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Abstract

Monte Carlo (MC) and Multilevel Monte Carlo (MLMC) methods applied to solvers for Partial
Differential Equations with random input data are shown to exhibit intrinsic failure resilience.
Sufficient conditions are provided for non-recoverable loss of a random fraction of samples not
to fatally damage the asymptotic accuracy vs. work of an MC simulation. Specifically, the con-
vergence behavior of MLMC methods on massively parallel hardware is analyzed mathematically
and computationally, under general assumptions on the node failures and on the sample failure
statistics on the different MC levels, in the absence of checkpointing, i.e. we assume irrecoverable
sample failures with complete loss of data. Modifications of the MLMC with enhanced resilience
are proposed. The theoretical results are obtained under general statistical models of CPU fail-
ure at runtime. Specifically, node failures with the so-called Weibull failure models on massively
parallel stochastic Finite Volume computational fluid dynamics simulations are discussed.

Keywords: Multilevel Monte Carlo, fault tolerance, failure resilience, exascale parallel computing

1. Introduction

Monte Carlo (MC) methods estimate statistical moments of random variables (such as means
or so-called “ensemble averages”) by sample averages, i.e. by repeated simulations of the quantities
of interest that depend on random inputs [6]. The goal of the simulation can, for instance, be to
determine the expected solution of a partial differential equation (PDE) with random initial or
boundary conditions that follow some statistical law [12–14]. In computing the sample averages,
each random input (such as, in the context of hyperbolic systems of conservation laws, a particular
initial/boundary condition) gives rise to a simulation that is independent of the other simulations.
The statistical independence of input draws makes it possible to execute the simulations corre-
sponding to each draw in parallel. The slow convergence of Monte Carlo methods (M−1/2 for
M draws of input data) entails large numbers of samples. This, in turn, implies good parallel
scalability of MC methods to large numbers of processors. Mostly, the simulations take a similar
amount of time such that a distribution among large numbers of processors with a balanced load
is achieved quite easily. In a parallel setting the only serious problem is to guarantee the statistical
independence of the random input draws (e.g. [17]).
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Multilevel Monte Carlo (MLMC) methods were recently proposed in [7, 12] in order to improve
the convergence verus work. These methods are more difficult to parallelize. MLMC methods have
multiple discretization levels on each of which a Monte Carlo simulation is performed. In the end
the results of all levels are summed to yield the desired quantity. MLMC methods converge faster
than MC, in terms of work, i.e., execution time. The execution time and memory consumption of
the computation of samples depend on the mesh levels of the discretization and differ considerably:
the computation of an MC sample of a ‘finer’ level may require much more compute resources
(execution time, memory space, number of cores) compared to a sample of a ‘coarser’ level. The
load of an MLMC simulation is therefore not as easy to balance as in ordinary MC, as there are
only few samples on the fine levels. Nevertheless, in the context of partial differential equations
with random inputs, the MLMC has been proved in [2, 12] to allow the approximation of ensemble
averages of the solution with accuracy versus complexity analogous to that necessary for one
numerical solution of the deterministic problem (resp. of a “single path”) on the finest mesh. The
simultaneous use of different sample sizes on different mesh levels poses, however, challenges to
parallelization with good load balancing (see, e.g. [23]).

The present study is based on the following assumptions: a) in large scale simulations on
emerging, massively parallel computing platforms processor failures at runtime are inevitable [3, 4],
and occur, in fact, with increasing frequency as the number of processors increases, respectively the
quality of processors decreases. b) processor failures at runtime can, in general, not be predicted,
but occur randomly and should therefore be modelled as stochastic processes. c) processor failures
at runtime are not checkpointed and not recoverable. d) the algorithm of interest has redundancy
by design in order to “survive” a certain number of (non-checkpointed) failure events with random
arrivals.

Assumptions c) and d) exclude a large number of currently used standard algorithms, for which
any loss of data entails abortion of execution. We mention only standard Gaussian Elimination with
loss of one pivot element. Other algorithms may, however, tolerate loss of data. We think of, for
example, iterative solvers of large, linear systems which may converge even if one or several iterates
are “lost” due to hardware failures and so satisfy assumption d); interestingly, assumption b) implies
that the convergence results of deterministic algorithms on random hardware will be probabilistic in
nature. Here, we consider the case when the algorithm under consideration is stochastic by design,
such as Monte Carlo (MC) methods. Being probabilistic in nature, MC methods are intrinsically
fault tolerant: the loss of (a limited amount of) information by failed samples does not render the
whole computation useless as is the case, e.g., in many matrix computations. Failed samples can
be repeated or new independent samples can be generated to replace the failed ones. We show that
here, the convergence behavior of MC is not affected substantially if the failed samples are simply
disregarded, provided there are not too many of them.

In this paper we analyze the performance of both MC and MLMC PDE solvers in the presence
of hardware failures at runtime. In particular, we investigate the convergence behavior of these
methods if processors fail with a certain probability. In our analysis, we do not distinguish the
reasons of failure. So, we do not distinguish between node, program, network, or any other type of
failure. We assume that the complete MC sample is lost if one of the (maybe multiple) processors
fails that are used for its simulation. We disregard all samples affected by a failure and compute
the results with the ‘surviving’ ones.

While in MC all samples are from the (single) finest level (or grid), MLMC gets its statistics
also from samples corresponding to coarser grids. (The resolution of the finest level is determined
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by the required discretization error.) By using information on multiple levels MLMC needs much
fewer samples on the finest level than ordinary MC to attain the same quality of answer. MLMC
turns out to be much more efficient than MC. To get the optimal MLMC convergence rate (wrt.
work), it is crucial to choose properly the numbers M! of samples on level !.

In the presence of failures samples on all levels are lost. The larger samples of the finer levels
are more vulnerable than the smaller samples on the coarser levels. On finer levels large enough M!

may not be sustainable. The error components of faulty levels increase and the overall convergence
rate is reduced. In particular, with a sufficiently high failure rate a whole level may get lost such
that the attainable error is bounded by the discretization error of that level.

