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Abstract

We consider the problem of Lagrange polynomial interpolation in high or countably infinite
dimension, motivated by the fast computation of solution to parametric/stochastic PDE’s. In
such applications there is a substantial advantage in considering polynomial spaces that are
sparse and anisotropic with respect to the different parametric variables. In an adaptive context,
the polynomial space is enriched at different stages of the computation. In this paper, we study
an interpolation technique in which the sample set is incremented as the polynomial dimension
increases, leading therefore to a minimal amount of PDE solving. This construction is based on
standard principle of tensorization of a one dimensional interpolation scheme and sparsification.
We derive bounds on the Lebesgue constants for this interpolation process in terms of their
univariate counterpart. For a class of model elliptic parametric PDE’s, we have shown in
[11] that certain polynomial approximations based on Taylor expansions converge in terms the
polynomial dimension with an algebraic rate that is robust with respect to the parametric
dimension. We show that this rate is preserved when using our interpolation algorithm. We
also propose a greedy algorithm for the adaptive selection of the polynomial spaces based on
our interpolation scheme, and illustrate its performance both on scalar valued functions and on
parametric elliptic PDE’s.

1 Introduction

In recent years, various strategies have been proposed for the numerical treatment of parametric
partial differential equations [1, 3, 5, 4, 7, 11, 12, 13, 17, 18, 21, 22, 23, 24, 27, 26, 29, 30]. Such
equations have the general form
D(u,y) =0, (1.1)
where u — D(u,y) is a partial differential operator that depends on d parameters represented by
the vector y = (y1,...,y4) € P € RY. Assuming well-posedness of the problem in some Banach
space V', the solution map
y = u(y), (1.2)
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is defined from the parameter domain P to the solution space V'

Parametric problems of this type arise in stochastic and deterministic modelling, depending on
the nature of the parameters y; which may either be random or derterministic variables. In both
settings, the main computational challenge is to approximate the entire solution map y — u(y)
up to a prescribed accuracy, with reasonable computational cost. This task is particularly difficult
when the number of involved parameters d, is large due to the curse of dimensionality. In certain
instances, this number may even be countably infinite, meaning that y = (y;);>1.

High order polynomial approximation methods such as studied in [5, 3, 11, 12, 13, 18, 22, 23,
26, 29, 30|, build approximations of the form

ua(y) =Y wy, (1.3)
veA

where A C F is a finite set of (multi-)indices v = (vj);>1 € F and y” = [[;5, y;/] In the finite
dimensional setting d < oo, the index set F coincides with Ng (here and throughout, we denote by
N = {1,2,3, ...} the set of natural numbers and by Ny = NU{0}). In the infinite dimensional setting,
F denotes the (countable) set of all sequences of nonnegative integers which are finitely supported
(i.e. those sequence for which only finitely many terms are nonzero). Note that the polynomial
coefficients u, are functions in V', and therefore the construction of ua requires in principle the
computation of #(A) such functions. This means that u, is picked in the space

VA = Span {Z vy” tu, € V} .
veA
We remark that for every finite subset A C F, V} is a closed subspace of the Bochner space L(P, V)
and that Vy := Py ® V, where
Pp := Span{y” : v € A} (1.4)

denotes the polynomial space associated with the index set A and with coefficients in R. Here, and
throughout, for 1 < p < oo, LP(P, V) denotes the Bochner space of strongly measurable mappings
from P to V which are p-integrable (with the usual modification for p = c0) in V-norm with respect
to a probability measure on P.

Polynomial approximation is well known to be effective when the solution map has some smooth-
ness. In certain instances, it can even provably break the curse of dimensionality, in the sense that
an algebraic convergence rate with respect to #(A) can be established even for functions of count-
ably many parameters d = oo. Such results were proved in [12, 13, 11] for the model parametric
elliptic equation

—div(aVu)=f in DCR™, w=0 on 9D, (1.5)
where f € H-Y(D) and a(z,y) := a(x) + >_j>1Y%;(x), with the functions ¢; and @ in L*(D),
and for the parameter domain P := [—1,1]N. More precisely, it was proved in [12, 13] that if a

satisfies the uniform ellipticity assumption

0<r<a(z,y) <R<oo, xz€D,yeP, (1.6)



(UEA(r, R) for short) and if for some 0 < p < 1, one has (|[1);]| < (p))j>1 € £P(N), then there exists
a nested sequence
AMCAC---CA,C---CF, (1.7)

with #(A,,) = n which satisfies the uniform convergence bound

1
inf sup [Ju(y) —v(y)|lv < Cn™?, si=—-—1. (1.8)
UEVAn yE’P p
It was also shown in [12, 13] that there exists the sequence of sets A,, such that the mean square

error convergence bound

inf |lu—vll2pyy) < Cn”7, 5:= (1.9)

VeV,
where L? is defined with respect to the countable product of uniform measures on P. We point out
that the results in this paper apply to a wide class of parametric problems. Problem (1.5) is chosen
for the sake of illustration only; regularity estimates for the parametric solution analogous to those
used in the present paper have been obtained for nonlinear, elliptic PDE in [20], for nonlinear, initial
value ODEs in [21], and for parametric, parabolic evolution problems in [22], and for parametric
wave equations in [23]. We also note that regularity for elliptic systems with operators depending
on the parameter sequence y have been considered in [28]. To minimize technicalities in presenting
our results, we work throughout with (1.5), but investigate in the numerical experiments in §5 the
performance of the adaptive interpolation algorithm also in other settings.

The results in [12, 13] were centered on the existence of such sequences of sets A, rather than
on their practical construction. The construction of sequences of (not necessarily optimal) sets A,
which achieve the convergence rates (1.8), (1.9), and therefore of the polynomial spaces Py, , is
critical in the design of algorithms for high-dimensional approximation. Sequences of quasioptimal
sets A, which give the rates (1.8), (1.9) with possibly a suboptimal constant C' > 0 can either be
derived from a-priori estimates in [12, 13, 5] or by an adaptive search [18, 11]. The resulting spaces
Py, typically differ from the standard multivariate polynomial spaces Py of fixed total degree, and
also from isotropic or anisotropic sparse grid polynomial spaces studied in [29, 30], although we
sometimes refer to them as sparse polynomial spaces.

Given a finite index set A, several strategies can be used to compute up € Vi:

(i) Taylor expansions [11] can be recursively computed in the case of problems with affine pa-
rameter dependence such as (1.5). Adaptive methods based on such expansions have been
proved to converge uniformly in u € P with the same rate as in (1.8).

(ii) Projection methods [1, 4, 5, 12, 18, 22, 23] produce near best approximations in Vj for
the metric L2(P,p) where p is a chosen measure in the parameter space. In addition, in
the Galerkin framework, it is possible to use techniques of a-posteriori analysis in order to
adaptively build the sequence of index sets (Ay),>1. This approach was developed in [18] for
the problem (1.5), and proved to converge with the same rate as in (1.9).



