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Abstract

We consider the problem of Lagrange polynomial interpolation in high or countably infinite

dimension, motivated by the fast computation of solution to parametric/stochastic PDE’s. In

such applications there is a substantial advantage in considering polynomial spaces that are

sparse and anisotropic with respect to the different parametric variables. In an adaptive context,

the polynomial space is enriched at different stages of the computation. In this paper, we study

an interpolation technique in which the sample set is incremented as the polynomial dimension

increases, leading therefore to a minimal amount of PDE solving. This construction is based on

standard principle of tensorization of a one dimensional interpolation scheme and sparsification.

We derive bounds on the Lebesgue constants for this interpolation process in terms of their

univariate counterpart. For a class of model elliptic parametric PDE’s, we have shown in

[11] that certain polynomial approximations based on Taylor expansions converge in terms the

polynomial dimension with an algebraic rate that is robust with respect to the parametric

dimension. We show that this rate is preserved when using our interpolation algorithm. We

also propose a greedy algorithm for the adaptive selection of the polynomial spaces based on

our interpolation scheme, and illustrate its performance both on scalar valued functions and on

parametric elliptic PDE’s.

1 Introduction

In recent years, various strategies have been proposed for the numerical treatment of parametric

partial differential equations [1, 3, 5, 4, 7, 11, 12, 13, 17, 18, 21, 22, 23, 24, 27, 26, 29, 30]. Such

equations have the general form

D(u,y) = 0, (1.1)

where u "→ D(u,y) is a partial differential operator that depends on d parameters represented by

the vector y = (y1, . . . , yd) ∈ P ⊂ IRd. Assuming well-posedness of the problem in some Banach

space V , the solution map

y "→ u(y), (1.2)

∗Research supported by the Swiss National Science Foundation under Grant SNF 200021-120290/1 and by the

European Research Council under grant ERC AdG247277.
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is defined from the parameter domain P to the solution space V

Parametric problems of this type arise in stochastic and deterministic modelling, depending on

the nature of the parameters yj which may either be random or derterministic variables. In both

settings, the main computational challenge is to approximate the entire solution map y "→ u(y)

up to a prescribed accuracy, with reasonable computational cost. This task is particularly difficult

when the number of involved parameters d, is large due to the curse of dimensionality. In certain

instances, this number may even be countably infinite, meaning that y = (yj)j≥1.

High order polynomial approximation methods such as studied in [5, 3, 11, 12, 13, 18, 22, 23,

26, 29, 30], build approximations of the form

uΛ(y) =
∑

ν∈Λ
uνy

ν , (1.3)

where Λ ⊂ F is a finite set of (multi-)indices ν = (νj)j≥1 ∈ F and yν =
∏

j≥1 y
νj
j . In the finite

dimensional setting d < ∞, the index set F coincides with Nd
0 (here and throughout, we denote by

N = {1, 2, 3, ...} the set of natural numbers and by N0 = N∪{0}). In the infinite dimensional setting,

F denotes the (countable) set of all sequences of nonnegative integers which are finitely supported

(i.e. those sequence for which only finitely many terms are nonzero). Note that the polynomial

coefficients uν are functions in V , and therefore the construction of uΛ requires in principle the

computation of #(Λ) such functions. This means that uΛ is picked in the space

VΛ = Span

{
∑

ν∈Λ
vνy

ν : vν ∈ V

}
.

We remark that for every finite subset Λ ⊂ F , VΛ is a closed subspace of the Bochner space L2(P, V )

and that VΛ := PΛ ⊗ V , where

PΛ := Span{yν : ν ∈ Λ} (1.4)

denotes the polynomial space associated with the index set Λ and with coefficients in R. Here, and
throughout, for 1 ≤ p ≤ ∞, Lp(P, V ) denotes the Bochner space of strongly measurable mappings

from P to V which are p-integrable (with the usual modification for p = ∞) in V -norm with respect

to a probability measure on P.

Polynomial approximation is well known to be effective when the solution map has some smooth-

ness. In certain instances, it can even provably break the curse of dimensionality, in the sense that

an algebraic convergence rate with respect to #(Λ) can be established even for functions of count-

ably many parameters d = ∞. Such results were proved in [12, 13, 11] for the model parametric

elliptic equation

− div(a∇u) = f in D ⊂ Rm, u = 0 on ∂D, (1.5)

where f ∈ H−1(D) and a(x,y) := ā(x) +
∑

j≥1 yjψj(x), with the functions ψj and ā in L∞(D),

and for the parameter domain P := [−1, 1]N. More precisely, it was proved in [12, 13] that if a

satisfies the uniform ellipticity assumption

0 < r ≤ a(x,y) ≤ R < ∞, x ∈ D, y ∈ P, (1.6)
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(UEA(r,R) for short) and if for some 0 < p < 1, one has (‖ψj‖L∞(D))j≥1 ∈ $p(N), then there exists

a nested sequence

Λ1 ⊂ Λ2 ⊂ · · · ⊂ Λn ⊂ · · · ⊂ F , (1.7)

with #(Λn) = n which satisfies the uniform convergence bound

inf
v∈VΛn

sup
y∈P

‖u(y)− v(y)‖V ≤ Cn−s, s :=
1

p
− 1 . (1.8)

It was also shown in [12, 13] that there exists the sequence of sets Λn such that the mean square

error convergence bound

inf
v∈VΛn

‖u− v‖L2(P,V ) ≤ Cn−s̄, s̄ :=
1

p
− 1

2
, (1.9)

where L2 is defined with respect to the countable product of uniform measures on P . We point out

that the results in this paper apply to a wide class of parametric problems. Problem (1.5) is chosen

for the sake of illustration only; regularity estimates for the parametric solution analogous to those

used in the present paper have been obtained for nonlinear, elliptic PDE in [20], for nonlinear, initial

value ODEs in [21], and for parametric, parabolic evolution problems in [22], and for parametric

wave equations in [23]. We also note that regularity for elliptic systems with operators depending

on the parameter sequence y have been considered in [28]. To minimize technicalities in presenting

our results, we work throughout with (1.5), but investigate in the numerical experiments in §5 the

performance of the adaptive interpolation algorithm also in other settings.

The results in [12, 13] were centered on the existence of such sequences of sets Λn rather than

on their practical construction. The construction of sequences of (not necessarily optimal) sets Λn

which achieve the convergence rates (1.8), (1.9), and therefore of the polynomial spaces PΛn , is

critical in the design of algorithms for high-dimensional approximation. Sequences of quasioptimal

sets Λn which give the rates (1.8), (1.9) with possibly a suboptimal constant C > 0 can either be

derived from a-priori estimates in [12, 13, 5] or by an adaptive search [18, 11]. The resulting spaces

PΛn typically differ from the standard multivariate polynomial spaces Pk of fixed total degree, and

also from isotropic or anisotropic sparse grid polynomial spaces studied in [29, 30], although we

sometimes refer to them as sparse polynomial spaces.

Given a finite index set Λ, several strategies can be used to compute uΛ ∈ VΛ:

(i) Taylor expansions [11] can be recursively computed in the case of problems with affine pa-

rameter dependence such as (1.5). Adaptive methods based on such expansions have been

proved to converge uniformly in u ∈ P with the same rate as in (1.8).

(ii) Projection methods [1, 4, 5, 12, 18, 22, 23] produce near best approximations in VΛ for

the metric L2(P, ρ) where ρ is a chosen measure in the parameter space. In addition, in

the Galerkin framework, it is possible to use techniques of a-posteriori analysis in order to

adaptively build the sequence of index sets (Λn)n≥1. This approach was developed in [18] for

the problem (1.5), and proved to converge with the same rate as in (1.9).
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(iii) Collocation methods [3, 5, 26, 29, 30] produce a polynomial approximation in VΛ based on the

data of particular solution instances u(yi) for some chosen values y1, . . . ,yk of the parameter

vector. One significant advantage of this approach is that it is non intrusive: the sampling

u(yi) can be computed by any given numerical solver for the problem (1.1) and the polynomial

approximation is built from these solutions by numerical techniques similar to those employed

for scalar valued maps such as interpolation or least-square regression. On the other hand, the

theoretical analysis of collocation methods is less satisfactory in the sense that convergence

rates similar to (1.8) and (1.9) do not seem to have been established for such methods. This

is in part due to the difficulty to control the stability of interpolation operators in arbitrary

high dimension. In addition, adaptive methods for building the sets Λn have not been much

developped in the collocation framework.

