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MULTILEVEL MONTE-CARLO FRONT-TRACKING FOR

RANDOM SCALAR CONSERVATION LAWS

NILS HENRIK RISEBRO, CHRISTOPH SCHWAB, AND FRANZISKA WEBER

Abstract. We consider random scalar hyperbolic conservation laws (RSCLs)

in spatial dimension d ≥ 1 with bounded random flux functions which are P-a.s.
Lipschitz continuous with respect to the state variable, for which there exists

a unique random entropy solution (i.e., a strongly measurable mapping from a
probability space (Ω,F ,P) into C([0, T ];L1(Rd)) with finite second moments).
We present a convergence analysis of a Multilevel Monte Carlo Front-Tracking
(MLMCFT) algorithm. It is based on “pathwise” application of the Front-
Tracking Method from [21] for deterministic SCLs. We compare the MLMCFT
algorithms to the Multilevel Monte Carlo Finite-Volume algorithms developed
in [25, 26]. Due to the first order convergence of front tracking, we obtain an
improved complexity estimate in one space dimension.
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1. Introduction

Many problems in physics and engineering are modeled by hyperbolic systems
of conservation or balance laws. The Cauchy problem for such systems takes the
form

(1.1)
Ut +

d∑

j=1

∂

∂xj
(Fj(U)) = 0 x = (x1, . . . , xd) ∈ Rd, t > 0,

U(x, 0) = U0(x), x ∈ Rd.

Here, U : Rd 7→ Rm is the vector of unknowns and Fj : R
m 7→ Rm is the flux vector

for the j-th direction with m being a positive integer.
This type of partial differential equations are ubiquitous, we mention only the

shallow water equations of hydrology, the Euler equations for inviscid, compressible
flow and the magnetohydrodynamic (MHD) equations of plasma physics, see, e.g. [5,
12]. In the this paper we focus on the case m = 1 in (1.1) which is then called a
scalar conservation law (SCL).

Solutions of (1.1) develop discontinuities in finite time even when the initial
data is smooth. Therefore (1.1) must be interpreted in the weak sense. In order
to get uniqueness, (1.1) must be augmented with entropy conditions, which at
least for scalar conservation laws, makes the initial value problem well posed. The
well-posedness the Cauchy problem for scalar conservation laws in several space
dimensions (m = 1, d ≥ 1) was first established by Kružkov [22].

For systems (m > 1), some well-posedness results for systems in one space di-
mension exist [2, 3] , but no well-posedness results for systems of conservation laws
are available in several space dimensions.

Numerical methods for approximating entropy solutions of systems of conserva-
tion laws have undergone extensive development and many efficient methods are
available, see [8, 12, 13, 23] and the references there. In particular, finite volume
methods are frequently employed for approximating (1.1).

This classical paradigm for designing efficient numerical schemes assumes that
data for the SCL (1.1), i.e., initial data U0 and flux are known exactly.

In many situations of practical interest, however, these data are not known
exactly due to inherent uncertainty in modelling and measurements of physical
parameters such as, for example, the specific heats in the equation of state for com-
pressible gases, resistivity in MHD etc. Often, the initial data are known only up
to certain statistical quantities of interest like the mean, variance, higher moments,
and in some cases, the law of the stochastic initial data. In such cases, a mathemat-
ical formulation of (1.1) is required which allows for random data. The problem
of random initial data was considered in [25], and the existence and uniqueness
of a random entropy solution was shown, and a convergence analysis for MLMC
FV discretizations was given. Efficient MLMC discretization of balance laws with
random source terms was investigated in [26].

We mention that the present work as well as [25, 26] consider correlated random
inputs which typically occur in engineering applications; SCLs with random inputs
have been considered before, but generally with white noise, that is, spatially and
temporally uncorrelated random inputs, see [20, 19, 6, 30, 31].

In [25] a mathematical framework was outlined for deterministic scalar conser-
vation laws with random initial data. This framework was extended to include
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random flux functions in [24]. Here, we slightly generalize [24] regarding the exis-
tence and uniqueness of random entropy solutions for such problems. Furthermore,
the efficient numerical approximation of such solutions and, in particular, of their
statistics, is the purpose of the present paper.

To this end, we propose and analyze a combination of sampling techniques of the
Monte Carlo (MC) type combined with a “pathwise” Front Tracking (FT) solver
introduced by Bagrinovskĭı and Godunov [1] and analyzed, for example, in [21], to
approximate random entropy solution of scalar, nonlinear hyperbolic conservation
laws.

As the stochastic collocation FVM discretization, and the MLMC FVM algo-
rithms developed in [26] also for the numerical solution of nonlinear, hyperbolic
systems (1.1), the multilevel version of the Monte-Carlo Front-Tracking method
is “non-intrusive” (i.e., it requires only repeated application of existing solvers for
input data samples), easy to code and to parallelize, and well-suited for random
solutions with low spatial regularity, a situation which is typical in nonlinear hy-
perbolic conservation laws where discontinuities in realizations of solutions are well
known to be generic.

The remainder of this paper is organized as follows: in Section 2, we introduce
some preliminary notions from probability theory and functional analysis. The
concept of random entropy solutions is introduced and the well-posedness of the
scalar hyperbolic conservation law (i.e., (1.1) with m = 1) with random initial data
is recapitulated in Section 3. The MLMCFT schemes are presented and analyzed
in Section 4. Numerical experiments are presented in Section 5.

2. Preliminaries

We recapitulate prerequistes from measure and probability theory which are
needed in the subsequent sections. For proofs and further details, we refer for
example to [29, Chap. 1].

Let (Ω,F ,P) be a probability space, and let E be a Banach space. A mapping
G : Ω→ E is called P-simple function if it is of the form

G(ω) =

J∑

j=1

gj1Aj
(ω), where 1A(ω) =

{
1 ω ∈ A,

0 otherwise,

and gj ∈ E for j = 1, . . . , J , for some finite J and for Aj ∈ F . A mapping
f : Ω → E is strongly F measurable if there exists a sequence of simple functions
fn converging to f (in the norm of E) P-almost everywhere on Ω.

We call two strongly P-measurable functions f, g : Ω→ E which agree P-almost
everywhere on Ω P-versions of each other. We shall need the following lemma.

Lemma 2.1. [29, Corollary 1.13] Let E1 and E2 be Banach spaces, and (Ω,F ,P)
a probability space. If f : Ω → E1 is strongly measurable, and φ : E1 → E2 is
continuous, then the composition φ ◦ f : Ω→ E2 is strongly measurable.

We define the integral of a simple function G =
∑

gj1Aj
by

∫

Ω

GdP =

N∑

j=1

gjP(Aj) .

If f : Ω → E is strongly measurable, we say that f is Bochner integrable if there
exists a sequence of simple functions {fn}n≥0 converging to f P-almost everywhere,
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and

lim
n→∞

∫

Ω

‖f − fn‖E dP = 0,

([29, Def. 1.15]). We then define the Bochner integral of f by

(2.1)

∫

Ω

f dP := lim
n→∞

∫

Ω

fn dP.

A strongly measurable function f : Ω→ E is Bochner integrable if and only if
∫

Ω

‖f‖E dP <∞

(see for example, [29, Prop. 1.16]) in which case

(2.2)
∥∥∥
∫

Ω

f dP
∥∥∥
E
≤

∫

Ω

‖f‖E dP .

For each 1 ≤ p <∞ we can define the Banach spaces Lp(Ω;E) to consist of those
strongly measurable functions f for which the integrals

∫

Ω

‖f‖pE dP <∞ .

These spaces have the natural norm

‖f‖Lp(Ω;E) =
(∫

Ω

‖f‖pE dP
)1/p

.

If p = ∞, we define L∞(Ω;E) to be the space of strongly measurable functions
f : Ω → E for which there exists a number r ≥ 0 such that P(‖f‖E > r) = 0.
Together with the norm

‖f‖L∞(Ω;E) := inf{r ≥ 0 : P(‖f‖E > r) = 0},
this space is a Banach space as well.

If f : Ω→ E is strongly measurable and (Ω,F ,P) is a probability space, we call
f an E-valued random variable.

3. Hyperbolic Conservation Laws with random flux

We review classical results on SCLs with deterministic data, and develop a theory
of random entropy solutions for SCLs with a class of random flux flunctions, proving
in particular the existence and uniqueness of a random entropy solution with finite
second moments.

