
!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
! Eidgenössische
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Multi-Level Monte Carlo Finite Difference
and Finite Volume methods
for stochastic linear hyperbolic systems

J. Šukys, Ch. Schwab, and S. Mishra

Abstract We consider stochastic multi-dimensional linear hyperbolic systems of
conservation laws. We prove existence and uniqueness of a random weak solution,
provide estimates for the regularity of the solution in terms of regularities of input
data, and show existence of statistical moments. Bounds for mean square error vs.
expected work are proved for the Multi-Level Monte Carlo Finite Volume algorithm
which is used to approximate the moments of the solution. Using our implementa-
tion called ALSVID-UQ, numerical experiments for acoustic wave equation with
uncertain uniformly and log-normally distributed coefficients are conducted.

1 Introduction

A number of linear phenomenon in physics and engineering are modeled by linear
hyperbolic systems of conservation laws, i.e. for a given bounded domain D⊂ Rd ,






Ut(x, t)+
d

∑
r=1

(Ar(x)U(x, t))xr
= S(x),

U(x,0) = U0(x),
∀(x, t) ∈ D×R+. (1)

Here, U : D×R+ → Rm denotes the vector of conserved variables, Ar : Rm → Rm

denote linear maps (linear fluxes), and S : D → Rm denotes the source term. The
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partial differential equation is augmented with initial data U0 ∈D→Rm. Examples
of (1) are acoustic wave equation, equations of linear elasticity and many other.

For the sake of simplicity, only periodic Cartesian physical domains D = I1×
· · ·× Id ⊂ Rd will be considered. However, we would like to note, that most of the
results presented can be also extended to the domains with boundaries.

The well-posedness of (1) is analyzed in [8, 9, 10, 13, 23]. However, for non-
constant coefficients Ar(x), the closed form of the analytic solutions is often not
available. Efficient numerical schemes for approximating (1) include Finite Volume,
Finite Difference, Finite Element and discontinuous Galerkin methods [8, 13, 23].

The classical paradigm for designing numerical schemes for approximation of
(1) assumes that initial data U0, source S and coefficients Ar(x) are known exactly.
However, in most practical situations, measurements (if available at all) of the input
data are prone to uncertainty. This uncertainty in input data propagates into the
solution of (1). The resulting uncertainties are modeled in a probabilistic manner.

The first aim of this manuscript is to develop an appropriate mathematical frame-
work of random weak solutions for systems of linear conservation laws. We define
random weak solutions and provide an existence and uniqueness result, generalizing
the classical well-posedness results [8, 9, 10, 13, 23] in the case of uncertain inputs.

The second aim of this manuscript is to present efficient numerical methods for
approximation of random linear hyperbolic systems of conservation laws.

The design of such efficient numerical schemes has seen a lot of activity in recent
years, including the stochastic Galerkin based on generalized Polynomial Chaos
and stochastic collocation, see references in [17]. Stochastic Galerkin method is
highly intrusive: existing codes (for deterministic solves) need to be completely
reconfigured and are hard to parallelize. Currently these methods are not able to
handle even a moderate number of sources of uncertainty (stochastic dimensions).

Another class of methods are the so-called Monte Carlo (MC) methods where
the underlying deterministic PDE is solved for each statistical sample and the sam-
ples are combined to ascertain statistical information about the random solution.
Although non-intrusive, easy to code and to parallelize, the error convergence rate
(with repect to the number of samples M) of 1/2 requires a large number of “sam-
ples” (numerical solves of (1)) in order to ensure low statistical errors.

Such slow convergence has inspired the development of Multi-Level Monte Carlo
or MLMC methods. They were introduced by S. Heinrich for numerical quadra-
ture [12], developed by M. Giles for Itô SPDE [6], and applied to various SPDEs
[3, 5, 20]. In particular, recent papers [15, 17, 18, 19] extended and analyzed the
MLMC algorithm for nonlinear conservation laws with random initial data, fluxes
and sources. The error analysis of the MLMC method in case of scalar conservation
laws [15] showed that statistical moments are approximated with the same accuracy
versus cost ratio as a single deterministic solve on the same mesh. An optimal static
load balancing of [22] enabled us to compute solutions of the multi-dimensional
random Euler, magnetohydrodynamics (MHD) and shallow water equations.

We extend the MLMC method to linear hyperbolic systems of balance laws (1)
and demonstrate that it constitutes a considerable speed-up over the MC method.
In particular, the MLMC-FVM method is shown to converge and our convergence
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analysis yields an optimal strategy for choosing the number MC samples. With this
strategy, under some conditions on the FDM/FVM convergence rate, statistical mo-
ments of the random weak solution are approximated with the same accuracy versus
expected computational cost ratio as a single deterministic solve of (1).

The key differences from the recent papers [15, 17] are the following: 1) we
consider linear systems of conservation laws, whereas in [15] is restricted to non-
linear scalar conservation laws; 2) uncertain coefficients Ar(x) act as random flux,
whereas in [15] only uncertain initial data is considered; 3) since we consider only
linear systems, unlike in [17], the well-posedness results are available. The effi-
ciency of the algorithm is demonstrated throughout numerical experiments.