We prove convergence of MC and MLMC for the first moment (mean) provided that sufficiently
many samples survive on average. We compute the effect of failures according to existing failure
models. Numerical experiments of MLMC for hyperbolic PDE’s coupled with the Weibull failure
model validate our theory. We further investigate the failure resilience of one and three dimensional
time-dependent grid applications, like finite elements, finite differences, or finite volumes. These
results are obtained by MC simulations treating the sample sizes M! as random variables.

The paper is organized as follows: In Sections 2 and 3 we give error bound for MC and
MLMC, respectively, in the presence of a statistical loss of samples. In Section 4 we discuss the
Weibull failure model. In Section 5 we conduct a number of numerical experiments to investigate
how convergence is affected by failure. We consider one and three dimensional problems with
different convergence rates of the PDE solver. We also discuss issues regarding MPI. In the present
implementation, failure of one single MPI process is fatal for the entire MLMC simulation. For
our method to work, MPI would have to be extended by a mechanism to survive losses of MPI
processes at runtime, and continue with the remaining ones.

2. MC with a random number of samples

We first introduce a fault tolerant MC (FT-MC) method. Starting from there the fault tolerant
technique used in MLMC is derived.

We are interested in the expected value E[X] of a random variable (RV) X in the probability
space (Ω,A ,P), with sample space Ω, σ-algebra A and probability measure P [16]. If the 2nd
moments of X exist the Monte Carlo method can be used to estimate E[X]. Given a fixed number
M of independent, identically distributed samples Xi, i = 1, 2, . . . ,M , the MC approximation of
E[X] is defined by

EM [X] :=
1

M

M∑

i=1

Xi. (1)

The mean square error in the estimator (1) is known to be (see, e.g., [12, 22])

‖E[X]− EM [X]‖2L2(Ω;L1(Rd)) =
1

M
‖X‖2L2(Ω;L1(Rd)). (2)

The “embarassingly parallel” evaluation of (1) across a possibly large number of nodes is a common
approach to reduce wall clock time in MC simulations. In the present work, we highlight and
capitalize on a second feature of the MC estimator (1): software or hardware failures at runtime
may cause nodes to fail or even crash, such that some samples get lost. We will give sufficient
conditions on the node failure statistics to prove that
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1. it is reasonable to continue the MC simulation without checkpointing,

2. that no recovery of samples from failed nodes is required,

3. that the statistical quality of the MC simulation is unaffected provided “node failures at run-
time do not occur too frequently”, and

4. that there is a certain critical node failure intensity above which the MC simulation does
deterioriate, almost surely.

Let us now be more specific about the mathematical model from which these assertions are
deduced.

In the presence of system failures at runtime, the sample size M in (1) is not a fixed number
anymore, but becomes itself a random variable M̂ . We denote the probability space for the failures
by (Ω′,A ′,P′) and the respective expectation by E′[·]. We assume throughout the paper that the
node failures at runtime occur with statistics that are independent of the realizations of X. This
implies that the runtime to compute a solution of a realization of X is independent of e.g., the
realization. In particular, we furthermore assume in the sequel that the surviving samples are
statistically independent. The N -out-of-M strategy suggested by Li and Mascagni [10] has been
designed in such a way that the random numbers generated by any N out of M random number
streams are independent random numbers. The pseudo-random number generators in [11, 19]
incorporate this strategy.

For fixed M the approximation EM [X] is a RV over Ω. For M̂ considered as RV over Ω′ this
approximation becomes

EM̂(ω′)[X] :=
1

M̂(ω′)

M̂(ω′)∑

i=1

Xi(ω).

Therefore, it is a RV over the product probability space (Ω×Ω′,A ⊗A ′,P⊗ P′). Since (Ω,A ,P)
and since (Ω′,A ′,P′) are finite measure spaces, there exists (see, e.g., [22] and the references there)
a unique product probability measure P̂ = P⊗ P′ on A ⊗ A ′ such that

P̂(A⊗A′) = P(A)P′(A′), ∀A ∈ A , A′ ∈ A ′ .

Theorem 2.1. The MC error estimate with a random number of samples is given by

‖E[X]− EM̂(ω′)[X]‖2
L2(Ω̂;L1(Rd);P̂) = E′

[
1

M̂(ω′)

]
‖X‖2L2(Ω;L1(Rd)). (3)

Proof. We substitute the RV M̂(ω′) for M in equation (2) and integrate over (Ω′,A ′,P′) to obtain
∫

Ω′
‖E[X]− EM̂(ω′)[X]‖2L2(Ω;L1(Rd))P

′(dω′) =

∫

Ω′

1

M̂(ω′)
‖X‖2L2(Ω;L1(Rd))P

′(dω′)

= E′

[
1

M̂(ω′)

]
‖X‖2L2(Ω;L1(Rd)).

Theorem I.3.17. in [21] then shows that

L2(Ω′;L2(Ω;L1(Rd))) ∼= L2(Ω× Ω′;L1(Rd);P⊗ P′),

which leads to the claimed error estimate (3).
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Theorem 2.1 gives an error bound for the MC method with a random number of samples which
can be used to deal with node failures. Knowing the failure distribution the term E′[1/M̂(ω′)] can
be computed and hence the error bound for the fault tolerant MC (FT-MC) method as well.

M̂(ω′) = 0 means that no samples remain. If there is a positive probability that this happens,
then E′[1/M̂(ω′)] tends to infinity and the FT-MC error bound becomes meaningless. Without
loss of generality we therefore ignore the case M̂(ω′) = 0. In practice, this means that the MC
estimation has to be restarted from scratch in the event that all samples are lost at runtime.

