi-magneto-static with temporal gauge.

Remark 1.1. In a time-harmonic setting with linear materials A would represent a
complex amplitude (phasor). In this case α will turn out to be purely imaginary. We
are not going to deal with complex-valued fields in this article. On the other hand,
we point out that our theoretical developments still apply to them. Indeed, a purely
imaginary coefficient function α enhances stability of the problem and facilitates
the numerical analysis of the stabilized Galerkin methods.

The focus of this article is on dominant advection that is, ν−1|β| & 1. More
precisely, we are keen to obtain methods that are robust with respect to the singular
perturbation limit ν → 0. Necessarily, these methods must remain viable even if
ν = 0. Therefore, we confine the presentation to the pure magnetic advection
boundary value problem

(1.2)
αA+ curlA× β + grad (A · β) = f in Ω ,

A|Γin
= g on Γin .

We impose Dirichlet boundary conditions on the inflow boundary Γin, i.e. that
part of the domain with β · n < 0, with n the outward normal on ∂Ω. In the
case of translational symmetry, known as the transversal electric (TE) setting in

Date: August 30, 2012.
Key words and phrases. Magnetic advection, Lie derivative, Friedrichs system, stabilized

Galerkin method, upwinding, edge elements.
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2 HOLGER HEUMANN AND RALF HIPTMAIR

computational electromagnetics, (1.2) can be reduced to the 2D boundary value
problem on a cross section Ω ⊂ R2

(1.3)
αu+ grad(β · u)−Rβ div(Ru) = f in Ω ,

u|Γin
= g on Γin ,

with the π
2 -rotation matrix R =

(

0 1
−1 0

)

. The numerical experiments reported

in Section 5 all rely on this boundary value problem in 2D. Yet, we stress, that it
retains all crucial features of (1.2) and the derivation, analysis, and behavior of our
numerical method will be very much alike for (1.2) and (1.3).

Magnetic advection-diffusion (1.1) is closely related to advection-diffusion for a
scalar function u : Ω → R

div ν gradu
︸ ︷︷ ︸

diffusion

+ αu
︸︷︷︸

dissipation

+β · gradu
︸ ︷︷ ︸

advection

= f in Ω .(1.4)

This relationship becomes apparent when stating the differential operators in the
language of exterior calculus [3, Sect. 2]; both problems turn out to be particular
instances of a linear advection-diffusion problem for differential forms. We are not
going to dip into details, but instead refer the reader to [15, Section 1] for further
explanations. We only emphasize that the close link of (1.1) and (1.4) initially
motivated the research underlying this paper, because it strongly suggests that
successful numerical approaches to (1.4) can be adapted to (1.1).

Thus, let us recall some numerical methods developed for the scalar advection-
diffusion problem (1.4) and its pure transport limit

(1.5)
αu + β · grad u = f in Ω ,

u|Γin
= g on Γin .

The starting point is the observation that straightforward Galerkin finite element
discretization of (1.4) suffers from instability. As a consequence, much effort has
been devoted to devising stabilized Galerkin methods. We would like to refer to [34,
Chapter 3] for a comprehensive presentation.

We can distinguish stabilized Galerkin methods based on either discontinuous or
continuous approximation spaces. Stabilized Galerkin methods with discontinuous
approximation spaces, the stabilized or upwind discontinuous Galerkin methods,
e.g. [20, 26, 32], achieve stabilization by means of upwind fluxes on element inter-
faces. Classical stabilized Galerkin methods with continuous approximations spaces
are the so-called residual-based Galerkin methods [34, Chapter 3.2]. These methods,
e.g. the streamline diffusion method [21] or the Galerkin least-squares method [22],
augment the standard Galerkin formulation adding terms that represent the resid-
ual of the original equation. That preserves consistency of the formulation but
introduces some sort of artificial diffusion with stabilizing effects.

The stationary magnetic advection problem (1.2) has received much less atten-
tion from numerical analysts. Its transient variant is studied in the context of
magneto-hydrodynamics (MHD) and eddy current problems with moving conduc-
tors. MHD models often tackle the magnetic induction B and the focus is on
divergence constraint preserving finite volume methods, see [12] and the articles
cited there. In transient eddy current simulation Lagrangian methods are popu-
lar [8], beside numerous ad-hoc approaches based on upwinding [6, 13, 28]. To the
best of our knowledge, hardly any convergence results are available.

Our derivation of a stabilized Galerkin methods for the magnetic advection
boundary value problem (1.2) runs parallel to that of the discontinuous Galerkin
method for scalar advection. A key tool is the Leibniz rule for transport operators
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and the corresponding integration by parts formulas. This is elaborated in Section
2.

Piecewise polynomial trial spaces are used for the Galerkin discretization of
the resulting variational problems. In Section 3 we briefly review the convergence
estimates in the cases of totally discontinuous approximations. As magnetic ad-
vection falls into the class of Friedrichs symmetric operators [11] we could just
appeal to the abstract convergence theory for discontinuous Galerkin approxima-
tion from [9,10,24]. Yet, as a stepping stone for further developments, in Section 3
we pursue a different approach.