The objective of this paper is to propose and study a collocation method based on a high

dimensional interpolation process that can naturally be coupled with an adaptive selection of the

polynomial spaces. We construct an interpolation operator IΛ that maps real or complex valued

functions defined on P into PΛ. A standard vectorization technique yields a similar operator

that maps V -valued functions defined on P into VΛ. We assume that the parameter domain has

tensorized form

P = P d, (1.10)

(with the understanding that P denotes the countable cartesian product when d = ∞), where P

is a closed and bounded coordinate domain (typically, a bounded interval in R or disk in C). We

impose a constraint on the index sets Λ that are considered, described by the following definition.

Definition 1.1 A set Λ ⊂ F is called monotone if

ν ∈ Λ and µ ≤ ν ⇒ µ ∈ Λ, (1.11)

where µ ≤ ν means that µj ≤ νj for all j.

Considering only polynomial spaces PΛ associated to such sets is very natural. In particular,

this allows to replace the monomials yν in the definition of such spaces by any other tensorized

basis Lν(y) =
∏

j≥1 Lνj (yj) where L0 ≡ 1 and Lk(yj) has degree exactly equal to k with respect

to the coordinate yj (for examples Legendre polynomials). Importantly, it has been shown in [11]

that the sets Λn achieving the convergence rate (1.8) for the problem (1.5) can be chosen from

the restricted class of monotone subsets of F . While we develop, as in [11], the algorithms and

theory for (1.5), we hasten to add that all results and algorithms presented in the present paper

apply, without any modifications, to the adaptive numerical solution of more general parametric

equations: all that is required is bounded invertibility of the parametric equation for all instances

of the parameter sequene and a characterization of the parametric solution families’ dependence on

the parameters in the sequence. Such characterizations seem to hold for broad classes of parametric

problems (we refer to [22, 23, 20, 21] for details).
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This paper is organized as follows. In §2, we build the operator IΛ and its associated grid ΓΛ

which is unisolvent for PΛ, for general monotone sets. This construction is based on univariate

sequence of points (zk)k≥0 and a standard tensorization and sparsification technique, originally due

to Smolyak [31]. The main feature of this process is the inherent nested structure the grids, which

is is well adapted to an adaptive construction of the index set: the enrichment of Λ by one index is

reflected by the enrichment of ΓΛ by one point. The amount of computation is therefore minimized

since all previously computed solution instances are used.

In §3, we study the stability of the interpolation operator IΛ. In particular we establish bounds

on the Lebesgue constant which only depends on the cardinality of the set Λ (not on its shape or

on the parametric dimension). These bounds grow algebraically with #(Λ), provided that bounds

that grow algebraically with k are available for the Lebesgue constants associated to the sections

{z0, . . . , zk} of the sequence (zk)k≥0 ⊂ P . Such univariate results have recently been obtained in

[8, 9, 10] for particular choices of sequences.

Combining the approximation estimate (1.8) together with a bound of the form #(Λ)b for the

Lebesgue constant, one expects that the interpolation IΛnu converges towards u with a deterio-

rated rate n−(s−b). In §4, we show by a different error analysis that, under the same assumption

for the elliptic equation (1.5), one can construct a sequence (Λn)n≥0 such that the interpolation

converges towards u with the optimal rate n−s. We present in §5 numerical results that illustrate

the performance of our adaptive interpolation scheme.

2 Sparse polynomial interpolation

2.1 Properties of monotone sets

For i ∈ N, we denote by ei = (δij)j≥1 the i-th Kronecker sequence. A monotone set Λ can

equivalently be defined by the property

ν ∈ Λ and νi /= 0 ⇒ ν − ei ∈ Λ. (2.1)

Any monotone set contains the null multi-index (0, 0, · · · ), which we will denote by 0F .

In addition to the partial order relation µ ≤ ν on F , we say that µ < ν if and only if µ ≤ ν but

µ /= ν and µ ! ν if and only if µj > νj for some j ≥ 1. We say that an index ν is maximal in a set

Λ ⊂ F if and only if there is no µ ∈ Λ satisfying ν < µ. Any finite set has at least one maximal

element. If Λ is monotone and if ν is maximal in Λ, then Λ\{ν} is monotone. Conversely, if Λ̃ ⊂ Λ

are two monotone sets that differ by one element ν, then ν is maximal in Λ.

It follows that if (Λn)n≥1 is a nested sequence of monotone sets with #(Λn) = n, there exists a

unique sequence of indices (νn)n≥1 ∈ FN with ν1 = 0F and such that

Λn = {ν1, . . . , νn},

for all n ≥ 1, with ν1 = 0F and νn maximal in Λn. Particular examples of monotone sets are the

5



rectangles Rν defined for any ν ∈ F by

Rν := {µ ∈ F : µ ≤ ν}. (2.2)

The only maximal element of a rectangle Rν is ν. In general, any finite monotone set Λ ⊂ F is

completely determined by its maximal elements according to

Λ =
⋃

ν∈Λ
ν maximal

Rν . (2.3)

Conversely, given µ1, . . . , µn, n multi-indices such that i /= j ⇒ µi ! µj , then
⋃n

j=1Rµj is the only

monotone set whose maximal elements are exactly the µj .

2.2 Univariate interpolation and tensorization

Let (zk)k≥0 be a sequence of mutually distinct points in P . We denote by Ik the univariate

polynomial interpolation operator associated with the section {z0, . . . , zk}. This operator acts on

a real or complex valued function g defined on P according to

Ikg :=
k∑

i=0

g(zi)l
k
i , (2.4)

where

lkj (y) :=
k∏

i=0
i $=j

y − zi
zj − zi

(2.5)

are the Lagrange polynomials associated with {z0, . . . , zk}. The possible dependence of the lkj on

the interpolation points {z0, . . . , zk} is expressed by the superscript k in (2.5). For k ≥ 0, we

introduce the difference operator

∆k := Ik − Ik−1, (2.6)

with the convention that I−1 is the null operator. Therefore, ∆0 = I0 is the operator that maps g

to the constant polynomial with value g(z0). With such notation, we can write for any n ∈ N

In =
n∑

k=0

∆k. (2.7)

Introducing the hierarchical polynomials of degree k associated to the sequence (zk)k≥0

hk(y) :=
k−1∏

j=0

y − zj
zk − zj

, k > 0 and h0(y) = 1, (2.8)

one easily checks that

∆kg = αk(g)hk, αk(g) := g(zk)− Ik−1g(zk) , (2.9)
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and therefore

Ing =
n∑

k=0

αk(g)hk . (2.10)

To any multi-index ν ∈ F , we associate the multivariate point

zν = (zνj )j≥1 ∈ P, (2.11)

and the tensorized hierarchical function

Hν(y) =
∏

j≥1

hνj (yj), (2.12)

and the tensorized multivariate operators

Iν :=
⊗

j≥1

Iνj and ∆ν :=
⊗

j≥1

∆νj , (2.13)

The above tensorization can be defined inductively: for a real or complex valued function g defined

on P,

• If ν = 0F , then ∆νg = Iνg is the constant polynomial with value g(z0F ).

• If ν /= 0F , then

Iνg = Iν1(t "→ Iν̂gt) and ∆νg = ∆ν1(t "→ ∆ν̂gt), (2.14)

where ν̂ := (ν2, ν3, ...) and for g ∈ Γ, gt is the function defined on ΓN by gt(ŷ) = g(y),y :=

(t, ŷ).

When d < ∞, the induction terminates after exactly d steps. When d = ∞, the induction termi-

nates after a finite number of steps since for any ν ∈ F , applying the operation ν "→ ν̂ sufficiently

many times to ν leads to the null multi-index 0F . We also observe that

Iν =
⊗

j≥1

( νj∑

k=0

∆k

)
=

∑

µ≤ν

∆ν . (2.15)

It is easily seen that Iν is the interpolation operator for the tensor product polynomial space

PRν =
⊗

j≥1 Pνj associated to the grid ΓRν .

