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Eidgenössische Technische Hochschule

CH-8092 Zürich
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ETH Zürich, CH–8092,
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Abstract

We propose a new algorithm for solving the semiclassical time–dependent Schrödinger

equation. The algorithm is based on semiclassical wavepackets. Convergence is proved

to be quadratic in the time step and linear in the semiclassical parameter ε. To the the

authors’ best knowledge, all earlier algorithms had errors that grew as the semiclassical

parameter was decreased.
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1 Introduction

We consider the semiclassical time–dependent Schrödinger equation

i ε2 ∂tψ = H(ε)ψ , (1)

where ψ = ψ(x, t) is the wave function that depends on the spatial variables

x = (x1, . . . , xd) ∈ Rd and the time variable t ∈ R. The Hamiltonian

H(ε) = − ε4

2
∆x + V (x)

involves the Laplace operator ∆x and a smooth real potential V .

The main challenges in the numerical solution of (1) result from the possibly high dimension

d and the existence of several time– and spatial–scales governed by the small parameter ε.

In chemical applications the ε represents the fourth root of the ratio between the electron

mass and the mass of the lightest nucleus in the molecule. For instance, the H + H2 reaction

has ε ≈ 0.1528; CO2 has ε ≈ 0.0821; while IBr is modeled by a one-dimensional system

with ε ≈ 0.0511. We note that ε has a clear fixed physical meaning, but if we regard the

equation (1) as a whole range of models varying with the model-parameter ε, we recover the

full quantum dynamics when ε = 1 and classical mechanics in the limit ε → 0.

Here, we ignore the difficulties that arise from the possibly large dimension d and focus on

the challenges caused by a small ε in the time-integration schemes. The preferred numerical

integration scheme in quantum dynamics is the split operator technique [5] which, unlike

Chebyshev or Lanczos schemes, does not suffer from a time step restriction, such as

∆t = O(∆x2); see [8]. However, in the case of a semiclassical model (1), it is proved in [2]

that the Lie-Trotter splitting requires a time-step of the order of ε2, and the error is of order

∆t/ε2. For the Strang–splitting, convergence of order (∆t)2/ε2 was observed in [2, 1] and

proved in [3]. Our own numerical experiments with a fourth-order splitting in time, together

with spectral discretizations in space show the same factor of 1/ε2.

The small parameter ε forces the choice of a small time-step (and for a Fourier based

space discretization, a huge number of grid points) in order to have reliable results, even for a

fourth-order scheme. Recent research has been done to control the error in such time-splitting
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spectral approximations [7]. We propose below a new splitting that is more appropriate for

the semiclassical situation. We prove it has convergence of order ε (∆t)2, which improves

instead of deteriorating when ε is reduced. We are not aware of any other algorithm with a

similar property.

The new integration scheme is based on a spatial discretization via semiclassical wavepack-

ets [6]. The wavepackets have already been useful in the time integration of the semiclassical

time-dependent Schrödinger equation in many dimensions via a special Strang–splitting [4].

The main idea of the time-integration scheme in [4] was Strang–splitting between the

kinetic and potential energy, together with the observation that the kinetic part and a

quadratic part of the potential can be integrated exactly. This yielded a second splitting of

the potential into a quadratic part and a remainder. The line of attack in [6] was slightly

different: an approximate solution was built upon the integration of a system of ordinary

differential equations for the parameters of the wavepackets. Then a second system of or-

dinary differential equations was used for determining the coefficients of the wavepackets.

Below, we present an algorithm that combines both of these two important ideas.

Let us start with a short introduction to semiclassical wavepackets. They are an example

of a spectral basis consisting of functions that are defined on unbounded domains. For

simplicity, we describe only the case of dimension d = 1, while the whole analysis can be

carried out in general dimensions.

Given a set of parameters q, p, Q, P , a family of semiclassical wavepackets

{ϕε
k[q, p,Q, P ], k = 0, 1, . . .} is an orthonormal basis of L2(R) that is constructed in [6] from

the Gaussian

ϕε
0[q, p,Q, P ](x) = (π)−

1
4 (εQ)−

1
2 exp

(
i

2 ε2
PQ−1(x− q)2 +

i

ε2
p(x− q)

)
,

via a raising operator. In the notation used here, Q and P correspond to A and iB of [6],

respectively. Note that Q and P must obey the compatibility condition QP − P Q = 2 i;

see [6]. Each state ϕk(x) = ϕε
k[q, p,Q, P ](x) is concentrated in position near q and in

momentum near p with uncertainties ε|Q|
√

k + 1
2 and ε|P |

√
k + 1

2 , respectively. The

recurrence relation

Q
√
k + 1ϕε

k+1(x) =

√
2

ε
(x− q)ϕε

k(x) − Q
√
k ϕε

k−1(x)
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holds for all values of x. We gather together the parameters of the semiclassical wavepackets

and write Π(t) = (q(t), p(t), Q(t), P (t)), so that ϕk[Π](x) = ϕε
k[q, p,Q, P ](x).