(iii) Collocation methods [3, 5, 26, 29, 30] produce a polynomial approximation in V) based on the
data of particular solution instances u(y;) for some chosen values yi, ..., yx of the parameter
vector. One significant advantage of this approach is that it is non intrusive: the sampling
u(y;) can be computed by any given numerical solver for the problem (1.1) and the polynomial
approximation is built from these solutions by numerical techniques similar to those employed
for scalar valued maps such as interpolation or least-square regression. On the other hand, the
theoretical analysis of collocation methods is less satisfactory in the sense that convergence
rates similar to (1.8) and (1.9) do not seem to have been established for such methods. This
is in part due to the difficulty to control the stability of interpolation operators in arbitrary
high dimension. In addition, adaptive methods for building the sets A, have not been much

developped in the collocation framework.

The objective of this paper is to propose and study a collocation method based on a high
dimensional interpolation process that can naturally be coupled with an adaptive selection of the
polynomial spaces. We construct an interpolation operator I, that maps real or complex valued
functions defined on P into Pp. A standard vectorization technique yields a similar operator
that maps V-valued functions defined on P into V). We assume that the parameter domain has
tensorized form

P = P4, (1.10)

(with the understanding that P denotes the countable cartesian product when d = oo), where P
is a closed and bounded coordinate domain (typically, a bounded interval in R or disk in C). We

impose a constraint on the index sets A that are considered, described by the following definition.
Definition 1.1 A set A C F is called monotone if

veA and p<v=pecA, (1.11)
where p < v means that p; < v; for all j.

Considering only polynomial spaces Py associated to such sets is very natural. In particular,
this allows to replace the monomials y” in the definition of such spaces by any other tensorized
basis Ly, (y) = [[;51 Lv,(y;) where Lo = 1 and Lg(y;) has degree exactly equal to k with respect
to the coordinate y; (for examples Legendre polynomials). Importantly, it has been shown in [11]
that the sets A, achieving the convergence rate (1.8) for the problem (1.5) can be chosen from
the restricted class of monotone subsets of F. While we develop, as in [11], the algorithms and
theory for (1.5), we hasten to add that all results and algorithms presented in the present paper
apply, without any modifications, to the adaptive numerical solution of more general parametric
equations: all that is required is bounded invertibility of the parametric equation for all instances
of the parameter sequene and a characterization of the parametric solution families’ dependence on
the parameters in the sequence. Such characterizations seem to hold for broad classes of parametric
problems (we refer to [22, 23, 20, 21] for details).



This paper is organized as follows. In §2, we build the operator Iy and its associated grid I'y
which is unisolvent for Py, for general monotone sets. This construction is based on univariate
sequence of points (zj)x>0 and a standard tensorization and sparsification technique, originally due
to Smolyak [31]. The main feature of this process is the inherent nested structure the grids, which
is is well adapted to an adaptive construction of the index set: the enrichment of A by one index is
reflected by the enrichment of I'y by one point. The amount of computation is therefore minimized
since all previously computed solution instances are used.

In §3, we study the stability of the interpolation operator Ip. In particular we establish bounds
on the Lebesgue constant which only depends on the cardinality of the set A (not on its shape or
on the parametric dimension). These bounds grow algebraically with #(A), provided that bounds
that grow algebraically with k are available for the Lebesgue constants associated to the sections
{z0,..., 2} of the sequence (z;)r>0 C P. Such univariate results have recently been obtained in
[8, 9, 10] for particular choices of sequences.

Combining the approximation estimate (1.8) together with a bound of the form #(A)® for the
Lebesgue constant, one expects that the interpolation I, u converges towards u with a deterio-
rated rate n=(57% . In §4, we show by a different error analysis that, under the same assumption
for the elliptic equation (1.5), one can construct a sequence (Ay),>o such that the interpolation
converges towards uw with the optimal rate n~%. We present in §5 numerical results that illustrate
the performance of our adaptive interpolation scheme.

2 Sparse polynomial interpolation

2.1 Properties of monotone sets

For i € N, we denote by e; = (d;j);>1 the i-th Kronecker sequence. A monotone set A can
equivalently be defined by the property

veA and v; Z0=>v —¢; € A. (2.1)

Any monotone set contains the null multi-index (0,0, -- ), which we will denote by 0.

In addition to the partial order relation p < v on F, we say that u < v if and only if u < v but
pu# v and p £ v if and only if u; > v; for some j > 1. We say that an index v is mazimal in a set
A C F if and only if there is no u € A satisfying v < u. Any finite set has at least one maximal
element. If A is monotone and if v is maximal in A, then A\ {v} is monotone. Conversely, if A C A
are two monotone sets that differ by one element v, then v is maximal in A.

It follows that if (A,),>1 is a nested sequence of monotone sets with #(A,,) = n, there exists a
unique sequence of indices (1"),>1 € F with v! = 0 and such that

Ao ={v' 0",

for all n > 1, with #! = 07 and v™ maximal in A,,. Particular examples of monotone sets are the



rectangles R, defined for any v € F by
Ry ={peF:uv} (2.2)

The only maximal element of a rectangle R, is v. In general, any finite monotone set A C F is

completely determined by its maximal elements according to

A= |J R (2.3)

veA
v maximal

Conversely, given u', ..., u", n multi-indices such that i # j = & 1/, then U;-Zzl R, is the only
monotone set whose maximal elements are exactly the p/.
2.2 Univariate interpolation and tensorization

Let (zx)k>0 be a sequence of mutually distinct points in P. We denote by Ij the univariate
polynomial interpolation operator associated with the section {zg,...,zt}. This operator acts on

a real or complex valued function g defined on P according to

k
L= g(z)lf, (24)
i=0

where
— %
H A (2.5)
52— %
Z#J
are the Lagrange polynomials associated with {zg,...,2;}. The possible dependence of the l;-“ on

the interpolation points {zg,...,z2r} is expressed by the superscript k in (2.5). For & > 0, we
introduce the difference operator
Ap =1 — I, (2.6)

with the convention that I_; is the null operator. Therefore, Ag = Iy is the operator that maps ¢
to the constant polynomial with value g(zp). With such notation, we can write for any n € N

In=Y A (2.7)
k=0

Introducing the hierarchical polynomials of degree k associated to the sequence (2x)r>0

H Y75 k>0 and holy) =1, (2.8)
o %k =%
one easily checks that
Arg = ap(g)hk,  ar(g) == g(zk) — Ik-19(2k) , (2.9)



and therefore

n
Ing =Y _ on(g)hu - (2.10)
k=0
To any multi-index v € F, we associate the multivariate point
Z, = (Zuj)jZI eP, (2.11)

and the tensorized hierarchical function
HV(Y) = H huj (yj)7 (212)
j=1
and the tensorized multivariate operators

I, = ®ij and A, = ®A,,j, (2.13)

j>1 j>1

The above tensorization can be defined inductively: for a real or complex valued function g defined
on P,

o If v =0z, then A, g = I,g is the constant polynomial with value g(zo).

e If v # 0x, then
IVg = IVl (t — Iﬁgt) and Aug = A111 (t = Af/gt)a (214)

where U := (v9,v3,...) and for g € T, g; is the function defined on TN by ¢;(y) = g(y),y :=
(t,y)-

When d < oo, the induction terminates after exactly d steps. When d = oo, the induction termi-
nates after a finite number of steps since for any v € F, applying the operation v — v sufficiently
many times to v leads to the null multi-index 0. We also observe that

I, = ®(i Ak> =3 A, (2.15)

j>1 k=0 p<v

It is easily seen that I, is the interpolation operator for the tensor product polynomial space
Pr = ®j21 P, associated to the grid I'g,.

v

2.3 The sparse interpolation operator

We are now ready to define the interpolation operator for polynomial spaces associated to monotone
spaces and its corresponding unisolvent grid, following the technique of Smolyak [31]: for any
monotone set A C F, we define

Iyi=) A, (2.16)

veN



and
Ip:={z, : vEA}. (2.17)

The monotone sets A might significantly differ from the sparse grid sets which are usually considered
in the literature (see, e.g., [2, 31, 6, 19]). However, the arguments showing that I, is the polynomial
interpolation operator on P associated to the grid I'y are very similar. For convenience of the

reader, we give a precise statement of this result.