2.3 The sparse interpolation operator

We are now ready to define the interpolation operator for polynomial spaces associated to monotone

spaces and its corresponding unisolvent grid, following the technique of Smolyak [31]: for any

monotone set Λ ⊂ F , we define

IΛ :=
∑

ν∈Λ
∆ν , (2.16)
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and

ΓΛ := {zν : ν ∈ Λ} . (2.17)

The monotone sets Λmight significantly differ from the sparse grid sets which are usually considered

in the literature (see, e.g., [2, 31, 6, 19]). However, the arguments showing that IΛ is the polynomial

interpolation operator on PΛ associated to the grid ΓΛ are very similar. For convenience of the

reader, we give a precise statement of this result.

Theorem 2.1 The grid ΓΛ is unisolvent for PΛ and for any function g defined on P, the unique

element in PΛ which agrees with g on ΓΛ is given by IΛg.

Proof: It is readily seen that IΛg belongs to PΛ for any function g defined on P. Since we have

#(ΓΛ) = #(Λ) = dim(PΛ), (2.18)

it suffices to verify that IΛg agrees with g on ΓΛ. For this we use (2.15) and the fact that Λ is a

monotone set to write for any ν ∈ Λ,

IΛ = Iν +
∑

µ∈Λ,µ!ν

∆µ . (2.19)

Since Iν is the interpolation operator for the space PRν associated to the grid ΓRν , we obviously

have

∀zν ∈ ΓΛ : Iνg(zν) = g(zν) . (2.20)

On the other hand if µ ! ν, there exists a j such that νj < µj . Therefore, the univariate operator

∆µj returns a polynomial which vanishes at zνj , and so ∆µg vanishes at all points of j coordinate

equal to zνj . In particular, therefore ∆µg(zν) = 0 and we have thus proved that IΛg(zν) = g(zν).

!

Remark 2.2 The fact that ΓΛ is unisolvent for the polynomial space PΛ when Λ is monotone

appears to be known from early work on polynomial interpolation: see Chapter IV in the book [25],

in which bivariate polynomials associated to monotone sets are referred to as “polynômes pleins”.

This also appears as a particular case of the theory of the “least polynomial space” for interpolation

of functions on general multivariate point sets, see in particular [16]. Here, polynomials associated

to monotone sets Λ are referred to as “order closed polynomials” and are proved to be the least

polynomial spaces for sets of the form ΓΛ.

Remark 2.3 One can generalize this construction in a straightforward way to tensorized domains

of the more general form P =
∏

j≥1 Pj with different univariate sequences (zjk)k≥0 in each coordinate

domain Pj. Another straightforward generalization is when the univariate polynomial spaces Pk are

replaced by more general nested spaces Sk such that {z0, . . . , zk} is unisolvent for Sk. Then ΓΛ is

unisolvent for the space

SΛ =
⊕

ν∈Λ

⊗

j≥1

Sνj ,

8



which generalizes PΛ and the interpolation operator is defined in a similar manner as IΛ. Sparse

grid interpolation based on hierarchical finite element spaces are a particular instance of this gen-

eralization.

Note that in our construction, any sequence (zk)k≥0 of mutually distinct points can be used.

However, the choice of the univariate sequence is critical for the stability of the resulting multivariate

interpolation operator IΛ, expressed by the Lebesgue constant

LΛ := sup
g∈B(P)

‖IΛg‖L∞(P)

‖g‖L∞(P )
, (2.21)

where B(P) is the set of bounded functions g on P which are defined everywhere on P. We are

interested in choosing sequences (zk)k≥0 such that the Lebesgue constants

λk = max
g∈C(P )

‖Ikg‖L∞(P )

‖g‖L∞(P )
, (2.22)

associated with the univariate operators Ik grow moderately with respect to k, since, as shown in

§3, this allows to derive estimates on LΛ.

A classical construction of such univariate sequences is by fixing z0 ∈ P and defining inductively

zk := Argmaxz∈P

k−1∏

j=0

|z − zj | . (2.23)

Such (zk)k≥0 are called Leja sequences on P , and moderate, algebraic growth of the Lebesgue

constants λk can be established in certain cases as we recall in §3. In addition, the choice of a

Leja sequence for (zk)k≥0 has an interesting implication on the adaptive choice of the sets Λn as

we explain in §2.5.

2.4 Hierarchical computation of the interpolation operator

As explained in the introduction, we are interested in performing polynomial interpolation for a

nested sequence of sets (Λn)n≥1 with n = #(Λn). Accordingly the grids (ΓΛn)n≥1 are also nested.

The sets Λn may either be fixed in advance, or adaptively chosen based on information gained at

earlier computational steps.

In this setting, we have observed that each Λn can be viewed as the section {ν1, . . . , νn} of

a sequence (νk)k≥1 ∈ FN. This observation leads to an efficient algorithm for the computation

of IΛng from IΛn−1g and of the value of g at the new point zνn . Indeed, by tensorization we

observe that ∆νng is a multiple of the tensorized hierarchical function Hνn defined in (2.12). Since

Hνn(zνn) = 1, it follows that

∆νng = ∆νng(zνn)Hνn = (IΛng(zνn)− IΛn−1g(zνn))Hνn = (g(zνn)− IΛn−1g(zνn))Hνn , (2.24)

and therefore

IΛng = IΛn−1g + (g(zνn)− IΛn−1g(zνn))Hνn . (2.25)

9



Consequently, the polynomials IΛng are given by

IΛng =
n∑

k=0

gνkHνk (2.26)

where the coefficients gνk are defined recursively by

gν1 = g(z0), gνk+1 := g(zνk+1)− IΛkg(zνk+1) = g(zνk+1)−
k∑

i=1

gνiHνi(zνk+1) . (2.27)

Remark 2.4 In the sum that appears on the right side of (2.27), only the terms such that νi ≤ νk+1

are non-zero. When evaluating the computational cost in the above operation, one should make the

distinction betwen the cost of the evaluation of g(zνk+1) and of computing the linear combination∑k
i=1 gνiHνi(zνk+1). In instances where the evaluation of g requires running a heavy numerical

code (for example when g(y) is an output of the solution u(y) to a parametric PDE), the first cost

dominates the second one. It is also important to notice that only n evaluations of g have been used

until the current step n.

Remark 2.5 The above algorithm is also efficient to construct the interpolant IΛg for any given

monotone set Λ. Indeed, by iteratively removing maximal elements, we see that any such set can

be written as Λ = Λk with k := #(Λ) and (Λn)n≥1 a sequence of the above type. It is also easily

checked that the coefficients gνk only depend on g and on the index νk and are independent on the

index set Λ: these coefficients can be viewed as the unique coordinates of g in the hierarchical basis

(Hν)νF . One should however be cautious when writing the expansion

g =
∑

ν∈F
gνHν , (2.28)

since it may fail converge for certain functions g regardless of the ordering of the summation.

However, it will be proved to converge for functions that can be approximated sufficiently well by

polynomials, based on the stability analysis of the interpolation operator which is the object of the

next section.

2.5 Adaptive selection of polynomial spaces

We now discuss the adaptive selection of a nested sequence (Λn)n≥1. Let us begin with the following

analogy: if (Hν)ν∈F was an orthonormal basis of L2(P) then the choice of an index set Λn that

minimize the L2 error when truncating the expansion (2.28) would be the indices corresponding to

the n largest |gν |.
In our current setting however, (Hν)ν∈F is not an orthonormal basis and we are rather inter-

ested in controlling the error in L∞. A first greedy strategy is to define Λn as the set of indices
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corresponding to the n largest contributions of (2.28) measured in the L∞ metric, i.e. the n largest

aν |gν |, where
aν := ‖Hν‖L∞(P) :=

∏

j≥1

‖hνj‖L∞(P ). (2.29)

This strategy obviously gives rise to a nested sequence (Λn)n≥1, however the sets Λn are not

ensured to be monotone. In addition, it is not computationally feasible since finding the n largest

contributions in (2.28) hints that we should have computed all contributions.

In order to correct these defects, we define for any monotone set Λ a set of neighbours

N (Λ) := {ν /∈ Λ : Rν ∈ Λ ∪ {ν}}, (2.30)

or equivalently those ν /∈ Λ such that ν−ej ∈ Λ for all j such that νj /= 0. Then a natural variant of

the first strategy, that leads to a nested sequence of monotone sets, is the following greedy adaptive

algorithm.

Adaptive Interpolation (AI) Algorithm:

• Start with Λ1 := {0F}.

• Assuming that Λn−1 has been computed, find

νn := argmax{aν |gν | : ν ∈ N (Λn−1)}, (2.31)

and define Λn = Λn−1 ∪ {νn}.