We assume we have an initial condition ψ(0) that is given as a linear combination of

semiclassical wavepackets

ψ(0) = eiS(0)/ε
2

K−1∑

k=0

ck(0, ε)ϕk[Π(0)] .

Note that we have an overall phase parameter S(t) that will enlarge the parameter set.

Hence, we shall also write ϕk[Π, S] = eiS/ε
2
ϕk[Π]. Note that K can be taken as large as we

wish, just by inserting more trivial coefficients ck(0, ε) = 0. Theorem 2.10 in [6] establishes

an upper bound for the semiclassical approximation: If the potential V ∈ CM+2(R) satisfies

−C1 < V (x) < C2eC3x2
, there is an approximate solution v(t) of the semiclassical time–

dependent Schrödinger equation (1) such that for any T > 0 we have:

‖ψ(t)− v(t)‖ ≤ C(T ) εM , for all t ∈ [0, T ] .

From now on, C will denote a generic constant, not depending on ε or any involved time-

step. We also only consider potentials V that satisfy the above conditions. The approximate

solution in Theorem 2.10 in [6] is defined as

v(t) = eiS(t)/ε
2

K−1∑

k=0

ck(t, ε)ϕk[Π(t)], (2)

with the parameters Π(t) and S(t) given by the solution to the following system of ordinary

differential equations

q̇(t) = p(t)

ṗ(t) = −V ′(q(t))

Ṡ(t) =
1

2
p(t)2 − V (q(t)) (3)

Q̇(t) = P (t)

Ṗ (t) = −V ′′(q(t))Q(t) .

The coefficients ck(t, ε) obey a linear system of ordinary differential equations. A similar

result is valid in higher dimensions; see Theorem 3.6 of [6]. The dependence of C on the
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end-time T is difficult to assess, and the system for the coefficients ck(t, ε) is difficult to

solve, so an alternative numerical scheme is necessary.

This approximation result motivates us to look for an algorithm that does not deteriorate

as ε → 0. We note that our algorithm will separately handle the approximation for the

parameters Π(t) and S(t) and the wave packet coefficients ck(t, ε) . This observation is

essential for the construction of the algorithm.

2 Time-splittings

A starting point for an efficient time-integration is the scheme proposed in [4]: As in Strang–

splitting, we decompose the Hamiltonian

H = T + U +W

into its kinetic part T = − ε4

2
∆x and its potential part V (x) = U(q(t), x) + W (q(t), x),

where U(q(t), x) is the quadratic Taylor expansion of V (x) around q(t) and W (q(t), x) is the

corresponding remainder:

V (x) = U(q, x) +W (q, x) = V (q) + V ′(q)(x− q) +
1

2
V ′′(q)(x− q)2 +W (q, x) .

We call this algorithm the L–splitting for a time-step of length ∆t:

Algorithm 1 (L–Splitting)

1. Propagate the solution for time 1
2∆t, using only T .

2. Propagate the solution for time ∆t, using only U .

3. Propagate the solution for time ∆t, using only W .

4. Propagate the solution for time 1
2∆t, using only T .

As shown in [4], the steps 1, 2, and 4 reduce to simple updates of the numerically prop-

agated parameters Π̃ and S̃ (starting, of course from the given Π(0) and S(0)). The step

3 keeps the parameters Π̃ and S̃ fixed and evolves the set of coefficients via the system of

ordinary differential equations

i ε2 ˙̃c = F

[
Π̃

(
∆t

2

)]
c̃ , for t ∈ [0, ∆t] , (4)
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with a K ×K matrix F [Π̃(∆t
2 )] whose entries are

Fj,k

[
Π̃

(
∆t

2

)]
=

∫
ϕj[Π̃

(
∆t

2

)
](x) W (q̃

(
∆t

2

)
, x) ϕk[Π̃

(
∆t

2

)
](x) dx .