Our main interest is in the use of H (curl,Ω)-conforming piecewise polyno-
mial trial spaces that feature tangential continuity across interelement boundaries.
Meanwhile such spaces have become well established and they are known as discrete
1-forms or (higher order) edge elements [16, 29, 30]. There are several reasons for
insisting on tangential continuity: Firstly, sinceA is a magnetic vector potential we
want its curl to be a well-defined square integrable magnetic flux field. Secondly,
H (curl,Ω)-conforming trial and test spaces pave the way for a stable Galerkin
discretization of the magnetic diffusion operator curl ν curl. This is important,
because we always regard the discretization of the pure advection problem as a
mere building block in schemes for the more general advection-diffusion problem
(1.1). Of course, totally continuous (H1(Ω))3-conforming trial spaces are an option
in principle. However, they usually fail to provide stable Galerkin discretization of
the diffusion operator [4, 5]. Therefore, we do not investigate this possibility.

The main result of this article is stated as Theorem 4.2 in Section 4. It reveals
that the stabilized Galerkin method with H (curl,Ω)-conforming approximation
spaces enjoys the same rates of convergence as the stabilized Galerkin methods
with globally discontinuous approximation spaces. Thus, it suffices to aim stabi-
lization at the discontinuous normal components. In particular, we do not need
introduce additional stabilization such as the residual-based techniques for stabi-
lizing Galerkin methods with continuous approximation spaces. The final Section
5 presents various numerical experiments for the 2D boundary value problem (1.3)
that confirm that the theoretical estimates are sharp and illustrate the strengths
and weaknesses of the method.

Before we plunge into the discussion of discretization, we have to make sure that
the boundary value problem (1.2) is well posed. This is guaranteed by the following
assumption that will be made throughout the remainder of this article:

Assumption 1.2. We assume that α ∈ L∞(Ω) and β ∈ W 1,∞ (Ω) are such that

(1.6) λmin

{

(2α− divβ)I3 +Dβ + (Dβ)T
}

≥ α0 ,

almost everywhere in Ω for some α0 > 0.

Here, λmin stands for the smallest eigenvalue of a symmetric matrix and I3
denotes the 3 × 3 identity matrix. Assumption 1.2 may seem awkward, but it is
nothing but the counterpart of the common assumption 2α − divβ > α0 for the
case of scalar advection. Further explanations on Assumption 1.2 will be given in
the beginning of Section 3.

2. Derivation of the Method

The derivation of the method follows the derivation of the stabilized discontin-
uous Galerkin method for scalar advection in [7]. By similar arguments we get
stability and consistency of the method.

Let T be a regular partition of Ω into tetrahedral elements T ; hT is the diameter
of T , and h = maxT∈T hT . The boundary of each element is decomposed into 4
triangles, called facets. We assume that each facet f has a distinguished normal
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nf . If a facet f is contained in the boundary of some element T then either
nf = n∂T |f or nf = −n∂T |f . Then, if u is a piecewise smooth vector field on
T , u+ and u− denote the two different restrictions of u to f , e.g. u+ := u|T+

where element T+ has outward normal nf . With these restrictions we define also
the jump [u]f = u+ − u− and the average {u}f = 1

2 (u
+ + u−). For f ⊂ ∂Ω we

assume f to be oriented such that nf points outwards. Let F◦ and F∂ be the set
of interior and boundary facets. F∂

−,F
∂
+ ⊂ F∂ are the sets of facets on the inflow

and outflow boundary, respectively.
We define the bilinear mapping:

(2.1) (u,v)f,β :=

∫

f

(β · nf )(u · v dS) ,

the magnetic advection operator, the Lie derivative,

(2.2) Lβ u := grad(β · u) + curl u× β

and its formal adjoint

(2.3) Lβ u := curl(β × u)− β divu ,

e.g. for smooth u and v we have

(2.4) (Lβ u,v)Ω − (u,Lβ v)Ω = (u,v)∂Ω,β .

Further letVh denote some finite element space of piecewise smooth vector fields.
We fix some element T , test (1.2) with v, v ∈ Vh, integrate the product over T
and apply the partial integration rule (2.4):

(αu,v)T + (u,Lβ v)T + (u,v)∂T,β = (f ,v)T .

Summing this equation over all elements yields:

(αu,v)Ω +
∑

T

(u,Lβ v)T +
∑

T

(u,v)∂T,β = (f ,v)Ω ,

or, if we write the sum over boundaries of elements as sum over facets:

(αu,v)Ω +
∑

T

(u,Lβ v)T +
∑

f∈F◦

(

u+,v+
)

f,β
−

(

u−,v−
)

f,β

+
∑

f∈F∂

(u,v)f,β = (f ,v)Ω .

The identity

(2.5)
(

u+,v+
)

f,β
−

(

u−,v−
)

f,β
=

(

[u]f , {v}f

)

f,β
+

(

{u}f , [v]f

)

f,β

shows
(

u+,v+
)

f,β
−

(

u−,v−
)

f,β
=

(

{u}f , [v]f

)

f,β

for smooth solutions of u of the advection problem (1.2), since u is non-smooth
only across characteristic faces, i.e. those faces f with nf · β = 0. But for f with
nf · β = 0 we have (·, ·)f,β = 0, anyway. We are now in the position to define a
stabilized Galerkin scheme for the advection problem (1.2):

Find u ∈ Vh, such that:

(2.6) a (u,v) = l (v) , ∀v ∈ Vh ,

with

(2.7) l (v) := (f ,v)Ω −
∑

f∈F∂
−

(g,v)f,β
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and

(2.8)

a (u,v) := (αu,v)Ω +
∑

T

(u,Lβ v)T +
∑

f∈F∂\F∂
−

(u,v)f,β

+
∑

f∈F◦

(

{u}f , [v]f

)

f,β
+

(

cf [u]f , [v]f

)

f,β
,

where cf ∈ R is a stabilization parameter that will be specified later. Since the

stabilization terms
(

cf [u]f , [v]f

)

f,β
vanish for u solution to (1.2), the derivation

proves consistency.