Theorem 2.1 The grid 'y is unisolvent for Py and for any function g defined on P, the unique
element in Pp which agrees with g on I'p is given by Izg.

Proof: It is readily seen that Ixg belongs to Py for any function g defined on P. Since we have
#(Ia) = #(A) = dim(Py), (2.18)

it suffices to verify that Ing agrees with g on I'y. For this we use (2.15) and the fact that A is a
monotone set to write for any v € A,

=1+ Y A,. (2.19)
nEA pty

Since I, is the interpolation operator for the space Pr, associated to the grid I'g,, we obviously
have
Vz, €Ta: Lg(z,) = g(zy) . (2.20)

On the other hand if 4 £ v, there exists a j such that v; < u;j. Therefore, the univariate operator
A,,; returns a polynomial which vanishes at z,,, and so A, g vanishes at all points of j coordinate
equal to z,;. In particular, therefore A, g(2,) = 0 and we have thus proved that Irg(z,) = g(z).
a

Remark 2.2 The fact that T'py is unisolvent for the polynomial space Py when A is monotone
appears to be known from early work on polynomial interpolation: see Chapter IV in the book [25],
in which bivariate polynomials associated to monotone sets are referred to as “polynémes pleins”.
This also appears as a particular case of the theory of the “least polynomial space” for interpolation
of functions on general multivariate point sets, see in particular [16]. Here, polynomials associated
to monotone sets A are referred to as “order closed polynomials” and are proved to be the least

polynomial spaces for sets of the form I'y.

Remark 2.3 One can generalize this construction in a straightforward way to tensorized domains
of the more general form P = HJZI P; with different univariate sequences (Z;jc)kzo in each coordinate

domain Pj. Another straightforward generalization is when the univariate polynomial spaces Py, are

replaced by more general nested spaces Sy such that {zo,...,zx} is unisolvent for Si. Then I'y is
unisolvent for the space
5 - DR
veA j>1



which generalizes Pp and the interpolation operator is defined in a similar manner as Ix. Sparse
grid interpolation based on hierarchical finite element spaces are a particular instance of this gen-
eralization.

Note that in our construction, any sequence (zj)r>o of mutually distinct points can be used.
However, the choice of the univariate sequence is critical for the stability of the resulting multivariate
interpolation operator I, expressed by the Lebesgue constant

I %
Ly := sup 119l (P) ’ (2.21)

geB®) l9llL=(p)
where B(P) is the set of bounded functions g on P which are defined everywhere on P. We are
interested in choosing sequences (zj)r>0 such that the Lebesgue constants

Lol 1o
J— L0y (2.22)

gec(P) llgllze(p)
associated with the univariate operators I grow moderately with respect to k, since, as shown in
§3, this allows to derive estimates on L, .
A classical construction of such univariate sequences is by fixing zp € P and defining inductively
k—1
2 = Argmax,cp H |z — 2] . (2.23)
j=0
Such (zx)g>o are called Leja sequences on P, and moderate, algebraic growth of the Lebesgue
constants A can be established in certain cases as we recall in §3. In addition, the choice of a
Leja sequence for (zx)r>0 has an interesting implication on the adaptive choice of the sets A,, as
we explain in §2.5.

2.4 Hierarchical computation of the interpolation operator

As explained in the introduction, we are interested in performing polynomial interpolation for a
nested sequence of sets (A,)n>1 with n = #(A,,). Accordingly the grids (I',, )n>1 are also nested.
The sets A,, may either be fixed in advance, or adaptively chosen based on information gained at
earlier computational steps.

In this setting, we have observed that each A, can be viewed as the section {v!,... v"} of
a sequence (V¥)g>1 € FY. This observation leads to an efficient algorithm for the computation
of Ip,g from Ip, ,¢ and of the value of g at the new point z,~». Indeed, by tensorization we
observe that Ayng is a multiple of the tensorized hierarchical function H,» defined in (2.12). Since
H,»(z,n) = 1, it follows that

Ayng = Ayng(zyn)Hyn = (Ip, 9(2un) — In,_19(Zun))Hon = (g(zon) — In,_19(Zun))Hyn,  (2.24)

and therefore
In,g =1, 19+ (9(zon) — Ip, 1 9(Zun))Hyn . (2.25)



Consequently, the polynomials Iy, g are given by

n
IAng = ZgkaVk (2.26)
k=0

where the coeflicients g, are defined recursively by

k
g = 9(20),  gurer = g(2prnn) = Ingg(Zyenn) = 9(2000) = Y gy HLi(Z,001) - (2.27)
i=1

Remark 2.4 In the sum that appears on the right side of (2.27), only the terms such that ' < vF+1

are non-zero. When evaluating the computational cost in the above operation, one should make the
distinction betwen the cost of the evaluation of g(z,k+1) and of computing the linear combination
Zle 9,iH,i(z,k+1). In instances where the evaluation of g requires running a heavy numerical
code (for example when g(y) is an output of the solution u(y) to a parametric PDE), the first cost
dominates the second one. It is also important to notice that only n evaluations of g have been used

until the current step n.

Remark 2.5 The above algorithm is also efficient to construct the interpolant Ing for any given
monotone set A. Indeed, by iteratively removing maximal elements, we see that any such set can
be written as A = A with k := #(A) and (An)n>1 a sequence of the above type. It is also easily
checked that the coefficients g, only depend on g and on the index v* and are independent on the
index set A: these coefficients can be viewed as the unique coordinates of g in the hierarchical basis
(Hy,), 7. One should however be cautious when writing the expansion

9= gH, (2.28)
veF

since it may fail converge for certain functions g regardless of the ordering of the summation.
However, it will be proved to converge for functions that can be approrimated sufficiently well by
polynomials, based on the stability analysis of the interpolation operator which is the object of the

next section.

2.5 Adaptive selection of polynomial spaces

We now discuss the adaptive selection of a nested sequence (A;),>1. Let us begin with the following
analogy: if (H,),cr was an orthonormal basis of L?(P) then the choice of an index set A, that
minimize the L? error when truncating the expansion (2.28) would be the indices corresponding to
the n largest |g,|.

In our current setting however, (H,),cr is not an orthonormal basis and we are rather inter-

ested in controlling the error in L°°. A first greedy strategy is to define A,, as the set of indices

10



corresponding to the n largest contributions of (2.28) measured in the L*° metric, i.e. the n largest

ay|gy|, where

ay = |y gy = [ Il oo (- (2.29)
i1

This strategy obviously gives rise to a nested sequence (Ay)p>1, however the sets A, are not
ensured to be monotone. In addition, it is not computationally feasible since finding the n largest
contributions in (2.28) hints that we should have computed all contributions.