As mentioned in the Introduction, the global convergence of this algorithm (measured by

the L2-error) is observed to be (∆t/ε)2, which can also be proved as in [3].

A splitting of H = T + V that is of order 4 is the Y–splitting; see [9].

Denoting θ = 1/(2− 21/3), we have:

Algorithm 2 (Y–Splitting)

1. Propagate the solution for time θ 1
2∆t, using only T .

2. Propagate the solution for time θ∆t, using only V .

3. Propagate the solution for time (1− θ)12∆t, using only T .

4. Propagate the solution for time (1− 2θ)∆t, using only V .

5. Propagate the solution for time (1− θ)12∆t, using only T .

6. Propagate the solution for time θ∆t, using only V .

7. Propagate the solution for time θ 1
2∆t, using only T .

One can use this also for our decomposition H = T + U +W :

Algorithm 3 (YL–splitting H = T + U +W )

1. Propagate the solution for time θ 1
2∆t, using only T .

2. Propagate the solution for time θ∆t, using only U .

3. Propagate the solution for time θ∆t, using only W .

4. Propagate the solution for time (1− θ)12∆t, using only T .

5. Propagate the solution for time (1− 2θ)∆t, using only U .

6. Propagate the solution for time (1− 2θ)∆t, using only W .

7. Propagate the solution for time (1− θ)12∆t, using only T .

8. Propagate the solution for time θ∆t, using only U .

9. Propagate the solution for time θ∆t, using only W .

10. Propagate the solution for time θ 1
2∆t, using only T .
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Figure 1: The error dependence on ε in the propagation with YL-splitting and wavepackets.

We observed convergence of order (∆t2/ε)2 in all tests based on this YL–splitting. Since

the expensive propagation of the coefficients must be done three times (in the steps 3, 6,

and 9) during each time step, the computational time is much greater than that for the

L–splitting. We measure the error in the experiments via a numerical approximation of the

L2-norm based on 216 equispaced points in the space domain; in order to emphasize that

this is not the exact L2-norm of the error, we denoted it by ‖ ·‖ wf ; see Figure 1. The

benchmark problem used in all numerical results presented here is based on the torsional

potential V (x) = 1− cos(x) with the initial value ϕ0[1, 0, 1, i] which is propagated from the

initial time t = 0 to the end time T = 2. Tests with different potentials (including V (x) = x4)

and various other initial values produced similar results. In the results presented, we used

K = 8 wavepackets. The equation (4) was solved via standard Padé approximation of the

exponential matrix. We also used the Arnoldi method when computing with much larger

K without observing any significant difference concerning the results in this paper. The

components of F̃
[
(∆t

2 )
]
in (4) were computed via a very precise Gauss–Hermite quadrature
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which was adapted to the shape of the wavepackets. In each case, the reference solution used

to estimate the error was the numerical solution computed with the time step ∆t0 equal to

half of the smallest time step displayed in the corresponding picture. Note that the solution

based on traditional 2nd or 4th order splittings (Fourier or wavepacket based) cannot be

used as a reference solution for the semiclassical splitting, since the errors grow like 1/ε2 as

ε → 0.

The critical idea for our new algorithm comes from the observation that for small ε, the

largest errors arise from the computation of the parameters Π and S, while the expensive

part of the computation is finding the coefficients c. Our algorithm combines the Strang–

splitting for H = (T + U) + W and the Y–splitting for U + T , i.e., it is a 4th order

scheme for the approximation of the parameters Π and S. We keep the expensive part

of the computation (involving the remainder W ) in the inner part of the Strang–splitting

H = 1
2(T + U) + W + 1

2(T + U) with a large time step ∆t. We use a small time step δt

for the cheap propagation of the parameters. This small time step is chosen so that the

desired overall convergence rate ε(∆t)2 is achieved with a minimum value of ∆t/δt = N =

N(ε, ∆t) small time steps per large time step. We call the resulting propagation algorithm

semiclassical–splitting.

8



Algorithm 4 (Semiclassical–Splitting)

Define N := ceil

(
1 +

√
∆t

ε3/4

)
and δt :=

∆t

N
, which hence satisfies

δt ≤ min
{
ε3/4

√
∆t, ∆t

}
.

1. Propagate the solution for time 1
2∆t via N steps of length δt using the Y–splitting for

T + U (Algorithm 2).