Corollary 2.1. The variational formulation (2.6) is consistent with problem (1.2)

Remark 2.2. The choice cf = 1
2

β·nf

|β·nf |
yields a scheme with so-called upwind fluxes:

(

{u}f , [v]f

)

f,β
+

(

cf [u]f , [v]f

)

f,β
=

(
1

2

(

1 +
β · nf

|β · nf |

)

u+ +
1

2

(

1−
β · nf

|β · nf |

)

u−, [v]f

)

f,β

.

When we want to implement our variational formulation we realize that the
evaluation of the terms (u,Lβ v)T requires knowledge of first order derivatives of
β due to Lβ v = curl(β× v) +β div v. Therefore, the representation of a (u,v) in
the following proposition is much more convenient for implementation.

Proposition 2.3. The following equality holds for all u,v ∈ Vh:

a (u,v) = (αu,v)Ω +
∑

T

(curl u× β,v)T − (u,βdiv v)T

+
∑

f∈F◦

∫

f

β · {u}f [v]f · nf dS −

∫

f

(

[u]f × nf

)

·
(

{v}f × β
)

dS

+
∑

f∈F◦

∫

f

cfβ · [u]f [v]f · nf dS +

∫

f

cf

(

[u]f × nf

)

·
(

[v]f × β
)

dS

+
∑

f∈F∂\F∂
−

∫

f

(β · u)(v · nf ) dS −
∑

f∈F∂
−

∫

f

(u× nf ) · (v × β) dS ,

Proof. The proof follows from integration by parts, standard identities from vector
calculus and the identity u+ · v+ − u− · v− = [u]f · {v}f + {u}f · [v]f , c.f. [17]

∑

T

(u, curl(β × v))T =
∑

T

(curl u,β × v)T −

∫

∂T

(u× (β × v)) · n∂T dS

=
∑

T

(curl u× β,v)T −

∫

∂T

(u× n∂T ) · (v × β) dS

=
∑

T

(curl u× β,v)T −
∑

f∈F∂

∫

f

(u× nf ) · (v × β) dS

−
∑

f∈F◦

∫

f

(u+ × nf ) · (v
+ × β) dS −

∫

f

(u− × nf ) · (v
− × β) dS

=
∑

T

(curl u× β,v)T −
∑

f∈F∂

∫

f

(u× nf ) · (v × β) dS

−
∑

f∈F◦

∫

f

([u]f × nf ) · ({v}f × β) dS +

∫

f

({u}f × nf ) · ([v]f × β) dS .



6 HOLGER HEUMANN AND RALF HIPTMAIR

Then we get

a (u,v) = (αu,v)Ω +
∑

T

(curl u× β,v)T − (u,β div v)T +
∑

f∈F∂\F∂
−

(u,v)f,β

+
∑

f∈F◦

(

{u}f , [v]f

)

f,β
+

(

cf [u]f , [v]f

)

f,β
−

∑

f∈F∂

∫

f

(u× nf ) · (v × β) dS

−
∑

f∈F◦

∫

f

([u]f × nf ) · ({v}f × β) dS +

∫

f

({u}f × nf ) · ([v]f × β) dS

and the assertion follows from

(B ·N)(U ·V)− (B ·U)(V ·N) = (U×N) · (V ×B) .

!

We proceed by proving stability in the mesh dependent norm:

(2.9) ‖u‖2h := ‖u‖2L2(Ω) +
∑

f∈F◦

∥
∥
∥[u]f

∥
∥
∥

2

f,cfβ
+

∑

f∈F∂\F∂
−

‖u‖2f, 1
2
β +

∑

f∈F∂
−

‖u‖2f,− 1
2
β ,

with the definition ‖·‖2f,β := (u,u)f,β. ‖·‖h is a norm for any choice cf with
cfβ · nf ≥ 0, because then (cfu,u)f,β is non-negative according to the definition

of (·, ·)f,β and ‖u‖2f, 1
2
β, f ∈ F∂ \ F∂

− and ‖u‖2f,− 1
2
β, f ∈ F∂

− are non-negative

according to the definition of the inflow boundary.
In the following we will consider the Galerkin formulation (2.8) where the pa-

rameter fullfills the following positivity condition.

Assumption 2.4. Assume the parameters cf in the definition (2.8) satisfy for all
faces f the positivity condition

cfβ · nf > 0 .

Lemma 2.5. Let the assumptions 1.2 and 2.4 hold. Then we have for all u ∈ Vh:

a (u,u) ≥ min(α0, 1) ‖u‖
2
h .