Let us observe that since Hν(zν) = 1, we obviously have that aν ≥ 1. On the other hand, when

(zk)k≥0 is a Leja sequence built according to (2.23), we obviously have maxz∈P |hk(z)| = |hk(zk)| = 1

and therefore

aν = Hν(zν) = 1. (2.32)

In such a case, in view of (2.27), the greedy strategy (2.31) amounts in choosing the new index in

N (Λn−1) that maximizes the interpolation error at the corresponding new grid point:

νn := argmax{|g(zν)− IΛn−1g(zν)| : ν ∈ N (Λn−1)}. (2.33)

This greedy strategy has several defects. The first one is that it may simply fail to converge,

even if there exist sequences (Λn)n≥0 such that IΛng converges to g at a high rate. This is due

to data oscillation that could return an artificially small interpolation error at the new grid point.

Consider for example a two dimensional function of the form

g(y) = g(y1, y2) = g1(y1)g2(y2), (2.34)

where g1 and g2 are non-polynomial smooth functions such that g2 takes the same values at the

points z0 and z1. Then, the algorithm will select sets Λn that consist of the indices ν = (k, 0) for

11



k = 0, . . . , n − 1, since the interpolation error at the point z(k,1) = (zk, z1) will vanish. Although

this type of situation might be viewed as pathological, it reflects the fact that the algorithm might

fail in its first steps to identify the significant variables. One way to avoid this is to impose that

when all interpolation errors |g(zν)− IΛn−1g(zν)| for ν ∈ N (Λn) are smaller than some prescribed

tolerance εn > 0 (that is either fixed or tends to 0 as n grows), then the new index νn is chosen

arbitrarily from N (Λn).

The second defect is that in the infinite dimensional framework d = ∞ the set of neighbours

N (Λ) has infinite cardinality. One way to treat this defect is to modify its definition by setting

N (Λ) := {ν /∈ Λ : νj = 0 if j > j(Λ) + 1 and Rν ∈ Λ ∪ {ν}}, (2.35)

where j(Λ) := max{j : νj > 0 for some ν ∈ Λ}. This means that we can activate at most one new

variable at each iteration step.

Even with such modifications, it is not clear to understand under which additional assumptions

on g this adaptive, greedy selection procedure will pick sets (Λn)n≥1 such that the interpolation

IΛng has a guaranteed convergence rate comparable to that of an optimal choice of sets such as, e.g.

obtained from best n-term approximation. We give in §5 several numerical examples that illustrate

the good practical behaviour of this algorithm.

3 The Lebesgue constant

The accuracy of the interpolation operator IΛ can be related to the error of best polynomial

approximation via the Lebesgue constant LΛ defined in (2.21), according to the classical inequality

‖g − IΛg‖L∞(ΓN ) ≤ (1 + LΛ) inf
Q∈PΛ

‖g −Q‖L∞(P). (3.1)

A crude, yet useful, way to estimate LΛ is by using triangle inequality which gives

LΛ ≤
∑

ν∈Λ
δν , (3.2)

where we define for ν ∈ F
δν := sup

g∈B(P)\{0}

‖∆νg‖L∞(P)

‖g‖L∞(P)
. (3.3)

It is readily seen that

δν :=
∏

j≥1

δνj , (3.4)

where

δk := sup
g∈C(P )

‖∆kg‖L∞(P )

‖g‖L∞(P )
≤ λk−1 + λk , (3.5)

with λk the Lebesgue constant associated with the univariate operators Ik and with the convention

that λ−1 := 0. Therefore

LΛ ≤
∑

ν∈Λ

∏

j≥1

(λνj + λνj−1) (3.6)
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Note that δ0 = λ0 = 1, regardless of the choice of the sequence (zk)k≥0.

The bound (3.6) is of course crude, since we did not take advantage of the telescoping nature

in the summation of the ∆ν . For instance, when Λ = Rν , we have seen that IΛ = Iν =
⊗

j≥1 Iνj ,

and in that case the exact value of the Lebesgue constant is given by the smaller value

LRν =
∏

j≥1

λνj . (3.7)

Nevertheless, for general monotone sets Λ, we can use the bound (3.6) to study the behaviour of the

Lebesgue constant LΛ as the number of interpolation points #(ΓΛ) = #(Λ) grows. The following

result shows that when certain algebraic bounds are available for the λk, then similar algebraic

bounds can be derived for LΛ in terms of #(Λ) regardless of the dimension d and of the shape of

Λ.

Lemma 3.1 If the Lebesgue constants λk satisfy

λk ≤ (k + 1)θ, k ≥ 0 (3.8)

for some θ ≥ 1, then the Lebesgue constants LΛ satisfy

LΛ ≤ (#Λ)θ+1 (3.9)

for any monotone set Λ.

Proof: For any k ≥ 0, one has λk +λk−1 ≤ (k+1)θ + kθ ≤ (2k+1)(k+1)θ−1, therefore, for ν ∈ Λ

∏

j≥1

(λνj + λνj−1) ≤
(∏

j≥1

(νj + 1)
)θ−1 ∏

j≥1

(2νj + 1)

= (#(Rν))
θ−1

∏

j≥1

(2νj + 1)

≤ (#(Λ))θ−1
∏

j≥1

(2νj + 1),

where we have used Rν ⊂ Λ since Λ is monotone. To complete the proof, it remains to show that

σ(Λ) ≤ (#Λ)2, where

σ(Λ) :=
∑

ν∈Λ

∏

j≥1

(2νj + 1) . (3.10)

This is done using induction on nΛ := #(Λ). When nΛ = 1, then Λ = {0F} and it is obviously

true. Let n ≥ 1 and Λ denote a monotone set with nΛ = n + 1. Without loss of generality, we

suppose that µ1 /= 0 for some µ ∈ Λ, and denote by K ≥ 1 the maximal value attained by the

coordinate ν1 when ν ∈ Λ. For 0 ≤ k ≤ K, we introduce

Λk := {ν̂ = (ν2, ν3, . . . ) : (k, ν̂) ∈ Λ} (3.11)

13



By monotonicity of Λ, every Λk is monotone. Also, since K ≥ 1 then #(Λk) < #(Λ) for any k, so

that the induction hypothesis implies

σ(Λ) =
K∑

k=0

(2k + 1)σ(Λk) ≤
K∑

k=0

(2k + 1)(#(Λk))
2 . (3.12)

Also, we have

ΛK ⊂ · · · ⊂ Λ1 ⊂ Λ0, (3.13)

since for k ≥ 1, µ ∈ Λk ⇒ (k, µ) ∈ Λ ⇒ (k − 1, µ) ∈ Λ ⇒ µ ∈ Λk−1. We deduce

k(#(Λk))
2 ≤ #(Λk)#(Λ0) + ...+#(Λk)#(Λk−1), (3.14)

and consequently

σ(Λ) ≤
K∑

k=0

(#(Λk))
2 + 2

K∑

k=0

(#(Λk)#(Λ0) + ...+#(Λk)#(Λk−1)) ≤
( K∑

k=0

#(Λk)
)2

= (#(Λ))2,

(3.15)

which concludes the proof. !

Remark 3.2 In the case where (zk)k≥0 is a Leja sequence defined by (2.23) for some initial point

z0 ∈ P , the hierarchical polynomials hk defined by (2.8) satisfy

|hk(z)| ≤ |hk(zk)| = 1, z ∈ P. (3.16)

Since, according to (2.9), we have

∆kg = (g(zk)− Ik−1g(zk))hk, (3.17)

it follows that

δk ≤ 1 + λk−1, (3.18)

and

LΛ ≤
∑

ν∈Λ

∏

j≥1

(1 + λνj−1) (3.19)

which is are improvements over (3.5) and (3.19).

Let us observe that since λ−1 = 0 and λ0 = 1, bounds of the form λk ≤ (k + 1)θ can be

established for some θ > 0 provided that λk are bounded as O(kb) for some b > 0. Such bounds

have recently been obtained in [8, 9, 10], in the cases where P is either the complex unit disk

{|z| ≤ 1} or the unit interval [−1, 1].

For the complex unit disk, if (zk)k≥0 is the Leja sequence defined by (2.23) with z0 = 1, it is

proved in [8] that λk = O(k log k) and conjectured that

λk ≤ k + 1, k ≥ 0 . (3.20)
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The more precise bound

λk ≤ 2(k + 1), k ≥ 1, (3.21)

is established in [10]. Using the improvement (3.19), and using the same computation as in the

proof of the above Lemma, we obtain in that case that LΛ ≤ #(Λ)2.