2. Propagate the solution for time ∆t, using only W , i.e., solve equation (4).

3. Propagate the solution for time 1
2∆t via N steps of length δt using the Y–splitting for

T + U (Algorithm 2).

Figures 2, 3, 4 display the results of numerical experiments based on this semiclassical

splitting. They confirm our theoretical considerations from Section 3, as long as the strong

round off in e−iα/ε2 − e−i(α+eps)/ε2 (with α *= 0 and eps = machine precision) in the measure-

ment of the error can be avoided. The effect of this round off in the measurement of the

error for ∆t and ε simultaneously small is evident in Figure 2; this effect is missing when

measuring the error in the coefficients; see Figure 3.

The adaptive choice of the inner time step δt is responsible for the complex behavior of the

time-convergence curves in Figure 4: from order 4 for large ε and small ∆t to only order 2

for large ∆t. A similar picture arises if we study the convergence for observables.
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Figure 2: The error dependence on ε and on ∆t (semiclassical–splitting).
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Figure 3: The error dependence on ε and on ∆t of the coefficients (semiclassical–splitting).
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Figure 4: Time convergence of the parameter q (semiclassical–splitting).

3 Convergence Results for the Semiclassical–Splitting
Algorithm

We first note that one cannot address the convergence of the proposed algorithms via the

local error representation of exponential operator splitting methods as in Section 5 of [3].

This is because the parameters ε and ∆t enter the splitting in fundamentally different ways.

The overall error when using the semiclassical–splitting algorithm consists of an approxi-

mation error caused by using the representation with a finite number of moving wavepackets

and a time-discretization error. Our main result is the following:

Theorem 1. Suppose the initial value is

ψ(0) = eiS(0)/ε
2

K1−1∑

k=0

ck(0, ε)ϕk[Π(0)] ,
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and that K ≥ K1 + 3(N − 1), where N = 1, 2, or 3. If the potential V ∈ C5(R) and its

derivatives satisfy −C1 < V (s)(x) < C2eC3x2
, for s = 0, 1, . . . , 5, then there are constants C1

and C2, such that

‖ψ(t)− ũ(t)‖ ≤ C1 εN + C2 ε (∆t)2 , (5)

where ũ is constructed via the semiclassical splitting Algorithm 4. The constants C1 and C2
do not depend on ∆t, δt, or ε, but depend on the potential V and its derivatives up to 5th

order, on the sup’s of |Q|, |Q̇|, |Q̈|, |q|, |q̇|, |q̈| from (3) on [0, T ], on the number K of

wavepackets used in the approximation, and on the final integration time T .

Remark If V ∈ C l(R) with l > 5, then the theorem is true with a larger N . More precisely,

if K ≥ K1 + 3(N − 1), the first term on the right hand side of (5) still has the form C1 εN ,

but the restriction on N becomes N = 1, 2, . . . , l− 2, and C1 depends also on V (s) for s ≤ l.

We prove this theorem in several steps. First, we introduce an approximation to the

solution of the time dependent Schrödinger equation u similar to (2). Here, the parameters

Π and S satisfy the system (3), and the coefficients ck are given by the solution to the linear

system of ordinary differential equations

i ε2 ċ = F [Π(t)] c , (6)

where the K ×K matrix F [Π] has entries

Fj,k [Π(t)] =

∫
ϕj[Π(t)](x) W (q(t), x) ϕk[Π(t)](x) dx .

Theorem 2. The approximation error is bounded by the Galerkin error:

‖ψ(T )− u(T )‖ ≤ 1

ε2

∫ T

0

‖PKWu−Wu‖ dt .

Under the hypotheses of Theorem 1 (or the remark after it), the integrand here is bounded

by

CK,Q,W εN+2.
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Proof. Corollary 2.6 of [6] ensures that each ϕk[Π, S] satisfies the time dependent Schrödinger

equation with the Hamiltonian T + U . Using (6), we see that

i ε2 ∂tu = H(ε2) u + PK Wu − Wu ,

where Pk denotes the L2-orthogonal projection into the space spanned by the basis functions

ϕ0[Π], . . . , ϕK−1[Π].

We intend to apply the elementary Lemma 2.8 of [6], so we only have to find an upper

bound for the Galerkin error

‖PKWu−Wu‖ .