In order to correct these defects, we define for any monotone set A a set of neighbours

NA):={v¢A : R, e AU{v}}, (2.30)

or equivalently those v ¢ A such that v—e; € A for all j such that v; # 0. Then a natural variant of
the first strategy, that leads to a nested sequence of monotone sets, is the following greedy adaptive
algorithm.

Adaptive Interpolation (AI) Algorithm:
e Start with A; := {0£}.
e Assuming that A,,_; has been computed, find
V" = argmax{a,|g,| : v € N(An-1)}, (2.31)
and define A, = A,,—1 U {v"}.

Let us observe that since H,(z,) = 1, we obviously have that a,, > 1. On the other hand, when
(zr)k>0 is a Leja sequence built according to (2.23), we obviously have max,cp |hx(2)| = |hg(2x)] =1
and therefore

a, =H,(z,) = 1. (2.32)

In such a case, in view of (2.27), the greedy strategy (2.31) amounts in choosing the new index in

N (A,—1) that maximizes the interpolation error at the corresponding new grid point:

n

V"= argmax{|g(z,) — I, ,9(z,)| : v € N(An—1)}. (2.33)

This greedy strategy has several defects. The first one is that it may simply fail to converge,
even if there exist sequences (Ay)n>0 such that Iy, g converges to g at a high rate. This is due
to data oscillation that could return an artificially small interpolation error at the new grid point.

Consider for example a two dimensional function of the form

9(y) = g(y1,y2) = g1(y1)g2(y2), (2.34)

where g; and g2 are non-polynomial smooth functions such that go takes the same values at the
points zg and z;. Then, the algorithm will select sets A,, that consist of the indices v = (k,0) for

11



k =0,...,n — 1, since the interpolation error at the point z( ;) = (zx, 21) will vanish. Although
this type of situation might be viewed as pathological, it reflects the fact that the algorithm might
fail in its first steps to identify the significant variables. One way to avoid this is to impose that
when all interpolation errors |g(z,) — I, ,9(2z,)| for v € N(A,) are smaller than some prescribed
tolerance €, > 0 (that is either fixed or tends to 0 as n grows), then the new index v" is chosen
arbitrarily from N (A,,).

The second defect is that in the infinite dimensional framework d = oo the set of neighbours
N (A) has infinite cardinality. One way to treat this defect is to modify its definition by setting

NA) ={vé¢A:vy=01if j>jA)+1 and R, € AU{v}}, (2.35)

where j(A) := max{j : v; > 0 for some v € A}. This means that we can activate at most one new
variable at each iteration step.

Even with such modifications, it is not clear to understand under which additional assumptions
on g this adaptive, greedy selection procedure will pick sets (A,)n>1 such that the interpolation
Iy, g has a guaranteed convergence rate comparable to that of an optimal choice of sets such as, e.g.
obtained from best n-term approximation. We give in §5 several numerical examples that illustrate

the good practical behaviour of this algorithm.

3 The Lebesgue constant

The accuracy of the interpolation operator Ip can be related to the error of best polynomial
approximation via the Lebesgue constant L defined in (2.21), according to the classical inequality

19 = Iagll Lo rry < (1 +Ta) inf [lg = Q| zoe(p)- (3.1)

inf
QEP)
A crude, yet useful, way to estimate L is by using triangle inequality which gives

Ly <Y 6y, (3.2)

veA

where we define for v € F
5 HAVQHLOO(P)
yi= sup —————>.
geBP©\0} gllLe(p)
It is readily seen that
8, =[] 6, (3.4)
j=1

where

Akl Lo Py

O := < A1+ A, (3.5)

gec(p) llglle=(p)
with Ay the Lebesgue constant associated with the univariate operators I and with the convention
that A_q1 := 0. Therefore

La <) [T0Ow +2,-0) (3.6)

veA j>1

12



Note that dyp = Mg = 1, regardless of the choice of the sequence (2x)i>0-
The bound (3.6) is of course crude, since we did not take advantage of the telescoping nature
in the summation of the A,. For instance, when A = R,, we have seen that Iy = [, = ®j>1 L,

and in that case the exact value of the Lebesgue constant is given by the smaller value

Lr, =[] M\ - (3.7)

Jj=1

Nevertheless, for general monotone sets A, we can use the bound (3.6) to study the behaviour of the
Lebesgue constant Ly as the number of interpolation points #(I'y) = #(A) grows. The following
result shows that when certain algebraic bounds are available for the Ag, then similar algebraic

bounds can be derived for L in terms of #(A) regardless of the dimension d and of the shape of
A.

Lemma 3.1 If the Lebesgue constants A\ satisfy
M < (k+1)0 k>0 (3.8)
for some 0 > 1, then the Lebesgue constants Ly satisfy
La < (#A)H (3.9)
for any monotone set A.

Proof: For any k > 0, one has A, + M1 < (k+1)? + &% < 2k +1)(k + 1)1, therefore, for v € A

[T, +a,-1) < (H(uj + 1))9_1 [Ty +1)

j>1 j>1 j>1
= (#(Ry))*! H(2Vj +1)
j>1
< (#(A) H(2Vj +1),

where we have used R, C A since A is monotone. To complete the proof, it remains to show that
a(A) < (#A)?, where

o(h) =Y J[ev+1). (3.10)

veA j>1

This is done using induction on ny = #(A). When ny = 1, then A = {0z} and it is obviously
true. Let n > 1 and A denote a monotone set with ny = n + 1. Without loss of generality, we
suppose that p; # 0 for some p € A, and denote by K > 1 the maximal value attained by the
coordinate 11 when v € A. For 0 < k < K, we introduce

Ag :={v = (va,v3,...): (k,0) € A} (3.11)
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By monotonicity of A, every Ay is monotone. Also, since K > 1 then #(Ag) < #(A) for any k, so
that the induction hypothesis implies

K

K
o(A) = Z(Qk +D)o(Ar) <) (2K + 1)(#(Ar) . (3.12)

Also, we have
Ag C--- C Ay C Ao, (3.13)

since for k > 1, pe Ay = (k,n) e A= (k—1,u) € A = p € Agp—_1. We deduce

E(#(Ak))? < #(AR)#(No) + ... + #(Ap)#(Mp—1), (3.14)
and consequently
K K K
o(8) < DA + 2D HADER0) + -+ #AD#N) < (3 #00) = #W)
k=0 k=0 k=0 (315)
which concludes the proof. O

Remark 3.2 In the case where (z)k>0 i a Leja sequence defined by (2.23) for some initial point
20 € P, the hierarchical polynomials hy defined by (2.8) satisfy

’hk )‘ < ’hk Zk)’ =1, z€ P. (3.16)

Since, according to (2.9), we have

Arg = (9(zk) = Tx—19(2k)) i, (3.17)
it follows that
O <1+ A1, (3.18)
and
La <) ]+ M,-0) (3.19)
veAN j>1

which is are improvements over (3.5) and (3.19).

