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Abstract

Monte Carlo (MC) and multilevel Monte Carlo (MLMC) methods applied to solvers for Partial
Differential Equations with random input data are proved to exhibit intrinsic failure resilience.
Sufficient conditions are provided for non-recoverable loss of a random fraction of MC samples
not to fatally damage the asymptotic accuracy vs. work of a MC simulation. Specifically, the
convergence behavior of MLMC methods on massively parallel hardware with runtime faults is
analyzed mathematically and investigated computationally. Our mathematical model assumes
node failures which occur uncorrelated of MC sampling and with general sample failure statistics
on the different levels and which also assume absence of checkpointing, i.e., we assume irrecoverable
sample failures with complete loss of data. Modifications of the MLMC with enhanced resilience
are proposed. The theoretical results are obtained under general statistical models of CPU failure
at runtime. Particular attention is paid to node failures with so-called Weibull failure models. We
discuss the resilience of massively parallel stochastic Finite Volume computational fluid dynamics
simulations.
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1. Introduction

Monte Carlo (MC) methods estimate statistical moments of random variables (such as means or
so-called “ensemble averages”) by sample averages [6]. The goal can, for instance, be to determine
the expected solution of a partial differential equation (PDE) with random initial or boundary
conditions that follow some statistical law [12–14]. Then, each sample is the solution of the PDE
for a random input (such as, in the context of hyperbolic systems of conservation laws, a particular
initial/boundary condition). The statistical independence of the input data makes it possible to
execute the simulations corresponding to each sample in parallel. The slow convergence of Monte
Carlo methods (M−1/2 for M draws of input data) entails large numbers of samples. This, in
turn, implies good parallel scalability of MC methods to large numbers of processors. Mostly,
the simulations take a similar amount of time such that a distribution among large numbers of
processors with a balanced load is achieved quite easily. In a parallel setting a serious problem is
to guarantee the statistical independence of the random input draws (see, e.g., [22]).
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Multilevel Monte Carlo (MLMC) methods were recently proposed in [7, 12] in order to improve
the accuracy versus work. They can be used for efficient numerical simulations of stochastic
ordinary or partial differential equations. Unlike MC methods where samples are only computed
on one discretization, MLMC methods use a hierarchy of discretization levels hence computations
are done on many different discretizations. Based on the expected solution computed on the
coarsest discretization level, the expected difference from this level to the next finer one is added,
until the finest discretization level is reached. In MLMC methods the expected difference from
two consecutive discretization levels is estimated using the MC method. Hence, in this paper the
difference of a realization computed on two consecutive discretization levels is referred to as a
MLMC sample of a certain “level”. Throughout this paper, a “level” does, therefore, not denote
a discretization level but a level related to a MLMC sample. Note that the discretization levels
need not be related to a grid hierarchy. MLMC can also be applied, e.g., to mesh-free Feynman–
Kac problems [19, 21]. It is by now known (see, e.g., [2, 7, 12–14, 19]) that under rather general
assumptions, MLMC methods converge faster than MC, in terms of overall computational work,
i.e., cumulative execution time. The cumulative execution time and memory consumption of the
computation of samples depend on the levels and differ considerably: the computation of a MLMC
sample of a ‘finer’ level may require much more compute resources (execution time, memory space,
number of cores) than of a sample of a ‘coarser’ level. The load of a MLMC simulation is therefore
not as easy to balance [28] as in MC, as there are only few samples on the fine levels. Nevertheless,
in the context of partial differential equations with random inputs, the MLMC method allows the
approximation of ensemble averages of the solution with a complexity analogous to that necessary
for one numerical solution of the deterministic problem on the finest mesh [2, 12].

The present study is based on the following assumptions: a) in large scale simulations on
emerging, massively parallel computing platforms processor failures at runtime are inevitable [4, 5],
and occur, in fact, with increasing frequency as the number of processors increases, respectively the
quality of processors decreases; b) processor failures at runtime can, in general, not be predicted,
but occur randomly and should therefore be modelled as stochastic processes; c) processor failures
at runtime are not checkpointed and not recoverable; d) the algorithm of interest has redundancy
by design in order to “survive” a certain number of (non-checkpointed) failure events with random
arrivals.

Assumptions c) and d) exclude a large number of currently used standard algorithms, for which
any loss of data entails abortion of execution. We mention only standard Gaussian Elimination with
loss of one pivot element. Other algorithms may, however, tolerate partial loss of data at runtime.
We think of iterative solvers of large, linear systems which may converge even if one or several
iterates are “lost” due to hardware failures and so satisfy assumption d); interestingly, assumption
b) implies that the convergence results of deterministic algorithms for deterministic problems on
random hardware will necessarily be probabilistic in nature. Here, we consider the case when the
algorithm under consideration is stochastic by design, such as Monte Carlo (MC) methods. As
we argue in the present paper, MC methods, being probabilistic in nature, are intrinsically fault
tolerant: as we prove, the loss of (a “subcritical” fraction of) information by failed samples does
not render the whole simulation useless as is the case, e.g., in many matrix computations, such
as Gaussian Elimination. MC samples which were lost due to node failures at runtime can be
repeated since new, independent samples can be generated to replace the failed ones.

We provide a mathematical argument predicting that the convergence behavior of MC is not
affected substantially if the failed samples are simply disregarded, provided there are “not too
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many” (made precise in the mathematical analysis, and corroborated in the numerical experiments)
of these failures.

Specifically, in the present paper we analyze the performance of both MC and MLMC PDE
solvers in the presence of hardware failures at runtime. In particular, we investigate the con-
vergence behavior of these methods if processors fail according to a stochastic failure model; the
presently developed mathematical analysis accommodates rather general failure models. Naturally,
to arrive at a theory which is amenable to rigorous mathematical treatment, a number of simpli-
fying assumptions had to be made. In particular, in our analysis we do not distinguish among
different reasons of processor failure. So, we do not distinguish between node, program, network,
or any other type of failure. We assume that the complete MC sample is lost if one of the (maybe
multiple) processors fails that are used for its simulation. We disregard all samples affected by a
failure and compute the results with the ‘surviving’ ones.

While in MC all samples are from the (single) finest level (or grid), MLMC gets its statistics
also from samples corresponding to coarser grids. (The resolution of the finest level is determined
by the required discretization error.) By using information on multiple levels MLMC needs much
fewer samples on the finest level than ordinary MC to attain the same quality of answer. MLMC
turns out to be much more efficient than MC. To get the optimal MLMC convergence rate (with
respect to work), it is crucial to choose properly the numbers Mℓ of samples on level ℓ.

In the presence of failures without checkpointing MC samples on all levels might be irrevocably
lost. The larger (in the sense that they are defined on finer meshes) samples of the finer levels are
more vulnerable than the (larger number of) smaller samples on the coarser levels. With very high
failure rates it might not be feasible that sufficiently many samples survive on the finer levels. In
general, the error components of faulty levels increase and the overall convergence rate is reduced.
With a sufficiently high failure rate all samples on a particular level may get lost. In this case, the
attainable error is bounded from below by the discretization error of that level.

Our main mathematical results are as follows: we prove convergence of MC and MLMC for
the first moment (sample average) provided that sufficiently many samples survive on average.
We compute the effect of failures according to existing failure models. Numerical experiments of
MLMC for hyperbolic PDE’s coupled with theWeibull failure model validate our theory. We further
investigate the failure resilience of two and three dimensional time-dependent grid applications,
like finite elements, finite differences, or finite volumes. These results are obtained by MLMC
simulations treating the sample sizes Mℓ as random variables.