3.1. Deterministic scalar hyperbolic conservation laws. We consider the
Cauchy problem for scalar conservation laws (SCL) by setting m = 1 in (1.1)
and obtaining the SCL in strong form

(3.1)
∂u

∂t
+

d∑

j=1

∂

∂xj
(fj(u)) = 0, x = (x1, . . . , xd) ∈ Rd, t > 0 .

Here the unknown is u : Rd 7→ R. Introducing the flux function f(u)

f(u) = (f1(u), . . . , fd(u)) ∈ C1(R;Rd) , div f(u) =
d∑

j=1

∂

∂xj
fj(u),
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we may rewrite (3.1) succinctly as

(3.2)
∂u

∂t
+ div (f(u)) = 0 for (x, t) ∈ Rd × R+.

We supply the SCL (3.2) with initial condition

(3.3) u(x, 0) = u0(x), x ∈ Rd .

3.2. Entropy Solutions. Solutions to (3.1) are in general not smooth since they
can develop discontinuities in finite time. Therefore we look for weak solutions to
the equations. In particular, we are interested in distributional solutions in the
class of entropy solutions which satisfy in addition the entropy condition

η(u)t + divQ(u) ≤ 0, in D(Rd × R+),

for all entropy pairs (η,Q), where η, the entropy, is a convex C2-function and
Q(u) = (Q1(u), . . . , Qd(u)), the entropy flux, satisfies Q′

j = η′f ′
j . In this class,

uniqueness can be proved, [22]. We will in the following restrict to initial data in
L∞(Rd) ∩ BV (Rd), but results can be proved for more general initial conditions,
[28]. By a function of bounded variation, or BV -function, we mean a function
f ∈ L1(Rd) with

TV (f) := sup

{∫

Rd

f divϕdx
∣∣ ϕ ∈ C1

0 (R
d;Rd), |ϕ| ≤ 1

}
<∞,

where |ϕ| denotes absolute value of point-values for ϕ, see [7, Section 5.1]. We
call TV (f) the total variation of f . We define the Banach space of functions with
bounded variation as the completion of C∞

0 (Rd) with respect to the norm

‖f‖BV (Rd) := ‖f‖L1(Rd) + TV (f).

More details and properties of BV -functions can be found in, for example [7, Chap-
ter 5], [21, Appendix A] or [11, Chapter 1]. Next we introduce the (nonlinear)
data-to-solution operator

St : (u0, f) 7−→ u(·, t) =: St(u0, f) t > 0 .

In particular, we shall need the following continuity (with respect to initial data
and flux function) result for deterministic scalar conservation laws:

Theorem 3.1. [21, Thm. 2.14, Thm. 4.3] Assume u0, v0 ∈ (BV ∩ L∞)(Rd), and
f , g ∈ Lip(R;Rd). Then there exist unique entropy solutions u and v to (3.1) with
initial data u0 and v0 respectively and flux functions f and g, which satisfy the
a-priori continuity estimates: For all t ≥ 0 we have

(3.4) ‖u(·, t)− v(·, t)‖L1(Rd)

≤ ‖u0 − v0‖L1(Rd) + tmin{TV(u0),TV(v0)}‖f − g‖W 1,∞(R;Rd),

and

(3.5) ‖u(·, t)− u(·, s)‖L1(Rd) ≤ (t− s) TV(u0) ‖f‖W 1,∞(R,Rd) ,

for all 0 ≤ s ≤ t. In particular, this implies that the soluiton operator St is a uni-
formly continuous mapping from L1(Rd)∩L∞(Rd)×W 1,∞

loc (R) into C([0, T ];L1(Rd)).
Moreover, it follows that

(3.6) ‖u(·, t)− v(·, t)‖L1(Rd) ≤ ‖u0 − v0‖L1(Rd) .
5 2014/10/10 08:53:02
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and

TV(u(·, t)) ≤ TV(u0),(3.7)

‖u(·, t)‖L∞(Rd) ≤ ‖u0‖L∞(Rd),(3.8)

‖u(·, t)‖L1(Rd) ≤ ‖u0‖L1(Rd).(3.9)

For a proof, we refer to for example [21], Theorem 2.14 and Theorem 4.3 or other
standard references such as [12, 13, 8, 23, 28].

3.3. Random flux and initial data. Existence and uniqueness in the case of
random initial data u0 and continuously differentiable random flux f was proved
in [25, 24]. Here, we are interested in initial data u0 and flux functions fj in (3.1)
which are random elements with values in BV (Rd) ∩ L∞(Rd) and W 1,∞(R;R)
respectively. To define these, we denote by (Ω,F ,P) a probability space. We
consider spatially homogeneous random flux functions f , i.e., strongly measurable
maps f : Ω → Lip(R;Rd), and random initial data u0 being strongly measurable
maps from Ω to the intersection of the Banach spaces BV (Rd) and L∞(Rd).

Definition 3.2. Random data for the SCL (3.1) is a random variable taking values
in

E1 =
(
BV (Rd) ∩ L∞(Rd)

)
×W 1,∞(R;Rd).

The set E1 is a Banach space which we equip with the norm

(3.10) ‖(u, f)‖E1
= ‖u‖L1(Rd) +TV(u) + ‖u‖L∞(Rd) + ‖f‖W 1,∞(R;Rd) .

In particular, random data (u0, f) for the SCL (3.1) - (3.3) is a strongly measurable
map

(3.11) (u0, f) : (Ω,F) 7−→ (E1,B(E1)) .

For the ensuing convergence analysis, we shall also require that
(3.12)
‖u0‖L∞(Ω;(L∞∩BV )(Rd)) ≤M <∞, and ‖f‖L∞(Ω;W 1,∞([−M,M ];Rd)) ≤M <∞ .

We shall refer to a random flux f which satisfies (3.12) as bounded random flux. By
(2.2), for random data with (3.12) the map

(3.13) Ω ∋ ω 7→
(
‖u0(ω; ·)‖L1(Rd) ,TV(u0(ω; ·)), ‖u0(ω; ·)‖L∞(Rd) , ‖f‖W 1,∞(R;Rd)

)

is in Lk(Ω;R4) for every 1 ≤ k <∞.

3.4. Random Entropy Solution. Based on Theorem 3.1, we formulate (3.1) -
(3.3) for random data (u0, f) in the sense of Definition 3.2. We are interested in
solutions of the random scalar conservation law (RSCL)

(3.14)

{
∂tu(ω;x, t) + divx(f(ω;u(ω;x, t))) = 0, t > 0,

u(ω;x, 0) = u0(ω;x),
x ∈ Rd.

Definition 3.3. A random variable u : Ω ∋ ω → u(ω;x, t), i.e., a strongly mea-
surable mapping from (Ω,F) to C([0, T ];L1(Rd)), is a random entropy solution of
the SCL (3.14) with random data as in (3.11) - (3.13) for some k ≥ 2, if u satisfies
the following:

6 2014/10/10 08:53:02
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(i.) Weak solution: For P-a.e ω ∈ Ω, u(ω; ·, ·) satisfies

(3.15)

∞∫

0

∫

Rd

(
u(ω;x, t)ϕt(x, t) +

d∑

j=1

fj(ω;u(ω;x, t))
∂

∂xj
ϕ(x, t)

)
dxdt

+

∫

Rd

u0(x, ω)ϕ(x, 0) dx = 0,

for all test functions ϕ ∈ C∞
0 (Rd × R).

(ii.) Entropy condition: For any pair consisting of a (deterministic) entropy η
and a (stochastic) entropy flux Q(ω; ·) i.e., η,Qj with j = 1, 2, . . . , d are
functions such that η is convex and such that Q′

j(ω; ·) = η′f ′
j(ω; ·) for all j,

and for P-a.e ω ∈ Ω, u satisfies the following integral identity,

(3.16)

∞∫

0

∫

Rd

(
η(u(ω;x, t))ϕt(x, t) +

d∑

j=1

Qj(ω;u(ω;x, t))
∂

∂xj
ϕ(x, t)

)
dxdt

+

∫

Rd

η(u0(ω;x))ϕ(x, 0) dx ≥ 0,

for all non-negative test functions ϕ ∈ C∞
0 (Rd × R).