The remainder of the manuscript is organized as follows: in Sect. 2, we intro-
duce the concept of random solution and show it to be well-posed. In Sect. 3, nu-
merical schemes are designed and the convergence of the approximation error is
investigated. In Sect. 4, we rewrite the acoustic wave equation as a linear hyperbolic
system of conservation laws. Numerical experiments are presented in Sect. 5.

2 Linear systems of stochastic hyperbolic conservation laws

Definition 1 (Strong hyperbolicity). In the case (d = 1), the linear system of con-
servation laws (1) is called strongly hyperbolic [10] if ∀x ∈ D,∃Qx : Rm → Rm:

sup
x∈D

‖Q−1
x ‖‖Qx‖ ≤ K < ∞, Q−1

x A1(x)Qx = diag(σ1, . . . ,σm) ∈ Rm×m. (2)

The extension of the definition of strong hyperbolicity for d > 1 is available in [10].

Let V denote an arbitrary Banach space. The following notation will be used:

‖U,S, t‖V = ‖U‖V + t‖S‖V , U,S ∈V, t ≥ 0. (3)

The following result summarizes some of the classical existence and uniqueness
results [8, 9, 10, 13, 23] for weak solutions of linear hyperbolic systems (1).

Theorem 1. Denote Lp(D) = Lp(D)m, Wr,∞(D) = W r,∞(D)m, and assume

1. linear system (1) is strongly hyperbolic with K < ∞ in (2),
2. there exist r0,rS,rA ∈ N∪{0} such that:

U0 ∈Wr0,∞(D), S ∈WrS,∞(D), Ar ∈WrA,∞(D)2. (4)

Then, for every finite time horizon T < ∞, (1) admits a unique weak solution U ∈
L∞(D× [0,T ])m. Furthermore, for every 0≤ t ≤ T , the following holds:

‖U(·, t)‖L2(D) ≤ K‖U0,S, t‖L2(D), (5)

‖U(·, t)−V(·, t)‖L2(D) ≤ K‖U0−V0, SU−SV, t‖L2(D), (6)
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U ∈C([0,T ],Wr̄,∞(D)), with r̄ = min{r0,rS,rA +1}. (7)

Let (Ω ,F ,P) denote a complete probability space and B(V ) a Borel σ -algebra.

Definition 2 (Random field). A V -valued random field is a measurable mapping

U : (Ω ,F )→ (V, B(V )), ω ,→ U(x, t,ω).

The stochastic version of the linear system of hyperbolic conservation laws (1) is





Ut(x, t,ω)+
d

∑
r=1

Ar(x,ω)Uxr = S(x,ω),

U(x,0,ω) = U0(x,ω),
∀(x, t) ∈ D×R+, ∀ω ∈Ω . (8)

Here, U0 and S are L2(D)-valued random fields (Ω ,F ) → (L2(D),B(L2(D))).
The fluxes Ar are L∞(D)2-valued random fields (Ω ,F )→ (L∞(D)2,B(L∞(D)2)).
We define the following notion of solutions of (8):

Definition 3 (Random weak solution). A C([0,T ],L2(D))-valued random field U :
Ω - ω ,→ U(x, t,ω) is a random weak solution to the stochastic linear hyperbolic
system of conservation laws (8) if it is a weak solution of (1) for P-a.e. ω ∈Ω .

Based on Theorem 1, we obtain the following well-posedness result for (8).

Theorem 2. In (8), assume that the following holds for some k ∈ N∪{0,∞}:

1. (8) is strongly hyperbolic, with K̄k = ‖K(ω)‖Lk(Ω ,R) < ∞,
2. there exists non-negative integers r0,rS,rA ∈ N∪{0,∞} such that:

U0 ∈ Lk(Ω ,Wr0,∞(D)), S ∈ Lk(Ω ,WrS,∞(D)), Ar ∈ L0(Ω ,WrA,∞(D)2),
(9)

3. each random field Ar, r = 1, . . . ,d, is independent of U0 and S on (Ω ,F ,P).

Then, for T < ∞, (8) admits a unique random weak solution

U : Ω →C([0,T ],L2(D)), ω ,→ Uω(·, ·), ∀ω ∈Ω , (10)

where Uω(·, ·) is the solution to the deterministic system (1). Moreover, ∀t ∈ [0,T ],

‖U(·, t,ω)‖L2(D) ≤ K(ω)‖U0(·,ω), S(·,ω), t‖L2(D), P-a.s., (11)

‖U‖Lk(Ω ,C([0,T ],L2(D))) ≤ K̄k‖U0,S, t‖Lk(Ω ,L2(D)), (12)

with ‖U,S, t‖Lk(Ω ,V ) = ‖‖U,S, t‖V‖Lk(Ω ,R). We outline the main ideas of the proof.

Proof. We proceed step by step, and using the following lemma:

Lemma 1. Let E be a separable Banach space and X : Ω → E be an E-valued
random variable on (Ω ,F ). Then, mapping Ω -ω ,→ ‖X(ω)‖E ∈R is measurable.
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1. By Theorem 1, the random field in (10) is well defined. Furthermore, for P-a.e.
ω ∈Ω , U(·, ·,ω) is a weak solution of (1).