3. Abstract Multilevel Monte Carlo with sample losses

3.1. Review of the Multilevel Monte Carlo method

In this section we consider random variables X that are solutions of problems with random
inputs that can be solved only approximately. Prominent examples are PDEs with random initial
or boundary conditions as they arise in uncertainty quantification (UQ) in engineering applications.
The solutions of these PDEs typically are obtained numerically by a discretization method like the
finite element, finite difference, or finite volume method. We assume that we have available a
hierarchy of discretizations that is indicated by a measure, e.g., the grid spacing.

In contrast to ordinary Monte Carlo methods, Multilevel Monte Carlo (MLMC) methods can
exploit this hierarchy of discretizations. If implemented properly, MLMC provides estimates E(X)
of higher accuracy than MC for the same amount of work measured in floating point operations.

A hierarchy of discretizations is given for instance under the assumption that the computational
domain is rectangular and is discretized by a hierarchy of regular grids with grid spacings (or
“meshwidths”)

h0 > · · · > hL, hi = 2hi+1. (4)

Such hierarchies are available to most simulations in engineering. Similar to [7], the difference
between X(·,ω) of the original problem and its discretization Xh(·,ω) on the mesh of width h, i.e.
the discretization error, is assumed to be

‖E[X −Xh!
]‖B = O(hα! ). (5)

We also assume that the inequalities

‖Xh!
−Xh!−1

‖L2(Ω;B) = O(hβ!−1), ! > 0, (6)

and
‖Xh0‖L2(Ω;B) = O(1) (7)

hold. The first equality is a consequence of the bounded variation of X and of the consistency of
the discretization scheme, given the almost sure regularity of the sample paths; the latter equality
can always be achieved by a scaling of the data. Furthermore it is assumed that the work needed
to compute Xh!

satisfies
W! = O(h−γ

! ) . (8)

As explained e.g. in [7, 12–14], the MLMC method is based on the following telescopic sum,

E[XhL ] = E[Xh0 ] +
L∑

!=1

E[Xh!
−Xh!−1

] , (9)
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that allows to estimate E[X] levelwise,

E[XhL ] = EM0 [Xh0 ] +
L∑

!=1

EM! [Xh!
−Xh!−1

] . (10)

On level ! we use an ordinary MC method with M! samples (Xi
h!

− Xi
h!−1

), i = 1, . . . ,M!, to

approximate E[Xh!
− Xh!−1

]. Note that in order to form these differences the realizations Xi
h!

and Xi
h!−1

have to be computed with the same ω. On the coarsest level we estimate E[Xh0 ] with

M0 samples Xi
h0
, i = 1, . . . ,M0,. The MLMC error ‖E[X] − E[XhL ]‖L2(Ω;B) is the norm of the

difference of the true expectation E[X] in (9) and the MLMC estimate E[XhL ] in (10),

‖E[X]− E[XhL ]‖L2(Ω;B) ≤ ‖E[X]− E[XhL ]‖B + ‖E[XhL ]− E[XhL ]‖L2(Ω;B)

≤ ‖E[X]− E[XhL ]‖B + ‖E[Xh0 ]− EM0 [Xh0 ]‖L2(Ω;B)

+
L∑

!=1

‖E[Xh!
−Xh!−1

]− EM! [Xh!
−Xh!−1

]‖L2(Ω;B)

(2)
≤ ‖E[X]− E[XhL ]‖B +M−1/2

0 ‖Xh0‖L2(Ω;B)

+
L∑

!=1

M−1/2
! ‖Xh!

−Xh!−1
‖L2(Ω;B).

(11)

With (6) and (7) this bound becomes

‖E[X]− E[XhL ]‖L2(Ω;B) = O(hαL) +M−1/2
0 O(1) +

L∑

!=1

M−1/2
! O(hβ!−1). (12)

This result is valid for any numbers L and M!. However, to benefit from MLMC, a clever choice is
crucial. One may balance the expected error terms on the right side of (12) [12] or minimize the
computational work with respect to the expected error, see [7]. In either case, when expressed in
terms of work, the convergence rates of MLMC are always as good as the ones from standard MC
methods. Giles [7] shows that for α ≥ 1/2 and any ε <e −1 there is an L and values M!, 0 ≤ ! ≤ L,
such that the MLMC (discretization and sampling) error is bounded by

‖E[X]− E[XhL ]‖L2(Ω;B) < ε.

with the total work for computing E[XhL ] being given by

work =






O(ε−2), β > 1,
O(ε−2(log ε)2), β = 1,
O(ε−2−(1−β)/α), 0 < β < 1.

3.2. Sample losses in MLMC

In the previous section 2 we considered the MC method with a random number of samples,
given the realistic assumption that at least one MC-sample survives. Within each level of the
MLMC method a standard MC simulation is executed. This allows to reuse most parts of the FT-
MC approach in the FT-MLMC method. In the FT-MLMC method, in contrast to the FT-MC
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method, it is feasible to compute an MLMC estimate even in the case that all samples of one level
! ∈ [0, L] are lost. A level ! of mesh-refinement on which all MC samples are lost will be referred
to as a lost level. In MLMC M̂!(ω′) = 0 on some level ! should not lead to an infinite error bound.
Therefore, the MLMC error bound has to be modified such that it can handle lost levels.

3.3. MLMC error bound with lost levels
We derive an MLMC error bound under assumption that entire levels are lost. In the discussion

of this section, the indices of lost levels are not random.
Let L̃ = {0, ..., L} be the set of all levels in an MLMC simulation. The set of all lost levels is

denoted by L∗ = {!|! is lost}. The set of all levels with at least one sample surviving is denoted by
L = L̃\L∗. The MLMC estimate (10) is modified such that lost levels are not taken into account,

EL[XhL ] = χL(0) · EM0 [Xh0 ] +
∑

!∈L\{0}

EM! [Xh!
−Xh!−1

], (13)

the error bound
‖E[X]− EL[XhL ]‖L2(Ω;B)

is analyzed.
By the triangle inequality the error bound yields

‖E[X]− EL[XhL ]‖L2(Ω;B) ≤ ‖E[X]− EL̃[XhL ]‖L2(Ω;B) + ‖EL̃[XhL ]− EL[XhL ]‖L2(Ω;B).