Theorem 3.4. Consider the SCL (3.1) - (3.3) with random data (u0, f) in the
sense of Definition 3.2 such that (3.12) holds. Then there exists a random entropy
solution u in C([0, T ];L1(Rd)), which for each 0 ≤ t ≤ T is described by the map

Ω ∋ ω 7→ u(ω; ·, t) = St(u0(ω, ·), f(ω; ·)) .
For P-almost every ω ∈ Ω we have the bound

(3.17) ‖u(ω; ·)‖(L∞∩BV )(Rd) ≤ ‖u0(ω; ·)‖(L∞∩BV )(Rd) ,

and for all k ≥ 1, (u0, f) ∈ Lk(Ω;E1) implies that

(3.18) ‖u‖Lk(Ω;C([0,T ];L1(Rd))) ≤ ‖(u0, f)‖Lk(Ω;E1)
.

Proof. Let E2 = C([0, T ], L1(Rd)). By (3.12), for almost all ω, the data u0(ω; ·)
and f(ω; ·) are such that there exists a unique entropy solution u(ω; ·) ∈ E2 to
(3.14). Furthermore, from (3.4) it follows that for such ω,

‖u(ω; ·, t)‖(L∞∩BV )(Rd) ≤ ‖u0(ω; ·)‖(L∞∩BV )(Rd) .

We have to show that ω 7→ u(ω; ·) is a random variable, that is, it is strongly
measurable. This will follow from Lemma 2.1 if the mapping E1 ∋ (u0, f) 7→ u ∈ E2

is continuous. This on the other hand, follows from (3.4) and (3.5) in Theorem 3.1.
The inequality (3.17) follows from the corresponding inequality in the determin-

istic case.
To prove (3.18), we compute

‖u‖kLk(Ω;C([0,T ];L1(Rd))) =

∫

Ω

sup
t≤T
‖u(ω; ·, t)‖kL1(Rd) dP

≤
∫

Ω

‖u0(ω; ·)‖kL1(Rd) dP

≤ ‖(u0, f)‖kLk(Ω;E1)
.
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Remark 3.5. The random entropy solution u : Ω→ C([0, T ];L1(Rd)) is unique in

the sense that if a random variable (ũ0, f̃) is a P-version of (u0, f), then the solution

ũ(·; ·, t) := St(ũ0, f̃) corresponding to it is a P-version of u(·; ·, t) := St(u0, f), that
is, they agree everywhere on Ω except on a set with P-measure zero. To see this,
we note that by the continuity of the operator St, (3.4), we have for any t ∈ (0, T ],

‖u(·; ·, t)− ũ(·; ·, t)‖L∞(Ω;L1(Rd))

≤ ‖ũ0 − u0‖L∞(Ω;L1(Rd))

+ tmin{‖TV (u0)‖L∞(Ω), ‖TV (ũ0)‖L∞(Ω)}‖f − f̃‖L∞(Ω;W 1,∞([−M,M ];Rd))

= 0,

and therefore it follows also that u is unique in L∞(Ω;L1(Rd); dP).

4. Multi Level Monte Carlo Front Tracking

In this section, we present a Multi Level Monte Carlo (MLMC) version of the
front tracking approach to the numerical solution of hyperbolic conservation laws
with random flux (3.15), (3.16) as developed in [21].

4.1. The Monte-Carlo Method. We interpret the Monte-Carlo method as “dis-
cretization” of the SCL random data f(ω;u), u0(ω;x) as in (3.11) – (3.13) with
respect to ω. We assume in particular the existence of k-th moments of u0 for
some k ∈ N. We shall be interested in the statistical estimation of the first and
higher moments of u, i.e, Mk(u) ∈ (L1(Rd))(k). For k = 1, M1(u) = E[u]. The
MC approximation of E[u] is defined as follows: given M independent, identically

distributed samples (ûi
0, f̂

i), i = 1, . . . ,M , of random data, the MC estimate of
E[u(·; ·, t)] at time t is

(4.1) EM [u(·, t)] := 1

M

M∑

i=1

ûi(·, t)

where ûi(·, t) denotes the M unique entropy solutions of the M Cauchy Problems

(3.1) – (3.3) with initial data ûi
0 and flux samples f̂ i(·). We observe that by

ûi(·, t) = St(û
i
0, f̂

i)

we have for every M and for every 0 < t <∞, by (3.9),

‖EM [u(ω; ·, t)]‖L1(Rd) =
∥∥∥ 1

M

M∑

i=1

St((û
i
0, f̂

i)(ω))
∥∥∥
L1(Rd)

≤ 1

M

M∑

i=1

∥∥∥St((û
i
0, f̂

i)(ω))
∥∥∥
L1(Rd)

≤ 1

M

M∑

i=1

∥∥ûi
0(ω; ·)

∥∥
L1(Rd)

.

8 2014/10/10 08:53:02



RISEBRO, SCHWAB, AND WEBER MLMC FRONT TRACKING

Using the i.i.d. property of the samples {ûi
0, f̂

i}Mi=1, Theorem 3.4 and and the
linearity of the expectation E[·], we obtain the bound

E

[
‖EM [u(·; ·, t)]‖L1(Rd)

]
≤ E

[
‖u0‖L1(Rd)

]
= ‖u0‖L1(Ω;L1(Rd)) <∞.

As M →∞, the MC estimates (4.1) converge and the convergence result from [25]
holds as well.

Theorem 4.1. Assume that in the SCL (3.1) – (3.3) the random data (u0, f)
satisfies (3.12).

Then for every t > 0 the MC estimates EM [u(·, t)] in (4.1) converge in L2(Ω;L1(Rd))
as M → ∞, to M1(u(·, t)) = E[u(·, t)] and, for any M ∈ N, 0 < t < ∞, we have
the error bound

‖E[u(·, t)]− EM [u(·, t)]‖L2(Ω;L1(Rd)) ≤ 2M−1/2 ‖u0‖L2(Ω;L1(Rd)) .

4.2. Front Tracking. As an exact solution to (3.1) – (3.3) is in general not avail-
able, an approximate solution has to be computed numerically. Here, we investigate
using a front tracking method described in [4, 21, 17, 16]. Since the method and
the associated convergence analysis differ for the dimensions d = 1 and d > 1, we
treat the two cases separately.

4.2.1. Front tracking in the one dimensional case. We start by briefly describing
the front tracking algorithm for the deterministic conservation law (3.1) – (3.3)
with initial condition u0 given in BV (R) ∩ L∞(R). Let M := ‖u0‖L∞(R) and let

δ > 0 be a small number. Moreover, set ui = δi, for −M ≤ iδ ≤M , and discretize
the spatial domain by a grid {xj = jδ, j ∈ Z}. Then, u0 is approximated by a
piecewise constant function uδ

0 taking in each cell [jδ, (j + 1)δ) one of the values in
Vδ := {ui | i ∈ Z, |ui| ≤M}. The flux function f is approximated by the piecewise
linear interpolation fδ,

(4.2)
fδ(u) = f(uj) +

f(uj+1)− f(uj)

uj+1 − uj
(u− uj),

u ∈ [uj , uj+1), j ∈ Z, |j| ≤Mδ−1 .

Then we solve the initial value problem

uδ
t + fδ(uδ)x = 0, (x, t) ∈ R× (0, T ),(4.3a)

uδ(x, 0) = uδ
0(x), x ∈ R,(4.3b)

exactly. This means that in each step, we solve the Riemann problems between the
states of the piecewise constant function uδ, then track the discontinuities, called
fronts, until they interact, solve the emerging Riemann problem and so on. Note
that the solution of each Riemann problem is again a piecewise constant function
taking values in Vδ because fδ is piecewise linear with breakpoints ui ∈ Vδ. Thus,
the (unique) entropy solution uδ(·, t) is a piecewise constant function for all t > 0.
It was shown in [21, Lemma 2.6] that the number of interactions T (δ, t) between
fronts for t ∈ (0,∞) is bounded by

T (δ, t) ≤ 1

δ
(|Vδ|+ 1) TV(uδ) ≤ 1

δ
(2⌈M/δ⌉+ 1) TV(uδ)(4.4)

where we denoted |Vδ| the cardinality of the set Vδ which is bounded for all t > 0
by 2⌈M/δ⌉ due to (4.5). Hence the process terminates. Moreover, the solution uδ

of (4.3) satisfies the Kružkov entropy condition and we have the theorem:
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Theorem 4.2 ([21]). For initial data u0 ∈ BV (R) ∩ L∞(R) and flux function

f(u) ∈W 2,∞
loc (R) we have

(i) The solutions uδ to the differential equation (4.3) are uniformly bounded in
δ for all t ∈ (0,∞):

(4.5) ‖uδ(·, t)‖L∞(R) ≤ ‖u0‖L∞(R), t ∈ (0,∞),

(ii) The total variation of uδ is bounded by the total variation of the initial data
for all times t ∈ (0,∞),

TV(uδ(·, t)) ≤ TV(u0), t ∈ (0,∞),

(iii) As the discretization parameter δ goes to zero, the sequence {uδ}δ>0 con-
verges in C([0, T ];L1(R)) to the unique entropy solution u of (3.1) – (3.3).
Specifically,

(4.6) ‖u(·, t)− uδ(·, t)‖L1(R) ≤ ‖u0 − uδ
0‖L1(R) + t‖f − fδ‖Lip(R) TV(u0)

Corollary 4.3. Under the assumptions of Theorem 4.2, we have the following
estimate with respect to the discretization parameter δ:

(4.7) ‖u(·, t)− uδ(·, t)‖L1(R) ≤ δ TV(u0) (c+ |f |W 2,∞(R)) .