We also discuss FT issues regarding MPI. In the present standard MPI-3.0 [15], failure of a
single MPI process is fatal for the entire MLMC simulation. For our approach to work, MPI
would have to be extended by a mechanism to survive losses of MPI processes at runtime, and
continue with the remaining ones. Based on this paper the proposed fault tolerant MLMC was
implemented [20, 21] using the User Level Failure Mitigation (ULFM) [3], a fault tolerant version of
MPI. We compare the theoretical error bound with the measured results from this implementation.

The paper is organized as follows: In Sections 2 and 3 we give error bounds for MC and MLMC,
respectively, in the presence of a statistical loss of samples. In Section 4 we discuss the Weibull
failure model. In Section 5 we conduct a number of numerical experiments to investigate how
convergence is affected by failure. We consider two and three dimensional problems with different
convergence rates of the PDE solver. We further discuss the practical applicability of our approach,
and outline a possible procedure if the stochastic failure model is unknown.
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2. MC with a random number of samples

We first introduce a fault tolerant MC (FT-MC) method. Starting from there the fault tolerant
technique used in MLMC is derived.

We are interested in the expected value E[X] of a random variable (RV) X taking values in
a Banach space B, on the probability space (Ω,A ,P), with sample space Ω, σ-algebra A and
probability measure P [17]. If the 2nd moments of X exist the Monte Carlo method can be used
to estimate E[X]. Given a fixed number M of independent, identically distributed samples Xi,
i = 1, 2, . . . ,M , the MC approximation of E[X] is defined by

EM [X] :=
1

M

M
∑

i=1

Xi. (1)

The mean square error in the estimator (1) is known to be (see, e.g., [12, 27])

‖E[X]− EM [X]‖L2(Ω;B) ≤ M−1/2‖X‖L2(Ω;B) := M−1/2
√

E[‖X‖2B]. (2)

The “embarrassingly parallel” evaluation of (1) across a possibly large number of nodes is a common
approach to reduce wall clock time in MC simulations [22]. In the present work, we highlight and
capitalize on a second feature of the MC estimator (1): software or hardware failures at runtime
may cause nodes to fail or even crash, such that some samples get lost. We will give sufficient
conditions on the node failure statistics to prove

1. that it is reasonable to continue the MC simulation without checkpointing,

2. that no recovery of samples from failed nodes is required,

3. that the statistical quality of the MC simulation is unaffected provided “node failures at run-
time do not occur too frequently”, and

4. that there is a certain critical node failure intensity above which the MC simulation does
deteriorate, almost surely.

Let us now be more specific about the mathematical model from which these assertions are
deduced.

In the presence of system failures at runtime, the sample size M in (1) is not a fixed number
anymore, but becomes itself a random variable M̂ . We denote the probability space for the failures
by (Ω′,A ′,P′) and the respective expectation by E

′[·]. We assume throughout the paper that the
node failures at runtime occur with statistics that are independent of the realizations of X. This
implies that the runtime to compute a solution of a realization of X is independent of, e.g., the
realization. In particular, we furthermore assume in the sequel that the surviving samples are
statistically independent. The N -out-of-M strategy suggested by Li and Mascagni [10] has been
designed in such a way that the random numbers generated by any N out of M random number
streams are independent random numbers. The pseudo-random number generators in [11, 24]
incorporate this strategy.

For fixed M the approximation EM [X] is a RV over Ω. For M̂ considered as RV over Ω′ this
approximation becomes

EM̂ [X] :=
1

M̂

M̂
∑

i=1

Xi,
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Therefore, it is a RV over the product probability space (Ω×Ω′,A ⊗A
′,P⊗ P

′). Since (Ω,A ,P)
and since (Ω′,A ′,P′) are finite measure spaces, there exists (see, e.g., [27] and the references there)
an unique product probability measure P̂ = P⊗ P

′ on A ⊗ A
′ such that

P̂(A⊗A′) = P(A)P′(A′), ∀A ∈ A , A′ ∈ A
′ .

Theorem 2.1. The MC error estimate with a random number of samples is given by

‖E[X]− EM̂ [X]‖2
L2(Ω̂;B;P̂)

≤ E
′

[

M̂−1/2
]

‖X‖2L2(Ω;B) . (3)

Proof. We substitute the RV M̂ for M in equation (2) and integrate over (Ω′,A ′,P′) to obtain
∫

Ω′

‖E[X]− EM̂ [X]‖2L2(Ω;B)P
′(dω′) ≤

∫

Ω′

M̂−1/2‖X‖2L2(Ω;B)P
′(dω′)

= E
′

[

M̂−1/2
]

‖X‖2L2(Ω;B) .

Theorem I.3.17. in [26] then shows that

L2(Ω′;L2(Ω;B)) ∼= L2(Ω× Ω′;B;P⊗ P
′),

which leads to the claimed error estimate (3).

Once a particular statistical distribution for the node failures has been adopted (and calibrated
to the hardware platform of interest), the term E

′[M̂−1/2] can be computed and hence using
Theorem 2.1, the a priori error bound for the fault tolerant MC (FT-MC) method as well. The
intuition behind Theorem 2.1 is that all failures are accounted for in the error bound of the FT-
MC. The number of failures occurring in a FT-MC simulation varies according to a known failure
distribution, nevertheless the a priori error bound in Theorem 2.1 remains valid, regardless of the
number of failures. Knowing the failure distribution allows to compute an error bound before the
number of failures and the number of surviving samples is known.

The condition M̂(ω′) = 0 means that no samples remain. If the probability of this event is
positive, then obviously E

′[M̂−1/2] tends to infinity and the FT-MC error bound becomes mean-
ingless. We therefore assume that P′({M̂ = 0}) = 0 in the ensuing analysis. In practice, this
means that the MC estimation has to be restarted from scratch in the event that all samples are
lost at runtime.

3. Abstract multilevel Monte Carlo with sample losses

3.1. Review of the multilevel Monte Carlo method

In this section we consider random variables X that are solutions of problems with random
inputs that can be solved only approximately. Prominent examples are PDEs with random initial
or boundary conditions as they arise in uncertainty quantification (UQ) in engineering applications.
The solutions of these PDEs typically are obtained numerically by a discretization method like the
finite element, finite difference, or finite volume method. We assume that we have available a
hierarchy of discretizations that is indicated by a measure, e.g., the grid spacing.