2. ∀t ∈ [0,T ], ∀ j = 1, . . . ,m, we verify the measurability of the component map Ω -
ω ,→U j(·, t,ω)∈ L2(D). Since L2(D) is a separable Hilbert space, the B(L2(D))
is the smallest σ -algebra containing all subsets

{v ∈ L2(D) : ϕ(v)≤ α} : ϕ ∈ L2(D), α ∈ R.

For a fixed α ∈ R, ϕ ∈ L2(D), consider the set {U j(·, t,ω) : ϕ(U j(·, t,ω))≤ α}.
By continuity (5) in L2(D), since U0,S∈ L0(Ω ,L2(D)) and Ar ∈ L0(Ω ,L2(D)2),
we obtain U j(·, t, ·) ∈ L0(Ω ,L2(D)), for every 0≤ t ≤ T .

3. (11) follows from (5) and Lemma 1; (12) follows from (11) and assumption 3,

‖U‖k
Lk(Ω ,C([0,T ],L2(D))) = E

[
max

0≤t≤T
‖U(·, t,ω)‖k

L2(D)

]

≤ E
[
Kk(ω)‖U0,S, t‖k

L2(D)

]
= K̄k

k‖U0,S, t‖k
Lk(Ω ,L2(D)).

This theorem ensures the existence of the k-th moments M k(U) ∈ (L2(D))k [15] of
the random weak solution, provided U0,S ∈ Lk(Ω ,L2(D)) and K ∈ Lk(Ω ,R). ./

3 Multi-Level Monte Carlo FVM and FDM methods

3.1 Monte Carlo Method

Assume the hypothesis of Theorem 2 holds for k ≥ 1, i.e. the unique random
weak solution exists and has bounded k-th moments [15]. Fix M ∈ N and let
Îi := {Ûi

0, Ŝ
i
, Âi

1, . . . , Â
i
d} be independent, identically distributed (i.i.d.) samples of

input data Î(ω) := {Û0(ω), Ŝ(ω), Â1(ω), . . . , Âd(ω)}. For a fixed time 0 ≤ t ≤ T ,
the Monte Carlo (MC) estimate of the expectation M 1(U) = E[U(·, t, ·)] is given by

EM[U(·, t, ·)] :=
1
M

M

∑
i=1

Ûi(·, t), (13)

where Ûi(·, t) denotes the M unique random weak solutions of the deterministic
linear system of conservation laws (1) with the input data Îi. By (11), we have

‖EM[U]‖L2(D) =
1
M

∥∥∥∥∥

M

∑
i=1

Ûi
∥∥∥∥∥

L2(D)

≤ 1
M

M

∑
i=1
‖Ûi‖L2(D)

(11)
≤ 1

M

M

∑
i=1

Ki‖Ûi
0, Ŝ

i
, t‖L2(D).

Using the i.i.d. property of the samples {Îi}M
i=1 of the random input data I(ω),

Lemma 1, the linearity of E[·] and assumption 3 in Theorem 2, we obtain
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E
[
‖EM[U(·, t,ω)]‖L2(D)

]
= K̄1‖Û0(·,ω), Ŝ(·,ω), t‖Lk(Ω ,L2(D)) < ∞. (14)

The following result states that MC estimates (13) converge as M → ∞.

Theorem 3. Assume the hypothesis of Theorem 2 is satisfied with k ≥ 2, i.e. the
second moments of the random initial data U0 source S and K exist. Then, the MC
estimates EM[U(·, t,ω)] in (13) converge to M 1(U) = E[u] as M→∞. Furthermore,

‖E[U]−EM[U](ω)‖L2(Ω ,L2(D)) ≤M
1
2 K̄2‖U0,S, t‖L2(Ω ,L2(D)). (15)

Proof. We follow the structure of the analogous proofs in [3]. The M samples
{Îi}M

i=1 are interpreted as realizations of M independent “copies” of I(ω) on the
probability space (Ω ,F ,P), i.e. Îi = Îi(ω). By L2(D) contractivity (6), ∀0≤ t ≤ T ,
solutions Û(·, t,ω) of any two i.i.d. realizations of I(ω) are strongly measurable as
L2(D)-valued functions, hence are independent random fields. By Lemma 1 and by
continuity (11), the mapping ω ,→ ‖U(·, t,ω)‖L2(D) is measurable. Hence,

E
[
‖E[U]−EM[U](ω)‖2

L2(D)

]
=

1
M2 E

[
M

∑
i=1
‖E[U]− Ûi(ω)‖2

L2(D)

]

=
1
M

E
[
‖E[U]−U‖2

L2(D)

]
=

1
M

(
E‖U‖2

L2(D)−‖E[U]‖2
L2(D)

)
≤ 1

M
E‖U‖2

L2(D).