The first is the standard MLMC error in (11). The second term equals

‖EM0 [Xh0 ] +
L∑

!=1

EM! [Xh!
−Xh!−1

]

−



χL(0) · EM0 [Xh0 ] +
∑

!∈L\{0}

EM! [Xh!
−Xh!−1

]



 ‖L2(Ω;B)

= ‖χL∗(0) · EM0 [Xh0 ] +
∑

!∈L∗\{0}

EM! [Xh!
−Xh!−1

]‖L2(Ω;B)

≤ χL∗(0) · EM0 [‖Xh0‖L2(Ω;B)] +
∑

!∈L∗\{0}

EM! [‖Xh!
−Xh!−1

‖L2(Ω;B)]

= χL∗(0) · ‖Xh0‖L2(Ω;B) +
∑

!∈L∗\{0}

‖Xh!
−Xh!−1

‖L2(Ω;B).

This inequality admits to bound the MLMC error where some levels are lost.

Theorem 3.1. The MLMC error with lost levels is bounded by

‖E[X]− EL[XhL ]‖L2(Ω;B) ≤ ‖E[X]− EL̃[XhL ]‖L2(Ω;B)

+ χL∗(0) · ‖Xh0‖L2(Ω;B) +
∑

!∈L∗\{0}

‖Xh!
−Xh!−1

‖L2(Ω;B),

or, with assumptions (5), (6) and (7),

‖E[X]− EL[XhL ]‖L2(Ω;B) ≤ O(hαL) + (M−1/2
0 + χL∗(0))O(1) +

L∑

!=1

(M−1/2
! + χL∗(!))O(hβ!−1) .

7



Losing a level increases the MLMC error bound in Theorem 3.1 substantially. This applies
particularly for the low levels where costs of losing them are highest, since losing level ! leads to
an error O(hβ!−1). Remark that higher levels than the lost one will not improve the order of the
error anymore.

3.4. Description of the failure space and its random variables

We work under the “all or nothing paradigm”, i.e. a sample is either correctly computed or
irrecoverably lost when nodes fail at runtime. We do not distinguish between node, program,
network, or any other cause of failure at runtime. We discard all samples affected by a failure, and
compute the result with the remaining ones. Then M! the number of samples per level is not a
fixed number anymore, but a random number. A level where all samples are lost will be referred
to as a “lost level”. One is free to choose any other criterion to exclude a level, for example if
more than 90% of the samples are lost. For simplicity we only consider the initial definition in
this paper. In the MLMC estimate in equation (13) lost levels are neglected in the computation.
Therefore, the event “level ! is used” resp. “level ! is lost” is a random event.

In accordance with Section 2 the probability space for the random solution X is denoted as
(Ω,A ,P). The probability space to model runtime failures is denoted as (Ω′,A ′,P′). Evidently,
the number of MC samples per discretization level M̂! depends on the runtime failures.

All RVs belonging to the space (Ω′,A ′,P′) are defined as follows:

Definition 3.1. (RV on (Ω′,A ′,P′)) The number of samples per level M̂! is a RV in the probability
space (Ω′,A ′,P′) and depends on the failures in the computer, i.e.,

M̂! : (Ω
′,A ′,P′) → (N0, 2

N0).

The set of all surviving levels in the MLMC estimate is a random set

L̂ : (Ω′,A ′,P′) → (2L̃, 2L̃)

which is defined by
L̂(ω′) = {!|M̂!(ω

′) > 0},

the random set of all levels ! in which at least one draw of the discretization at level ! has survived.

Obviously, L̂(ω′) is a measurable map and, hence, a RV obtaining values in 2L̃. The RV M̂∗
! is

defined as
M̂∗

! : (Ω′,A ′,P′) → (N, 2N),

and depends on M̂!, χL̂(!) and on the fixed a ∈ N

M̂∗
! =

{
M̂!, if χL̂(!) = 1,
a, otherwise,

where values of a are freely chosen (e.g. a → ∞), since a is only applied if the level is lost.
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3.5. Fault Tolerant MLMC error bound with random failures

We derive an error bound for an MLMC sample average estimate which is computed based
on a random numbers of samples which models the MLMC in the presence of failures at runtime.
Specifically, the following fault tolerant MLMC (FT-MLMC) estimator is used:

ÊL̂[XhL ] = χL̂(ω′)(0) · EM0 [Xh0 ] +
∑

!∈L̂(ω′)\{0}

EM̂∗
! (ω

′)[Xh!
−Xh!−1

] .

Theorem 3.2. The FT-MLMC error under influence of failure is bounded by

‖E[X]− ÊL̂[XhL ]‖L1(Ω′;L2(Ω;B)) ≤
∫

Ω′
‖E[X]− EL̃[XhL ]‖L2(Ω;B)P′(dω′) + E′[1− χL̂(0)]‖Xh0‖L2(Ω;B)

+
L∑

!=1

E′[1− χL̂(!)]‖Xh!
−Xh!−1

‖L2(Ω;B) .

In the error bound for ‖E[X]−EL̃[XhL ]‖L2(Ω;B) the number of samples per levels is given by M̂∗
! (ω

′).
This is the only dependence on ω′ in this error bound.

Or given the assumptions (5), (6) and (7) and by choosing a → ∞ in M∗
!

‖E[X]− ÊL̂[XhL ]‖L1(Ω′;L2(Ω;B))

≤ O(hαL) + E′[M̂−1/2
0 χL̂(0) + (1− χL̂(0))]O(1) +

L∑

!=1

E′[M̂−1/2
! χL̂(!) + (1− χL̂(!))]O(hβ!−1) .