In contrast to ordinary Monte Carlo methods, multilevel Monte Carlo (MLMC) methods can
exploit this hierarchy of discretizations. If implemented properly, MLMC provides estimates E(X)
of higher accuracy than MC for the same amount of work measured in floating point operations.
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A hierarchy of discretizations is given, for instance, if the computational domain is rectangular
and is discretized by a hierarchy of regular grids with grid spacings (or “mesh widths”)

h0 > · · · > hL, hi = 2hi+1. (4)

Such hierarchies are available to most simulations in engineering. Similar to the derivation of
Giles [7], the difference between X(·, ω) of the original problem and its discretization Xh(·, ω) on
the mesh of width h, i.e., the discretization error, is assumed to converge with order α

‖E[X −Xhℓ
]‖B = O(hαℓ ), α > 0, (5)

where ‖ · ‖B denotes the norm in the Banach space B. We also assume a convergence order β for

‖Xhℓ
−Xhℓ−1

‖L2(Ω;B) = O(hβℓ−1), β, ℓ > 0, (6)

and assume that
‖Xh0

‖L2(Ω;B) = O(1). (7)

Equality (6) is a consequence of the bounded variation of X and of the consistency of the discretiza-
tion scheme, given the almost sure regularity of the sample paths. Furthermore it is assumed that
the work needed to compute Xhℓ

satisfies

Wℓ = O(h−γ
ℓ ) , γ > 0 . (8)

As explained e.g. in [7, 12–14], the MLMC method is based on the following telescopic sum,

E[XhL
] = E[Xh0

] +

L
∑

ℓ=1

E[Xhℓ
−Xhℓ−1

] , (9)

that allows to estimate E[X] levelwise,

E[XhL
] = EM0

[Xh0
] +

L
∑

ℓ=1

EMℓ
[Xhℓ

−Xhℓ−1
] . (10)

On level ℓ we use an ordinary MC method with Mℓ samples (Xi
hℓ

− Xi
hℓ−1

), i = 1, . . . ,Mℓ, to

approximate E[Xhℓ
− Xhℓ−1

]. Note, that in this paper a sample on level ℓ comprises a difference
between the same realization Xi computed on two consecutive discretization levels hℓ and hℓ−1. In
order to form this difference the realizations Xi

hℓ
and Xi

hℓ−1
have to be computed with the same ω.

On the coarsest level we estimate E[Xh0
] with M0 samples Xi

h0
, i = 1, . . . ,M0,. The MLMC error

‖E[X] − E[XhL
]‖L2(Ω;B) is the norm of the difference of the true expectation E[X] in (9) and the

MLMC estimate E[XhL
] in (10),

‖E[X]− E[XhL
]‖L2(Ω;B) ≤ ‖E[X]− E[XhL

]‖B + ‖E[XhL
]− E[XhL

]‖L2(Ω;B)

≤ ‖E[X]− E[XhL
]‖B + ‖E[Xh0

]− EM0
[Xh0

]‖L2(Ω;B)

+
L
∑

ℓ=1

‖E[Xhℓ
−Xhℓ−1

]− EMℓ
[Xhℓ

−Xhℓ−1
]‖L2(Ω;B)

(2)

≤ ‖E[X]− E[XhL
]‖B +M

−1/2
0 ‖Xh0

‖L2(Ω;B)

+
L
∑

ℓ=1

M
−1/2
ℓ ‖Xhℓ

−Xhℓ−1
‖L2(Ω;B).

(11)
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With (6) and (7) this bound becomes

‖E[X]− E[XhL
]‖L2(Ω;B) = O(hαL) +M

−1/2
0 O(1) +

L
∑

ℓ=1

M
−1/2
ℓ O(hβℓ−1). (12)

This result is valid for any numbers L and Mℓ. However, to benefit from MLMC, a clever choice is
crucial. One may balance the expected error terms on the right side of (12) [12] or minimize the
computational work with respect to the expected error, see [7]. In either case, when expressed in
terms of work, the convergence rates of MLMC are always as good as the ones from standard MC
methods. Giles [7] shows that for α ≥ 1/2 and any ǫ < e−1 there is an L and values Mℓ, 0 ≤ ℓ ≤ L,
such that the MLMC (discretization and sampling) error is bounded by

‖E[X]− E[XhL
]‖L2(Ω;B) < ǫ.

with the total work for computing E[XhL
] being given by

work =







O(ǫ−2), β > 1,
O(ǫ−2(log ǫ)2), β = 1,

O(ǫ−2−(1−β)/α), 0 < β < 1.

3.2. Sample losses in MLMC

In the previous section 2 we considered the MC method with a random number of samples,
given the realistic assumption that at least one MC sample survives. Within each level of the
MLMC method a standard MC simulation is executed. This allows to reuse most parts of the FT-
MC approach in the FT-MLMC method. In the FT-MLMC method, in contrast to the FT-MC
method, it is feasible to compute an MLMC estimate even in the case that all samples of one level
ℓ ∈ [0, L] are lost. A level on which all MC samples are lost will be referred to as a lost level. In
MLMC M̂ℓ = 0 on some level ℓ should not lead to an infinite error bound. Therefore, the MLMC
error bound has to be modified such that it can handle lost levels.

3.3. MLMC error bound with lost levels

We derive a MLMC error bound assuming that Mℓ ≥ 0, and hence Mℓ = 0 might appear. We
shall refer to this case as an “entirely lost level”. In the discussion of this section, the number of
samples Mℓ are not random.

The MLMC estimate (10) is modified such that lost levels (Mℓ = 0) are not taken into account,

E[XhL
] = EM0

[Xh0
] +

L
∑

ℓ=1

EMℓ
[Xhℓ

−Xhℓ−1
], EMℓ

[·] = 0 if M̂ℓ = 0. (13)

The error bound
‖E[X]− E[XhL

]‖L2(Ω;B)

is analyzed.
In the following derivation we use a bound for a MC simulation with M = 0 when nothing is

computed (EM [X] = 0, M = 0):

‖E[X]− E0[X]‖L2(Ω;B) = ‖E[X]‖L2(Ω;B) =
√

‖E[X]‖2B ≤
√

E[‖X‖2B] = ‖X‖L2(Ω;B). (14)
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Following the derivation (11) provides an error bound for the MLMC method where levels
might be lost (Mℓ = 0)

‖E[X]− E[XhL
]‖L2(Ω;B) ≤ ‖E[X]− E[XhL

]‖B + ‖E[XhL
]− E[XhL

]‖L2(Ω;B)

≤ ‖E[X]− E[XhL
]‖B + ‖E[Xh0

]− EM0
[Xh0

]‖L2(Ω;B)

+
L
∑

ℓ=1

‖E[Xhℓ
−Xhℓ−1

]− EMℓ
[Xhℓ

−Xhℓ−1
]‖L2(Ω;B)

(2),(14)

≤ ‖E[X]− E[XhL
]‖B +min(1,M

−1/2
0 )‖Xh0

‖L2(Ω;B)

+
L
∑

ℓ=1

min(1,M
−1/2
ℓ )‖Xhℓ

−Xhℓ−1
‖L2(Ω;B) .

(15)

This inequality allows to bound the MLMC error even if all samples are lost on some levels.

Theorem 3.1. The multilevel Monte Carlo error with possible loss of all samples on certain levels
(i.e. when Mℓ ≥ 0) is bounded by

‖E[X]− E[XhL
]‖L2(Ω;B) ≤ ‖E[X]− E[XhL

]‖B +min(1,M
−1/2
0 )‖Xh0

‖L2(Ω;B)

+
L
∑

ℓ=1

min(1,M
−1/2
ℓ )‖Xhℓ

−Xhℓ−1
‖L2(Ω;B),

or, with assumptions (5), (6) and (7), by

‖E[X]− E[XhL
]‖L2(Ω;B) ≤ O(hαL) + min(1,M

−1/2
0 )O(1) +

L
∑

ℓ=1

min(1,M
−1/2
ℓ )O(hβℓ−1) .

The loss of all samples of level ℓ (Mℓ = 0) increases the MLMC error bound in Theorem 3.1

substantially, leading to an error O(hβℓ−1) whatever happens on higher levels. The loss of all samples
of a low discretization level is particularly severe. However, in MLMC methods, the Mℓ are very
large on the coarsest levels, implying a very small probability of losing them all.