Proof. A short calculation verifies:

(2.10)
Lβ u+ Lβ u = grad(β · u) + curl u× β + curl(β × u)− β divu

= Dβu+ (Dβ)Tu− divβu
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and the assertion follows from the partial integration formula (2.4):

a (u,u) = (αu,u)Ω +
∑

T

(u,Lβ u)T +
∑

f∈F∂\F∂
−

(u,u)f,β

+
∑

f∈F◦

(

{u}f , [u]f

)

f,β
+

(

cf [u]f , [u]f

)

f,β

= (αu,u)Ω +
∑

T

1

2
(u, (Lβ +Lβ)u)T +

∑

f∈F∂\F∂
−

(u,u)f,β

+
∑

f∈F◦

(

{u}f , [u]f

)

f,β
+

(

cf [u]f , [u]f

)

f,β

−
1

2

∑

f∈F◦

(

{u}f , [u]f

)

f,β
+

(

[u]f , {u}f

)

f,β
−

1

2

∑

f∈F∂

(u,u)f,β

= (αu,u)Ω +
∑

T

1

2
(u, (Lβ +Lβ)u)T +

∑

f∈F◦

(

cf [u]f , [u]f

)

f,β

+
1

2

∑

f∈F∂\F∂
−

(u,u)f,β −
1

2

∑

f∈F∂
−

(u,u)f,β

≥min(
1

2
α0, 1)‖u‖

2
h ,

since (u,u)f,β ≥ 0 for f ∈ F∂ \ F∂
−. !

Remark 2.6. The case cf = 0 corresponds to the unstabilized Galerkin formulation,
where we have stability only in L2 (Ω):

a (u,u) ≥ min(
1

2
α0, 1) ‖u‖

2
L2(Ω) .

3. Convergence: Discontinuous Approximation Spaces

In the case of discontinuous approximation spaces, the stabilized Galerkin meth-
ods for the magnetic advection problem could be treated in the framework of
Friedrichs symmetric operators.

A Friedrichs symmetric operator is a linear first order differential operator of the
following form:

(3.1) Tv :=
n
∑

j=1

B(j)∂jv +Cv ,

with B(j),C : Ω → Rn×n, B(j)T = B(j) and λmin

{

C+CT −
∑n

j=1 ∂jB
(j)

}

≥ α0,

α0 > 0. The short calulation

Lβ u = grad(β · u) + curl u× β

=





∑

i ∂1βiui +
∑

i βi∂1ui
∑

i ∂2βiui +
∑

i βi∂2ui
∑

i ∂3βiui +
∑

i βi∂3ui



+





β3∂3u1 − β3∂1u3 − β2∂1u2 + β2∂2u1

β1∂1u2 − β1∂2u1 − β3∂2u3 + β3∂3u2

β2∂2u3 − β2∂3u2 − β1∂3u1 + β1∂1u3





= DβTu+
3

∑

i=1

βi∂iu

verifies that the magnetic avection operator in (1.5) is an operator of this type if
Assumption 1.2 holds. In [11], Friedrichs gives the general form of admissible bound-
ary conditions that ensure uniqueness of boundary value problems with Friedrichs
symmetric operators. Under appropriate smoothness assumptions it then follows



8 HOLGER HEUMANN AND RALF HIPTMAIR

that the magnetic advection problem (1.2) with inflow boundary condition has a
unique solution if Assumption 1.2 holds. A similar result can be derived within the
framework of exterior calculus and Lie derivatives [14, Section 3.4].

We refer to [9, Section 4], [24] and [23, Chapter 3] for details on discontinuous
Galerkin methods for Friedrichs systems. The typical convergence results for such
methods (see [9, Theorem 4.6 and Corollary 4.7] or [23, Theorem 50 and Corollary
12]) are optimal order convergence in the norm ‖ · ‖h, i.e. order r + 1

2 if r is
the polynomial degree of the approximation space and the solution is sufficiently
smooth.

Nevertheless we present here a proof that is adapted to the magnetic advection
problem and stresses the significance of globally discontinuous approximation spaces
for obtaining optimal convergence estimates.

Theorem 3.1. Let the Assumptions 1.2 and 2.4 hold. Let Vh be the finite element
space of discontinuous piecewise polynomial vector fields:

(3.2) Vh = Vr
dis := {v ∈ L2 (Ω) , v|T ∈ (Pr(T ))

3
, T ∈ T } ,

where Pr, r ≥ 0 is the space of polynomials of degree r or less. Let u ∈ Hr+1 (Ω)
and uh ∈ Vh be the solutions to the advection problem (1.2) and its variational
formulation (2.6). We get with C > 0 depending only on α, β, the polynomial
degree and the shape regularity

‖u− uh‖h ≤ Chr+ 1
2 ‖u‖Hr+1(Ω) .

Proof. Let ūh denote the L2-projection of u on Vh. Then stability (Lemma 2.5)
and consistency (Corollary 2.1) show

min(
1

2
α0, 1) ‖uh − ūh‖

2
h ≤ a (uh − ūh,uh − ūh) = a (η,γh) ,

with η := u − ūh and γh = uh − ūh. Let βh denote the L2-projection of β onto
V0

dis, then Lβh
γh ∈ Vh, i.e.

(

η,Lβh
γh

)

T
= 0, and

(3.3)

a (η,γh) = (αη,γh)Ω +
∑

T

(

η, (Lβ −Lβh
)γh

)

T
+

∑

f∈F∂\F∂
−

(η,γh)f,β

+
∑

f∈F◦

(

{η}f , [γh]f

)

f,β
+

(

cf [η]f , [γh]f

)

f,β
.