Proof. Note first that

(4.8) ‖f − fδ‖Lip(R) ≤ δ‖f ′′‖L∞(R) = δ|f |W 2,∞(R),

‖u0 − uδ
0‖L1(R) ≤ δ c TV(u0),

where c > 0 is a constant independent of δ. Then (4.7) follows using (4.8) and
(4.6). �

In order to obtain convergence rate bounds in the Multilevel Monte Carlo front
tracking (MCMLFT) algorithm, which we are going to introduce in the next sec-
tion, it will be useful to have convergence rates of the front tracking algorithm with
respect to the amount of computational work of the algorithm when the discretiza-
tion is refined.

Definition 4.4. By the (computational) work or cost of an algorithm, we mean the
number of floating point operations performed during the execution of the algorithm.
We assume that this is proportional to the run time of the algorithm.

Lemma 4.5 (Work estimate). Under the assumptions of Theorem 4.2, the front
tracking approximation uδ satisfies the following estimate with respect to the total
cost WFT

δ of the front tracking algorithm,

(4.9) ‖u(·, t)− uδ(·, t)‖L1(R) ≤ C TV(u0)

×
(
1 + ‖f‖W 2,∞(R)

)
((‖u0‖L∞ + 1) (TV(u0) + ‖u0‖L∞))

1/2 (
WFT

δ

)−1/2
.

Proof. Theorem 4.2 implies in particular that we have for the total number of
interactions (4.4), (due to (3.12), in the case of random initial data holds TV(u0) ≤
M P-as.)

T (δ, t) ≤ 1

δ
(2⌈M/δ⌉+ 1) TV(uδ

0) ≤
C

δ2
(‖u0‖L∞(R) + 1) TV(u0),(4.10)

and that the number of different Riemann problems that might be solved during
the execution of the algorithm is bounded by 4⌈M/δ⌉2. We use Algorithm 1, which
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is a modification of Graham’s scan [14] used to compute the convex hull of a set
of points in the plane, to calculate all the solutions of the Riemann problems with
left state ui = iδ, right state uj = jδ, L ≤ i < j ≤ R, where L, R are chosen
such that uL = minVδ, uR = maxVδ (a similar algorithm can be used to compute
the solutions to the Riemann problems with left state ui = iδ, right state uj = jδ,
R ≤ j < i ≤ L). It can easily be verified (see [14]) that the cost of the execution

of Algorithm 1 is bounded by CM
2
δ−2, where C is a constant independent of M

and δ, for the input δ > 0, L = −⌈M/δ⌉, R = ⌈M/δ⌉.
So, if the solutions to all possible Riemann problems are computed and stored

in advance, the work WFT
δ to compute the front tracking apprximation uδ(·, t) is

bounded by C(‖u0‖L∞ +1)(TV(u0)+‖u0‖L∞) δ−2, for a constant C > 0, uniformly
in t ∈ (0,∞). We thus obtain (4.9)

�

Algorithm 1 Compute Riemann problems with uL ≤ ui < uj ≤ uR

Input: δ > 0, L < R ∈ Z, (uL smallest value of u, uR largest value of u), f =
[fL, . . . , fR], (fi = f(ui), L ≤ i ≤ R)

Output: Ui,j = [ui, . . . , uj ] (states present in solution of RP with left state ui and

right state uj), si,j = [s1i,j , . . . , s
kij

i,j ] (vector of shock speeds (in increasing order)

present in RP with left state ui and right state uj , kij ∈ N), L ≤ i < j ≤ R

for i = L to R do

û← [i, i+ 1]
ŝ← (fi+1 − fi)/δ
si,i+1 ← ŝ
Ui,i+1 ← δ · û
k ← i+ 2
while k ≤ R do

sl← (fk − fû(end))/(δ(k − û(end)))
if ŝ = [ ] or sl > ŝ(end) then

ŝ← [ŝ, sl]
û← [û, k]
si,k ← ŝ
Ui,k ← δ · û
k ← k + 1

else

ŝ← ŝ(1 : end− 1)
û← û(1 : end− 1)

end if

end while

end for

Remark 4.6. Note that the work WFT
δ to compute the front tracking approximation

is of the same order as the work we would need to compute an approximation of
the solution by a finite volume scheme on a grid with cells of diameter O(δ). But
due to the better convergence rate with respect to the discretization parameter δ,
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which is of order 1 whereas it is proved to be of order 1/2 for the finite volume
approximation, we obtain the improved convergence rate (4.9) with respect to work.

Remark 4.7 (Work estimates for convex flux functions). If the flux function f is
convex, the work estimate can be improved. This is because in this case, the number
of interactions T (δ, t) can be bounded by the sum of the sizes of the jumps in the
initial data. That is, given u0 there holds, for every t > 0 and δ > 0,

T (δ, t) ≤ 1

δ
TV(u0)

(see [21, Lemma 2.6]), since for a convex flux function, the number of fronts is
strictly decreasing at each interaction. Moreover, the solution of each Riemann
problem is either a shock wave or a rarefaction wave depending on whether uL > uR

or uL < uR, and we do not need to compute the convex envelope of the flux function.
So, the solution of one Riemann problem can be computed with a cost proportional

to δ. Thus the total work WFT
δ to compute the front tracking approximation reduces

to

WFT
δ ≤ C TV(u0) δ

−1

and we obtain the improved convergence rate of the FT method with respect to work,

(4.11) ‖u(·, t)− uδ(·, t)‖L1(R) ≤ C TV(u0)
2(1 + ‖f‖W 2,∞(R)) (W

FT
δ )−1.

Clearly, the same rate holds also for concave fluxes.

4.2.2. Front tracking for d ≥ 2 and dimensional splitting. Front tracking in several
space dimensions is based on the method of fractional steps (or dimensional split-
ting) introduced by Bagrinovskĭı and Godunov [1] and later on extended by various
authors, see e.g. [18] and the references therein. Here, we will use the dimensional
splitting method in combination with the front tracking algorithm for one space
dimension as described in the previous subsection 4.2.1. To describe the method,
we introduce some notation. We discretize the spatial domain by a Cartesian grid
{j∆xi, j ∈ Z}, i = 1, . . . , d in each direction and denote by Ij1,...,jd the grid cell

Ij1,...,jd =
{
(x1, . . . , xd)

∣∣ ji∆xi ≤ x1 < (ji + 1)∆xi for i = 1, . . . , d
}

.