3.4. Fault Tolerant MLMC error bound with random failures

As in the fault tolerant MC method we work under the “all or nothing paradigm”, i.e., a sample
is either correctly computed or irrecoverably lost when nodes fail at runtime. We do not distinguish
between node, program, network, or any other cause of failure at runtime. We discard all samples
affected by a failure, and compute the result with the remaining ones. Then the number Mℓ of
samples per level is not a fixed number anymore, but rather a random number denoted by M̂ℓ.

In accordance with Section 2 the probability space for the random solution X is denoted as
(Ω,A ,P). The probability space to model runtime failures is denoted as (Ω′,A ′,P′). Evidently,
the number of MC samples per level M̂ℓ depends on the runtime failures. We model M̂ℓ, M̂ℓ ≤ Mℓ,
as a measurable mapping

M̂ℓ : (Ω
′,A ′,P′) → (N0, 2

N0).
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We derive an error bound for an MLMC sample average estimate which is computed based on
a random number of samples M̂ℓ which models the MLMC method in the presence of failures at
runtime. Specifically, the following fault tolerant MLMC (FT-MLMC) estimator is used:

Ê [XhL
] = EM̂0

[Xh0
] +

L
∑

ℓ=1

EM̂ℓ
[Xhℓ

−Xhℓ−1
] , EM̂ℓ

[·] = 0 if M̂ℓ = 0.

Theorem 3.2. The FT-MLMC error under influence of failure is bounded by

‖E[X]− Ê[XhL
]‖L1(Ω′;L2(Ω;B)) ≤ ‖E[X]− E[XhL

]‖B + E
′[min(1, M̂

−1/2
0 )]‖Xh0

‖L2(Ω;B)

+

L
∑

ℓ=1

E
′[min(1, M̂

−1/2
ℓ )]‖Xhℓ

−Xhℓ−1
‖L2(Ω;B),

or given the assumptions (5), (6) and (7)

‖E[X]− Ê[XhL
]‖L1(Ω′;L2(Ω;B)) ≤ O(hαL) + E

′[min(1, M̂
−1/2
0 )]O(1) +

L
∑

ℓ=1

E
′[min(1, M̂

−1/2
ℓ )]O(hβℓ−1).

Here, we assume that the M̂ℓ are statistically independent of (Ω,A ,P).

Proof. By Theorem 3.1 we have

‖E[X]− Ê[XhL
]‖L2(Ω;B) ≤ ‖E[X]− E[XhL

]‖B +min(1, M̂
−1/2
0 )‖Xh0

‖L2(Ω;B)

+

L
∑

ℓ=1

min(1, M̂
−1/2
ℓ )‖Xhℓ

−Xhℓ−1
‖L2(Ω;B),

Both sides are integrated over the probability space (Ω′,A ′,P′) leading to

∫

Ω′

‖E[X]− Ê[XhL
]‖L2(Ω;B)P

′(dω′)

≤

∫

Ω′

‖E[X]− E[XhL
]‖B +min(1, M̂

−1/2
0 )‖Xh0

‖L2(Ω;B)

+
L
∑

ℓ=1

min(1, M̂
−1/2
ℓ )‖Xhℓ

−Xhℓ−1
‖L2(Ω;B)P

′(dω′) .

With the linearity of the mathematical expectation the error estimate becomes
∫

Ω′

‖E[X]− Ê[XhL
]‖L2(Ω;B)P

′(dω′)

≤

∫

Ω′

‖E[X]− E[XhL
]‖BP

′(dω′) +

∫

Ω′

min(1, M̂
−1/2
0 )P′(dω′)‖Xh0

‖L2(Ω;B)

+

L
∑

ℓ=1

∫

Ω′

min(1, M̂
−1/2
ℓ )P′(dω′)‖Xhℓ

−Xhℓ−1
‖L2(Ω;B) .
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We derived a general error bound for a MLMC method in the presence of faults. Regarding the
implementation some aspects should be considered. A (single level) MC method is used to estimate

E[Xhℓ
−Xhℓ−1

] by EM̂ℓ
[Xhℓ

−Xhℓ−1
] =

∑M̂ℓ

i=1(X
i
hℓ
−Xi

hℓ−1
), where Xi

hℓ
and Xi

hℓ−1
approximate the

same realization Xi with two different discretization parameters hℓ and hℓ−1. This implies a strong
statistical correlation between Xi

hℓ
and Xi

hℓ−1
. Failures influence the random number of samples

per level M̂ℓ. It is emphasized that a sample on a level always consists of the difference between
the two computed solutions Xi

hℓ
−Xi

hℓ−1
. In other words, whenever a sample Xi

hℓ−1
is lost due to a

failure, it is required that the corresponding Xi
hℓ

is disregarded as well, and vice versa. We propose

therefore to do all computations for a sample Xi
hℓ

−Xi
hℓ−1

on a single unit. A failure in this unit

leads automatically to a loss of both Xi
hℓ

and Xi
hℓ−1

. Only entirely computed samples Xi
hℓ
−Xi

hℓ−1

are accumulated or communicated to other units. This procedure has the slight disadvantage that
two different discretizations have to be computed on the same unit.

4. Statistical model of node failure at runtime

System failures can interfere with the computation of the MLMC estimate. They can be due to
errors in software, hardware or network but also due to environmental effects. These failures are
manifestations of various types of errors which can be roughly classified as permanent, transient,
or silent [5]. Permanent errors do not disappear, whereas transient errors are short term errors.
Silent errors are undetected (permanent or transient) errors, and hence they may lead to undetected
erroneous results. Other classifications into hard and soft errors are conceivable and for instance
described in [8].

In the previous section we have extended the MLMC theory to cover random numbers of
samples. This allows to disregard all samples affected by detected errors (permanent or transient,
soft or hard). Our fault tolerant MLMC method simply ignores these lost samples and tries to
make the best out of the surviving ones. Silent (undetected) errors however are not covered by
this theory.

To specify the error bound of the FT-MLMC method the statistics of failures leading to sample
losses has to be known. At present only rather rough failure models are available and, in our
opinion, the development of more detailed, and realistic models is needed. For new HPC systems
first empirical statistical failure studies [16, 25] are available. Schroeder and Gibson [25] derived a
somewhat realistic failure model that has been adopted in the present paper. The authors studied
the failures which occurred over 9 years in more than 20 different systems at Los Alamos National
Laboratory. Their raw data [30] contains an entry for any failure that required the attention of
a system administrator. The authors conclude that the time interval between two failures of an
individual node, as well as for the entire system is well fitted by the Weibull distribution with the
Weibull shape parameter k between 0.7 and 0.8. The probability density function of the Weibull
random variable x is given by (see e.g. [17])

f(x;λ, k) =

{

k
λ

(

x
λ

)k−1
e−(x/λ)k , if x ≥ 0,

0, if x < 0,

where λ > 0 is the scale parameter and k > 0 is the shape parameter. Schroeder and Gibson
also found the failure rates to be roughly proportional to the number of processors in the system.
Therefore, we use the Weibull distribution to model the time between two consecutive failures on
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one node. This model assumes that node failures are statistically independent, which is one of the
rather rough approximations made. The data of Schroeder and Gibson [25] also gives evidence
of a correlation between the failure rate and the type and intensity of the workload running on a
machine, as the failure rate is considerably lower during the night and the weekend. However, in
the present model we had to idealize, since more accurate node failure data and models are hard to
come by, at least at present. Nevertheless we point out that our theory accommodates also other,
more sophisticated parametric failure models, as long as they satisfy the general assumptions in
the present paper, and we hope that failure models with better quantitative accuracy will become
available in the near future.