Proof. By Theorem 3.1 we have

‖E[X]− ÊL̂[XhL ]‖L2(Ω;B) ≤ ‖E[X]− EL̃[XhL ]‖L2(Ω;B)

+ (1− χL̂(0))‖Xh0‖L2(Ω;B) +
L∑

!=1

(1− χL̂(!))‖Xh!
−Xh!−1

‖L2(Ω;B).

Both sides are integrated over the probability space (Ω′,A ′,P′) leading to
∫

Ω′
‖E[X]− ÊL̂[XhL ]‖L2(Ω;B)P′(dω′)

≤
∫

Ω′
(‖E[X]− EL̃[XhL ]‖L2(Ω;B)

+ (1− χL̂(0))‖Xh0‖L2(Ω;B) +
L∑

!=1

(1− χL̂(!))‖Xh!
−Xh!−1

‖L2(Ω;B))P′(dω′).

With the linearity of the expected value operator and by factorization the error estimate becomes
∫

Ω′
‖E[X]− ÊL̂[XhL ]‖L2(Ω;B)P′(dω′)

≤
∫

Ω′
‖E[X]− EL̃[XhL ]‖L2(Ω;B)P′(dω′)

+

∫

Ω′
(1− χL̂(0))P

′(dω′)‖Xh0‖L2(Ω;B) +
L∑

!=1

∫

Ω′
(1− χL̂(!))P

′(dω′)‖Xh!
−Xh!−1

‖L2(Ω;B) .
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In the MLMC estimate EL̃[XhL ] the number of samples per levels is a parameter. For all levels with
at least one sample surviving this number is given by M̂!(ω′). For lost levels there are no restrictions

on the number of samples in EL̃[XhL ]. The random variable M̂∗
! (ω

′) represents this setting and is

therefore used as the number of samples per level in the MLMC estimate EL̃[XhL ].

We derived a general fault tolerant MLMC method. Regarding the implementation some as-
pects should be considered. A (single level) MC method is used to estimate E[Xh!

− Xh!−1
] by

EM̂∗
! (ω

′)[Xh!
−Xh!−1

] =
∑M̂∗

! (ω
′)

i=1 (Xi
h!
−Xi

h!−1
), where Xi

h!
and Xi

h!−1
approximate the same realiza-

tion Xi with two different discretization parameters h! and h!−1. This implies a strong statistical
correlation between Xi

h!
and Xi

h!−1
(in general the same random numbers are used in Xi

h!
and

Xi
h!−1

). Failures influence the random number of samples per level M̂∗
! (ω

′). It is emphasized
that a sample on a level always consists of the difference between the two computed solutions
(Xi

h!
−Xi

h!−1
). In other words whenever a Xi

h!−1
is lost due to a failure, it is required that the cor-

responding Xi
h!

is disregarded as well, and vice versa. We propose therefore to do all computations

for a sample Xi
h!
−Xi

h!−1
on a single unit. A failure in this unit leads automatically to a loss of both

Xi
h!

and Xi
h!−1

. Only entirely computed samples Xi
h!

−Xi
h!−1

are accumulated or communicated
to other units. This procedure has the slight disadvantage that two different discretizations have
to be computed on the same unit.

4. Statistical model of node failure at runtime

System failures can interfere with the computation of the MLMC estimate. They can be due to
errors in software, hardware or network but also due to environmental effects. These failures are
manifestations of various types of errors which can be roughly classified as permanent, transient,
or silent [4]. Permanent errors do not disappear, whereas transient errors are short term errors.
Silent errors are undetected (permanent or transient) errors, and hence they may lead to undetected
erroneous results. Other classifications into hard and soft errors are conceivable and for instance
described in [8].

In the previous section we have extended the MLMC theory to cover random numbers of
samples. This allows to disregard all samples affected by detected errors (permanent or transient,
soft or hard). Our fault tolerant MLMC method simply ignores these lost samples and tries to
make the best out of the surviving ones. Silent (undetected) errors however are not covered by
this theory.

To specify the error bound of the FT-MLMC method the statistics of failures leading to sample
losses has to be known. For new HPC systems first empirical statistical failure studies [15, 20] are
available. Schroeder and Gibson [20] derived a realistic failure model that has been adopted in
the present paper. The authors studied the failures which occurred over 9 years in more than 20
different systems at Los Alamos National Laboratory. Their raw data [25] contains an entry for
any failure that required the attention of a system administrator. The authors conclude that the
time interval between two failures of an individual nodes, as well as for the entire system is well
fitted by the Weibull distribution with the Weibull shape parameter k between 0.7 and 0.8. The
probability density function of the Weibull random variable x is given by (e.g. [16])

f(x;λ, k) =

{
k
λ

(
x
λ

)k−1
e−(x/λ)k , if x ≥ 0,

0, if x < 0,
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where λ > 0 is the scale parameter and k > 0 is the shape parameter. Schroeder and Gibson
also found the failure rates to be roughly proportional to the number of processors in the system.
Therefore, we use the Weibull distribution to model the time between two consecutive failures on
one node. We assume that node failures are statistically independent.

4.1. Time to next failure in a renewal process

When a simulation on a computer is started, we do in general not know when this computer
failed last. Thus, we are not only interested in the time between two failures but also in the
distribution of the time from the start of the computation until the first failure on a node. This
time is modeled with an ordinary renewal process (RP). An ordinary RP is a sequence of i.i.d.
nonnegative RVs Y1, Y2, . . . In our case these RVs are the time intervals between two failures, hence
they are Weibull distributed. After a failure the failed component is renewed within a negligible
time. Therefore, the time to the next failure is again Weibull distributed. This ordinary RP is
started at t = 0. We are interested in the so called forward recurrence time till the next failure. Ft

is the time from t up to and including the moment of the next failure. The MLMC computation is
started at time t. Rinne [18] states that, as long as t is finite, Ft can only be evaluated numerically.
In the case t → ∞ however [18, eq. (4.41a)] provides the analytic distribution function of F∞.

A procedure to draw realizations of the forward recurrence time F∞ is given in [24]:

1. Generate the random variable S from S = Γ(1 + 1
k ,λ

k), where λ and k are the Weibull scale
and shape parameter, respectively.