Using (11) and assumption 3, we deduce

E
[
‖E[U]−EM[U](ω)‖2

L2(D)

]
≤M−1K̄2

2 E
[
‖U0,S, t‖2

L2(D)

]
,

which implies (15) upon taking square roots. ./

3.2 Finite Difference and Finite Volume Methods

In considerations of the MC method, we have assumed that the exact random weak
solutions Ûi(x, t,ω) of (1) are available. In most cases of engineering interest, solu-
tions are approximated by Finite Difference [10] and Finite Volume [13] methods.

If U0 and S are continuous (then solution U is also continuous), conventional
Finite Difference methods [10, 23] can be used where spatial and temporal deriva-
tives in (1) are approximated by upwinded difference quotients. For discontinuous
U0 and S, (then solution U is also discontinuous) we present Finite Volume Method.

Let T = T 1× · · ·×T d denote a uniform axiparallel quadrilateral mesh of the
domain D, consisting of identical cells Cj = Cj1 × · · ·×Cjd , jr = 1, . . . ,#T r.

Assume mesh widths are equal in each dimension, i.e. ∆x := |I1|
#T1

= · · · = |Id |
#Td

.
Define the approximations to cell averages of the solution U and source term S by
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U∆x(x, t) = Uj(t)≈
1

|Cj|

∫

Cj
U(x, t)dx, ∀x ∈Cj, Sj ≈

1
|Cj|

∫

Cj
S(x)dx.

Then, a semi-discrete finite volume scheme [13] for approximating (1) is given by

∂tUj(t) =−
d

∑
r=1

1
∆x

(
Fr

j+ 1
2
−Fr

j− 1
2

)
−Sj, (16)

where numerical fluxes Fr
· are defined by using (approximate) solutions of local

Riemann problems (in direction r) at each cell interface. High order accuracy is
achieved by using non-oscillatory TVD, ENO, WENO methods [7, 11]. Strong sta-
bility preserving Runge-Kutta methods are used for time integration.

Assumption 1 We assume that the abstract FDM or FVM scheme (16) satisfies

‖Un
∆x‖L2(D) ≤ K‖U0

∆x‖L2(D), (17)

and the approximation error convergences (as ∆x→ 0) with rate s > 0, i.e.

‖U0−U0
∆x‖L2(D) ≤C∆xs‖U0‖Hs(D), ‖S−S∆x‖L2(D) ≤C∆xs‖S‖Hs(D), (18)

‖U(tn)−Un
∆x‖L2(D) ≤C∆xs

(
‖U0,S, tn‖Hs(D) + tn‖U0,S, tn‖L2(D)

)
, (19)

provided ∆t = ∆x/λ . C,λ > 0 are independent of ∆x. Hs(D) denotes W s,2(D)m.

Assumption 1 is satisfied by many standard FDM and FVM (for small s) schemes,
we refer to [8, 9, 10, 13, 23] and the references therein. For q-th order (formally)
accurate schemes, q ∈ N, the convergence estimate (19) holds [10, 13] with

s = min{q, r̄} (FDM), s = min{q,max{min{2,q}/2, r̄}} (FVM). (20)

The computational work of FDM/FVM for a time step and for a complete run is

Workstep
∆x = B∆x−d , Work∆x = Workstep

∆x
T
∆t

= λT B∆x−(d+1), (21)

where B > 0 is independent of ∆x and ∆t. However, in the random case (8), the com-
putational work (21) of FDM/FVM for one complete run depends on the particular
realization of the coefficient c(·,ω): due to the CFL condition ensuring the numeri-
cal stability of the explicit time stepping, the number of time steps N(∆x,ω) depends
on the speed λ of the fastest moving wave, where λ (ω) = ∑d

r=1 ‖σ r
max(·,ω)‖L∞(D),

N(∆x,ω) = λ (ω)T/∆x = T/∆x
d

∑
r=1
‖σ r

max(·,ω)‖L∞(D), ∀ω ∈Ω . (22)

Here, σ r
max = max{σ r

1 , . . . ,σ r
m}, where σ r

1(·,ω), . . . ,σ r
m(·,ω) are the eigenvalues of

Ar(·,ω) and correspond to the directional speeds of the wave propagation at x ∈ D.



8 J. Šukys, Ch. Schwab, and S. Mishra

3.3 MC-FDM and MC-FVM Schemes

MC-FDM or MC-FVM algorithm consists of the following three steps:

1. Sample: We draw M independent identically distributed (i.i.d.) input data and
source samples Ii with i = 1,2, . . . ,M from the random fields I(·,ω) and approx-
imate these by piecewise constant cell averages.

2. Solve: For each realization Ii, the underlying balance law (1) is solved numeri-
cally by the Finite Volume/Difference Method (16). Denote the solutions by Ui,n

∆x.
3. Estimate Statistics: We estimate the expectation of the random solution field

with the sample mean (ensemble average) of the approximate solution:

EM[Un
∆x] :=

1
M

M

∑
i=1

Ui,n
∆x. (23)

Higher statistical moments can be approximated analogously under suitable sta-
tistical regularity of the underlying random entropy solutions [15].