Let us observe that since A\_; = 0 and A\g = 1, bounds of the form X\, < (k + 1) can be
established for some 6 > 0 provided that \; are bounded as O(k®) for some b > 0. Such bounds
have recently been obtained in [8, 9, 10], in the cases where P is either the complex unit disk
{]z| < 1} or the unit interval [—1,1].

For the complex unit disk, if (2x)r>0 is the Leja sequence defined by (2.23) with 2o = 1, it is
proved in [8] that A\, = O(klogk) and conjectured that

Me<k+1, k>0. (3.20)
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The more precise bound
e <2(k+1), k>1, (3.21)

is established in [10]. Using the improvement (3.19), and using the same computation as in the
proof of the above Lemma, we obtain in that case that Ly < #(A)2.

For the unit interval [—1, 1], and the sequence given by the projection of the above complex Leja
sequence, an asymptotic bound in O(k®log k) has been obtained in [9], and it has been improved
into 3(k + 1)%log(k + 1) in [10]. Note that projections of Leja sequences on the unit disk to [—1,1]
are not Leja sequences on [—1,1].

4 Application to parametric PDEs

4.1 Interpolation of Banach valued functions

We are interested in applying our interpolation process to the map y — u(y) defined by exact or
approximate solving of the parametric PDE (1.1) for the given parameter y. Therefore, we want to
interpolate a function which is not real or complex valued, but instead takes its value in the solution
space V. The generalization of the interpolation operator I to this setting is straighforward: Iyu
is the unique function in V} that coincides with u at the points z, for v € A. As in the scalar case,
it can be expanded according to

Ivu=Y uwH,, (4.1)

veA

where the coefficients u, € V' can be computed in a recursive way similar to (2.27):

k
U1 = u(zo), Uy k1 = u(z,,k+1) — E ul,iHl,i(ZVk+l), (4.2)
i=1
where A, = {v},..., 0"}, n=1,2,..., is a nested sequence of monotone sets. We are interested in

the accuracy of the interpolant in the sense of the maximum error

lu — Inul| ooy o= sup [[uly) — Inu(y)|v- (43)
yeP

The same reasoning as for interpolation of scalar valued functions shows that

lu = Ipul[zoopay < (14 La) vien‘fA lu = vl L (p,a), (4.4)

where L, is the Lebesgue constant associated to the interpolation operator Iy which was defined
and studied in the previous section.

4.2 Convergence rates for a parametric, elliptic model problem

As already explained in the introduction, for the model elliptic problem (1.5), one can establish
convergence rates in L>°(P,V) and L?*(P,V), where V = HZ(D), for polynomial approximation
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that are robust with respect to the parametric dimension. Here we focus on L (P, V). The results
in [12, 13, 11] show that if the diffusion satisfies the uniform ellipticity assumption (1.6) and if
for some 0 < p < 1, one has (||[¢)j]|L(py)j>1 € P(N), there exists a nested sequence (Ay)n>1 of
monotone sets such that #(A,,) = n and

—S

1
inf — - <Cn™® s:=-—1. 4.5
véI‘}An |u=v[[Leopa) < Cn S P (4.5)

where C' > 0 depends on s := % — 1 but is independent of n. In fact this rate of convergence was
proved for specific approximations defined either by Taylor expansion

Tr,uly) == Y _ 6y, (4.6)

llEAn
where t, := %8;’u(y)|y:g with v! := Hj>1 vj! or by orthogonal projections
PAnU(Y) = Z CVLZ/(Y)? (47)
veA,

where the L, are the tensorized Legendre polynomials in [—1, 1], which are normalized with respect
to the probability measure dt/2 and where ¢, are the corresponding Legendre coefficients. The fact
that we work in the infinite dimensional case d = oo in (4.5) reveals that the convergence rate n™*
in (4.5) is robust with respect to the number of active variables. In this section, we work under the
same assumptions on the diffusion coefficient and its expansion.

We now study the rate of convergence of Iy, u towards u. Combining (4.5) and (4.4), we obtain
Ju— Inullppyy < C(1+La,)n~" | (4.8)

We have seen in §4 that the Lebesgue constant can be controlled by a bound of the form
Ly, <n’, where b=0+1, (4.9)

when the univariate sequence (z)>o is chosen so that A\, < (k + 1)? for some § > 0 and we gave

examples of such sequences. We thus obtain a convergence estimate of the form
Hu — IAnuHLOO(P,V) S C?’L_(S_b) . (410)

With this simple stability (via the bound for the Lebesgue constant) plus consistency (via the n-
term approximation result) analysis, the convergence rate obtained in (4.10) is reduced by b = 0+1
compared to the (benchmark) n-term approximation rate s in (4.5).

We now present a more refined argument that shows that there exists a sequence (Ay,)n,>1 C F
of monotone sets such that #(A,) = n and a constant C' > 0 such that for all n € N holds

||’LL — IAnuHLOO(P,V) < Cn%. (411)

This analysis relates more directly the interpolation error with the Taylor coefficients of u according
to the following result.
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Lemma 4.1 Assume thatu(y) = ), rt,y" in the sense of unconditional convergence in L>(P, V).
If the univariate sequence (z1,)k>0 s chosen so that Mg < (k+ 1)?, then

1T~ Iuliegry <23 2Bty (1.12)
vgEA

for any finite monotone set A, where b:= 0+ 1 and

po(d) =+’ (4.13)

Jj=1

Proof: The unconditional convergence of the Taylor series allows us to write

Inu = IA<Z t,,y”) — Z t Iy’ = Z ty’ + Z I il (4.14)
veF veF veA vgA

Here, we used that for monotone A it holds that Iyy” = y” for every v € A and that A,y” = 0 for
every i < v. Therefore

(I—INu="> t,(I—Irm,)y", (4.15)
vEA

where [ stands for the identity operator. This implies

(T = In)ull pepvy < D Itollv (L +Lanr,) <2 [tllvLang, - (4.16)
vEA VA

Since A\ < (k+ 1)?, we obtain from Lemma 3.1 that
Lanr, < #(ANR) < #(R,)H = p, (b), (4.17)

which completes the proof. O

Let us observe that the above lemma can be generalized to polynomial expansions other than
Taylor series, for example expansions into Legendre polynomials, provided that unconditional con-
vergence holds. We focus here on the Taylor series, which allows us to use the results in [13] that
prove unconditional convergence under our assumptions on the diffusion coefficients, based on ex-
plicit bounds for the V-norms of Taylor coefficients. These bounds are obtained by application of
the Cauchy formula, on the holomorphic extension of the map y — u(y), and are of the form

Itollv < Cs ] p; " = Csp, (4.18)
Jj=1
where Cs := W for arbitrary 6 > 0 and p := (p;);>1 is any sequence of strictly positive numbers
that satisfies
> pilvi(@)| <a(x) -6, xeD. (4.19)
Jjz1
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We call sequences p which satisfy (4.19) d-admissible. We observe that ¢ has to be chosen smaller
than the ellipticity constant r in order to ensure the existence of such sequences. In [13], (4.18)
is used to prove the unconditional convergence of the Taylor series of u in L*°(P,V) and the
convergence rate (4.5). In the next result, we use the same bounds to prove a summability result

on the sequence (p, (b)|[tu||v)ver-

Theorem 4.2 Assume that if the diffusion coefficient satisfies the uniform ellipticity assumption
(1.6) and that for some 0 < p < 1, one has (||l r~(p))j>1 € P(N). Then for any b > 1 and for
pu(b) as in (4.13), the sequence (p,(b)||tu||v)ver belongs to LP(F).