2. Compute the random variable V as V = S1/k.

3. Generate the random variable F∞ from F∞ = Uniform(0, V ).

4.2. Estimate the number of samples per level with MC

A realization of the number M̂! of samples on level ! is drawn by drawing realization of the first

failure F∞ on a node where samples of level ! are computed. The term E′[M̂−1/2
! χL̂(!)+(1−χL̂(!))]

is then estimated by MC, i.e., by averaging over the different realizations of M̂!.

4.3. Calibration of parameters

The Weibull scale and shape parameters λ and k are used as parameters in the drawing of
forward recurrence times F∞. They depend on the machinery the FT-MLMC method runs on.
In [18] several methods are presented to estimate both Weibull parameters

In our analysis we use the parameter given in [20], k ≈ 0.7 and λ ≈ 7.6 · 105 for a single
node. Note that k ≈ 0.7 is explicitly given in [20] for an individual node. λ is estimated from [20,
Fig. 6(b)]. The time between failures, such that the cumulative distribution function is equal
to 0.5, is given approximatively by x ≈ 4.5 · 105s. Therefore, λ can be approximated by 0.5 ≈
1− e−(4.5·105/λ)k . This leads to λ ≈ 7.6 · 105.

These parameters lead to a mean time between failure (MTBF) of approximately 11 days for a
typical node. We use nodes with 128 cores, as in [20] a node has 80–128 cores. Whenever a node
is hit by a failure, results of all involved 128 cores are assumed to be irrevocably lost.

11



5. Numerical experiments

All MLMC methods (which satisfy assumptions (5)–(8)) are suited for the FT-MLMC method.
We assess the quality of our FT-MLMC error bounds by means of the grid-based finite volume
code ALSVIDUQ [1] for solving hyperbolic systems of conservation laws. We set α = β = s, see
eqs. (5)–(6). With this choice, the work to compute a sample on level ! is

W! = 2d+1W!−1 = 2(d+1)!W0, ! > 0, (14)

where the exponent originates from d space and 1 time dimension. Note that samples on low levels
require a small fraction of execution time compared with samples on high levels. The same holds
for memory space; memory usage of a grid-based PDE solver is given by

mem! = 2dmem!−1 = 2d!mem0, ! > 0. (15)

As suggested in [12] for s < (d+ 1)/2, we set M!, the number of samples on level !, to be

M! = 2−2sM!−1 = 22(L−!)sML, ! > 0. (16)

On the finest level, we chose a moderate number of samples, e.g., ML = 20.
We parallelize our simulation by levels and across levels. A core deals with samples of only one

level.
There is an intermediate level b whose samples are executed on one core. This level is arbitrary

to some extent. It is determined typically based on memory consumption or execution times. On
levels ! >b , a single sample is executed in parallel on multiple cores. The number of cores is
determined by the memory requirement of the sample, as given in equation (15). On levels ! ≤ b
samples are executed sequentially. So, the number N! of cores invested for a sample on level ! is

N! = -2d(!−b)., ! > 0. (17)

We collect samples in tasks of equal execution times. Tasks are the units of work that are submitted
to the compute nodes. A sample of the finest level forms a task. Tasks of lower levels consist of
multiple samples. On very coarse levels, all respective samples are included in a single task that
may have a shorter execution time than (most) other tasks. Tasks of the same level are always
computed on independent nodes. A node may compute several tasks from different levels.

In Fig. 1 a 3D example is given with 4 levels, b = 1, ML = 4, and s = 1/2. The MLMC estimate
is computed in parallel on 293 cores. The 4 samples of level L are each computed in a task of
64 cores. Hence, 256 cores are involved in the computation of this level. The number of cores in a
task is one on level b = 1. This number increases by 8 towards the finer levels, recording (17). On
level 0, one core deals with a single task that comprises all 32 samples of this level. The execution
time of this task is approximately half of the others, causing some small load imbalance.

5.1. Lowering risk of level loss

A high probability of losing entire levels increases the FT-MLMC error bound in Theorem 3.2
substantially. This applies particularly for the coarse levels where the impact of a loss is highest.
Two different ways of computing the samples are investigated. Both lower the risk of losing coarse
levels:

12
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Figure 1: Computing an MLMC estimate with parameters L = 3, ML = 4, d = 3, s = 1/2 and only one core per
task on levels 0 and 1.

• “late save/4 tasks”: The samples of a level are split into at least four tasks each of which is
computed on independent nodes. The samples are stored only after the completion of the
whole task. So, according to our assumptions, a failure at run-time of a task leads to the
total loss of all its samples. In the example shown in Fig. 1 only level 0 is affected as all
other levels already run on at least four cores, see Fig. 2. This strategy reduces the risk of

!"#"! $
!%&"'()*"+

% &

,-+./0!"+12!" 31/"4 +5

Figure 2: The “late save/4 tasks” strategy requests at least 4 tasks per level. In the example of Fig. 1 this leads to
a large number of very small tasks on level 0.

losing a level 0 by reducing the execution time of a task as well as by using multiple tasks.
The execution time of the now 4 tasks is reduced by 4 compared to the original one which
increases load imbalance.

• “immediate save”: Immediately after the completion of a sample, it is safely stored, and
hence will not get lost anymore.