Moreover, we denote the projection operator πδ := Pδ ◦ P∆x for a function u ∈
L1(Rd) to be the composition of the projection P∆x of the function on the cell
averages,

(4.12) P∆xu(x) =
1

∆x1 · · ·∆xd

∫

Ij1,...,jd

u dx, x = (x1, . . . , xd) ∈ Ij1,...,jd ,

and a projection Pδ of the cell averages onto the values in Vδ. Furthermore, we
let fδ

i , i = 1, . . . , d, denote the continuous piecewise linear approximations to fi,
i = 1, . . . , d, as in (4.2). We set η = (δ,∆x1, . . . ,∆xd,∆t) and let u0 denote the

projection of u0 on the grid, that is u0 = πδu0. Let Sfδ
i ,xi(t) denote the solution

operator of the scalar conservation law in one dimension, viz.,

(vδi )t + fδ
i (v

δ
i )xi

= 0, (xi, t) ∈ R× (0, T ),

vδi (xi, 0) = vδi0(xi), xi ∈ R,

that is, we write v(xi, t) = Sfδ
i ,xi(t)vδi0. Since vδi0 is piecewise constant, and fδ

i

piecewise linear, the solution can be calculated using front tracking.
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Then we obtain an approximation of the solution to (3.1) – (3.3) by successively

applying the front tracking solution operator Sfδ
i ,xi(t) followed by the projection

operator πδ (in order to prevent the number of discontinuities from growing exces-
sively). We denote the approximate solutions at the timesteps tr = r∆t, t ∈ Q

by

un+i/d = πδ ◦ Sfδ
i ,xi(∆t)un+(i−1)/d, i = 1, . . . , d, n ∈ N,

and
(4.13)

uη(x, t) =

{
Sfδ

i ,xi(d(t− tn+(i−1)/d))u
n+(i−1)/d, t ∈ [tn+(i−1)/d, tn+i/d),

un+i/d, t = tn+i/d,

i = 1, . . . , d and n ∈ N. The approximation uη satisfies (see [21][Chapter 4]):

Theorem 4.8. Let u0 ∈ BV (Rd) ∩L∞(Rd) and fi(u) ∈ Lip(R) and piecewise C2.
Then the function uη defined in (4.13) satisfies

(i) Uniform bound in η = (δ,∆x1, . . . ,∆xd,∆t) for all t ∈ (0,∞):

‖uη(·, t)‖L∞(Rd) ≤ ‖u0‖L∞(Rd), t ∈ (0,∞),

(ii) The total variation of uη is bounded by the total variation of the initial data
for all times t ∈ (0,∞),

TV(uη(·, t)) ≤ TV(u0), t ∈ (0,∞),

(iii) For any sequence {ηj}j∈N, where ηj → 0 when j →∞, satisfying

max
i=1,...,d

∆xi/∆t ≤ K <∞,

the corresponding sequence {uηj}j∈N converges in C([0, T ];L1
loc(R

d)) to the
unique entropy solution u of (3.1)–(3.3). Specifically, we have, denoting
‖f‖Lip = maxi=1,...,d ‖fi‖Lip(R) and ∆x = maxi=1,...,d ∆xi,

(4.14) ‖u(·, t)− uη(·, t)‖L1(Rd)

≤ ‖u0 − u0‖L1(Rd) + t‖f − fδ‖Lip(R) TV(u0)

+ 2 TV(u0)
√
2t (
√
d+ 1)

√
d∆x2/∆t+∆x‖f‖Lip +∆t‖f‖2Lip .

Corollary 4.9. Under the assumptions of Theorem 4.8 and choosing the parame-
ters ∆x, ∆t and δ as

∆x = k1∆t = k2δ
2,(4.15)

where k1 and k2 are positive constants, the dimensional splitting front tracking
algorithm converges at rate 1 in the parameter δ, specifically,

‖u(·, t)− uη(·, t)‖L1(Rd) ≤ C δ (1 + t)
(
1 + ‖f‖W 2,∞(R;Rd)

)
TV(u0),(4.16)

where C > 0 is a constant depending at most linearly on d.

Proof. Using similarly as in Corollary 4.3 that the approximation u0 of the initial
data u0 satisfies

‖u0 − u0‖L1(Rd) ≤ c d δTV(u0),

and (4.8), (4.14) yields a convergence rate with respect to the parameters ∆x, ∆t
and δ,
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‖u(·, t)− uη(·, t)‖L1(Rd) ≤
(
c d δ + t δ ‖f‖W 2,∞(R;Rd)

+ 2
√
2t (
√
d+ 1)

√
d∆x2/∆t+∆x‖f‖Lip +∆t‖f‖2Lip

)
TV(u0).

We see that this yields 4.16 if we choose ∆x, ∆t and δ as in (4.15). �

We next estimate the convergence rate of the dimensional splitting front tracking
algorithm with respect to the work needed to compute one approximation of the
solution.

Lemma 4.10. (Work estimate for d ≥ 2) Under the assumptions of Theorem 4.8
and (4.15), the front tracking approximation satisfies,

(4.17) ‖u(·, t)− uη(·, t)‖L1(Rd) ≤ C (1 + t(2d+3)/(2d+2))
(
1 + ‖f‖W 2,∞

)

× TV(u0)
(
(‖u0‖L∞ + 1) (‖u0‖L∞ +TV(u0))

)1/(2(d+1))

(WFT

δ,d )−1/(2(d+1)) ,

where C > 0 is a constant depending only on d.

Proof. The work done in one time interval (tn+(i−1)/d, tn+i/d] consists of two com-
ponents, the front tracking approximation in (tn+(i−1)/d, tn+i/d) and the projections
at time t = tn+i/d. As in the one-dimensional case, we can solve all possible Rie-
mann problems beforehand and store the solutions, the work to do this is of order

C R
2
d δ−2, where R = ‖u0‖L∞ , since the flux f has d components fi (see Remark

4.5). Then the work for the front tracking approximation in (tn+(i−1)/d, tn+i/d) is
of the order of the number of interactions of fronts T (η, t) in that time interval.
This number is bounded by

T (η, t) ≤ C (‖u0‖L∞ + 1) (TV(u0) + ‖u0‖L∞) δ−2(∆x)−(d−1),

which is (4.10) multiplied by (∆x)−(d−1), because we do the front tracking in each
segment Iij1,...,jd := [j1∆x, (j1 + 1)∆x) × · · · × [ji−1∆x, (ji−1 + 1)∆x) × R × · · · ×
[jd∆x, (jd + 1)∆x). The work Wπδ

tn+i/d
needed to do the projections at time tn+i/d

is of the same order,

Wπδ
tn+i/d

= C(‖u0‖L∞(R) + 1) (TV(u0) + ‖u0‖L∞) δ−2(∆x)−(d−1),

as it is proportional to the number of fronts in the xi-direction and the number of
segments Iij1,...,jd . Hence the total work WFT

δ,d needed to compute the front tracking

approximation uη(·, t) is of order
WFT

δ,d = C t d (‖u0‖L∞(R) + 1) (TV(u0) + ‖u0‖L∞) δ−2(∆x)−(d−1)(∆t)−1 .

Now using (4.15), we obtain the convergence estimate with respect to work, (4.17).
�

Remark 4.11. Observe that the convergence rate (4.17) is of the same order with
respect to the work WFT

δ,d as the one for the approximation by a finite volume scheme

(see e.g. [25]). So in contrast to the one-dimensional case we do not get an im-
provement of the rate by using the front tracking method.

Remark 4.12 (Work estimate for convex flux functions). As in the case d = 1, the
estimate on the total work WFT

δ,d can be improved if the components fi, i = 1, . . . , d
of the flux function are convex. Again, solving a Riemann problem with left state
uL and right state uR reduces to checking whether uL > uR. Moreover, the total
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number of interactions in each time interval t ∈ (tn+(i−1)/d, tn+i/d) is bounded by

T (η, t) ≤ TV(u0)δ
−1 and therefore,

‖u(·, t)− uη(·, t)‖L1(Rd) ≤ C
(
1 + t(2d+2)/(2d+1)

)

×
(
1 + ‖f‖W 2,∞

)
TV(u0)

(2d+2)/(2d+1)
(
WFT

δ,d

)−1/(2d+1)
,

for convex or concave flux functions.

4.2.3. Front tracking for RSCLs. Having described the convergence properties of
the front tracking algorithm for deterministic scalar conservation laws, we are ready
to state the convergence result for the approximation of the random scalar conser-
vation law (3.14):

Theorem 4.13. Assume that the random (as in Definition 3.2) initial data u0 and
flux function f satisfy (3.12).

For δ > 0, let fδ
i (ω, ·) denote the piecewise linear interpolations to the random

flux component functions fi(ω, ·) as defined in (4.2).
Let the discretization parameter vector η = δ if d = 1, and η = (δ,∆x1, . . . ,∆xd,∆t)

if d > 1, and let uη(ω; ·, ·) denote the corresponding approximate solution defined
by (4.3a) if d = 1 and (4.13) if d > 1, with initial data u0(ω; ·) and flux functions
f1(ω; ·), . . . , fd(ω; ·). Then the approximations uη satisfy

‖uη(·; ·, t)‖L∞(Ω;L∞(Rd)) ≤M, t ∈ (0,∞),

the total variation is bounded P-almost surely,

TV(uη(ω; ·, t)) ≤ TV(u0(ω; ·)), t ∈ (0,∞), P-a.e. ω ∈ Ω .