We note that ‖PKWu − Wu‖ is decreasing in K, so when N = 1, it suffices to prove

‖PK1Wu−Wu‖ = O(ε3). However, ‖PKWu−Wu‖ ≤ ‖Wu‖, and since W is locally cubic

near x = q, estimate (2.68) of [6] immediately proves the result.

When N = 2, it suffices to prove ‖PK1+3Wu−Wu‖ = O(ε4). To show this, we first note

that ‖(1− PK1)u‖ = O(ε) as in the proof of Theorem 2.10 of [6]. Next,

W (x, t) = V ′′′(q(t)) (x− q(t))3 + V ′′′′(ξ(x, t)) (x− q(t))4.

We have

‖(PK1+3 − 1)W u‖ ≤ ‖(PK1+3 − 1)W PK1 u‖

+ ‖(PK1+3 − 1)W (1− PK1) u‖

≤ ‖(PK1+3 − 1)V ′′′′(q) (x− a)3 PK1 u‖

+ ‖(PK1+3 − 1)V ′′′′(ξ(x, t)) (x− q)4 PK1 u‖

+ ‖(PK1+3 − 1)W (1− PK1) u‖.

The first term on the right hand side is zero since (PK1+3 − 1) (x − q)3 PK1 = 0. The

second term is O(ε4) as in the proof of Theorem 2.10 of [6]. The third term is bounded by

‖W (1 − PK1) u‖. This quantity is O(ε4) because W is locally cubic as in the N = 1 case

and ‖(1− PK1) u‖ = O(ε).
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The N = 3 case is similar, but with the next order Taylor series estimates. The N ≤ l−2

case is similar under the hypotheses of the remark, but with higher order Taylor series

estimates.

The first term on the right hand side of the estimate in Theorem 1 arises from the estimate

in Theorem 2. The rest of this paper concerns the second term.

We concentrate on the local time-error when approximating u(∆t); if we show that it

can be bounded by ε (∆t)3, then standard arguments and Theorem 2 prove Theorem 1.

The first step in Algorithm 4 produces approximations Π̃
(
∆t
2

)
of Π

(
∆t
2

)
and S̃

(
∆t
2

)
of

S
(
∆t
2

)
, both with errors C (δt)4 ∆t

2 . Given these approximate parameters, the coefficients c̃k

solve the system (6) with the constant matrix F̃ = F [Π̃
(
∆t
2

)
] on right hand side, as in (4).

They enter in the expression of the numerical solution at the end of the Strang–splitting

ũ(∆t) = eiS̃(∆t)/ε2
K−1∑

k=0

c̃k(∆t, ε) ϕk[Π̃(∆t)] .

In practice, they are computed via expensive (Padé or Arnoldi) iterations, but here we

assume they are computed exactly.

In order to shorten the formulas, we denote ϕk = ϕk[Π] and ϕ̃k = ϕk[Π̃].

To facilitate the proof, we introduce u1(t), constructed via the parameters Π(t) from

the exact solution of (3) and coefficients c1 from the linear system with constant matrix

F 1 = F [Π1], where Π1 = Π
(
∆t
2

)
:

i ε2 ċ1 = F 1 c1 , for t ∈ [0, ∆t] .

With this we construct

u1(t) = eiS(t)/ε
2

K−1∑

k=0

c1k(t, ε) ϕk[Π(t)] ,

which has the parameters of u, but the coefficients c1. The local error then decomposes as

‖u(∆t)− ũ(∆t)‖ ≤ ‖u(∆t)− u1(∆t)‖ + ‖u1(∆t)− ũ(∆t)‖ .

The next two theorems give upper bounds for these two last terms, ensuring the desired

bound on the local error.
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We now take a more careful look at the Galerkin matrix F . A crucial observation is that

as in section 4.1 of [4], the change of variables x = q + εy allows us to represent

Fj,k =

∫
φj(y) W (q + εy) φk(y) dy (7)

in terms of ε–independent, but orthogonal functions φk, given by the recurrence relation

φ0(y) = π−1/4 |Q|−1/2 e−|Q|−2|y|2/2,

Q
√

kj + 1φk+1(y) =
√
2 y φk(y) − Q

√
kj φk−1(y) .