For the unit interval [−1, 1], and the sequence given by the projection of the above complex Leja

sequence, an asymptotic bound in O(k3 log k) has been obtained in [9], and it has been improved

into 3(k+ 1)2 log(k+ 1) in [10]. Note that projections of Leja sequences on the unit disk to [−1, 1]

are not Leja sequences on [−1, 1].

4 Application to parametric PDEs

4.1 Interpolation of Banach valued functions

We are interested in applying our interpolation process to the map y "→ u(y) defined by exact or

approximate solving of the parametric PDE (1.1) for the given parameter y. Therefore, we want to

interpolate a function which is not real or complex valued, but instead takes its value in the solution

space V . The generalization of the interpolation operator IΛ to this setting is straighforward: IΛu

is the unique function in VΛ that coincides with u at the points zν for ν ∈ Λ. As in the scalar case,

it can be expanded according to

IΛu =
∑

ν∈Λ
uνHν , (4.1)

where the coefficients uν ∈ V can be computed in a recursive way similar to (2.27):

uν1 = u(z0), uνk+1 = u(zνk+1)−
k∑

i=1

uνiHνi(zνk+1), (4.2)

where Λn = {ν1, . . . , νn}, n = 1, 2, . . . , is a nested sequence of monotone sets. We are interested in

the accuracy of the interpolant in the sense of the maximum error

‖u− IΛu‖L∞(P,V ) := sup
y∈P

‖u(y)− IΛu(y)‖V . (4.3)

The same reasoning as for interpolation of scalar valued functions shows that

‖u− IΛu‖L∞(P,Λ) ≤ (1 + LΛ) inf
v∈VΛ

‖u− v‖L∞(P,Λ), (4.4)

where LΛ is the Lebesgue constant associated to the interpolation operator IΛ which was defined

and studied in the previous section.

4.2 Convergence rates for a parametric, elliptic model problem

As already explained in the introduction, for the model elliptic problem (1.5), one can establish

convergence rates in L∞(P, V ) and L2(P, V ), where V = H1
0 (D), for polynomial approximation
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that are robust with respect to the parametric dimension. Here we focus on L∞(P, V ). The results

in [12, 13, 11] show that if the diffusion satisfies the uniform ellipticity assumption (1.6) and if

for some 0 < p < 1, one has (‖ψj‖L∞(D))j≥1 ∈ $p(N), there exists a nested sequence (Λn)n≥1 of

monotone sets such that #(Λn) = n and

inf
v∈VΛn

‖u− v‖L∞(P,Λ) ≤ Cn−s, s :=
1

p
− 1. (4.5)

where C > 0 depends on s := 1
p − 1 but is independent of n. In fact this rate of convergence was

proved for specific approximations defined either by Taylor expansion

TΛnu(y) :=
∑

ν∈Λn

tνy
ν , (4.6)

where tν := 1
ν!∂

ν
yu(y)|y=0 with ν! :=

∏
j≥1 νj ! or by orthogonal projections

PΛnu(y) :=
∑

ν∈Λn

cνLν(y), (4.7)

where the Lν are the tensorized Legendre polynomials in [−1, 1], which are normalized with respect

to the probability measure dt/2 and where cν are the corresponding Legendre coefficients. The fact

that we work in the infinite dimensional case d = ∞ in (4.5) reveals that the convergence rate n−s

in (4.5) is robust with respect to the number of active variables. In this section, we work under the

same assumptions on the diffusion coefficient and its expansion.

We now study the rate of convergence of IΛnu towards u. Combining (4.5) and (4.4), we obtain

‖u− IΛnu‖L∞(P,V ) ≤ C(1 + LΛn)n
−s . (4.8)

We have seen in §4 that the Lebesgue constant can be controlled by a bound of the form

LΛn ≤ nb , where b = θ + 1 , (4.9)

when the univariate sequence (zk)k≥0 is chosen so that λk ≤ (k + 1)θ for some θ > 0 and we gave

examples of such sequences. We thus obtain a convergence estimate of the form

‖u− IΛnu‖L∞(P,V ) ≤ Cn−(s−b) . (4.10)

With this simple stability (via the bound for the Lebesgue constant) plus consistency (via the n-

term approximation result) analysis, the convergence rate obtained in (4.10) is reduced by b = θ+1

compared to the (benchmark) n-term approximation rate s in (4.5).

We now present a more refined argument that shows that there exists a sequence (Λn)n≥1 ⊂ F
of monotone sets such that #(Λn) = n and a constant C > 0 such that for all n ∈ N holds

‖u− IΛnu‖L∞(P,V ) ≤ Cn−s . (4.11)

This analysis relates more directly the interpolation error with the Taylor coefficients of u according

to the following result.
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Lemma 4.1 Assume that u(y) =
∑

ν∈F tνyν in the sense of unconditional convergence in L∞(P, V ).

If the univariate sequence (zk)k≥0 is chosen so that λk ≤ (k + 1)θ, then

‖(I − IΛ)u‖L∞(P,V ) ≤ 2
∑

ν /∈Λ

pν(b)‖tν‖V , (4.12)

for any finite monotone set Λ, where b := θ + 1 and

pν(b) :=
∏

j≥1

(1 + νj)
b . (4.13)

Proof: The unconditional convergence of the Taylor series allows us to write

IΛu = IΛ
(∑

ν∈F
tνy

ν
)
=

∑

ν∈F
tνIΛy

ν =
∑

ν∈Λ
tνy

ν +
∑

ν &∈Λ
tνIΛ∩Rνy

ν . (4.14)

Here, we used that for monotone Λ it holds that IΛyν = yν for every ν ∈ Λ and that ∆µyν = 0 for

every µ ≤ ν. Therefore

(I − IΛ)u =
∑

ν &∈Λ
tν(I − IΛ∩Rν )y

ν , (4.15)

where I stands for the identity operator. This implies

‖(I − IΛ)u‖L∞(P,V ) ≤
∑

ν &∈Λ
‖tν‖V (1 + LΛ∩Rν ) ≤ 2

∑

ν &∈Λ
‖tν‖V LΛ∩Rν . (4.16)

Since λk ≤ (k + 1)θ, we obtain from Lemma 3.1 that

LΛ∩Rν ≤ #(Λ ∩Rν)
θ+1 ≤ #(Rν)

θ+1 = pν(b), (4.17)

which completes the proof. !

Let us observe that the above lemma can be generalized to polynomial expansions other than

Taylor series, for example expansions into Legendre polynomials, provided that unconditional con-

vergence holds. We focus here on the Taylor series, which allows us to use the results in [13] that

prove unconditional convergence under our assumptions on the diffusion coefficients, based on ex-

plicit bounds for the V -norms of Taylor coefficients. These bounds are obtained by application of

the Cauchy formula, on the holomorphic extension of the map y "→ u(y), and are of the form

‖tν‖V ≤ Cδ

∏

j≥1

ρ
−νj
j = Cδρ

−ν , (4.18)

where Cδ :=
‖f‖V ∗

δ for arbitrary δ > 0 and ρ := (ρj)j≥1 is any sequence of strictly positive numbers

that satisfies ∑

j≥1

ρj |ψj(x)| ≤ ā(x)− δ, x ∈ D . (4.19)
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We call sequences ρ which satisfy (4.19) δ-admissible. We observe that δ has to be chosen smaller

than the ellipticity constant r in order to ensure the existence of such sequences. In [13], (4.18)

is used to prove the unconditional convergence of the Taylor series of u in L∞(P, V ) and the

convergence rate (4.5). In the next result, we use the same bounds to prove a summability result

on the sequence (pν(b)‖tν‖V )ν∈F .

Theorem 4.2 Assume that if the diffusion coefficient satisfies the uniform ellipticity assumption

(1.6) and that for some 0 < p < 1, one has (‖ψj‖L∞(D))j≥1 ∈ $p(N). Then for any b ≥ 1 and for

pν(b) as in (4.13), the sequence (pν(b)‖tν‖V )ν∈F belongs to $p(F).