As η → 0, the sequence (uη)η>0 converges P-almost surely and in C([0, T ];L1(Rd)),
to the unique random entropy solution of the RSCL (3.14). Moreover, if d = 1, we
have P-a.s. the error bound

‖u(ω; ·, t)− uη(ω; ·, t)‖L1(R)

≤ ‖u0(ω; ·)− u0(ω; ·)‖L1(R) + t‖f(ω; ·)− fδ(ω; ·)‖Lip(R) TV(u0(ω; ·)),
and if d > 1, we have P-a.s.

(4.18) ‖u(ω; ·, t)− uη(ω; ·, t)‖L1(Rd)

≤ ‖u0(ω; ·)− u0(ω; ·)‖L1(Rd) + t max
i=1,...,d

‖fi(ω; ·)− fδ
i (ω; ·)‖Lip(R) TV(u0(ω; ·))

+ 2 TV(u0(ω; ·))
√
2t (
√
d+ 1)

√
d∆x2/∆t+∆x‖f(ω; ·)‖Lip +∆t‖f(ω; ·)‖2Lip.

Proof. The assertion follows from Theorems 4.2 and 4.8 upon noting that the as-
sumptions given there are satisfied pathwise, i.e., for P-a.e. ω ∈ Ω. �

From now on we assume that

(4.19) f(ω; ·) ∈ L∞(Ω;W 2,∞([−M,M ];Rd))

where M is as in (3.12).

Corollary 4.14. Under the assumption (4.19), choose ∆x = k1δ for d = 1 and
∆x = k1∆t = k2δ

2 for d ≥ 2. Then

(4.20) ‖u(ω; ·, t)− uη(ω; ·, t)‖L1(Rd)
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≤ C δ (1 + t)
(
1 + ‖f(ω; ·)‖W 2,∞([−M,M ];Rd)

)
TV(u0(ω; ·)) .

If in addition u0 ∈ Lp(Ω;BV (Rd)) and f ∈ Lq(Ω;W 2,∞(R;Rd)) for some 1 ≤
p, q ≤ ∞ with 1/p+ 1/q = 1, we have

‖E[u(t)]− E[uη(t)]‖L1(Rd) ≤ ‖u(t)− uη(t)‖L1(Ω;L1(Rd))

≤ C δ (1 + t)
(
1 + ‖f‖Lq(Ω;W 2,∞)

)
‖TV(u0)‖Lp(Ω),(4.21)

for all δ and t > 0.

Proof. The bound (4.20) follows from the regularity assumption on f(ω, ·), and the
inequality (4.21) is proved by an application of Hölder’s inequality to (4.20), and
by using (2.2). �

4.2.4. Multilevel Flux Decomposition. The approximate, continuous, piecewise lin-
ear flux functions fδ

i defined by (4.2) are particular useful in connection with em-
pirical flux data (such as typically arise in Buckley-Leverett models where flux
functions are built from empirical data) and with MLMC, as will be seen in the
next subsection.

We choose δ0 > 0 and let δℓ = 2−ℓδ0. Let also f ℓ
i (ω; ·) := fδℓ

i (ω; ·) denote the
continuous piecewise linear interpolant of fi(ω; ·), for i = 1, . . . , d, as defined by
(4.2), and similarly set f ℓ := (f ℓ

1 , . . . , f
ℓ
d).

Lemma 4.15. Under assumption (4.19), for ℓ = 0, 1, 2, ..., the continuous, piece-

wise linear flux interpolants f ℓ
i (ω; ·) = fδℓ

i (ω; ·) are bounded random flux functions

in the sense of Definition 3.2 which satisfy the bound (3.12) with constant M which
is independent of ℓ, and which satisfy for P-a.e. ω ∈ Ω the error bound

(4.22) ‖fi(ω; ·)− f ℓ
i (ω; ·)‖W 1,∞([−M,M ];Rd) ≤ C2−ℓ‖∂2

ufi(ω; ·)‖L∞([−M,M ])

Proof. The proof of (4.22) follows from standard approximation estimates for the
nodal interpolation. �

The following corollary is a direct consequence of (4.22).

Corollary 4.16. Under the assumptions of Lemma 4.15, we have

‖(f ℓ
i − f ℓ−1

i )(ω; ·)‖Lip([−M,M ];Rd) ≤ 2C2−ℓ‖∂2
ufi(ω; ·)‖L∞([−M,M ];R) .

Here, the constant C > 0 is independent of ℓ and of the flux f .

4.3. MLMC Front Tracking. The MLMC discretization of differential equations
with random inputs was proposed by M. Giles in [9, 10], upon earlier work by
Heinrich on numerical integration in [15]. For random scalar conservation laws
(RSCLs), the MLMC Finite Volume discretizations were proposed and analyzed, in
the case of deterministic flux and random initial conditions, in [25], and for RSCLs
with random flux, in [24].

Here, we analyze the convergence of MLMC in conjunction with Front Tracking
(FT) discretizations. Although the analysis proceeds, broadly speaking, along the
lines of what was done in [25, 24], there are notable differences: First, unlike [24],
there is no need for a principal component analysis of the random flux, e.g. via
a Karhunen–Loève expansion. Secondly, we propose the use of a multiresolution
decomposition of the random flux on the phase space of the solution. Finally, the
error bounds which we shall obtain relate, in a rather explicit fashion, the number
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Mℓ of MC samples on different discretization levels to the flux variance at resolution
ℓ, i.e., to ‖f ℓ − f ℓ−1‖2L2(Ω;Lip(R,Rd)). Since f ℓ is piecewise linear, this quantity can

easily be computed for empirically calibrated random flux functions and, thereby,
the number Mℓ of “samples” (which are approximate solutions of the RSCL with
flux functions f ℓ and f ℓ−1, obtained by front tracking), can be scaled accordingly.

We start the analysis by introducing some notation. For d = 1, we let ∆xℓ =
δl = 2−ℓδ0 for some δ0 > 0. For d ≥ 2, ℓ = 0, 1, 2, . . ., we set

ηℓ = (δℓ,∆xℓ,∆tℓ) =
(
2−ℓδ0, 2

−2ℓ∆x0, 2
−2ℓ∆t0

)
.

Moreover, we let uℓ
0(ω; ·) := πℓu0(ω; ·) where πℓ = P∆xℓ

◦ P∆xℓ
, cf. (4.12). Note

that we set ∆x1 = · · · = ∆xd = ∆xℓ.
Then we denote for ℓ = 0, 1, 2, ..., by uℓ(ω;x, t) the approximations of u(ω;x, t)

obtained by the front tracking method with initial data uℓ
0 and f ℓ.

As in [25], EM [·] denotes the sample average of M i.i.d. samples of a random
quantity. We are interested in the computation of the statistical mean

E[u(t)] ∈ C(0, T ;L1(Rd))

of the random entropy solution of the RSCL (3.1) - (3.3). To this end, the MLMC-
FT approximation is defined as follows: for a given level L ∈ N of refinement, we
use the linearity of the mathematical expectation E[·] to write

E[u(t)] ≃ E[uL(t)] =
L∑

ℓ=0

E
[
uℓ − uℓ−1

]
.

Here, and in the following, we adopt the convention that u−1 ≡ 0.
We next estimate the expectations of increments for each level of refinement by

a level-dependent number Mℓ of samples, which results in the MLMC estimate

(4.23) EMLMC
L [uL(t)] :=

L∑

ℓ=0

EMℓ

[
uℓ − uℓ−1

]
.

Here, uℓ are the approximations obtained by front tracking for the initial data uℓ
0

and the flux functions f ℓ.

4.4. Convergence Analysis. We are now interested in estimating

E[u(t)]− EMLMC
L [uL(t)].

To this end, we write

E[u(t)]− EMLMC
L [uL(t)] = E[u(t)]− E[uL(t)]︸ ︷︷ ︸

A

+E[uL(t)]− EMLMC
L [uL(t)]︸ ︷︷ ︸
B

.

We have already estimated the L1(Rd)-norm of term A in equation (4.21). In
this setting, it is of order O(2−L) under the additional assumption that u0 ∈
Lp(Ω;BV (Rd)) and f ∈ Lq(Ω;W 2,∞(R;Rd)), where 1/p + 1/q = 1. Consider now
the term B. To estimate it, we write, with ∆uℓ := uℓ − uℓ−1 for ℓ = 0, 1, 2, ..., L
and with the convention that u−1 ≡ 0,

‖E[uL(t)]− EMLMC
L [uL(t)]‖2L2(Ω;L1(Rd))

=
∥∥∥E

[ L∑

ℓ=0

(uℓ − uℓ−1)
]
− EMLMC

L [uL(t)]
∥∥∥
2

L2(Ω;L1(Rd))
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=
∥∥∥

L∑

ℓ=0

{
E[∆uℓ]− EMℓ

[∆uℓ]
}∥∥∥

2

L2(Ω;L1(Rd))
.