4.1. Time to next failure as a renewal process

When a new simulation on a computer is started, generally the last time of failure of this
computer is not known. Thus, when applying the above failure model, we are not only interested
in the time between two failures but also in the distribution of the time from the start of the
computation to the first failure on a node. This time is modeled with an ordinary renewal process
(RP). An ordinary RP is a sequence of i.i.d. nonnegative RVs Y1, Y2, . . . In the applied model these
RVs are the time intervals between two failures, hence they are Weibull distributed. After a failure
the failed component is assumed to be replaced within a negligible time. Therefore, the time to
the next failure is again Weibull distributed. The RP is started at t = 0. We are interested in the
so called forward recurrence time until the next failure. Ft is the time from t up to and including
the moment of the next failure. The MLMC computation is started at time t. Rinne [23] states
that, as long as t is finite, Ft can only be evaluated numerically. In the case t → ∞ however [23,
eq. (4.41a)] provides the analytic distribution function of F∞.

A procedure to draw realizations of the forward recurrence time F∞ is given in [29]:

1. Draw S ∼ Γ(1+ 1
k , λ

k), where λ and k are the Weibull scale and shape parameter, respectively.

2. Compute V = S1/k.

3. Draw F∞ ∼ Uniform(0, V ).

4.2. Calibration of the Weibull parameters

The two Weibull scale and shape parameters λ and k are used in the above drawing of the
forward recurrence times F∞. They depend on the machinery the FT-MLMC method runs on.
In [23] several methods are presented to estimate both Weibull parameters.

In our analysis we use the parameters given in [25], k ≈ 0.7 and λ ≈ 7.6 · 105 for a single
node. Note that k ≈ 0.7 is explicitly given in [25] for an individual node. λ is estimated from [25,
Fig. 6(b)]. The time between failures, such that the cumulative distribution function is equal to 0.5,

is given approximately by x ≈ 4.5·105s. Therefore, λ can be approximated by 0.5 ≈ 1−e−(4.5·105/λ)k ,
yielding λ ≈ 7.6 · 105.

These parameters lead to a mean time between failure (MTBF) of approximately 11 days for a
typical node. We use nodes with 128 cores, as in [25] a node has 80–128 cores. Whenever a node
is hit by a failure, results of all involved 128 cores are assumed to be irrevocably lost.

4.3. Avoiding a parametric failure model

We briefly discuss an approach to avoid the parametric statistical failure model and instead
directly work with the failure log of the computer at hand. To this end, we choose time instants
ti, i = 1, . . . , I, in the past at which we start synthetic MLMC runs, where for each sample the
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participating cores are specified, cf. Fig. 1. Based on the failure log we determine for each MLMC
level the number of samples, M̂ℓ(ti), ℓ = 1, . . . , L, that would have survived. The (in general

non-integer) expected values E
′[min(1, M̂

−1/2
ℓ )] ≈ I−1

∑I
i=1min(1, M̂ℓ(ti)

−1/2) are estimated by
the Monte Carlo method. These expected values are then used in the FT-MLMC error bound of
Theorem 3.1.

The time instants ti can be chosen according to the desired start of the FT-MLMC run (e.g.
Monday 5 pm). Then the time of day and the day of the week correlation is taken into account.
Such correlations are prominently present in the failure statistics of Schroeder and Gibson [25].

The downside of this approach is, that the failure log of the computer at hand will at most
span the time since the start of its operation. Hence the number of time instants ti leading to
nonoverlapping synthetic MLMC runs is typically limited, in particular, if additional requests, as
the time of the day, are imposed. Furthermore, the presented procedure may lead to correlated
“failure samples”, which would reduce the Monte Carlo convergence rate, and thus increase the
demand for time instants. Advantages of this approach are its simplicity, its practical applicability,
the fact that many failure correlations are taken into account, and that no failure model has to be
constructed.

5. Numerical experiments

All MLMC methods satisfying assumptions (5)–(8) are suited for the FT-MLMC method. We
assess the quality of our FT-MLMC error bounds by means of the grid-based finite volume code
ALSVID-UQ [1] for solving hyperbolic systems of conservation laws. We set α = β = s in eqs. (5)–
(6). With this choice, the work to compute a sample Xi

hℓ
−Xi

hℓ−1
on level ℓ is

Wℓ = 2d+1Wℓ−1 = 2(d+1)ℓW0, ℓ ≥ 0, (16)

where the exponent originates from d space and 1 time dimensions. Note that samples on low
levels require only a small fraction of the execution time of samples on high levels. The same holds
for memory space. Memory usage of a grid-based PDE solver is given by

memℓ = 2dmemℓ−1 = 2dℓmem0, ℓ ≥ 0. (17)

As suggested in [12] for s < (d+ 1)/2, the number of samples Mℓ on level ℓ, is set to be

Mℓ = 2−2sMℓ−1 = 22(L−ℓ)sML, ℓ ≥ 0. (18)

On the finest level, we choose a moderate number of samples, e.g., ML = 8.
We parallelize our simulation level-wise and across levels. A core deals with samples of only

one level, i.e, it computes solutions on two resolutions used for a sample Xi
hℓ

−Xi
hℓ−1

on level ℓ.
In our implementation we choose an intermediate level b on which individual samples are

executed on a single core. This level is somewhat arbitrary. It is determined typically based on
memory requirements or execution times of a sample. The subdomains are chosen large enough
such that the communication over subdomain-interfaces plays a minor role. On levels ℓ > b, a
single sample is executed in parallel on multiple cores. The number of cores is determined by the
memory requirement of the sample, as given in equation (17). On levels ℓ ≤ b samples are executed
sequentially. So, the number Nℓ of cores assigned to a sample on level ℓ is

Nℓ = ⌈2d(ℓ−b)⌉, ℓ ≥ 0. (19)
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We collect samples in tasks of equal execution times. Tasks are the units of work that are submitted
to the compute nodes. A sample of the finest level forms a task. Tasks of coarser levels consist of
multiple samples. On very coarse levels, all respective samples are included in a single task that
may have a shorter execution time than (most) other tasks. Tasks of the same level are always
computed on independent nodes. Any single node may compute tasks from different levels.

start end

levelL=3
4x64cores

4 x
4 samples

t

wall clock time

level2
4x8cores

4 x
8 samples1sample

2
−d 2

2 s

1sample1sample

1sample

level1
(4x)1core

4 x
16samples1s.

2
−d

1s. 1s. 1s.

2
2 s

level 0
(1x )1core

1x

32samples

1 2
2 s

idle time
32 samples

2
−1

2
−d−1

2
−1

Figure 1: Computing an MLMC estimate with parameters L = 3, ML = 4, d = 3, s = 1/2 and only one core per
task on levels 0 and 1.

In Fig. 1 a 3D example is given with 4 levels, b = 1, ML = 4, and s = 1/2. The MLMC
estimate is computed in parallel on 293 cores. The 4 samples of level L are each computed in a
task of 64 cores. Hence, 256 cores are involved in the computation of this level. On level b = 1 the
number of cores in a task is one. This number increases by the factor 8 from one level to the next
finer, according to (19). On level 0, one core deals with a single task that comprises all 32 samples
of this level. The execution time of this task is approximately half of that of the others, causing a
small load imbalance.