Theorem 4. Assume the hypothesis of Theorem 2 is satisfied with k ≥ 2, i.e. second
moments of the random initial data U0, source S and K exist. Under Assumption 1,
the MC-FDM/FVM estimate (23) satisfies the following error bound,

‖E[U(tn)]−EM[Un
∆x](ω)‖L2(Ω ,L2(D)) ≤M

1
2 K̄2‖U0,S, t‖L2(Ω ,L2(D))

+C∆xs
(
‖U0,S, tn‖L2(Ω ,Hs(D)) + tn‖U0,S, tn‖L2(Ω ,L2(D))

)
,

(24)

where C > 0 is independent of M,K and ∆x.

Proof. Firstly, we bound the left hand side of (24) using triangle inequality,

‖E[U(·, tn)]−EM[Un
∆x(·,ω)]‖L2(Ω ,L2(D)) ≤ ‖E[U(·, tn)]−EM[U(·, tn)]‖L2(Ω ,L2(D))

+‖EM[U(·, tn)]−EM[Un
∆x(·,ω)]‖L2(Ω ,L2(D)) = I+ II.

Term I is bounded by (15). For term II, by the triangle inequality, by (5) and (19),

II = ‖EM[U(·, tn)−Un
∆x(·,ω)]‖L2(Ω ,L2(D))

≤ 1
M

M

∑
i=1
‖Ui(·, tn)−Ui

∆x(·, tn,ω)‖L2(Ω ,L2(D)) = ‖U(·, tn)−Un
∆x(·,ω)‖L2(Ω ,L2(D))

≤C∆xs
∥∥∥‖U0,S, tn‖Hs(D) + tn‖U0,S, tn‖L2(D)

∥∥∥
L2(Ω ,R)

.

Finally, (24) is obtained by applying the triangle inequality on the last term. ./

To equilibrate statistical and spatio-temporal errors in (24), we need M = O(∆x−2s).
Next, we are interested in the asymptotic behaviour of the error (24) vs. the expected
computational work. We want to determine the largest convergence rate α > 0, s.t.
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‖E[U(tn)]−EM[Un
∆x](ω)‖L2(Ω ,L2(D)) ≤C (E [Work])−α .

Assuming that the expected fastest wave speed λ̄ = E[λ (ω)] in (22) is finite,

E[Work] = E [MWork∆x(ω)] = ∆x−(d+1+2s)T Bλ̄ < ∞. (25)

Consequently, the asymptotic error bound (29) is satisfied with α = s/(d +1+2s),
which is considerably more expensive compared to deterministic rate α = s/(d +1).

3.4 MLMC-FDM and MLMC-FVM Schemes

Given the slow convergence of MC-FDM/FVM, we propose the Multi-Level Monte
Carlo methods: MLMC-FDM and MLMC-FVM. The key idea is to simultaneously
draw MC samples on a hierarchy of nested grids [15]. There are four steps:

0. Nested meshes: Consider nested meshes {T!}∞
!=0 of the domain D with cor-

responding mesh widths ∆x! = 2−!∆x0, where ∆x0 is the mesh width for the
coarsest resolution and corresponds to the lowest level ! = 0.

1. Sample: For each level of resolution !∈N0, we draw M! independent identically
distributed (i.i.d) samples Ii

! with i = 1,2, . . . ,M! from the random input data I(ω)
and approximate these by cell averages.

2. Solve: For each resolution level ! and each realization Ii
!, the underlying balance

law (1) is solved for Ui,n
∆x!

by the FDM/FVM method (16) with mesh width ∆x!.
3. Estimate solution statistics: Fix some positive integer L < ∞ corresponding to

the highest level. Denoting MC estimator (23) with M = M! by EM! , the expec-
tation of the random solution field U is estimated by

EL[Un
∆xL

] :=
L

∑
!=0

EM! [U
n
∆x!
−Un

∆x!−1
]. (26)

MLMC-FDM/FVM is non-intrusive as any standard FDM/FVM codes can be used
in step 2. Furthermore, MLMC-FDM/FVM is amenable to efficient parallelization
[17, 22] as data from different grid resolutions and samples only interacts in step 3.

Theorem 5. Assume the hypothesis of Theorem 2 is satisfied with k ≥ 2, i.e. second
moments of the random initial data U0, source S and K exist. Under Assumption 1,
the MLMC-FDM/FVM estimate (26) satisfies the following error bound,

∥∥E[U(tn)]−EL[Un
∆xL

](ω)
∥∥

L2(Ω ,L2(D)) ≤C1

(
∆xs

L +

{
L

∑
!=1

M− 1
2

! ∆xs
!

})
+C0M− 1

2
0 ,

(27)
C1 = C

(
‖U0,S, tn‖L2(Ω ,Hs(D)) + tn‖U0,S, tn‖L2(Ω ,L2(D))

)
,

C0 = K̄2‖U0,S, tn‖L2(Ω ,L2(D)).
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Proof. Using the triangle inequality, the left hand side of (27) is bounded by

‖E[U(tn)]−E[Un
∆xL

]‖L2(Ω ,L2(D)) +‖E[Un
∆xL

]−EL[Un
∆xL

](ω)‖L2(Ω ,L2(D)) = I+ II.