The two strategies have a different behavior in case of failure. In the “immediate save” strategy,
a larger part of the data on a node survives the failure of the node, leading to higher failure
resilience. This advantage is offset by higher communication overhead. In the “late save” strategy
the statistical quality of the remaining samples is equivalent to the N -out-of-M strategy suggested
by Li and Mascagni [10]. How to get statistical independence of the remaining samples in the
“immediate save” strategy is to our knowledge an open question. Then only the first entries (up
to the failure) of a random number stream are used. Also the resilience of massive parallel RNG
(such as WELL [9]) in the presence of partial loss of streams remains to be addressed.
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5.2. Assessment of the FT-MLMC error bound

The error bound is compared with the measured error of a FT-MLMC method. We chose
a finite volume method (FT-MLMC-FVM) that solves the 1D Euler equations of gas dynamics.
Following [13, 23], the 1D Euler equations of gas dynamics are given by






ρt + div(ρu) = 0,

(ρu)t + div(ρu⊗ u+ pID) = 0,

Et + div((E + p)u) = 0,

in D = (0, 1), with outflow boundary conditions, where ρ is the density and u the velocity vector.
The pressure p and the total energy E are related by the ideal gas equation of state

E :=
p

γ − 1
+

1

2
ρ|u|2,

with γ the ratio of specific heats. The RV of interest is X(x, t,ω) = {ρ(x, t,ω), u(x, t,ω), p(x, t,ω)},
computed at t = .5. A random initial shock with uncertain location is used as initial condition

X0(x,ω) = {ρ0(x,ω), u0(x,ω), p0(x,ω)} =

{
{3.0, 0.0, 3.0} if x < Y (ω),

{1.0, 0.0, 1.0} if x > Y (ω).

In [13] an MLMC Finite Volume Method (MLMC-FVM) approach is proposed to estimate E[X(·, t)].
An MLMC-FVM error bound is proved for scalar solutions in [12] and assumed for systems
in [13, 14] by

‖E[X(·, t)]− EL̂[X(·, t)]‖L2(Ω;L1(Rd)) ≤ C1h
s
L + C2M̂

∗− 1
2

0 + C3

{
L∑

!=1

M̂
∗− 1

2
! hs!−1

}
. (18)

This term corresponds to the error bound (12). As suggested in [12] we set C1 = C3 and C2 = C3hs0.
The convergence rate

‖E[X(·, t)]− EL[X(·, t)]‖L2(Ω;L1(Rd)) ! W−s/(d+1) · log(W ), if s < (d+ 1)/2

is empirically shown in [13]. Here, W =
∑

W!M! is the total work. Samples on level ! are bounded
by [12–14]

‖X!(·, t)−X!−1(·, t)‖L2(Ω;L1(Rd)) ≤ C4h
s
!−1 . (19)

This bound is related to assumption (6). Inequalities (18) and (19) imply the validity of Theo-
rems 3.1 and 3.2 for the FT-MLMC-FVMmethod applied to the 1D Euler equation of gas dynamics.
Further examples, in particular in higher dimensions, can be found in [12–14].

Our finite volume code ALSVIDUQ [1] is sequentially executed on a Computer with 8 GB
RAM and with an Intel(R) Core(TM) i5 processor at 2.67GHz. As a reference, the work W! for
s = 1/2 on the level ! corresponding to 512 grid-points was 0.043 s.

The FT-MLMC results are compared with an MLMC reference solution with 12 levels and
s = 1. The finest level had a resolution of 32768 cells. The number of samples on this level was 16.

In the present numerical study, node failures were simulated. The numbers of surviving samples
M̂! for each level were drawn from the renewal process introduced in Section 4.1. The simulation
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on level ! was then executed with M̂! realizations. It gos with out saying that we do not consider
our simulator to fail. An assumption verified by repeatedly computing the result.

In order to save computing time we increased the error rate, i.e., the Weibull scale parameter
λ, by the factor 5 · 106. Only then failures are frequent enough to be observed with relatively low
computation times.

Fig. 3 (a) shows the FT-MLMC-FVM error bound while Fig. 3 (b) shows the measured error
with the parameters described in Table 1. Note that longer simulations imply more levels. We

ML 20
d; s 1; 1/2
# cells on level 0 (∝ 1/h0) 4
W7 (time for one sample) 0.043s
simulations with levels L = 4, 5, . . . , 13
one core per task b = 4

Weibull parameters λ; k 7.6·105
5·106 ; 0.7

Table 1: The parameters used in Fig. 3.

(a) Error bound (in Theorem 3.2). (b) Measured error.

Figure 3: 1D Euler equation of gas dynamics with uncertain initial data solved by FT-MLMC-FVM.

are (mostly) interested in the point where the FT-MLMC “late save/4 tasks” and the “immediate
save” graph start to deviate from the fault-free MLMC “reference” graph. From there on the
performance of the FT-MLMC method drops significantly. This point is clearly similar in both the
error bound as well as in the actual error shown in Fig. 3.

Other quantities of lower importance do not match well for several reasons. First, the constants
C1, C2, and C3 in the error bound are unknown or can only be very conservatively estimated. The
weight of these constants influences the weight of the different error contributions. Second, we
are comparing two different things, an error bound with an error. Already the standard fault-free
MLMC “reference” shows a considerable difference between the error bound and the error. It seems
that the “reference” shows pre-asymptotic convergence behaviour for a run-time below 100 s. After
this point the theoretical convergence rate of 1/4 (this slop is shown in the upper right corner)
appears to hold. Furthermore, the computed and measured total execution time (number of cores
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× execution time) in the y-axis differ.
The “late save/4 tasks” error does not only stop decreasing but grows again for large compu-

tation times, in Fig. 3 around 103sec.. At first this may surprise. As the number of levels increases
the runtime of all tasks increases. This allows to compute more and more samples of a fixed level
in the same task. Hence the failure probability of this task increases. In the “late save/4 tasks”
mode failures lead to the loss of all samples of a task. Therefore the probability of level losses not
only increase for the high levels, but even for medium and low levels.

5.3. Analysis of FT-MLMC error bounds

In a standard MLMC implementation with MPI-2.1 process failures are fatal. A failure ter-
minates the entire computation. We show that it is possible to compute much bigger problems
with the FT-MLMC with the original MLMC convergence rate still being maintained. We assume
that MPI has some failure resilience as implemented for instance in FT-MPI [5]. In particular
we assume that the MPI processes that are not affected by a failure, can continue working and
communicating among each other.