Proof: We fix B = €b. Since p < 1, (105l Lo (py)j=1 € €1(N) and we may choose £ > 1 and an
integer Jy > 1 such that

T 1 r
(k — 1)2 195l LoDy < 8 and Z 195l oo (D) < 512 (4.20)

j>1 7>Jo

and weset E:={j : 1 <j<Joy}and F:={j : j > Jy}. For each v € F, we denote by
vg and vp the restrictions of ¥ on E and F, and we define the sequence p = p(v) by p; = & if
Jj < Jo, pj =1if j > Jy with v; =0, and
TV
T j
Alvr|llvill Lo o)

where |vp| =3, [vj|. We claim that p is %—admissible. Indeed, for almost every z € D

d_pilti@)] <Ky @)+ Z|V ruw]HL o @I+ B D ()

pj =B

, 7> Jo, Vj #0 (4.21)

j=1 J<Jo ]>J i=Jo

< N
<> )+t t T

J<Jo

_ r
<a(zx)—r+ =

)= L.
=a(z)— <.

2
Therefore, by (4.18)
1+v;)? 1+v;)°
p®ltlv <C: ] ( ij) 11 ( Vjﬂ) . (4.22)
71<Jo 3>Jo p]

Since & > 1, we have (1+n)? < Co(1£2)" for any n > 1 provided that Cy = exp (b/log((1 + x)/2)).
Combining this with (4.22) implies

)ty < Cqy wh =TI 11 At ry) (4.23)
Pv v||Vv > Ugqy where g, i= n 5 ) .
i<Jo j>Jo J

with 7 := 1;—: <land C:= C% Cé](’. Using the inequality 1+ x < e” for x > 0, we deduce that for
Jj > Jo with v; #0

, (4.24)

1 \b N 4B oo
(1 + ;) g(‘VF’dJ> ! with d; ::M

U5 U r
Pj J
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so we can write p, (b)||t,||v < Cq, < Ca(vg)B(vr), where

atve) = [ Blwe) =TT (LE%)". (4.25)

; ; l@
i<Jdo J>Jo

By (4.20) we find that 3, ; d; < . We then obtain the ¢ summability of (¢,),cr exactly as in
§3.2 in [13]. It follows that (p,(b)||tu||v)ver is £ summable. O

The ¢P summability of (p,(b)||ty||v)ver implies by a standard result of Stechkin (see (3.13) in
[13]) that there exists C' > 0 and a sequence (A,),>1 of sets A,, C F of cardinality not exceeding
n such that

> p®)tully <CnF si==—1, (4.26)
vé¢An
if each set A,, consists of the indices corresponding to n largest values of p,(b)||t,|y. However,
these sets are not necessarily monotone. In order to obtain a sequence of monotone sets, we
observe that the sequence (g,),cr defined in (4.23) is monotone decreasing, in the sense that
p <v=q, < qyu Indeed, on the one hand, g,tc; = 1g, < gy if j < Jy. On the other hand, since

(2+n)® <2°(1 +n)® < B(1+n)® for any n > 0 and since |VV;T+11 > V;—;‘ for any j > Jp, then

2+ ;)P < (1+ )P
r(v;+1) vith = ( #)V"
(B t 4<\VF|+1>T|¢1||LDO<D>) B+ i o)

which implies also that g, ye; < g, when j > Jo. This shows that the sequence (g, ),er is monotone

decreasing (i.e. monotonically decreasing with respect to the semiordering < of multiindices in F
induced by monotonicity in the sense of Definition 1.11).

Since the sequence (g, ), majorizes the sequence (p, ||t,||v)ver up to a multiplicative constant,
and since its /P summability is established in the above theorem, we also obtain (4.26) with A,, a
set of indices corresponding to the n largest values of ¢,. Since (g, ) er is monotone decreasing,
such sets A, can always be chosen to be monotone and nested. Combining these observations with
Lemma 4.1, we thus have established the following convergence result.

Theorem 4.3 Assume that if the diffusion coefficient satisfies the uniform ellipticity assumption
(1.6) and one has (|| pe(py)j>1 € LP(N) for some 0 < p < 1. If the univariate sequence (2x)k>0
is chosen so that A\, < (k +1)? for some 6 > 0, then there exists a sequence (Ap)n>1 of monotone

sets Ay, such that #(A,) =n and

s 1
lu— In,ullpeopyy S Cn7%, 5= . 1. (4.27)

Remark 4.4 The above convergence result exploits the fact that the Taylor series itself converges,
due to the holomorphic properties of the solution map. For other type of parametric model problems
that do not have such properties, the Taylor series may fail to converge even if the parameter de-
pendence is smooth. On the other hand, other types of polynomial approximation may still converge

19



with a high rate, and therefore so may polynomial interpolation provided that the Lebesgue constant

does not grow too fast. For such problems, we thus expect that our high dimensional interpolation

algorithm behaves well, provided that the sets A, are properly selected, either by a-priori estimates

or by an adaptive strategy such as described in §2.5.

5 Numerical experiments

5.1

Scalar valued functions

We first consider the interpolation of scalar valued functions u : P — R where P = P? with

P =[—1,1]. Our objective is to test the adaptive algorithm AI proposed in §2.5 in various ways:

Ability to select good monotone index sets A,,, in particular when the function has anisotropic
dependence on the variable.

The effect of the choice of the univariate sequence (2x)r>0, in particular on the robustness of
the interpolation with respect to noise in the measurements.

Robustness of the performance with respect to the variable dimension d when the function
depends only of a few unkown variables, or when the depence with respect to the variables is

sufficiently anisotropic.

We consider three possible choices for the univariate sequence (2x)x>o:

Uniform sequence (U): zp = 1, 21 = —1, 20 = 0 and for £k > 1 we set zop11 = %Z?:o ;277
where k = Z?:O 5j2j is the binary expansion of k£ and 2912 = —2or4+1. Such a choice pro-
duces a uniform subdivision of [—1, 1] of step size 277 for the particular sections (2o, ..., 29;),
and avoids accumulation of points on a region of the interval for the intermediate sections
(Z(), .. .,Zk), V< k< 2t

Leja sequence (L): zp = 1 and the sequence zj, is defined recursively on [—1, 1] by (2.23).

R-Leja sequence (R): this is the projection on [—1, 1] of a Leja sequence for the complex unit
disk initiated at 1. The R-Leja sequence has an explicit structure which is very similar to
that of the sequence U in the sense that (zo, ..., 2y;) are Clenshaw-Curtis points, that is, the
projections on the real axis of a uniform subdivision of the upper half-circle with end-points
at —1 and 1, see [8, 9, 10].