As mentioned in Section 3.4, in our analysis it is crucial that samples Xi
hℓ

−Xi
hℓ−1

be lost as a

whole, i.e., it must never happen that one part (either Xi
hℓ

or Xi
hℓ−1

) survives and is used in the

end result while the other part is lost. This is achieved by computing an entire sample Xi
hℓ
−Xi

hℓ−1

on cores belonging to the same node. In case of node failure the entire sample is lost. Large
samples however use many cores such that multiple nodes have to be used to compute them. In
case of node failure, the processes running on unaffected cores have to realize that they should
stop computing their part of the sample. How this is solved is implementation dependent. In our
FT-MLMC implementation [20] we used User Level Failure Mitigation (ULFM) [3], a fault tolerant
extension of MPI. With ULFM a MPI process trying to communicate with a failed one is notified
about the failure. This process can then prohibit any further communication on the communicator
used for the computation of the affected sample. This ensures that the information of failures is
received by all involved MPI processes. Further details are available in [20].
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5.1. Lowering the risk of losing all samples of a level

A high probability of losing all samples on one level increases the FT-MLMC error bound in
Theorem 3.2 substantially. This applies particularly to the coarse levels where the impact of a loss
is highest. We investigate three ways of storing the results of the samples to reduce the risk of
losing information:

• “late save/n tasks”: The samples of a level are split into at least n tasks each of which is
computed on independent nodes. The samples are stored only after the completion of the
entire task. So, according to our assumptions, a failure at runtime of a task leads to the total
loss of all its samples. With n=4 in the example shown in Fig. 1 only level 0 is affected as
all other levels already run on at least four tasks, see Fig. 2. This strategy reduces the risk
of losing all samples on level 0 by reducing the execution time of a task as well as by using
multiple tasks. The execution time of the now 4 tasks is reduced by a factor of 4 compared
to the original one which increases load imbalance.

level 0
4x1cores

4 x

32samplesidle time8 s.

Figure 2: The “late save/4 tasks” strategy requests at least 4 tasks per level. In the example of Fig. 1 this leads to
a large number of very small tasks on level 0.

• “immediate save”: Immediately after the completion of a sample, its result is safely stored,
and hence will not get lost.

• “intermediate save”: The samples of a level are split into at least two tasks each of which is
computed on independent nodes. The results are exchanged among the partner tasks up to
4 times in a FT-MLMC run.

The three strategies have a different behavior in case of failure. In the “immediate save”
strategy, a larger part of the data on a node survives the failure of the node, leading to higher
failure resilience. This advantage is offset by a higher communication overhead. In the “late save”
strategy the statistical quality of the remaining samples is equivalent to the N -out-of-M strategy
suggested by Li and Mascagni [10]. How to achieve statistical independence of the remaining
samples in the “immediate save” strategy is to our knowledge presently an open question. With
this strategy only the first entries (up to the failure) of a random number stream are used. Also
the resilience of massive parallel RNG (such as WELL [9]) in the presence of partial loss of streams
remains to be addressed. The “intermediate save” strategy is a compromise between the “late
save” and the “immediate save” strategies. It reduced the communication overhead, compared to
the “immediate save” strategy, as the results are stored less frequently and only locally, and fewer
tasks are used, compared to the “late save” strategy.

5.2. Euler equation of gas dynamics

We show results in two and three spacial dimensions for the finite volume method (FT-MLMC-
FVM) that solves the Euler equations of gas dynamics with stochastic initial data. Following [13,
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28], the d-dimensional Euler equations of gas dynamics are given by











ρt + div(ρu) = 0,

(ρu)t + div(ρu⊗ u+ pI) = 0,

Et + div((E + p)u) = 0,

in the domain D = (0, 1)d, with outflow boundary conditions, where ρ is the density, u the velocity
vector and I the identity matrix of order d. The pressure p and the total energy E are related by
the equation of state of an ideal gas.

E :=
p

γ − 1
+

1

2
ρ|u|2,

with γ the ratio of specific heats. We apply random initial conditions which render the state vector
X(x, t, ω) = {ρ(x, t, ω),u(x, t, ω), p(x, t, ω)} a random variable. The variable of interest is the state
vector computed at t = .6 s. In [13] a MLMC Finite Volume Method (MLMC-FVM) approach is
proposed to estimate E[X(·, t)]. We choose the Banach space B in Sections 2 and 3 as L1(D). A
MLMC-FVM error bound is shown for scalar solutions in [12] and assumed to hold for nonlinear
hyperbolic systems of conservation laws in [13, 14] by

‖E[X(·, t)]− EL̂[X(·, t)]‖L2(Ω;L1(D)) ≤ C1h
s
L + C2M̂

∗−
1

2

0 + C3

{

L
∑

ℓ=1

M̂
∗−

1

2

ℓ hsℓ−1

}

, (20)

which corresponds to the error bound (12). We set the constants as 10 · C1 = C2 = 10 · C3 = .5.
The convergence rate

‖E[X(·, t)]− EL[X(·, t)]‖L2(Ω;L1(D)) . W−s/(d+1) · log(W ), s < (d+ 1)/2,

is empirically shown in [13]. Here, W =
∑

WℓMℓ is the total work. Sample errors on level ℓ are
bounded by [12–14]

‖Xℓ(·, t)−Xℓ−1(·, t)‖L2(Ω;L1(D)) ≤ C4h
s
ℓ−1. (21)

This bound is related to assumption (6). The bounds (20) and (21) imply the validity of Theo-
rems 3.1 and 3.2 for the FT-MLMC-FVM method.

5.3. Assessment of the FT-MLMC error bound

The error bound is compared with the measured error of a FT-MLMC implementation. In [20]
we report on the implementation of a MPI-parallelized FT-MLMC method in ALSVID-UQ [1].
In this implementation we used the User Level Failure Mitigation (ULFM) [3], a fault tolerant
extension of MPI. A synthetic failure generator is used to simulate MPI process failures. For this
purpose a timed asynchronous interrupt is set, which kills the MPI process using the exit system
call. This assures that failures can happen at any time, during the computation, the communica-
tion, or while ULFM is recovering from previous failures. Our implementation in [20] demonstrates
that the FT-MLMC algorithm proposed in this paper can be successfully implemented.

In [20] we computed the FT-MLMC results on Brutus, a large compute cluster at ETH Zurich,
where we used one node with four 12-core AMD Opteron 6174CPUs and 64GB of RAM. Due
to incompatibility of the ULFM developer implementation with the batch system of Brutus it is
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currently not possible to run the code on multiple nodes. Therefore, in this Section 5.3, we use a
modified version of the failure model in Section 4 where failures do not affect an entire node but
only a process.

The exact parameters used for the simulation are described in [20] and are summarized in
Table 1. All measurements are averages over multiple FT-MLMC runs. We executed 100 runs if
6 s < MTBF < 100 s, otherwise just 30. The error is computed using a MLMC reference solution
E[Xref] with L = 8, ML = 8 and hL = 2−11, the absolute FT-MLMC error is measured as
√

EM [‖E[XhL
]− E[Xref]‖

2
L1 ], with M = 100 or M = 30 respectively.

ML 2
d; s 2; 1/2
# cells on level 0 (∝ 1/h0) 24

intermediate save 4 times, using 2 tasks
late save using 2 tasks
W5 (time for one sample) 16 × 94 s=1504 s
simulations with levels L = 5
one core per task b = 3
Weibull parameters λ; k variable; 0.5

Table 1: The parameters used for the 2D FT-MLMC runs, cf. Fig. 3.