Proof: We fix B = eb. Since p < 1, (‖ψj‖L∞(D))j≥1 ∈ $1(N) and we may choose κ > 1 and an

integer J0 ≥ 1 such that

(κ− 1)
∑

j≥1

‖ψj‖L∞(D) ≤
r

6
and

∑

j>J0

‖ψj‖L∞(D) ≤
1

B

r

12
, (4.20)

and we set E := {j : 1 ≤ j ≤ J0} and F := {j : j > J0}. For each ν ∈ F , we denote by

νE and νF the restrictions of ν on E and F , and we define the sequence ρ = ρ(ν) by ρj = κ if

j ≤ J0, ρj = 1 if j > J0 with νj = 0, and

ρj = B +
rνj

4|νF |‖ψj‖L∞(D)
, j > J0, νj /= 0 (4.21)

where |νF | =
∑

j>J0
|νj |. We claim that ρ is r

2 -admissible. Indeed, for almost every x ∈ D

∑

j≥1

ρj |ψj(x)| ≤ κ
∑

j≤J0

|ψj(x)|+
r

4

∑

j>J0

νj
|νF |‖ψj‖L∞(D)

|ψj(x)|+B
∑

j≥J0

|ψj(x)|

≤
∑

j<J0

|ψj(x)|+
r

6
+

r

4
+

r

12

≤ ā(x)− r +
r

2
= ā(x)− r

2
.

Therefore, by (4.18)

pν(b)‖tν‖V ≤ C r
2

∏

j≤J0

(1 + νj)b

κνj

∏

j>J0

(1 + νj)b

ρ
νj
j

. (4.22)

Since κ > 1, we have (1+n)b ≤ C0(
1+κ
2 )n for any n ≥ 1 provided that C0 = exp (b/ log((1 + κ)/2)).

Combining this with (4.22) implies

pν(b)‖tν‖V ≤ Cqν where qν :=
∏

j≤J0

ηνj
∏

j>J0

(1 + νj)b

ρ
νj
j

, (4.23)

with η := 1+κ
2κ < 1 and C := C r

2
CJ0
0 . Using the inequality 1 + x ≤ ex for x > 0, we deduce that for

j > J0 with νj /= 0
(1 + νj)b

ρ
νj
j

≤
( |νF |dj

νj

)νj
with dj :=

4B‖ψj‖L∞(D)

r
, (4.24)
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so we can write pν(b)‖tν‖V ≤ Cqν ≤ Cα(νE)β(νF ), where

α(νE) :=
∏

j≤J0

ηνj , β(νF ) :=
∏

j>J0

( |νF |dj
νj

)νj
. (4.25)

By (4.20) we find that
∑

j>J0
dj ≤ 1

3 . We then obtain the $p summability of (qν)ν∈F exactly as in

§3.2 in [13]. It follows that (pν(b)‖tν‖V )ν∈F is $p summable. !

The $p summability of (pν(b)‖tν‖V )ν∈F implies by a standard result of Stechkin (see (3.13) in

[13]) that there exists C > 0 and a sequence (Λn)n≥1 of sets Λn ⊂ F of cardinality not exceeding

n such that ∑

ν /∈Λn

pν(b)‖tν‖V ≤ Cn−s, s :=
1

p
− 1 , (4.26)

if each set Λn consists of the indices corresponding to n largest values of pν(b)‖tν‖V . However,

these sets are not necessarily monotone. In order to obtain a sequence of monotone sets, we

observe that the sequence (qν)ν∈F defined in (4.23) is monotone decreasing, in the sense that

µ ≤ ν ⇒ qν ≤ qµ. Indeed, on the one hand, qν+ej = ηqν < qν if j ≤ J0. On the other hand, since

(2 + n)b ≤ 2b(1 + n)b ≤ B(1 + n)b for any n ≥ 0 and since νj+1
|νF |+1 ≥ νj

|νF | for any j > J0, then

(2 + νj)b(
B + r(νj+1)

4(|νF |+1)‖ψj‖L∞(D)

)νj+1 ≤ (1 + νj)b(
B + rνj

4|νF |‖ψj‖L∞(D)

)νj

which implies also that qν+ej ≤ qν when j > J0. This shows that the sequence (qν)ν∈F is monotone

decreasing (i.e. monotonically decreasing with respect to the semiordering ≤ of multiindices in F
induced by monotonicity in the sense of Definition 1.11).

Since the sequence (qν)ν∈F majorizes the sequence (pν‖tν‖V )ν∈F up to a multiplicative constant,

and since its $p summability is established in the above theorem, we also obtain (4.26) with Λn a

set of indices corresponding to the n largest values of qν . Since (qν)ν∈F is monotone decreasing,

such sets Λn can always be chosen to be monotone and nested. Combining these observations with

Lemma 4.1, we thus have established the following convergence result.

Theorem 4.3 Assume that if the diffusion coefficient satisfies the uniform ellipticity assumption

(1.6) and one has (‖ψj‖L∞(D))j≥1 ∈ $p(N) for some 0 < p < 1. If the univariate sequence (zk)k≥0

is chosen so that λk ≤ (k + 1)θ for some θ > 0, then there exists a sequence (Λn)n≥1 of monotone

sets Λn such that #(Λn) = n and

‖u− IΛnu‖L∞(P,V ) ≤ Cn−s, s =
1

p
− 1 . (4.27)

Remark 4.4 The above convergence result exploits the fact that the Taylor series itself converges,

due to the holomorphic properties of the solution map. For other type of parametric model problems

that do not have such properties, the Taylor series may fail to converge even if the parameter de-

pendence is smooth. On the other hand, other types of polynomial approximation may still converge
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with a high rate, and therefore so may polynomial interpolation provided that the Lebesgue constant

does not grow too fast. For such problems, we thus expect that our high dimensional interpolation

algorithm behaves well, provided that the sets Λn are properly selected, either by a-priori estimates

or by an adaptive strategy such as described in §2.5.

5 Numerical experiments

5.1 Scalar valued functions

We first consider the interpolation of scalar valued functions u : P → R where P = P d with

P = [−1, 1]. Our objective is to test the adaptive algorithm AI proposed in §2.5 in various ways:

• Ability to select good monotone index sets Λn, in particular when the function has anisotropic

dependence on the variable.

• The effect of the choice of the univariate sequence (zk)k≥0, in particular on the robustness of

the interpolation with respect to noise in the measurements.

• Robustness of the performance with respect to the variable dimension d when the function

depends only of a few unkown variables, or when the depence with respect to the variables is

sufficiently anisotropic.

We consider three possible choices for the univariate sequence (zk)k≥0:

• Uniform sequence (U): z0 = 1, z1 = −1, z2 = 0 and for k > 1 we set z2k+1 = 1
2

∑n
j=0 εj2

−j

where k =
∑n

j=0 εj2
j is the binary expansion of k and z2k+2 = −z2k+1. Such a choice pro-

duces a uniform subdivision of [−1, 1] of step size 2−j for the particular sections (z0, . . . , z2j ),

and avoids accumulation of points on a region of the interval for the intermediate sections

(z0, . . . , zk), 2j < k < 2j+1.

• Leja sequence (L): z0 = 1 and the sequence zk is defined recursively on [−1, 1] by (2.23).

• R-Leja sequence (R): this is the projection on [−1, 1] of a Leja sequence for the complex unit

disk initiated at 1. The R-Leja sequence has an explicit structure which is very similar to

that of the sequence U in the sense that (z0, . . . , z2j ) are Clenshaw-Curtis points, that is, the

projections on the real axis of a uniform subdivision of the upper half-circle with end-points

at −1 and 1, see [8, 9, 10].

Our first example is the function of d = 16 variables

u1(y) = u(y1, . . . , y16) = y3 sin(y4 + y16), (5.1)

that in fact only depends on 3 variables. Figure 5.1 displays the interpolation error in terms of

n = #(Λn) for the AI algorithm based on 3 possible choices U, L, R, of univariate sequence (zk)k≥0.
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We observe that the error decays, after a (short) preasymptotic phase (required to identify the

set {3, 4, 16} of “active” dimensions) reaches machine precision when the AI algorithm is based on

the choices L and R for the univariate sequence, but not with the choice U, although u1 is analytic

over Rd. Inspection of the index sets Λn generated by the algorithm for the three choices reveals

that for n = 103, the polynomial degree in the active variables y4 and y16 reaches values above 30.

This explains the bad behaviour of the error for the choice U. Indeed, it is well known that the

univariate Lebesgue constant associated to k uniformly spaced points in (−1, 1) grows faster than

2k (see, e.g. [14]).