We estimate term I and II separately. By linearity of the expectation, term I equals

I = ‖E[U(·, tn,ω)−Un
∆xL

(·,ω)]‖L2(D) = ‖U(·, tn,ω)−Un
∆xL

(·,ω)‖L1(Ω ,L2(D)),

which can be bounded by (19). Using MLMC definition (26), linearity of mathe-
matical expectation, and the MC bound (15), term II is bounded by

II≤

∥∥∥∥∥

L

∑
!=0

E[Un
∆x!

(·,ω)−Un
∆x!−1

(·,ω)]−EM! [U
n
∆x!

(·,ω)−Un
∆x!−1

(·,ω)]

∥∥∥∥∥
L2(Ω ,L2(D))

≤
L

∑
!=0
‖E[Un

∆x!
(·,ω)−Un

∆x!−1
(·,ω)]−EM! [U

n
∆x!

(·,ω)−Un
∆x!−1

(·,ω)]‖L2(Ω ,L2(D))

≤M− 1
2

0 ‖Un
T0

(·,ω)‖L2(Ω ,L2(D)) +
L

∑
!=1

M− 1
2

! ‖Un
∆x!

(·,ω)−Un
∆x!−1

(·,ω)‖L2(Ω ,L2(D)).

The first term is bounded by (17); the detail terms Un
∆x!
−Un

∆x!−1
are bounded by

‖Un
∆x!
−Un

∆x!−1
‖L2(Ω ,L2(D)) ≤ ‖U−Un

∆x!
‖L2(Ω ,L2(D)) +‖U−Un

∆x!−1
‖L2(Ω ,L2(D)).

Using (19), detail terms can be further bounded by

‖Un
∆x!
−Un

∆x!−1
‖L2(Ω ,L2(D)) ≤C∆xs

!

∥∥∥‖U0,S, tn‖Hs(D) + tn‖U0,S, tn‖L2(D)

∥∥∥
L2(Ω ,R)

.

Using triangle inequality and summing over all levels ! > 0, bound (27) follows. ./

To equilibrate the statistical and the spatio-temporal errors in (27), we require

M! = O(22(L−!)s), 0≤ !≤ L. (28)

Notice that (28) implies that the largest number of MC samples is required on the
coarsest mesh level ! = 0, whereas only a few MC samples are needed for ! = L.
Next, we are interested in the largest α > 0 and smallest β > 0, such that:

‖E[U(tn)]−EL[Un
∆xL

](ω)‖L2(Ω ,L2(R)) ≤C (E [Work])−α log(E[Work])β. (29)

Assuming that λ̄ = E[λ (ω)] in (22) is finite and using (21) with (28),

E[Work] = E
[

L

∑
!=0

M!Work∆x!
(ω)

]
=

L

∑
!=0

M!E
[
Work∆x!

(ω)
]

=
L

∑
!=0

M!T Bλ̄∆x−(d+1)
! = T Bλ̄

L

∑
!=0

M!∆x−(d+1)
! .

(30)
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The last term in (30) was already estimated in [17]. Since the expectation of compu-
tational work is obtain from the deterministic computational work by scaling with a
problem dependent constant λ̄ , the asymptotic error vs. expected computation work
estimate (29) remain analogous to the estimates derived in [17],

(α,β) =

{(
min

{ 1
2 , s

d+1
}

,1
)

if s 1= (d +1)/2,( 1
2 , 3

2
)

if s = (d +1)/2.
(31)

Finally, we would like to note that bounds (13), (23) and (26) can be easily gen-
eralized (all steps in proofs are analogous) for higher moments (k > 1).

4 Acoustic isotropic wave equation as linear hyperbolic system

The stochastic isotropic linear acoustic wave equation is given by





ptt(x, t,ω)−∇ · (c(x,ω)∇p(x, t,ω)) = f (x,ω),
p(x,0,ω) = p0(x,ω),

pt(x,0,ω) = p1(x,ω),
x ∈ D, t > 0, ω ∈Ω , (32)

where p is the acoustic pressure. Since in most cases, the initial data p0, p1 and
the coefficient c are not known exactly, they are modeled as random fields, i.e. c ∈
L0(Ω ,W rc,∞(D)) with P[c(x,ω) > 0,∀x ∈ D] = 1, p0, p1 ∈ Lk(Ω ,Wr0,∞(D)) and
f ∈ Lk(Ω ,Wr f ,∞(D)). Wave equation (32) is equivalent to the (one of the many)
following system of d +1 first order conservation laws (equations of acoustics)






pt(x, t,ω)−∇ · (c(x,ω)u(x, t,ω)) = t f (x,ω),
ut(x,ω)−∇p(x,ω) = 0,

p(x,0,ω) = p0(x,ω),
u(x,0,ω) = u0(x,ω),

x ∈ D, t > 0, ω ∈Ω , (33)

To verify equivalence of (33) and (32), differentiate the first equation of (33) in time:

f = ptt −∇ · (c(x,ω)ut) = ptt −∇ · (c(x,ω)∇p).