The pairing
(

[η]f , [γh]f

)

f,cfβ
=

(

cf [η]f , [γh]f

)

f,β
is a semi-definite bilinear form

by the assumption cfβ · nf ≥ 0. Hence Cauchy-Schwarz inequalities yield:

(η,γh)f,β ≤ ‖η‖f,β ‖γh‖f,β , for f ∈ F∂ \ F∂
− ,

(

c−1
f {η}f + [η]f , [γh]f

)

f,cfβ
≤

∥
∥
∥c−1

f {η}f + [η]f

∥
∥
∥
f,cfβ

∥
∥
∥[γh]f

∥
∥
∥
f,cfβ

, for f ∈ F◦ ,

(

η, (Lβ −Lβh
)γh

)

T
≤ ‖η‖L2(T )

∥
∥(Lβ −Lβh

)γh

∥
∥
L2(T )

,

(αη,γh)Ω ≤ ‖α‖W 0,∞(Ω) ‖η‖L2(Ω) ‖γh‖L2(Ω) .

Next we use

• the multiplicative trace inequality,

‖η‖2f,cfβ ≤ C(h−1
f ‖η‖2L2(T ) + hf |η|

2
H1(T )) ,

with diameter hf of face f and C > 0 depending on the minimum angle of T
and β, that follows analogous to the one for scalar functions in [1, Theorem
3.10];
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• the estimate
∥
∥(Lβ −Lβh

)γh

∥
∥
L2(T )

≤ |β − βh|W 1,∞(T ) ‖γh‖L2(T ) + ‖β − βh‖L∞(T ) |γh|H1(T )

≤ max
(

|β − βh|W 1,∞(T ) , C |βh|W 1,∞(T )

)

‖γh‖L2(T ) ,

that follows by the product rule;
• the inverse inequality,

|γh|H1(T ) ≤ Ch−1
T ‖γh‖L2(T ) ,

with element diameter hT and C > 0 independent of hT .

In conclusion we find with C > 0 depending only on α and β

(αη,γh)Ω +
∑

T

(

η, (Lβ −Lβh
)γh

)

T
≤ C ‖η‖L2(Ω) ‖γh‖L2(Ω)

and with C > 0 depending on cf , β and the minimum angle of elements of T

∑

f∈F∂\F∂
−

(η,γh)f,β +
∑

f∈F◦

(

{η}f , [γh]f

)

f,β
+

(

cf [η]f , [γh]f

)

f,β

≤ C
(

h− 1
2 ‖η‖L2(Ω) + h

1
2 ‖η‖H1(Ω)

)

‖γh‖h .

Then triangle inequality and the approximation estimates for Vh, e.g.

inf
uh∈(Pk(T ))3

‖u− uh‖L2(T ) ≤ Chr+1‖u‖Hr+1(T ) ,

and
inf

uh∈(Pk(T ))3
‖u− uh‖H1(T ) ≤ Chr‖u‖Hr+1(T ) ,

yield the assertion. !

For the non-stabilized scheme, i.e. cf = 0 in (2.6), we get a sub-optimal conver-
gence estimate, since we have to use another inverse inequality to bound the facet
integrals ‖γh‖f,β by L2-norms on elements [7, p. 1902].

4. Convergence: H (curl,Ω)-conforming approximation spaces

The crucial step in the proof of Theorem 3.1, equation (3.3), is based on the
property Lβh

γh ∈ Vr
dis for γh ∈ Vh and piecewise constant velocity fields βh,

βh|T ∈ (P0(T ))
3. For approximation spaces Vh with some continuity across facets

this will not hold true in general. At first, a proof similar to the proof of Theorem
(3.1) gives only a suboptimal estimate, since in this setting

(

η,Lβh
γh

)

,= 0, hence
step (3.3) fails and we need an additional inverse estimate for ‖Lβ γh‖L2(Ω).

To adapt the proof of Theorem 3.1 we need to introduce so-called averaging
interpolation operators mapping discontinuous piecewise polynomial vector fields to
H (curl,Ω)-conforming piecewise polynomial vector fields and discontinuous scalar
piecewise polynomial scalar funcions to H1 (Ω)-conforming piecewise polynomial
functions. Such interpolation operators have been used previously in the analysis
of Discontinuous Galerkin methods ( [19, Appendix], [17, Appendix], [18, Theorem
5.1] and [25]). We recall the definition (3.2) of the discontinuous finite element
vector fields Vr

dis, and introduce H (curl,Ω)-conforming finite element fields

(4.1) Vr
cnf := {v ∈ H (curl,Ω) , v|T ∈ (Pr(T ))

3
, T ∈ T }

and the corresponding counterparts for scalar functions; the finite element space of
discontinuous piecewise polynomial scalar functions:

(4.2) Sr
dis := {v ∈ L2 (Ω) , v|T ∈ Pr(T ) , T ∈ T }
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and the finite element space of continuous piecewise polynomial scalar functions

(4.3) Sr
cnf := {v ∈ H1 (Ω) , v|T ∈ Pr(T ) , T ∈ T } .

Again, Pr is the space of polynomials of degree r or less.

Proposition 4.1. Let u ∈ Vr
dis and u ∈ Sr

dis. Then there exist uc ∈ Vr
cnf and

uc ∈ Sr
cnf such that

(4.4) ‖u− uc‖2L2(Ω) ≤ C1

∑

f∈F◦

hf

∫

f

∣
∣
∣[u]f × nf

∣
∣
∣

2
dS

and

(4.5) ‖u− uc‖2L2(Ω) ≤ C2

∑

f∈F◦

hf

∫

f

∣
∣
∣[u]f

∣
∣
∣

2
dS ,

where hf is the diameter of facet f and C1 and C2 depend only on the shape-
regularity and the polynomial degree r, and, in particular, are independent of the
mesh size.