By this change of variables, all of the dependence on ε has been moved out of the wavepackets

and put into the operator W (q + εy), which is

W (q + εy)

= V (q(t) + εy) − V (q(t)) − V ′(q(t)) ε y − 1

2
V ′′(q(t)) ε2 y2 (8)

=
1

6
V

′′′
(ζ(y)) ε3 y3

=

∫ q(t)+εy

q(t)

(q(t) + εy − z)2

2
V ′′′(z) dz . (9)

Note that Q is not present in the expression for W , while the functions φk are wavepackets

that depend on Q only: φk = ϕε=1
k

[
0, 0, Q, i

(
Q
)−1

]
. We use this observation in the proofs

of the following lemmas.

Lemma 1. Suppose g and Z are functions on R that satisfy g ∈ L2(R, dy) and

|Z(y)| ≤ P (y) eC ε2y2/2, where P is a non-negative polynomial.

Then there exists a constant C depending only on j and Q, such that

| 〈φj, Zg〉 | =

∣∣∣∣
∫

φj(y) Z(y) g(y) dy

∣∣∣∣ ≤ C ‖g‖ , (10)

for all ε <
|Q|−1

√
2C

.

Proof. By the Schwarz inequality, |〈φj, Z g 〉| ≤ ‖Z φj‖ ‖g‖, so it suffices to prove that

‖Z φj‖ is finite. However,

‖Z φj‖2 = π−1/2 |Q|−1

∫

R
|Z(y)|2 |p(y)|2 e−y2/|Q|2 dy ,
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where p is a polynomial. Under our assumptions, elementary estimates show that this integral

is bounded by a constant, uniformly for ε2 < |Q|−2

2C .

Lemma 2. The entries of the matrix F [Π] and their first two time-derivatives are bounded

by constants times ε3:

|Fj,k(t)| ≤C 0 ε
3, |Ḟj,k(t)| ≤C 1 ε

3, and |F̈j,k(t)| ≤C 2 ε
3 ,

where the constants Cl depend only on j, k, Q, Q̇, Q̈, q̇, q̈, and bounds on the third, fourth,

and fifth derivatives of V .

Proof. We use expression (9) to write

Fj,k(t) =

∫

R
φj(y)

∫ q(t)+εy

q(t)

(q(t) + εy − z)2

2
V ′′′(z) dz φk(y) dy .

We then let z = q(t) + σεy and rewrite the inner integral as

∫ 1

0

(εy (1− σ))2

2
V ′′′(q(t) + σεy) εy dσ .

Next, we interchange the order of integration to obtain

Fj,k(t) = ε3
∫ 1

0

(1− σ)2

2

∫

R
φj(y) y

3 V ′′′(q(t) + σεy) φk(y) dy dσ . (11)

Lemma 1 with Z(y) = y3 V ′′′(q(t) + σεy) gives the result for Fj,k.

To study Ḟj,k, we take the time derivative of expression (11). The only time dependent

quantities here are φj, φk, and V ′′′(q(t) + σεy). The time dependence in the φ’s comes only

from Q(t) and its conjugate, while the time dependence in V ′′′(q(t) + σεy) comes only from

q(t). The result for Ḟj,k then follows by several applications of Lemma 1.

The result for F̈j,k follows from the same arguments applied to the second time derivative

of (11).

Corollary 1.

‖F (t) ‖ ≤ C ε3, ‖ Ḟ (t) ‖ ≤ C ε3, and ‖ F̈ (t) ‖ ≤ C ε3 ,

where C has the same dependency as in Lemma 2 and depends additionally on K, but is

independent of ε.
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Lemma 3. The error caused by using the approximate parameters Π̃ in the wavepacket ϕk

satisfies

‖ϕk(∆t) − ϕ̃k(∆t) ‖ ≤ C (δt)4

ε2
∆t .

Proof. Using a homotopy between Π and Π̃ one can prove1 via careful calculations that

‖ϕ− ϕ̃ ‖ ≤ C 1

ε2

(
|q − q̃|+ |p− p̃|+ |Q− Q̃|+ |P − P̃ |

)
.

The fact that the Y–splitting with time step δt for Π on an interval of length ∆t is of fourth

order then concludes this proof.

Lemma 4. The error caused by using the approximate parameters Π̃ in the matrix F satisfies
∥∥∥F 1 − F̃

∥∥∥ ≤ C (δt)4 ∆t ,

with the constant C depending on Q1, Q̃, and V and its derivatives up to 3rd order.