For simplicity, only stationary initial data will be considered, i.e. u0 ≡ 0. Linear
system (33) can be written as system of conservation laws (8), with m = d +1,

U =
[

p
u

]
, U0 =

[
p0
u0

]
, S =

[
t f
0

]
, Ar(x,ω) ∈ R(d+1)×(d+1). (34)

All elements of Ar are zero, except (Ar(x,ω))1,r+1 =−c(x,ω) and (Ar)r+1,1 =−1.
Note, that Ar defines a strongly hyperbolic linear system of conservation laws. This
is easily verifiable for d = 1; there exists an invertible Qx(ω) diagonalizing A:
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Qx(ω) =
1√
2

[
1√
c −

1√
c

1 1

]
=⇒ Qx(ω)A1(x,ω)Qx(ω)−1 =

[
−
√

c 0
0

√
c

]
.

Since ‖Qx(ω)‖‖Q−1
x (ω)‖ = max{c

1
2 ,c−

1
2 } ≤ c

1
2 + c−

1
2 , the uniform boundedness

c,c−1 ∈ L∞(Ω ,L∞(D)) ensures K̄∞ < ∞. For k < ∞: c,c−1 ∈ Lk/2(Ω ,L∞(D)) implies

K̄k
k = E[Kk(ω)]≤ ‖c(·,ω)‖

k
2
Lk/2(Ω ,L∞(D))

+‖c−1(·,ω)‖
k
2
Lk/2(Ω ,L∞(D))

< ∞. (35)

Furthermore, assumption 2 of the Theorem 1 holds with r0 = r0, rS = r f , rA = rc.
Since the eigenvalues {σ r

1 , . . . ,σ r
m} of the matrices Ar are zero except two which

are ±
√

c(x,ω), the expected maximum wave speed λ̄ required in (25) and (30) is

λ̄ = ‖c‖L1/2(Ω ,L∞(D)) < ∞, if c ∈ Lk(Ω ,L∞(D)) with k ≥ 1/2. (36)

5 Numerical experiments for acoustic isotropic wave equation

Let material coefficient c be given by the Karhunen-Loève expansion

c(x,ω) = E[c(x,ω)]exp

(
∞

∑
m=1

√
λmΨm(x)Ym(ω)

)
, (37)

where Ψm(x)∈ L∞(D) are eigenfunctions satisfying ‖Ψm‖L∞(D) ≤ 1, Ym(ω) are inde-
pendent random variables with zero mean, and {λm}∞

m=1 ∈ !
1
2 (N) are eigenvalues.

All simulations reported below were performed on Cray XE6 in CSCS [24] with
the recently developed massively parallel code ALSVID-UQ [2]. Refer to [22, 17]
for the technical description of the implementation and for the linear scaling tests.

5.1 Propagation of smooth wave with uniform material coefficient

For physical domain D = [0,2], consider deterministic, smooth (r0 = ∞) initial data

p0(x,ω) := sin(πx), p1(x,ω)≡ 0, (38)

and stochastic coefficient c(x,ω) that is given by KL expansion (37) with identical,
uniformly distributed Ym ∼ U [−1,1]. We choose eigenvalues λm = m−2.5, eigen-
functions Ψm(x) = sin(πx) and the mean field E[c(x,ω)] ≡ 0.1. Then both c and
c−1 are uniformly bounded in Ω : c(x,ω),c−1(x,ω) ∈ L∞(Ω ,L∞(D)). Hence (35)
and (36) holds with any k ∈ N0 ∪ {∞}. For simulations, KL expansion is truncated
up to first 10 terms: λm = 0, ∀m > 10. Since r0 = ∞, rc ≥ 0, by Theorem 1 the
solution P-a.s. has bounded weak derivatives of first order, i.e. U(·, ·,ω) ∈Wr̄,∞(D)
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with r̄ = 1. First order accurate FVM scheme (q = 1, HLL Rusanov flux [13], FE
time stepping) will be used, hence, in (20), s = min{1,max{1/2,1}} = 1. Higher
order schemes (s > 1) for d = 1 case are not useful since s/(d +1) > 1/2 in (31).

Results of the MLMC-FVM simulation at t = 2.0 are presented in Fig. 1.

Fig. 1 One sample (left) and mean and variance (right) acoustic pressure p(x,ω) as in (33).

Using MLMC-FVM approximation from Fig. 1 (computed on 12 levels of reso-
lution with the finest resolution having 16384 cells) as a reference solution Uref, we
run MC-FVM and MLMC-FVM (with ∆x0 = 1/4) on a series of mesh resolutions
from 32 cells up to 1024 cells and monitor the convergence behavior. For L2(Ω , ·)
norms in (24) and (27), the L2(Ω ;L2(D))-based relative error estimator from [15]
was used. K = 5 delivered sufficiently small relative standard deviation σK .

In Figure 2, we compare the MC-FVM scheme with M = O(∆x−2s) and the
MLMC-FVM scheme with M! = ML22s(L−!), where ML = 16 is chosen as suggested
in [15]. Dashed lines indicate expected convergence rate slopes proved in Theorems
4 and 5. Theoretical and empirical convergence rates coincide, confirming the ro-
bustness of our implementation. MLMC method is observed to be three orders of
magnitude faster than MC method. This numerical experiment clearly illustrates the
superiority of the MLMC algorithm over the MC algorithm (for q = 1,s = 1).