In Fig. 3 we compare the measurements from a FT-MLMC implementation with the derived
FT-MLMC error bound. The same FT-MLMC problem was simulated with different mean time
between failures (MTBF), by varying the Weibull scale parameter λ of the failure model. In order
to save computing time rather large failure rates (small MTBFs) where used. We determine the
entry failure rate, i.e., the failure rate starting at which fault tolerance is useful. This point is
reached when at least 10% of all FT-MLMC runs encounter a failure, and hence 10% of all fault
intolerant implementations (using standard MPI-3.0) would terminate without a result. This is
predicted by the theory derived in this paper and shown in Fig. 3(a) by the “at least one failure”
probability. In Fig. 3(c) the equivalent measurements for the ULFM implementation [20] are shown.
In both subfigures the entry failure rate is around MTBF = 103 s for the given problem. Fig. 3(c)
additionally presents the measured “process failure” probability, which shows that in average 20%
of all started processes fail at MTBF ≈ 6 s. However, at the entry failure rate (MTBF = 103 s) the
process failure probability is still small.

In Figs. 3(b) and 3(d) the FT-MLMC error bound and the measured relative FT-MLMC error,
respectively, are shown for the “intermediate save” and the “late save” strategies. Additionally we
present the measured reference error from the fault free ALSVID-UQ [1] in Fig. 3(d). We measure
the critical failure rate, the failure rate beyond which the FT-MLMC method does not perform
well anymore. In the FT-MLMC implementation, shown in Fig. 3(d), the critical failure rate is
at MTBF ≈ 40 s. In the FT-MLMC error bound, shown in Fig. 3(b), the critical failure rate
is similar. There the “intermediate save” strategy provides a small benefit over the “late save”
strategy, whereas in the measurement this benefit is negligible. At MTBF ≈ 40 s the “intermediate
save” strategy performs even slightly better compared to the “late save” strategy. This statistical
artifact appears since we are only averaging over 100 FT-MLMC runs.

Both the FT-MLMC implementation as well as the FT-MLMC error bound indicate that the
error only increases slightly between the entry failure rate and the critical failure rate. In our

16



10
0

10
1

10
2

10
3

10
4

10
5

mean time between failure [s]

0.0

0.2

0.4

0.6

0.8

1.0

p
ro

b
a
b
il
it

y

Failure probabilities

at least one failure

(a) Failure probabilities of the 2D FT-MLMC bound.

10
0

10
1

10
2

10
3

10
4

10
5

mean time between failure [s]

10
-1

10
0 Bound for the L1 (L1 )-error

intermediate_save

late_save / 2 tasks

(b) 2D FT-MLMC error bound.

10
0

10
1

10
2

10
3

10
4

10
5

mean time between failure [s]

0.0

0.2

0.4

0.6

0.8

1.0

p
ro

b
a
b
il
it

y

Failure probabilities

at least one failure

process failure

(c) Measured failure probabilities of the 2D FT-
MLMC implementation [20].

10
0

10
1

10
2

10
3

10
4

10
5

mean time between failure [s]

10
-2

10
-1

10
0

re
la

ti
v
e
 e

rr
o
r

Relative L1 (L1 )-error

intermediate_save

late_save / 2 tasks

fault_free

(d) Measured relative errors of the 2D FT-MLMC im-
plementation [20].

Figure 3: Behavior of the 2D FT-MLMC-FVM runs with Weibull distributed failures.

opinion, this is a fundamental insight, as one could also expect a “gradual” loss of performance,
rather than a large range of failure intensities where only a minor degradation is to be observed.
Only after the critical failure rate is reached, the error strongly increases and the numerical quality
of the simulation results is lost.

The sharp rate of failure increase at the critical failure rate does not match well when comparing
the error bound and the measured relative error. One reason is that the constants C1, C2, and
C3 in the error bound are unknown or can only be estimated very conservatively. In reality
many additional constants are subsumed in these three constants. Also keep in mind, that we
are comparing two different things, a possibly pessimistic asymptotic error bound with an actual
discretization, or sampling error, respectively, which may not yet be in the asymptotic range.

5.4. Analysis of FT-MLMC error bounds

Four error bounds with different parameters are analyzed, see Table 2. The error bounds for
the 2-dimensional problem are shown in Fig. 4 and for the three dimensional problems in Fig. 5.
Note that the evaluation of the FT-MLMC error bound does not involve the computation of actual
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samples (in contrast to the FT-MLMC error). It only invloves the error bound (20) based on the
parameters of Table 2, the failure distribution and the work assigned to the cores. Two plots are
shown for each case. On the left the problem size varies and the failure rate remains fixed, while
on the right the failure rate varies while the problem size remains fixed. For easier comparison of
the two plots on the left and on the right, we indicate a particular run by a yellow diamond.

Fig. 4(a,b) Fig. 4(c,d) Fig. 5(a,b) Fig. 5(c,d)

ML 8 8 8 8
d; s 2; 1/2 2; 1 3; 1/2 3; 1
# cells on level 0 (∝ 1/h0) 32× 32 16× 16 8× 8× 8 4× 4× 4
W0 (time for one sample) 0.05 s 0.04 s 0.01 s 0.007 s
simulations with levels L = 5, . . . , 13 L = 5, . . . , 13 L = 4, . . . , 11 L = 4, . . . , 11
one core per task b = 4 b = 3 b = 4 b = 3
Weibull parameters λ; k 7.6 · 105; 0.7 7.6 · 105; 0.7 7.6 · 105; 0.7 7.6 · 105; 0.7

Table 2: The parameters used for the 2D and 3D FT-MLMC runs, of Fig. 4 and 5 (a)–(d).

We determine the entry failure rate and the critical failure rate in all the measurements of
Figs. 4(b,d) and 5(b,d). In all these cases the entry failure rate is at around MTBF = 5 · 107 s
and the critical failure rate at around MTBF = 105 s. Again we observe that between the entry
failure rate and the critical failure rate the error bound increases only slightly. Hence, this desirable
property is found also in large runs, and in multiple dimensional runs. Only after the critical failure
rate the error explodes.

Similar to the entry failure rate, the failure rate from which on fault tolerance is useful, there is
an entry problem size, the problem size from which on fault tolerance is useful, when operating on a
given computer. Again we define this point as reached when 10% of all FT-MLMC runs encounter
a failure. The entry problem size corresponds to a total execution time of around 5 · 106 s for
Figs. 4(a) and 5(a,c). In Fig. 4(c) the entry problem size is around 5 · 105 s. Similar to the critical
failure rate, we use the term of critical problem size in Figs. 4(a,c) and 5(a,c). This problem size
corresponds in our measurements to an execution time of around 109 s. Also in these figures we
observe that the convergence behavior of FT-MLMC is only negligibly affected by failures between
the entry problem size and the critical problem size. After the critical problem size however, the
FT-MLMC method experiences many sample losses, such that the performance drops significantly.
This is apparent for the increasing disparity between the two FT-MLMC graphs “late save/4 tasks”
and “immediate save” with the fault-free MLMC “reference” graph. Hence, when using the failure
distribution of Section 4 the FT-MLMC method allows to solve problems that take more than
100 times longer compared to the largest problem solved with a standard MLMC implementation.