Proof. The proof of (4.4) can be found in [17, Appendix]. The degrees of freedom
of the finite element space Vr

cnf are associated to the edges, faces and elements of
the mesh T . For given u ∈ Vr

dis the degrees of freedom of Vr
cnf associated to edges

and faces are not well-defined. But if we use the average of all one-sided limits we
can define a H (curl,Ω)-conforming approximation uc, that differs from the finite
element representation of u only in those coefficients that are associated to edges
and faces. A technical scaling argument then yields the assertion. The proof of
(4.5) follows similarly. !

Theorem 4.2. Let Assumptions 1.2 and 2.4 hold. Pr, r ≥ 0 is the space of poly-
nomials of degree r or less. Let then Vh be a finite element space of H (curl,Ω)-
conforming piecewise polynomial vector fields of degree r or less:

Vh = Vr
cnf := {v ∈ H (curl,Ω) , v|T ∈ (Pr(T ))

3
, T ∈ T } ,

such that best approximation estimates

min
uh∈Vh

‖u− uh‖Hs(T ) ≤ Chr+1−s‖u‖Hr+1(T ) , s = 0, 1 , ∀u ∈ Hr+1 (Ω)

hold with constants depending only on shape regularity of the mesh, e.g., Vh can
belong to one of the two families of spaces proposed in [29] and [30]. Let u and
uh ∈ Vh be the solutions to the advection problem (1.2) and its discrete variational
formulation (2.6). Then, with C > 0 depending only on α, β, the polynomial degree
and shape regularity, we get

‖u− uh‖h ≤ Chr+ 1
2 ‖u‖Hr+1(Ω) ,

provided that u is sufficiently small.

Proof. We recall a few important properties of our approximation space Vh. The
tangential trace of vector fields in Vh on the intersection of elements is continuous.
The normal trace of curl u, u ∈ Vh, is also continuous, since curl u ∈ H(div,Ω)
and piecewise polynomial. The gradient of an element of the H1 (Ω)-conforming
finite element space Sr

cnf is an element of Vr−1
cnf ⊂ Vr

cnf .
Let ūh denote the global L2-projection of u onto Vh and define η := u− ūh and

γh := uh − ūh. At first we recall that by the assumptions of the theorem

‖η‖L2(T ) ≤ Chr+1‖u‖Hr+1(T ) .

Then by stability, consistency and γh ∈ Vr
cnf :

min(
1

2
α0, 1) ‖u− uh‖

2
h ≤ a (η,γh) .
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Let βh be the L2-projection of β onto V0
dis. As in the proof of Theorem 3.1 we add

and subtract the Lie-derivative with respect to the projected, piecewise constant
velocity field βh:

a (η,γh) = (αη,γh)Ω +
∑

T

(

η, (Lβ −Lβh
)γh

)

T
+

(

η,Lβh
γh

)

T

+
∑

f∈F∂\F∂
−

(η,γh)f,β +
∑

f∈F◦

(

{η}f , [γh]f

)

f,β
+

(

cf [η]f , [γh]f

)

f,β
.

Yet, as
∑

T

(

η,Lβh
γh

)

T
,= 0, in addition we have to prove

∣
∣
∣
∣
∣

∑

T

(η, curl(γh × βh) + βh div γh)T

∣
∣
∣
∣
∣
≤ Ch− 1

2 ‖η‖L2(Ω) ‖γh‖h .

Since, by (2.10) for piecewise constant βh, we have the local identity Lβh
= −Lβh

,
this is implied by

(4.6)

∣
∣
∣
∣
∣

∑

T

(η,βh × curl γh)T

∣
∣
∣
∣
∣
≤ Ch− 1

2 ‖η‖L2(Ω) ‖γh‖h

and

(4.7)

∣
∣
∣
∣
∣

∑

T

(η,grad (βh · γh))T

∣
∣
∣
∣
∣
≤ Ch− 1

2 ‖η‖L2(Ω) ‖γh‖h .

We use the approximation results of Proposition 4.1 to prove the two assertions
(4.6) and (4.7). Let wc ∈ Vr

cnf and wc ∈ Sr
cnf be the conforming approximations

of βh × curlγh ∈ Vr
dis and βh · γh ∈ Sr

dis. Since η = u− ūh and both wc ∈ Vr
cnf

and gradwc,0 ∈ Vr
cnf we find

| (η,βh × curlγh)Ω| =
∣
∣
(

η,βh × curl γh −wc,1
)

Ω

∣
∣

≤ ‖η‖L2(Ω)

∥
∥βh × curlγh −wc,1

∥
∥
L2(Ω)

and

| (η,grad (βh · γh)Ω)| =

∣
∣
∣
∣
∣

∑

T

(

η,grad
(

βh · γh − wc,0
)

Ω

)

∣
∣
∣
∣
∣

≤ C0h
−1 ‖η‖L2(Ω)

∥
∥βh · γh − wc,0

∥
∥
L2(Ω)

.