Our first example is the function of d = 16 variables

ur(y) = u(y1,- -, y16) = y3sin(ya + yie), (5.1)

that in fact only depends on 3 variables. Figure 5.1 displays the interpolation error in terms of

n = #(A,) for the AT algorithm based on 3 possible choices U, L, R, of univariate sequence (zj)x>0-
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We observe that the error decays, after a (short) preasymptotic phase (required to identify the
set {3,4,16} of “active” dimensions) reaches machine precision when the AI algorithm is based on
the choices L and R for the univariate sequence, but not with the choice U, although u; is analytic
over R%. Inspection of the index sets A,, generated by the algorithm for the three choices reveals
that for n = 103, the polynomial degree in the active variables y4 and y1¢ reaches values above 30.
This explains the bad behaviour of the error for the choice U. Indeed, it is well known that the
univariate Lebesgue constant associated to k uniformly spaced points in (—1,1) grows faster than
2k (see, e.g. [14]).

This implies that, in the range of polynomial degrees k activated by the Al algorithm based on
the sequence U, the Lebesgue constants become so large, that the (inevitable) roundoff errors in
the float point evaluation of the function us(y) in (5.1) are amplified to O(1) contributions to the
interpolant. This does not occur with the choices L and R for which the Lebesgue constant has
moderate growth. For these sequences, the algorithm identifies the three active variables (ys3, y4, y16)
in the sense that all chosen indices v have v; = 0 for j # 3,4, 16.

—+— R-Leja
o - —4—Leja
—&— Uniform

logw(Supremum error)

*16 L L L L L L L
0 0.5 1 1.5 1 2 HA
og, ,(#A)

Figure 5.1: Estimated L error of the Al algorithm applied to u; based on the sequences R, L and
U.

In our next example, we consider the parametric, scalar function

d
_ 3
up(y) = (L+ D _vu) " 5= 5 (5.2)
j=1
This function now depends on all variables 1, ...,y4 but in a strongly anisotropic way due to

the decay of the weights ;. Since Z;’il v; =~ 0.72 < 1, the function u admits an holomorphic
continuation (that is, an extension which is holomorphic in each variable) in the complex polydisc
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domain

Pc = (P(c)d, (5.3)

where P is the unit disk of C, regardless of the dimension d. Moreover, an analysis completely
analogous to that used in [13] to prove (1.8) for parametric PDE’s, based on Cauchy’s integral
formula, reveals that since (v;);>1 € P(N) for p > 1, there exists a sequence (A})p>1 with n =
#(A}) such that

inf [|u—v|peppy < Csn™, n>1, (5.4)

UEPAﬁ

for all s < 2 where Cj is independent of the number d of active coordinates. Figure 5.2 reveals that
this robustness with respect to d is also observed when using the Al algorithm (here based on the
sequence R), since its convergence behaviour is almost unchanged for d = 8, 16, 32 and 64.

0.5 T

! ——dim 8
of ~ ——dim 16|
—=— dim 32
-051 ——dim 64 ]|

log1 0(Supremum error)
|
n

45 L L L L L L L
0 0.5 1 15 2 25 3 35 4
loglo(#/\)

Figure 5.2: Estimated L error for the AI algorithm applied to us based on the sequences R for
the dimensions d = 8,16, 32, 64.

We next fix d = 16 and compare the error of the AI algorithm applied to us based on the
three sequences L, R and U. Figure 5.3 reveals that, in contrast to the function wy, the uniform
sequence U gives as good results as the sequences L and R. This can be explained by inspecting
more closely the index sets A,,, for which one finds that for n = 10* the highest polynomial degree
attained on the most significant variable y; is 17 (due the presence of many active variables) and
the amplification of roundoff in function evaluations to O(1) is not yet visible.

To verify that the preceding results and findings are not a consequence of the particular func-
tional form of the exact solutions, we repeat the previous experiment with a small amplitude added
random perturbation. Specifically, we now adaptively interpolate the values us(z,) + ¢, where
g, are independent realizations of a random variable with uniform law on [-1073,1073]. Figure
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—— R-Leja
ok —4—Leja

—&— Uniform

logm(Supremum error)

-4 L L L L L L L
0 0.5 1 15 2
log1 0(#A)

Figure 5.3: Estimated L*° error of the AI algorithm applied to uy with d = 16 based on the
sequences R, L and U.

—+— R-Leja
—4—Leja

—=— Uniform

log1 0(Supremum error)

_ L L L L L L L
2 1 2 HA 25 3 3.5 4
0g,,(#A)

Figure 5.4: Estimated L error of the Al algorithm applied to a noisy evaluation of uy with d = 16
based on the sequences R, L and U.

5.4 reveals that the error diverges when using the U sequence, while it decays when using R or L
(however not reaching arbitrarily small values due to presence of the noise).
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—— R-Leja
—4¢—Leja
—&— Uniform ||

logm(Supremum error)
n

-2 L L L L L L L
0 05 1 15 2
log1 0(#A)

Figure 5.5: Estimated L*° error of the Al algorithm applied to uz with d = 16 based on the
sequences R, L and U.

Finally, we consider with d = 16 the function

d
usly) = (1+ (O mm)?) L = j’ (5.5)
j=1

Similar to we, this function has an anisotropic behaviour. It also has an holomorphic continuation
in a complex neighbourhood of P, however, it has smaller domain of analyticity than the polydisc
Pc due to the fact that Z;l:l 7; > 1. As a consequence, the Al algorithm based on the uniform
sequence U does not converge even in the noiseless case, as illustrated by Figure 5.5. This should
be viewed as a manifestation of the well known Runge phenomenon.

In summary, the Al algorithm takes advantage of an anisotropic dependence on the variables,
however its success is critically tied to the choice of the univariate sequence (zj)x>o in either one
of these situations: (i) the polynomial degree reaches high values in certain variables, (ii) the
measurements (ie. function evaluations) are “noisy”, (iii) the function does not have sufficient
smoothness in certain variables. In all cases, both sequences R and L are good choices. The
convergence rates are dimension independent if the function w allow for dimensionally independent
best N-term approximation rates. The practical performance of the Al algorithms are found to be
robust with respect to the choice of univariate sequence (z;);>1 as long as the sectional Lebesgue
constants N, grow algebraically as k? with moderate exponent .
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5.2 Parametric PDE’s

We now turn to the interpolation of functions, u : P — V defined as the solution map of a
parametric PDE (1.1) where V' is the solution space. In practice, the PDE is solved by a numerical
technique such as the finite element method applied with a certain mesh, and therefore we rather

interpolate the numerical solution map
up P — W, (5.6)

where V}, C V is finite dimensional and independent of the particular interpolation point in U.