Expanding the square, and interpreting theMℓ samples as i.i.d. copies of the random
variable uℓ(ω;x, t), we obtain

‖E[uL(t)]− EMLMC
L [uL(t)]‖2L2(Ω;L1(Rd)) =

L∑

ℓ=0

∥∥E[∆uℓ]− EMℓ
[∆uℓ]

∥∥2
L2(Ω;L1(Rd))

.

Next we estimate each term in the sum as follows:

Bℓ :=
∥∥E[∆uℓ]− EMℓ

[∆uℓ]
∥∥2
L2(Ω;L1(Rd))

=
1

Mℓ
E

[
‖E[∆uℓ(t)]−∆uℓ(t)‖2L1(Rd)

]

≤ 1

Mℓ
‖∆uℓ(t)‖2L2(Ω;L1(Rd)) .

We use the elementary estimate

‖∆uℓ(ω; ·, t)‖2L1(Rd) ≤ 2‖u(ω; ·, t)−uℓ(ω; ·, t)‖2L1(Rd)+2‖u(ω; ·, t)−uℓ−1(ω; ·, t)‖2L1(Rd)

and the convergence rate (4.20), to obtain

‖u(t)− uℓ(t)‖L2(Ω;L2(Rd)) ≤ C δℓ (1 + t)
(
1 + ‖f‖L2(Ω;W 2,∞)

)
‖TV(u0)‖L∞(Ω).

under the assumption that u0 ∈ L∞(Ω;BV (Rd)) and f ∈ L2(Ω;W 2,∞(R;Rd)).
Thus,

Bℓ ≤
1

Mℓ
C δ2ℓ (1 + t2)

(
1 + ‖f‖2L2(Ω;W 2,∞)

)
‖TV(u0)‖2L∞(Ω),

where C > 0 is a constant which depends on d but which is independent of t.
Summing over ℓ = 0, . . . , L, we arrive at

‖E[uL(t)]− EMLMC
L [uL(t)]‖2L2(Ω;L1(R))

≤ C (1 + t2)

L∑

ℓ=0

1

Mℓ
δ2ℓ

(
1 + ‖f‖2L2(Ω;W 2,∞)

)
‖TV(u0)‖2L∞(Ω).

We can now state our basic MLMC-FT error bound.

Theorem 4.17. Consider the RSCL with random data (u0, f) (3.11) in the sense
of Definition 3.2 and satisfying (3.12). Assume for M as in (3.12) that (4.19)
holds.

Then, for any L ∈ N and for any choice of samples sizes {Mℓ}Lℓ=0 in the MLMC-
FT estimator EMLMC

L [uL(t)] in (4.23) we have the error bound
∥∥E[u(t)]− EMLMC

L [uL(t)]
∥∥2
L2(Ω;L1(Rd))

≤ 2C(1 + t2)δ2L

(
1 + ‖f‖2L1(Ω;W 2,∞)

)
‖TV(u0)‖2L∞(Ω)

+ C (1 + t2)

L∑

ℓ=0

1

Mℓ
δ2ℓ

(
1 + ‖f‖2L2(Ω;W 2,∞)

)
‖TV(u0)‖2L∞(Ω)

≤ C
[
2−2L +

L∑

ℓ=0

M−1
ℓ 2−2ℓ

]
(1 + t2)
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×
(
1 + ‖f‖2L2(Ω;W 2,∞)

)
‖TV(u0)‖2L∞(Ω) .

With the particular choice

Mℓ = 22(L−ℓ) , ℓ = 0, . . . , L,

we find for any 0 ≤ t ≤ T <∞ the bound

(4.24)
∥∥E[u(t)]− EMLMC

L [uL(t)]
∥∥2
L2(Ω;L1(Rd))

≤ C L2−2L (1 + t2)
(
1 + ‖f‖2L2(Ω;W 2,∞)

)
‖TV(u0)‖2L∞(Ω).

Proof. The proof follows from the foregoing analysis. �

If we denote the work for one FT solution at mesh level ℓ by WFT
ℓ , and use the

front tracking work estimates in Lemmas 4.5 and 4.10, we obtain the work estimate
WFT

L,MLMC for the MLMC front tracking method,

(4.25) WFT
L,MLMC = C

L∑

ℓ=0

MℓW
FT
ℓ =

{
O(WFT

L logWFT
L ) = O(Lδ−2

L ) if d = 1,

O(WFT
L ) = O(δ−2(d+1)

L ) if d ≥ 2.

This gives us the convergence rates for the MLMC-FT estimator EMLMC
L [uL(t))]

with respect to work:

Corollary 4.18. Under the assumptions of Theorem 4.17, the MLMC-FT esti-
mator EMLMC

L [uL(t))] converges with the following rates to the ensemble average
E[u(t)] of the random entropy solution
(4.26)∥∥E[u(t)]− EMLMC

L [uL(t)]
∥∥2
L2(Ω;L1(R))

≤ C (logWFT
L,MLMC)

2 (WFT
L,MLMC)

−1,

for d = 1, and
∥∥E[u(t)]− EMLMC

L [uL(t)]
∥∥2
L2(Ω;L1(Rd))

≤ C (logWFT
L,MLMC) (W

FT
L,MLMC)

−1/(d+1)

for d ≥ 2, where C > 0 is a constant depending on d and t, and on ‖u0‖L∞(Ω;BV (Rd))

and ‖f‖L2(Ω;W 2,∞(−M,M ;Rd)).

Remark 4.19. We have seen in Lemma 4.7 that the convergence rate of the deter-
ministic front tracking algorithm for d = 1 is one with respect to work, if the flux
function f is convex. However, this does not show up as an improvement of the
convergence rate of the MLMC-FT method, since in this case the work of the Monte
Carlo method dominates. Specifically, in the case of a convex flux and d = 1, we
have

(4.27)

WFT
L,MLMC = C

L∑

ℓ=0

Mℓ W
FT
ℓ ≤ C

L∑

ℓ=0

Mℓ δ
−1
ℓ

≤ C 22L
L∑

ℓ=0

2−2ℓ 2ℓ ≤ C 22L = O(δ−2
L ),

which is the same effort as in the general case (4.25) apart from the missing factor
L.

This is to be contrasted to several space dimensions, where we have a small gain
in convergence rate if all the flux components fj, j = 1, . . . , d are convex, since the
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convergence rate of the deterministic dimensional splitting front tracking method is
worse than that of the Monte Carlo method:

WFT
L,MLMC = C

L∑

ℓ=0

Mℓ W
FT
ℓ ≤ C

L∑

ℓ=0

Mℓ δ
−(2d+1)
ℓ

≤ C 22L
L∑

ℓ=0

2(−1+2d)ℓ ≤ C 2(2d+1)L = O(δ−(2d+1)
L ).

5. Numerical Experiments

In this section, we test the performance of the MLMC-FT method on several
examples with random fluxes in one and two space dimensions.

5.1. Convex random flux in one space dimension. We consider the random
scalar conservation law,

ut + f(ω;u)x = 0, x ∈ [−1, 1], t ∈ (0,∞),(5.1a)

u(ω;x, 0) = − sin(πx), x ∈ [−1, 1], t = 0,(5.1b)

with periodic boundary conditions and the random flux f(ω;u) given by

f(ω;u) =
1

p(ω)
|u|p(ω), p(ω) ∼ U(1.5, 2.5).(5.2)

This flux function is a bounded random flux and for P-a.e., f(ω; ·) ∈ Lip([−M,M ];R),
where M ≥ ‖u0‖L∞(R) is as in (3.12). An approximation of the mean of the random
entropy solution at time t = 1, computed by the MLMC-FT method for L = 9,
with δ0 = 2−4 at the coarsest level, and ML = 8 samples at the level with the finest
resolution, is shown in Figure 1. In order to compute an estimate on the error

Figure 1. The estimator EMLMC
L [uL(t)] computed by the MLM-

CFT method at time t = 1 with L = 9 for problem (5.1), (5.2).
The dashed lines denote the mean with ± standard deviation.

of the approximation of the mean by the MLMC estimator EMLMC
L [uL(t)] in the

L2(Ω;L1(R))-norm, we use the relative error estimator introduced in [25] based on
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RISEBRO, SCHWAB, AND WEBER MLMC FRONT TRACKING

a Monte Carlo quadrature in the stochastic domain: We denote by Uref a reference
solution and by {Uk}k=1,...,K a sequence of statistically independent approximate
solutions EMLMC