The approximation results (4.4) and (4.5) give

∥
∥βh × curlγh −wc,1

∥
∥
2

L2(Ω)
≤ C1h

∑

f∈F◦

∥
∥
∥[βh × curlγh]f × nf

∥
∥
∥

2

L2(f)

and

∥
∥βh · γh − wc,0

∥
∥
2

L2(Ω)
≤ C2h

∑

f∈F◦

∥
∥
∥[βh · γh]f

∥
∥
∥

2

L2(f)
.
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Further we have by inverse inequalities, approximation properties of βh and normal
continuity of curlγh ∈ H(div,Ω):
∥
∥
∥[βh × curlγh]f × nf

∥
∥
∥
L2(f)

≤
∥
∥
∥[(βh − β)× curlγh]f × nf

∥
∥
∥
L2(f)

+
∥
∥
∥[β × curlγh]f × nf

∥
∥
∥
L2(f)

≤ C3h
∥
∥
∥[curlγh]f

∥
∥
∥
L2(f)

+
∥
∥
∥[β × curlγh]f × nf

∥
∥
∥
L2(f)

≤ C3h
1
2 ‖curlγh‖L2(T1∪T2)

+
∥
∥
∥[curlγh]f · nfβ − β · nf [curlγh]f

∥
∥
∥
L2(f)

≤ C3h
− 1

2 ‖γh‖L2(T1∪T2)
+ C4

∥
∥
∥β · nf [curlγh]f

∥
∥
∥
L2(f)

≤ C3h
− 1

2 ‖γh‖L2(T1∪T2)
+ C4h

−1
∥
∥
∥β · nf [γh]f

∥
∥
∥
L2(f)

and similar by tangential continuity of γh ∈ H (curl,Ω):
∥
∥
∥[βh · γh]f

∥
∥
∥
L2(f)

≤
∥
∥
∥[(βh − β) · γh]f

∥
∥
∥
L2(f)

+
∥
∥
∥[β · γh]f

∥
∥
∥
L2(f)

≤ C5h
1
2 ‖γh‖L2(T1∪T2)

+
∥
∥
∥β · nf [γh]f

∥
∥
∥
L2(f)

,

with constants C3, C4 and C5 independent of h, and T1 and T2 those elements that
share f . Hence we have proved

∥
∥βh × curlγh −wc,1

∥
∥
L2(Ω)

≤ C6h
− 1

2 ‖γh‖h

and
∥
∥βh · γh − wc,0

∥
∥
L2(Ω)

≤ C7h
1
2 ‖γh‖h ,

which yields estimates (4.6) and (4.7). !

Remark 4.3. The Theorems 4.2 and 3.1 show that the stabilized Galerkin method
(2.6) with H (curl,Ω)-conforming approximation spaces provides the same approx-
imation properties as the stabilized Galerkin methods with globally discontinuous
approximation spaces. The representation of a (·, ·) in Proposition 2.3 reveals that
all the terms with jumps in tangential direction, i.e. [u]f × nf , vanish in the case
of H (curl,Ω)-conforming approximation spaces. The stabilization or upwinding
affects only the normal components.

5. Numerical Experiments

In this section we set Ω ⊂ R2 and focus on the advection problem (1.3). We
consider simplicial triangulations and finite element approximation spaces Vh =
Vr

dis ⊂ L2 (Ω) with no global continuity, and finite element approximation spaces

Vh = Vr
cnf ⊂ H(divR,Ω), with R =

(

0 1
−1 0

)

, i.e. spaces that contain piecewise

polynomials that are globally tangential continuous. The derivations and assertions
in the previous sections, in particular the Theorems 3.1 and 4.2, remain true this
setting.

All calculations are based on the C++/Python finite element library FEn-
iCS/Dolfin [2,27]. We use uniform meshes and interpolate all coefficient functions,
like the velocity β, the boundary data g or the source term f into high order La-
grangian finite element spaces. FEniCS/Dolfin automatically applies quadrature
rules of sufficient accuracy to evaluate all occurring integrals exactly.
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5.1. Experiment 1: Smooth Solution. We set Ω = [0, 1]2, α = 2 and take

β(x, y) =

(

0.66(1− x2)(1− y2)
0.2 + sin(πx) cos(πx)

)

.

We chose the data f and g such that the smooth vector field

u(x, y) =

(

sin(πx)(1 − y2)
(1− x2)(1− y2)

)

becomes the solution of (1.3).
We first determine numerical convergence rates for stabilized schemes with sta-

bilization cf = 1
2

β·nf

|β·nf |
. Figures 1 and 2 give the error in the semi-norm

|u|2h :=
∑

f∈F◦

∥
∥
∥[u]f

∥
∥
∥

2

f,cfβ
+

∑

f∈F∂\F∂
−

‖u‖2f, 1
2
β +

∑

f∈F∂
−

‖u‖2f,− 1
2
β .

The observed rates of convergence confirm that the rates of convergence found in
Theorems 3.1 and 4.2 are sharp.

In the case of no stabilization, e.g. cf = 0, we have stability only in L2 (Ω) (see
Remark 2.6). For this reason the standard analysis for the unstabilized Galerkin
schemes yields only suboptimal convergence rates of order r, if r is the polyno-
mial degree of the approximation spaces. Our experiments (see Figures 3 and 4)
show, that this theory is sharp for H(divR,Ω)-conforming approximation spaces
of arbitrary polynomial degree and discontinuous approximation spaces Vr

dis of odd
polynomial degree.