This implies that, in the range of polynomial degrees k activated by the AI algorithm based on

the sequence U, the Lebesgue constants become so large, that the (inevitable) roundoff errors in

the float point evaluation of the function u2(y) in (5.1) are amplified to O(1) contributions to the

interpolant. This does not occur with the choices L and R for which the Lebesgue constant has

moderate growth. For these sequences, the algorithm identifies the three active variables (y3, y4, y16)

in the sense that all chosen indices ν have νj = 0 for j /= 3, 4, 16.
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Figure 5.1: Estimated L∞ error of the AI algorithm applied to u1 based on the sequences R, L and

U .

In our next example, we consider the parametric, scalar function

u2(y) = (1 +
d∑

j=1

γjyj)
−1, γj :=

3

5j3
. (5.2)

This function now depends on all variables y1, . . . , yd but in a strongly anisotropic way due to

the decay of the weights γj . Since
∑∞

j=1 γj ≈ 0.72 < 1, the function u admits an holomorphic

continuation (that is, an extension which is holomorphic in each variable) in the complex polydisc
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domain

PC = (PC)
d, (5.3)

where PC is the unit disk of C, regardless of the dimension d. Moreover, an analysis completely

analogous to that used in [13] to prove (1.8) for parametric PDE’s, based on Cauchy’s integral

formula, reveals that since (γj)j≥1 ∈ $p(N) for p > 1
3 , there exists a sequence (Λ∗

n)n≥1 with n =

#(Λ∗
n) such that

inf
v∈PΛ∗

n

‖u− v‖L∞(P) ≤ Csn
−s, n ≥ 1, (5.4)

for all s < 2 where Cs is independent of the number d of active coordinates. Figure 5.2 reveals that

this robustness with respect to d is also observed when using the AI algorithm (here based on the

sequence R), since its convergence behaviour is almost unchanged for d = 8, 16, 32 and 64.
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Figure 5.2: Estimated L∞ error for the AI algorithm applied to u2 based on the sequences R for

the dimensions d = 8, 16, 32, 64.

We next fix d = 16 and compare the error of the AI algorithm applied to u2 based on the

three sequences L, R and U. Figure 5.3 reveals that, in contrast to the function u1, the uniform

sequence U gives as good results as the sequences L and R. This can be explained by inspecting

more closely the index sets Λn, for which one finds that for n = 104 the highest polynomial degree

attained on the most significant variable y1 is 17 (due the presence of many active variables) and

the amplification of roundoff in function evaluations to O(1) is not yet visible.

To verify that the preceding results and findings are not a consequence of the particular func-

tional form of the exact solutions, we repeat the previous experiment with a small amplitude added

random perturbation. Specifically, we now adaptively interpolate the values u2(zν) + εν where

εν are independent realizations of a random variable with uniform law on [−10−3, 10−3]. Figure
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Figure 5.3: Estimated L∞ error of the AI algorithm applied to u2 with d = 16 based on the

sequences R, L and U .

0 0.5 1 1.5 2 2.5 3 3.5 4
−2

0

2

3

log
10

(#Λ)

lo
g

1
0
(S

u
p

re
m

u
m

 e
rr

o
r)

 

 

R−Leja

Leja

Uniform

Figure 5.4: Estimated L∞ error of the AI algorithm applied to a noisy evaluation of u2 with d = 16

based on the sequences R, L and U .

5.4 reveals that the error diverges when using the U sequence, while it decays when using R or L

(however not reaching arbitrarily small values due to presence of the noise).
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Figure 5.5: Estimated L∞ error of the AI algorithm applied to u3 with d = 16 based on the

sequences R, L and U .

Finally, we consider with d = 16 the function

u3(y) =
(
1 + (

d∑

j=1

γjyj)
2
)−1

, γj :=
5

j3
. (5.5)

Similar to u2, this function has an anisotropic behaviour. It also has an holomorphic continuation

in a complex neighbourhood of P, however, it has smaller domain of analyticity than the polydisc

PC due to the fact that
∑d

j=1 γj > 1. As a consequence, the AI algorithm based on the uniform

sequence U does not converge even in the noiseless case, as illustrated by Figure 5.5. This should

be viewed as a manifestation of the well known Runge phenomenon.

In summary, the AI algorithm takes advantage of an anisotropic dependence on the variables,

however its success is critically tied to the choice of the univariate sequence (zk)k≥0 in either one

of these situations: (i) the polynomial degree reaches high values in certain variables, (ii) the

measurements (ie. function evaluations) are “noisy”, (iii) the function does not have sufficient

smoothness in certain variables. In all cases, both sequences R and L are good choices. The

convergence rates are dimension independent if the function u allow for dimensionally independent

best N -term approximation rates. The practical performance of the AI algorithms are found to be

robust with respect to the choice of univariate sequence (zj)j≥1 as long as the sectional Lebesgue

constants λk grow algebraically as kθ with moderate exponent θ.
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5.2 Parametric PDE’s

We now turn to the interpolation of functions, u : P → V defined as the solution map of a

parametric PDE (1.1) where V is the solution space. In practice, the PDE is solved by a numerical

technique such as the finite element method applied with a certain mesh, and therefore we rather

interpolate the numerical solution map

uh : P → Vh, (5.6)

where Vh ⊂ V is finite dimensional and independent of the particular interpolation point in U .

In [11], several adaptive algorithms based on the Taylor partial sums (4.6) were proposed,

analyzed and implemented for the model elliptic PDE (1.5). The most practically efficient of these

algorithms acts in a very similar way as the AI algorithm, in the sense that the sets Λn+1 is defined

by adding to Λn the index ν that maximizes the V -norm of the Taylor coefficient tν among the

set of neighbours N (Λn). In the sequel, we refer to this adaptive algorithm as Largest Neigbour

Taylor (LNT). Note that, in contrast to AI, algorithms based on the computation of the Taylor

series such as LNT are by essence intrusive and strongly benefit from the particular structure of the

problem (1.5): a linear equation with affine dependence of the operator on the parameters. This

struture allows us to do a recursive computation of the Taylor coefficients tν which are solutions to

the boundary value problems
∫

D

ā∇tν∇v = −
∑

j : νj &=0

∫

D

ψj∇tν−ej∇v, v ∈ V. (5.7)

These problems be derived by partial differentiation at y = 0 of the variational formulation
∫

D

a(y)∇u(y)∇v =

∫

D

fv, v ∈ V, (5.8)

and we refer to [13] for a rigourous justification.

We compare the two algorithms AI and LNT when applied to (1.5) withD = [0, 1]2 and diffusion

coefficient a(x,y) given by an expansion in the two dimensional Haar wavelet basis, similar to Test

2 in [11], namely

a(x,y) := ā(x) +
L∑

l=0

βl

3∑

i=1

∑

k∈{0,...,2l−1}2
yl,k,ih

i
l,k(x), ā = 1. (5.9)

In the above expansion,

hil,k(x) := hi(2lx− k), l ∈ N, k = (k1, k2) ∈ {0, . . . , 2l − 1}2, i = 1, 2, 3, (5.10)

where the generating wavelets hi are defined by h1(x1, x2) := ϕ(x1)h(x2), h2(x1, x2) := h(x1)ϕ(x2)

and h3(x1, x2) := h(x1)h(x2), with ϕ := χ[0,1] and h := χ[0,1/2[ − χ[1/2,1[. Using the relabelling

ψj := βlh
i
l,k and yj := yl,k,i, when j = 22l + 3(2lk1 + k2) + i− 1, (5.11)
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we may rewrite the above expansion (5.9) in the form a(x, y) := ā(x) +
∑d

j=1 yjψj(x) adopted in

this paper, with d := 22(L+1) − 1. We consider the general form

βl := c2−γl, c := 0.3(1− 2−γ), (5.12)

which ensures that the uniform ellipticity assumption UEA holds with r = 0.1 and R = 1.9,

regardless of the parametric dimension d. The value of the parameter γ > 0 reflects the decay of

the high scale oscillation and therefore the long range correlation in the diffusion field.

In our numerical test, we use the value γ = 3, which was among those tested in [11] and we

consider the maximal scale levels L = 1 and 2 which give parametric dimension d = 15 and 63. In

order to refine the comparison between AI and LNT, we introduce a third process that builds the

interpolants IΛnu by using the sets Λn produced by the LNT algorithm. We refer to this algorithm

as LNTI (Largest Neighbour Taylor Interpolation). For both AI and LNTI we use the univariate

sequence R.