L [uL(t)] obtained by running the MLMC-FT solver K times and
corresponding to K realizations in the stochastic domain. Then we estimate the
relative error by

(5.3) RE =

√√√√
K∑

k=1

(REk)2/K,

where

REk = 100× ‖Uref − Uk‖l1
‖Uref‖l1

.(5.4)

In [25] the sensitivity of the error with respect to the parameter K is investigated.
For this example, we will use K = 30 which was shown to be sufficient for most
problems [25, 27]. To compute a reference solution Uref , we have made use of
the symmetry properties of the each realization (a shock at x = 0, smoothness
away from the shock) and used the characteristics of the differential equation to
compute an accurate approximation of E[u(t)]. In Figure 2 the errors (5.3) versus
the resolution δL at the finest level L of the MLMC estimator and versus the run
time (in seconds) are shown (L = 0, . . . , 6). We observe that the convergence rates
are ≈ 0.9 with respect to the resolution and ≈ 0.4 with respect to work, which is
approximately what we would expect from the theoretical results: Equation (4.24)

implies that the error estimator (5.3) is asymptotically of order O(
√
L 2−L) =

O(2−α(L)L) = O(δ−α(L)
L ) with respect to the resolution at the finest level, where

(5.5) α(L) = 1− logL

2L log 2

L→∞−−−−→ 1.

For L = 6, we have α(L + 1) ≈ 0.8. Due to (4.27), the estimator (5.3) is of order
O((WFT

L,MLMC)
−α(L)/2) with respect to work, hence for L = 6, α(L+ 1)/2 ≈ 0.4.
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Figure 2. Left: Error (5.3) versus the resolution. Right: Error
versus the run time of the MLMC-FT solver in seconds for the
problem (5.1), (5.2). At the coarsest level, we have used δ0 = 2−4

and at the finest level, we have used ML = 8 samples.
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Remark 5.1. For exponents p ∈ [1.5, 2), the second derivative of the flux func-
tion f(u, p) in (5.2) is not uniformly bounded. Therefore the bound (4.8) does
not apply. However, by a careful refinement of the estimates in [21, Chapter 2],
it is possible to show that the (deterministic) front tracking method converges at
rate one with respect to the discretization parameter δ if the flux function f is in
W 2,1([−M,M ];R) and the initial data u0 ∈ BV (R) has a bounded number of local
maxima and minima.

5.2. Nonconvex random flux in one space dimension. In a second exper-
iment, we test the performance of the MLMC-FT method on the initial value
problem (5.1) with periodic boundary conditions and the nonconvex random flux
function

f(ω;u) = sgn(u)
|u|p(ω)

p(ω)
, p(ω) ∼ U(2.5, 3.5).(5.6)

For M > 0 as in (3.12), we have f ∈ L2(Ω;W 2,∞([−M,M ];R)), hence the as-
sumptions in Theorem 4.17 are satisfied for this problem. In Figure 3, we show
an approximation of the mean of the solution computed by the MLMC-FT-solver
at time t = 1 with L = 9, δ0 = 2−5 at the coarsest level and ML = 4 samples at
the finest level. We see that the mean of the solution is continuous, whereas all

Figure 3. The estimator EMLMC
L [uL(t)] for problem (5.1), (5.6)

computed by the MLMC-FT method at time t = 1 with L = 9.
The dashed lines denote the mean with ± standard deviation.

computed pathwise, approximate realizations u(ω; ·) of random entropy solutions
of (5.1), (5.6) develop shocks.

This is not unexpected, because while each realization has discontinuities, the
location of these discontinuities is random, and disappear upon taking the expecta-
tion. However, for each realization, the solution varies (very) rapidly at the shock
location, hence the variance will be larger around in the regions where shocks are
typically located, than in regions where each realization is continuous. For our
example, each realization has two shocks, one around x = 0.1 and one around
x = −0.9. We see that the variance is indeed much larger in around x = 0.1 and
x = −0.9.
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We use this approximation as a reference solution and compute the error esti-
mators (5.3), (5.4) for L = 0, . . . , 5, δ0 = 2−5, ML = 4 and K = 30. The results are
shown in Figure 4. Similarly as for the first example in Section 5.1, the experimen-
tally observed convergence rates validate the a priori estimates (4.24) and (4.26) as
we are not yet in the asymptotic regime and for L = 5, α(L+ 1) ≈ 0.78, c.f. (5.5)
(we observe ≈ 0.85 versus resolution and ≈ 0.35 versus run time).
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Figure 4. Left: Error (5.3) versus the resolution. Right: Error
versus the run time of the MLMC-FT solver in seconds for the
problem (5.1), (5.6). At the coarsest level, we have used δ0 = 2−5

and at the finest level, we have used ML = 4 samples.

5.3. Random fluxes in two space dimensions. We test the performance of the
MLMC-FT algorithm in several space dimensions on the following test problem,

ut + f(ω;u)x + g(ω;u)y = 0, (x, y) ∈ [0, 2]2, t ∈ (0,∞),(5.7a)

u(ω;x, y, 0) =





1, 0.1 < x, y < 0.9,

−1, (x− 1.5)2 + (y − 1.5)2 < 0.16,

0, otherwise,

(5.7b)

with periodic boundary conditions and random fluxes f and g given by

(5.8) f(ω;u) = g(ω;u) =
|u|p(ω)

p(ω)
, p(ω) ∼ U(1, 3).

In Section 4.2.2 we have seen that in order to have the optimal convergence rate of
the front tracking/dimensional splitting method, we have to choose the grid size ∆x,
the time step ∆t and the refinement parameter δ of the flux function interpolations
as

∆x = k1∆t = k2δ
2.

We call k1 a CFL-number in analogy to finite volume methods, although no re-
striction needs to be imposed on k1 since dimensional splitting combined with front
tracking method has been shown to converge for any choice of constants k1 > 0.

Due to the increased computational effort of the multidimensional problem com-
pared with the one dimensional problems, we have chosen to refine with respect to
the grid size ∆x. Therefore we set ∆xℓ = 2−ℓ∆x0 and δℓ = 2−ℓ/2δ0 and use at level
ℓ = 0, . . . , L, Mℓ = 2L−ℓML samples. In Figure 5 we show an approximation of the
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mean of (5.7), (5.8) by the MLMC-FT method computed at time t = 1 for L = 8
with ML = 4, ∆x0 = 2−3 and CFL-number k1 = 20. As a reference solution,
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Figure 5. Mean and variance of (5.7), (5.8) computed by the
MLMC-FT method for L = 8, t = 1, ML = 4, ∆x0 = 2−3, CFL-
condition k1 = 20 (number of grid cells: 212×212). Left: Estimated
mean of the solution. Right: Estimated variance of the solution.
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Figure 6. Left: Error (5.3) versus the resolution. Right: Error
versus the run time of the MLMC-FT solver in seconds (x-axis
figure right hand side) for the problem (5.1), (5.2). At the coarsest
level, we have used ∆x0 = 2−3 and at the finest level, we have used
ML = 4 samples, K = 5.

we use an approximation of the mean of the solution computed by a MLMC-FVM
scheme as in [26], with an HLL-solver and second order WENO reconstruction,
L = 8, ML = 4, ∆x0 = 2−2, on a mesh with 211 × 211 grid cells. We compute
the error estimators (5.3), (5.4) for K = 5, L = 0, . . . , 7, ML = 4, Mℓ = 2L−ℓML,
∆x0 = 0.125, ∆xℓ = 2−ℓ∆x0. The errors are shown in Figure 6. We measure con-
vergence rates of ≈ 0.45 with respect to the grid size ∆x and ≈ 0.15 with respect to
the run time of the MLMC-FT solver. From the a priori estimates we would expect
rates of 1/2 versus the grid size and 1/5 versus work asymptotically, so our rates
are slightly below that. This could indicate that we are not yet in the asymptotic
regime for our values of L.
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Mathematics, ETH Zürich, Switzerland, 2012.

25 2014/10/10 08:53:02



MLMC FRONT TRACKING RISEBRO, SCHWAB, AND WEBER

[25] S. Mishra and C. Schwab. Sparse tensor multi-level Monte Carlo finite volume methods
for hyperbolic conservation laws with random initial data. Mathematics of Computation,

81(280):1979–2018, 2012.
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