Finally, the Figures 5 and 6 show the error for the stabilized schemes in the
L2 (Ω)-norm. The rates of convergence improve by 1

2 compared to the theoreti-

cal results for L2 (Ω) in Theorems 3.1 and 4.2. This phenomenon has also been
observed for stabilized Galerkin methods for scalar advection. Only on certain
very special meshes, sometimes called Peterson-meshes, one could find that the
theoretical results are also sharp for the L2-norm [31, 33, 35].

10−2 10−1

10−9

10−7

10−5

10−3

10−1

h

|·
| h
-e
rr
or

r = 0
r = 1
r = 2
r = 3
r = 4

O(hr+ 1
2 )

Figure 1. Experiment 1: Fully discontinuous approximation
spaces Vh = Vr

dis and stabilization cf = 1
2

β·nf

|β·nf |
. The results

comply with the assertions of Theorem 3.1.
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10−2 10−1
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10−6

10−5
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10−1

100

h

|·
| h
-e
rr
or

r = 0
r = 1
r = 2
r = 3

O(hr+ 1
2 )

Figure 2. Experiment 1: H(divR,Ω)-conforming approximation

spaces Vh = Vr
cnf and stabilization cf = 1

2
β·nf

|β·nf |
. The results

match the assertions of Theorem 4.2.
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10−4
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100

h

L
2
-e
rr
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r = 2
r = 3
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O(hr)

Figure 3. Experiment 1: Fully discontinuous approximation
spaces Vh = Vr

dis and no stabilization, i.e. cf = 0.

5.2. Experiment 2: Non-Smooth Data. We set in problem (1.3) Ω = [−1, 1]2,
α = 0

β =

(

4(4 + y)
4 + x

)

,

f = 0 and

g =

(

1 + sin(0.5πx) sin(0.5πy)
−0.5 + cos(0.5πx) cos(0.5πy)

)

.
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Figure 4. Experiment 1: H(divR,Ω)-conforming approximation
spaces Vh = Vr

cnf and no stabilization, i.e. cf = 0.
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Figure 5. Experiment 1: Fully discontinuous approximation
spaces Vh = Vr

dis and stabilization cf = 1
2

β·nf

|β·nf |
. As for scalar

problems, on “normal” meshes we observe faster convergence of
the L2-error.

Since β is linear we can derive a closed form expression of the solution. Figures
7 and 8 show the numerical convergence rates for stabilized schemes, where cf =
1
2

β·nf

|β·nf |
. Since the analytic solution is in this case non-smooth along the trajectory

of the vertex (−1, 1) we observe reduced convergence rates. Figure 9 visualizes a
characteristic error distribution.
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Figure 6. Experiment 1: H(divR,Ω)-conforming approximation

spaces Vh = Vr
cnf and stabilization cf = 1

2
β·nf

|β·nf |
. As for scalar

problems we observe faster convergence of the L2-error on “nor-
mal” meshes.
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Figure 7. Experiment 2: Fully discontinuous approximation
spaces Vh = Vr

dis with (upwind) stabilization cf = 1
2

β·nf

|β·nf |
.
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Figure 8. Experiment 2: H(divR,Ω)-conforming approximation

spaces Vh = Vr
cnf with (upwind) stabilization cf = 1

2
β·nf

|β·nf |
.

!1 !0.5 0 0.5 1

!1

!0.8

!0.6

!0.4

!0.2

0

0.2

0.4

0.6

0.8

1

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 9. Experiment 2: Characteristic distribution of the error.
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5.3. Experiment 3: Numerical Diffusivity. We set in problem (1.3) Ω = [0, 1]2,
α = 0, f = 0,

β =

(

−y − 1
x+ 1

)

, and g =

(

1
1

)

if x < 0.7 and else g =

(

0
0

)

.

The lower and the right boundary of the unit square are the inflow part and the dis-
continuity in the boundary data is advected along the circle (x+1)2+(y+1)2 = 0.7.
We use upwind stabilization in (2.8) and compute numerical solutions for approx-
imation spaces with degree r = 0, 1, 2. As it is to be expected for approximations
of linear advection problems with non-smooth solutions, we observe pronounced
smearing of discontinuities for the low order variants of (2.8), which subsides when
we increase the polynomial degree (see Figure 10). In contrast, the solutions based
on higher degree polynomials are tainted by localized oscillations in the vicinity
of the discontinuity. This, too, is a phenomenon observed with a wide range of
methods.

Figure 10. Experiment 3: H(divR,Ω)-conforming approxima-

tion spaces Vh = Vr
cnf and stabilization cf = 1

2
β·nf

|β·nf |
. The magni-

tude of the numerical solution for polynomial degree r = 0 (upper
right), r = 1 (lower left) and r = 2 (lower right), calculated for the
mesh shown in the upper left and upwind stabilization cf =
1
2

β·nf

|β·nf |
.
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6. Conclusion

We gave a comprehensive a priori convergence analysis of a family of stabilized
Galerkin formulations of the magnetic advection boundary value problem. Opti-
mal algebraic rates convergence in discrete norms are established rigorously. The
method appears to be promising as a foundation for Eulerian discretizations for
both magnetohydrodynamic equations and eddy current problems with moving
conductors.
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indefinite time-harmonic Maxwell equations. Numer. Math., 100(3):485–518, 2005.

[18] P. Houston, I. Perugia, A. Schneebeli, and D. Schötzau. Mixed discontinuous Galerkin ap-
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