Several observations may be drawn from the error curves, displayed on Figures 5.6 and 5.7. We

first notice that the error curve of LNTI is close to that of LNT, with a more oscillatory behaviour.

Since the sets (Λn)n≥1 are the same for both algorithms, these oscillations may reflect the non-

monotonic growth Lebesgue constant of the interpolation operator IΛn that is used in LNTI. In

addition, we notice that the error curve of AI is above that of LNTI, which means that AI is slightly

misled in the adaptive selection of the sets Λn which was better performed by LNT. In all cases, we

find that these algorithms are robust with respect to the growth in the dimension, and are therefore

capable of capturing the anisotropic structure of the problem reflected by the decay in the weights

βl.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

log
10

(#Λ)

lo
g

1
0
(S

u
p

re
m

u
m

 e
rr

o
r)

 

 

LNT
LNTI
AI

Figure 5.6: Estimated L∞(P, V ) error of LNT, LNTI and AI for the model problem (1.5) with

coefficients (5.9) and d = 15.
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Figure 5.7: Estimated L∞(P, V ) error of LNT, LNTI and AI for the model problem (1.5) with

coefficients (5.9) and d = 63.

The effectiveness of Taylor approximations in the above problem is due to the fact that the map

y "→ u(y) has an holomorphic continuation in the complex polydisc PC, similar to the scalar valued

function u2. This approach becomes uneffective for PDE’s where such continuation does not hold,

even if the dependence on y remains analytic over P. Here are two instances of such problems:

• Parametric nonlinear diffusion equations of the form

− div(a∇u) + F (u) = f, (5.13)

with similar assumptions on the diffusion coefficient a as in (1.5) and F an analytic nonlinear

function. In the case where f is small enough, a perturbation approach leads to a similar

holomorphic extension over the polydisc PC as in the linear case, see [20]. In the case where f

is arbitrary, and F is such that the problem remains coercive inH1
0 (D) (for example F (u) = u3

in spatial dimension 2 or 3), analyticity still holds on P, however we are not ensured that the

holomorphic extension can be carried over the whole of PC.

• Linear PDE’s set in parameter dependent domains. Consider for instance

−∆u = f in D = D(y) = {(x1, x2) 0 ≤ x1 ≤ 1, 0 ≤ x1 ≤ φ(x1,y)}, (5.14)

where the upper boundary has a general form φ(x1,y) = φ̄(x1) +
∑d

j=1 yjφj(x1) ≥ φmin > 0.

By a change of variable x2 "→ x2φ(x1) mapping the reference domain D̄ = [0, 1]2 into D(y), we

are led to the elliptic PDE (1.5) over D̄ however with a matrix coefficient a(x,y) depending

in a rational manner of y rather than affine. Here again, the dependence on y is analytic

over the real domain P, however with no guarantee that the holomorphic extension can be

carried over the whole of PC.
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For such problems, we expect that Taylor based algorithms such as LNT fail, while AI still

converges. We illustrate this by studying a simpler problem, namely (1.5) with diffusion coefficients

of the form

a(x,y) = ā(x) + (
d∑

j=1

yjψj(x))
2. (5.15)

Assuming that ā(x) ≥ r > 0, the problem is always coercive and the map y "→ u(y) has analytic

dependence on y ∈ P. However, when the function ψj are chosen too large, the holomorphic

extension does not hold over the whole of PC. This example should be viewed as similar to the

scalar function u3.
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Figure 5.8: Estimated L∞(P, V ) error of LNT and of AI using U and R sequences, for the model

problem (1.5) with coefficients (5.15) and γ = 0.5.

Due to the polynomial form of a(x,y) in the variable y, it is still possible to compute the Taylor

coefficients tν in a recursive manner that generalizes (5.7). Indeed, if a(x,y) has the general form

a(x,y) := ā(x) +
∑

ν∈Λ
yνψν(x), (5.16)

where Λ is a fixed set of index that does not include 0F , then partial differentiation of (5.8) shows

that ∫

D

ā∇tν∇v = −
∑

µ∈Λ : µ≤ν

∫

D

ψµ∇tν−µ∇v, v ∈ V. (5.17)

This allows us to again perform LNT in the case where a is has the quadratic form (5.15).

As an example, we take d = 4, ā(x) = 1 and

ψj(x) =
γ

j3
φj(x), (5.18)
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Figure 5.9: Estimated L∞(P, V ) error of LNT and of AI using U and R sequences, for the model

problem (1.5) with coefficients (5.15) and γ = 2.

where γ > 0 and

φ1(x) = 1, φ2(x) = cos(2πx1), φ3(x) = cos(2πx2) and φ4(x) = cos(2π(x1 + x2)) . (5.19)

We compare LNT with AI, using both U and R univariate sequences for the second algorithm.

Figures 5.8 and 5.9 show the error curves, for both choices γ = 0.5 and γ = 2. When γ = 0.5,

the LNT algorithm still converges due to the fact that the holomorphic extension holds over the

whole of PC, but it diverges for the larger value γ = 2. In contrast, the error still decreases when

using AI based on the R univariate sequence. Similar to the scalar test case u3, the same algorithm

diverges if we use the U sequence, due to the fast growth of the univariate Lebesgue constants λk

for the U sequence.
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[5] J. Bäck, F. Nobile, L. Tamellini and R. Tempone, On the optimal polynomial approximation

of stochastic PDEs by Galerkin and Collocation methods, MOX Report 23/2011, to appear in

Math. Mod. Methods Appl. Sci., 2011.

[6] V. Barthelmann, E. Novak and K. Ritter, High dimensional polynomial interpolation on sparse

grids. Adv. Comput. Math. 12-4, 273-288, 2000.

[7] A. Buffa, Y. Maday, A. T. Patera, C. Prudhomme, and G. Turinici, A priori convergence of

the greedy algorithm for the parameterized reduced basis, M2AN 46-3, 595-603, 2012.

[8] J.P. Calvi and V.M. Phung, On the Lebesgue constant of Leja sequences for the unit disk and

its applications to multivariate interpolation, Journal of Approximation Theory 163-5, 608-622,

2011.

[9] J.P. Calvi and V.M. Phung, Lagrange interpolation at real projections of Leja sequences for

the unit disk, to appear in the Proceedings of the American Mathematical Society, 2012.

[10] A. Chkifa, On the Lebesgue constant of Leja sequences for the complex unit disk and of their real

projection, preprint Laboratoire Jacques-Louis Lions, submitted to Journal of Approximation

Theory, 2012.

[11] A. Chkifa, A. Cohen, R. DeVore and Ch. Schwab, Sparse adaptive Talor approximation algo-

rithms for parametric and stochastic elliptic PDEs, to appear in M2AN 2012.

[12] A. Cohen, R. DeVore and Ch. Schwab, Convergence rates of best N -term Galerkin approxima-

tions for a class of elliptic sPDEs, Journ. Found. Comp. Math. 10-6, 615-646, 2010.

[13] A. Cohen, R. DeVore and Ch. Schwab, Analytic regularity and polynomial approximation of

parametric and stochastic PDE’s, Analysis and Applications 9, 1-37, 2011.

[14] D. Coppersmith and T.J. T.J. Rivlin, The growth of polynomials bounded at equally spaced

points. SIAM J. Math. Anal, 23(4):970983, 1992.

[15] Ph. J. Davis, Interpolation and Approximation, Blaisdell Publishing Company, 1963.

[16] C. de Boor and A. Ron, Computational aspects of polynomial interpolation in several variables,

Mathematics of Computation 58, 705-727, 1992.

[17] Ph. Frauenfelder, Ch. Schwab and R.A. Todor: Finite elements for elliptic problems with

stochastic coefficients Comp. Meth. Appl. Mech. Engg. 194, 205-228, 2005.

[18] C.J. Gittelson, An adaptive stochastic Galerkin method, to appear in Math. Comp. 2012.

30



[19] T. Gerster and M. Griebel, Dimension-adaptive tensor-product quadrature, Computing 71-1,

2003.

[20] M. Hansen and Ch. Schwab, Analytic regularity and nonlinear approximation of a class of

parametric semilinear elliptic PDEs Report 2011-29, Seminar for Applied Mathematics, ETH
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