Besides the FT-MLMC error bound, we investigate two additional quantities. First, the prob-
ability that a standard MLMC implementation with MPI-2.1 terminates without issuing a result,
labeled as “MPI-2.1 terminates”. Here, we allow tasks of the same level to be executed on the
same node, as in a standard MLMC implementation. The second quantity is the probability that a
individual sample on the finest level gets lost. The two quantities are labeled “MPI-2.1 terminates”
and “lose finest sample”, respectively.

(a) (b) (c)
ML 20 20 20
d; s 1; 1/2 3; 1/2 3; 1
# cells on level 0 (∝ 1/h0) 512 8× 8× 8 8× 8× 8
W0 (time for one sample) 0.043s 0.01s 0.1s
simulations with levels L = 7, 8, · · · , 20 L = 4, 5, · · · , 11 L = 3, 4, · · · , 10
one core per task b = 6 b = 5 b = 4
Weibull parameters λ; k 7.6 · 105; 0.7 7.6 · 105; 0.7 7.6 · 105; 0.7

Table 2: The parameters used in Fig. 4 (a) - (c).

Three error bounds with different parameters are analyzed, see Table 2. The three error bounds
are shown in Fig. 4. Sub-fig. (a) corresponds to the 1D FT-MLMC-FVM case discussed in the
previous subsection. (b) and (c) correspond to a 3D FT-MLMC-FVM, derived from the settings
described in [13].

The standard MLMC implementation works satisfactory as long as it fails only rarely. In
Fig. 4 less than 10% fail as long as the computation takes less than 107sec. Computations with
longer run-times benefit from a FT-MLMC method. Close to a run-time of 109sec. the FT-MLMC
method experiences many sample losses, that the performance drops significantly. This is apparent
by the increasing disparity between the two FT-MLMC graphs “late save/4 tasks” and “immediate
save” with the fault-free MLMC “reference” graph. Hence, the FT-MLMC method allows to solve
problems which use two orders of magnitude more run-time compare to the larges problem solved
with a standard MLMC implementation. The number of cores and the run-time per core of the
first and the last computation done with the FT-MLMC method is shown in Table 3.
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(a) 1D-FT-MLMC-FVM with parameters from Ta-
ble 2.

(b) 3D-FT-MLMC-FVM with parameters from Ta-
ble 2.

(c) 3D-FT-MLMC-FVM with parameters from Ta-
ble 2.

Figure 4: Behavior of the FT-MLMC-FVM with different parameters under Weibull distributed failures.

first last
(a) 2.6 · 103 cores at 1.4 · 104 s (3.9 h) – 2.0 · 104 cores at 1.0 · 105 s (31 h)
(b) 1.5 · 103 cores at 4.4 · 104 s (12 h) – 1.2 · 104 cores at 8.7 · 104 s (24 h)
(c) 1.7 · 103 cores at 2.8 · 104 s (7 h) – 1.4 · 104 cores at 4.6 · 104 s (15 h)

Table 3: The FT-MLMC method in Fig. 4 is useful for computations between 107sec. and 109sec.. The number of
cores and the run-time per core is shown for the first and the last computation done with FT-MLMC.

In Fig. 4 it is further observed that the performance of the FT-MLMC method drops signifi-
cantly as soon as the probability of losing the finest samples approaches values close to one. This is
expected, since then much of the computational work is used by the attempt to compute samples,
of which in the end only very few to none survive. This leads to a high error to work ratio, or in
other words to a poor FT-MLMC performance.

In practice one should start using the FT-MLMC method whenever a standard MLMC imple-
mentation with MPI crashes too frequently. There is no need to know the exact failure statistics
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(e.g. Weibull) to get a rough approximation of when this will happen. This behavior may as well
be experienced, estimated according to expert knowledge, or estimated with simpler models such
as mean time between failures (MTBF). The same holds for the approximation of the “lose finest
sample” probability, an indicator for the drop in the FT-MLMC performance.

6. Conclusions and future work

We introduced and analyzed a checkpoint-free and fault-tolerant Multi Level Monte Carlo
strategy, termed FT-MLMC. The approach is based on disregarding all samples affected by a node
failure at run-time. It is assumed that MPI is extended such that processes unaffected by a failure
can continue working and communicating. The MLMC estimate is computed with the remaining
samples. By incorporating general statistical models of sample losses into the mathematical failure
model and into the error bound of the FT-MLMC method a new MLMC error bound conditional
on prescribed node-failure statistics is derived.

The principal conclusion of the present analysis is that up to a certain rate of node failures
per sample the FT-MLMC error bound and, hence, the performance of the FT-MLMC, is prov-
ably of the same type as that of the standard, fault-free MLMC. We therefore conclude that in
this range of failure rates, there is no need for additional fault tolerance strategies such as, e.g.,
checkpoint/restart or re-computation of lost samples.

Due to the increasing likelihood of node-failures at run-time in emerging massive parallel hard-
ware, obviation of checkpointing may afford substantial increases in parallel efficiency and scalabil-
ity. In our analysis, we paid particular attention to the case when failures are Weibull distributed.
We considered, exemplarily, the case that the samples were computed with the Finite Volume
Method (FVM). We emphasize, however, that neither the Weibull distribution nor the FVM are
essential for the principal conclusions about the performance of the FT-MLMC method.

We showed by a number of examples that the FT-MLMC method compared to the standard
MLMC method can compute much bigger and much more (approx. 100×) time-consuming prob-
lems, compared to the standard MLMC method.

The proposed approach of simply discarding samples affected by a node failure at run-time has
the additional benefit that failures do not extend the run-time as for instance checkpoint/restart,
or the re-computation of the lost samples does. This leads to a fixed run-time, even if failures
occur.

The above analysis completely disregards silent-errors. In a further work we may cover some
silent-errors by detecting them by statistical means [10].

Further work also includes investigations of the resilience of parallel random number generators
(such as WELL [9]). This includes the preservation of statistical quality with partial loss of streams.
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