The “late save/4 tasks” error does not only stop decreasing but grows again after the critical
problem size, Fig. 4(a,c) and 5(a). At first this may surprise. However, as the runtime of the
tasks is determined by the runtime of the samples of the finest level, the vulnerability of all tasks
increases as the number of levels increases.

In Fig. 4(a,c) and 5(a,c) it is further observed that the performance of the FT-MLMC method
drops significantly as soon as the probability of losing all samples on the finest level approaches
values close to one. This can be expected, since then much of the computational work is used
attempting to compute samples of which only very few to none survive. This leads to a high error
to work ratio, or, in other words, to a poor FT-MLMC performance.
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Figure 4: Behavior of the 2D FT-MLMC method with parameters from Table 2.

5.5. Practical applicability

To directly employ the theoretical error bounds derived in this paper, it is essential to have
an accurate, parametric statistical node failure model of the compute platform used. Once such a
model has been verified and calibrated to the particular hardware of interest, the computational
work can be redistributed among nodes and cores in order to minimize the overall impact of node
failures on the accuracy of the computation. Based on a statistical node failure model of the
type considered here, a FT-MLMC error bound can be computed, which allows to infer precise
statements on the contributions to the overall error stemming from failures, and on whether the
problem of interest can be solved using FT-MLMC or plain MLMC on the given system.

The weak point of the presently proposed approach is that accurate and detailed, validated
parametric statistical failure models and the data to calibrate them are currently not available.
Hopefully, the situation will improve over time, as the awareness of faults grows. For the time
being we opt to use failure models that allow to determine rough estimates of the entry failure
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Figure 5: Behavior of the 3D FT-MLMC method with parameters from Table 2.

rate, critical failure rate, entry problem size, and critical problem size. Alternatively, in Section 4.3,
we outline how to bypass the failure models and directly work on failure logs.

We expect that in practice the entry problem size and the entry failure rate are not computed
with a known failure distribution, but rather that users will be bothered when failures terminate
the application prematurely in at least 10% of the runs, which coincides with the mentioned
quantities. Only then fault tolerance appears to become an issue for the user (This figure might,
however, be problem and application dependent.) It is not practical for the user to decide when the
performance of FT-MLMC deteriorates, i.e., the critical problem size and the critical failure rate
cannot be determined without some knowledge of the failure distribution. In our measurements we
observed that there is a range between the entry failure rate and the critical failure rate, and a range
between the entry problem size and the critical problem size where the performance of FT-MLMC
is hardly unaffected by faults. In our problems, obviating checkpointing in this observed fault
tolerance extends the range of applicability by two orders of magnitude: on a given computer the
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FT-MLMC method is applicable to problems that take around 100 times longer compared to the
“plain” fault-free MLMC method, or, equivalently, a given problem can be solved on a computer
with around 100 times smaller MTBF thanks to the inherent fault tolerance of MLMC.

The performance of our algorithms depends directly on the parameters d, s, W0, and ML

of Tables 1 and 2. They characterize the problem and its numerical approximation in terms of
the resolution of the discretization. Methods different from the finite volume method considered
here lead to similar values of these parameters. Therefore, we are confident that the qualitative
behavior of a FT-MLMC method, in particular, the considerable gap between entry failure rate
and the critical failure rate, remains similar for other applications.

Our failure model does not take into account that random node failures may in practice be
correlated among different nodes. This has adverse effects on the error bound. For large samples,
running on multiple nodes, correlated node failures could be beneficial in the following sense: as
soon as one node of a sample failed, the computation of this sample is stopped anyway, hence it does
not matter if additional nodes fail simultaneously. For most problems which occur in engineering
practice, and in particular for the Finite Volume simulations considered in the present paper, MC
samples on low levels easily fit on a single node. In the “late save/4 tasks” strategy at least 4 cores
on different nodes are used to compute samples of these levels. Node failure correlation might
increase the risk of losing all 4 involved nodes simultaneously, which has a clearly negative effect
on the error bound. But we do not see any parameter which would ruin the nice property that the
error only increases slightly between the entry failure rate and the critical failure rate, and between
the entry problem size and the critical problem size, and that there is a considerably large range
where FT-MLMC is applicable.

The measurement of the number of failures in one single FT-MLMC run on a computer with
unknown failure distribution does not provide any statistical information: it is not possible to
estimate the range of applicability of the FT-MLMC method with a single run. The same holds
for attempts to estimate the constants in the a priori error estimate from data obtained with one
single run.

6. Conclusions

We introduced and analyzed a checkpoint-free and fault-tolerant multilevel Monte Carlo strat-
egy, termed FT-MLMC. The approach is based on disregarding all samples affected by a node
failure at run-time. It is assumed that MPI is extended such that processes unaffected by a failure
can continue working and communicating. The MLMC estimate is computed with the remaining
samples. By incorporating general statistical models of sample losses into the mathematical failure
model and into the error bound of the FT-MLMC method a new MLMC error bound conditional
on prescribed node-failure statistics is derived.

The principal conclusion of the present analysis is that up to a certain rate of node failures the
FT-MLMC error bound and, hence, the performance of the FT-MLMC, is provably of the same
type as that of the standard, fault-free MLMC. We therefore conclude that in this range of failure
rates, in MC and MLMC PDE simulations there is no need for additional fault tolerance strategies
such as, e.g., checkpoint/restart or re-computation of lost samples.

Due to the increasing likelihood of node-failures at run-time in emerging massively parallel
hardware, obviation of checkpointing may afford substantial increases in parallel efficiency and
scalability. In our analysis, we paid particular attention to the case when failures are Weibull dis-
tributed. We considered, exemplarily, a hyperbolic system of conservation laws with random input
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data where samples were computed with the Finite Volume Method (FVM). We emphasize, how-
ever, that neither the Weibull distribution nor the FVM are essential for the principal conclusions
about the performance of the FT-MLMC method.

We compared the derived FT-MLMC error bound with measured errors of a fault tolerant im-
plementation [20, 21]. We showed by a number of examples that the FT-MLMC method compared
to the standard MLMC method can solve, on a given hardware platform, considerably larger and
more time-consuming problems as compared to the standard fault-free MLMC method.

The proposed approach of simply discarding samples affected by a node failure at run-time
has the additional benefit that failures do not extend the run-time as does for instance check-
point/restart, or the re-computation of lost samples. This leads to a bounded run-time, even if
failures occur.

We conclude with the need for further research to develop better and more realistic stochas-
tic and/or deterministic failure models for massively parallel (in particular, exascale) computing
platforms. In the best case a failure model would be provided by hardware vendors, ideally with
failure intensity parameters. Another line of research is the development of effective self-calibrating
statistical failure models which, when run on a given computing platform, would “probe” a given
hardware for failures and accumulate estimates of failure parameters at runtime.

The presently proposed models and their analysis completely disregard silent-errors. In a
further work we may cover some silent-errors by detecting them by statistical means [10].

We further emphasize that the presently proposed failure models are uncorrelated across the
hardware platform: in the presently proposed models, failures occur independently of relative
position of the node within the compute platform. There is, however, evidence that the ‘aging’
of hardware as well as the time of day and the day of the week can affect fault arrival intensity
parameters [25], and it is plausible that spatial correlation (e.g. due to local overheating) can play
a role as well.

We extended the FT-MLMC algorithm towards a dynamic setting, where each FT-MLMC
simulation generates its individual failure statistics and reacts accordingly [18]. In this approach
an a priori parametric failure model is no longer required. However, a fault tolerant implementation
becomes even more involved.
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