In [11], several adaptive algorithms based on the Taylor partial sums (4.6) were proposed,
analyzed and implemented for the model elliptic PDE (1.5). The most practically efficient of these
algorithms acts in a very similar way as the Al algorithm, in the sense that the sets A,, 41 is defined
by adding to A, the index v that maximizes the V-norm of the Taylor coefficient ¢, among the
set of neighbours N (A,). In the sequel, we refer to this adaptive algorithm as Largest Neigbour
Taylor (LNT). Note that, in contrast to AI, algorithms based on the computation of the Taylor
series such as LNT are by essence intrusive and strongly benefit from the particular structure of the
problem (1.5): a linear equation with affine dependence of the operator on the parameters. This
struture allows us to do a recursive computation of the Taylor coefficients ¢, which are solutions to
the boundary value problems

/awyw == > /z/;jwy_ejvu, vev. (5.7)
D ] : llj?éoD

These problems be derived by partial differentiation at y = 0 of the variational formulation

/ o(y)Vuly) Vo = / fu, vev, (5.8)
D

D

and we refer to [13] for a rigourous justification.
We compare the two algorithms AT and LNT when applied to (1.5) with D = [0, 1]? and diffusion
coefficient a(x,y) given by an expansion in the two dimensional Haar wavelet basis, similar to Test

2 in [11], namely

L

a(z,y) :=a(z) + Zﬁl Z yl7k7ihf7k(3:), a=1. (5.9)

3
=0 i=1 ke{0,...21—1}2

In the above expansion,
(@) =n 27 —k), 1€N, k= (ki k) €{0,...,2' =1} i=1,2,3, (5.10)

where the generating wavelets k' are defined by h'(z1, 22) := @(z1)h(x2), h?(z1, 22) := h(z1)p(x2)
and h3(x1,12) := h(x1)h(z2), with ¢ := Xjo,1] and h := X[g,1/21 — X[1/2,1]- Using the relabelling

wj = Bihi ), and y; ==y k; when j =22 +3(2'%k; + k) +i— 1, (5.11)

25



we may rewrite the above expansion (5.9) in the form a(z,y) = a(x) + Z;l:l yj¢(x) adopted in
this paper, with d := 22(L+D — 1. We consider the general form

B =2 ¢:=0.3(1-277), (5.12)

which ensures that the uniform ellipticity assumption UEA holds with » = 0.1 and R = 1.9,
regardless of the parametric dimension d. The value of the parameter v > 0 reflects the decay of
the high scale oscillation and therefore the long range correlation in the diffusion field.

In our numerical test, we use the value 4 = 3, which was among those tested in [11] and we
consider the maximal scale levels L = 1 and 2 which give parametric dimension d = 15 and 63. In
order to refine the comparison between AI and LNT, we introduce a third process that builds the
interpolants I, u by using the sets A,, produced by the LNT algorithm. We refer to this algorithm
as LNTT (Largest Neighbour Taylor Interpolation). For both AT and LNTT we use the univariate
sequence R.

Several observations may be drawn from the error curves, displayed on Figures 5.6 and 5.7. We
first notice that the error curve of LNTT is close to that of LNT, with a more oscillatory behaviour.
Since the sets (Ay)n>1 are the same for both algorithms, these oscillations may reflect the non-
monotonic growth Lebesgue constant of the interpolation operator I, that is used in LNTI. In
addition, we notice that the error curve of Al is above that of LNTI, which means that Al is slightly
misled in the adaptive selection of the sets A, which was better performed by LNT. In all cases, we
find that these algorithms are robust with respect to the growth in the dimension, and are therefore
capable of capturing the anisotropic structure of the problem reflected by the decay in the weights

Br-

T
—%—LNT
—0— LNTI
—— Al

log " 0(Supremum error)

Figure 5.6: Estimated L*°(P,V) error of LNT, LNTI and Al for the model problem (1.5) with
coefficients (5.9) and d = 15.
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Figure 5.7: Estimated L (P,V) error of LNT, LNTI and AI for the model problem (1.5) with
coefficients (5.9) and d = 63.

The effectiveness of Taylor approximations in the above problem is due to the fact that the map
y — u(y) has an holomorphic continuation in the complex polydisc Pc, similar to the scalar valued
function ue. This approach becomes uneffective for PDE’s where such continuation does not hold,

even if the dependence on y remains analytic over P. Here are two instances of such problems:

e Parametric nonlinear diffusion equations of the form
—div(aVu) + F(u) = f, (5.13)

with similar assumptions on the diffusion coefficient @ as in (1.5) and F' an analytic nonlinear
function. In the case where f is small enough, a perturbation approach leads to a similar
holomorphic extension over the polydisc Pc as in the linear case, see [20]. In the case where f
is arbitrary, and F is such that the problem remains coercive in H{ (D) (for example F(u) = u?
in spatial dimension 2 or 3), analyticity still holds on P, however we are not ensured that the

holomorphic extension can be carried over the whole of Pc.
e Linear PDE’s set in parameter dependent domains. Consider for instance
—Au=fin D=D(y)={(z1,22) 0< 21 <1, 0< 21 < P(z1,y)}, (5.14)

where the upper boundary has a general form ¢(z1,y) = ¢(z1) + Z;-lzl Y95 (1) = Gmin > 0.
By a change of variable x5 + z2¢(z1) mapping the reference domain D = [0, 1]2 into D(y), we
are led to the elliptic PDE (1.5) over D however with a matrix coefficient a(z,y) depending
in a rational manner of y rather than affine. Here again, the dependence on y is analytic
over the real domain P, however with no guarantee that the holomorphic extension can be
carried over the whole of Pc.
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For such problems, we expect that Taylor based algorithms such as LNT fail, while Al still
converges. We illustrate this by studying a simpler problem, namely (1.5) with diffusion coefficients

of the form

d
a(z,y) =a(z) + (O yji(x))>. (5.15)
j=1

Assuming that a(x) > r > 0, the problem is always coercive and the map y — u(y) has analytic
dependence on y € P. However, when the function v; are chosen too large, the holomorphic
extension does not hold over the whole of Pg. This example should be viewed as similar to the

scalar function wus.

T
—— LNT

—0— AI-R :
—a— AI-U

log1 O(Supremum error)

0.5 1 1.5 3 3.5 4 4.5

2 25
log1 0(#A)

Figure 5.8: Estimated L (P, V) error of LNT and of Al using U and R sequences, for the model
problem (1.5) with coefficients (5.15) and v = 0.5.

Due to the polynomial form of a(x,y) in the variable y, it is still possible to compute the Taylor
coefficients ¢, in a recursive manner that generalizes (5.7). Indeed, if a(z,y) has the general form

a(z,y) =a(x) + >y v (x), (5.16)

veEA

where A is a fixed set of index that does not include 07, then partial differentiation of (5.8) shows
that

/avwv =- Y /zpﬂw,,_uw, veV. (5.17)
D HEA : p<v

This allows us to again perform LNT in the case where a is has the quadratic form (5.15).

As an example, we take d =4, a(x) = 1 and

Yi(a) = j%@(m), (5.18)
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Figure 5.9: Estimated L (P, V) error of LNT and of AI using U and R sequences, for the model
problem (1.5) with coefficients (5.15) and v = 2.

where v > 0 and
o1(x) =1, ¢a(x) = cos(2mz1), ¢3(x) = cos(2mze) and ¢4(z) = cos(2m(x1 + x2)) . (5.19)

We compare LNT with AI, using both U and R univariate sequences for the second algorithm.

Figures 5.8 and 5.9 show the error curves, for both choices v = 0.5 and v = 2. When v = 0.5,
the LNT algorithm still converges due to the fact that the holomorphic extension holds over the
whole of Pc, but it diverges for the larger value v = 2. In contrast, the error still decreases when
using Al based on the R univariate sequence. Similar to the scalar test case ug, the same algorithm
diverges if we use the U sequence, due to the fast growth of the univariate Lebesgue constants Ax
for the U sequence.
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