Fig. 2 Convergence of estimated mean for (38). Both MLMC and MC give similar errors for the
same spatial resolution. However, MLMC method is 3 orders of magnitude faster than MC.
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5.2 Propagation of shock wave with normal material coefficient in

For domain D = [0,2], consider deterministic, discontinuous (r0 = 0) initial data

p0(x,ω) := 2χ(0.5,1.5)(x)−1.0, p1(x,ω)≡ 0. (39)

and stochastic coefficient c(x,ω) that is given by KL expansion (37) with identi-
cal, normally distributed Ym ∼N [0,1]. We choose eigenvalues λm = m−2.5, eigen-
functions Ψm(x) = sin(πx) and the mean field E[c(x,ω)]≡ 0.1. Then, unlike in the
uniform case before, c,c−1 /∈ L∞(Ω ,L∞(D)). However, (35) and (36) holds by

Proposition 1. Assume {λm} ∈ !
1
2 (N). Then c,c−1 ∈ Lk(Ω ,L∞(D)), ∀k ∈ N∪{0}.

Proof. Using triangle inequality and ‖Ψm‖L∞(D) = 1, we obtain

‖c(·,ω)‖L∞(D)

‖E[c(x,ω)]‖L∞(D)
≤ exp

(
∞

∑
m=1

√
λm|Ym(ω)|

)
=: c̄(ω).

Since Ym, m = 1, . . . ,∞ are independent and normally distributed,

E[c̄k(ω)]=
∞

∏
m=1

E
[
exp

(
k
√

λm|Ym(ω)|
)]

=
∞

∏
m=1

exp
(

k2λm

2

)(
1+ erf

(
k
√

λm√
2

))
,

where, using inequalities erf(a)≤ 2√
π a and 1+a≤ exp(a), ∀a≥ 0,

∞

∏
m=1

(
1+ erf

(
k
√

λm√
2

))
≤

∞

∏
m=1

(
1+

2√
π

k
√

λm√
2

)
≤ exp

(
∞

∑
m=1

2√
π

k
√

λm√
2

)
.

Finally, ‖c‖Lk(Ω ,L∞(D)) = ‖E[c(x,ω)]‖L∞(D)E[c̄k(ω)]
1
k is bounded by

‖E[c(x,ω)]‖L∞(D) exp

(
k
2
‖{λm}‖!1(N) +

√
2√
π
‖{

√
λm}‖!1(N)

)
< ∞.

Proof of c−1 ∈ Lk(Ω ,L∞(D)) is analogous. ./

Since r0 = 0, by Theorem 1, solution U(ω) ∈Wr̄,∞(D) is P-a.s. discontinuous (r̄ =
0). First order accurate (q1 = 1, HLL Rusanov flux [13], FE time stepping) and
second order accurate (q2 = 2, HLL Rusanov flux, WENO reconstruction, SSP-RK2
time stepping [13]) FVM schemes will be used; hence, in (20), s1 = 1/2 and s2 = 1.
For simulations, KL expansion is truncated up to first 10 terms: λm = 0, ∀m > 10.
Results of the MLMC-FVM simulation at t = 2.0 are presented in Fig. 3.

MLMC-FVM approximation from Fig. 3 (computed on 12 levels of resolution
with the finest resolution being on a mesh of 16384 cells) is used as a reference
solution Uref. Additionally to MC, MLMC schemes with s = s1, we consider MC2,
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Fig. 3 One sample (left) and mean and variance (right) acoustic pressure p(x,ω) as in (33).

MLMC2 schemes with s = s2. In Figure 4, we show convergence plots for variance;
MLMC methods appear to be two orders of magnitude faster than MC methods.

Fig. 4 Convergence of estimated variance for (39). Both MLMC(2) and MC(2) give similar errors
for the same spatial resolution. However, MLMC methods are 2 orders of magnitude faster.

6 Conclusion

We consider linear hyperbolic systems of conservation laws in several space di-
mensions with uncertain input data. The proper notion of random weak solution is
formulated and the resulting problem is shown to be well-posed.

We propose Monte Carlo Finite Difference and Finite Volume methods (MC-
FDM/FVM). The MC-FDM/FVM are shown to converge to random weak solution
but the derived accuracy vs. work estimates prove them to be computationally slow.

Hence, we propose Multi-Level Monte Carlo (MLMC) methods and prove their
convergence. MLMC-FDM/FVM are much faster than MC-FDM/FVM and have
the same accuracy vs. expected work ratio as deterministic FDM/FVM; they are
also non-intrusive (existing FDM/FVM solvers can be used) and parallelizable [22].
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We present several numerical experiments in one space dimension that reinforce
the theory. In particular, the MLMC-FVM method yields about three orders of mag-
nitude speedup versus the MC-FVM method in computing the mean. Furthermore,
the speedup is more than two orders of magnitude for computing the variance.
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