Proof. The representation (7) of the entries of the matrix F that depends only on Q is again

the key idea: It allows us to write F 1
j,k − F̃j,k as the sum of the following three terms

〈
φ1
j , W

1(φ1
k − φ̃k)

〉
+

〈
φ1
j , (W

1 − W̃ ) φ̃k)
〉

+
〈
φ1
j − φ̃j, W̃ φ̃k

〉
,

where

W 1(y) = W (q1 + εy) =
1

6
V

′′′
(q1 + εζ1(y)) ε3 y3

and

W̃ (y) = W (q̃ + εy) =
1

6
V

′′′
(q̃ + εζ̃(y)) ε3 y3 .

Note that φ1
j = φj[Q] and φ̃j = φj[Q̃] do not depend on q, p, or ε. Lemma 1 now applies

with Z = W 1/ε3 and g = φ1
k − φ̃k or Z = W̃/ε3 and g = φ1

j − φ̃j to estimate the first and

the last term, respectively, by Cε3‖φ1
k − φ̃k‖ or Cε3‖φ1

j − φ̃j‖. As in the previous lemma,

the last terms are both bounded by C ε (δt)4 ∆t which is one order (in ε) smaller that the

stated result. The largest error arises from the middle term. We bound it using (8) with the

corresponding q1 and q̃ and Lemma 1 again. This yields a bound of C (2 + ε+ 1
2ε

2) |q1 − q̃|.

Combining all these estimates, we get the upper bound for the quantity in the lemma:
∥∥∥F 1 − F̃

∥∥∥ ≤ C
(
(2 + ε+

1

2
ε2) |q − q̃| + ε |Q− Q̃|

)
,

which is bounded by C (δt)4 ∆t as in the previous lemma.

1Private communication from G. Kallert (now Gauckler) in 2010.
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Theorem 3. The difference between the approximate solution and the intermediate solution

is

‖u(∆t)− u1(∆t)‖ ≤ C ε (∆t)3 ,

where C depends on K and V and its derivatives up to 5th order, on Q for t between 0 and

T , but is independent of ε and ∆t.

Proof. Denoting the (unitary) propagator for (6) by U(t, s), we can express the difference

between the approximate solution and the intermediate solution as

∥∥∥U(∆t, 0) c(0)− e−i∆t
ε2

F 1

c(0)
∥∥∥ =

∥∥∥ c(0)− U(0, ∆t) e− i ∆t
ε2

F 1

c(0)
∥∥∥ .

We abbreviate F (s) := F [Π(s)], and observe that since F 1 = F [Π
(
∆t
2

)
], the expression in

the second norm above is the integral from 0 to ∆t of

U(0, s) 1

ε2
(
F (s)− F 1

)
e− i s F 1/ε2 c(0).

Thus, we have

‖u(∆t)− u1(∆t) ‖ =
1

ε2

∥∥∥∥∥∥

∆t∫

0

U(0, s)
(
F (s)− F 1

)
e− i s F 1/ε2 c(0) ds

∥∥∥∥∥∥
.

Standard arguments from the proof of the convergence order of the midpoint quadrature

rule then shows that

‖u(∆t)− u1(∆t) ‖ ≤ (∆t)3

ε2
‖R‖

with the remainder R involving the Peano kernel and a factor containing the second derivative

with respect to s of the integrand in the above formula. The first derivative of the integrand

is

U(0, s) i

ε2
F (s)

(
F (s)− F 1

)
e− i s F 1/ε2 c(0)

+ U(0, s) Ḟ (s) e− i s F 1/ε2 c(0)

+ U(0, s)
(
F (s)− F 1

) −i

ε2
F 1 e− i s F 1/ε2 c(0)

The second derivative has an even longer expression, but has the same character as the first

one: every term containing the factor 1/ε2 contains also a factor of F 1 or F (s) or Ḟ (s),
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which are of order ε3, according to Corollary 1. Hence, the leading order terms are those

involving only Ḟ (s) and F̈ (s), i.e., similar to the middle term in the first derivative. Those

terms are themselves of order ε3, which shows that the remainder R is bounded by C ε3.

Theorem 4. The difference between the intermediate solution and the numerical solution is

‖u1(∆t)− ũ(∆t) ‖ ≤ C (δt)4

ε2
∆t .

Proof. By the triangle inequality,

‖u1(t)− ũ(t) ‖

≤
∣∣∣ e− i S(t)/ε2 − e− i S̃(t)/ε2

∣∣∣ +

∥∥∥∥∥

K−1∑

k=0

c1k(t)ϕk(t) − c̃k(t) ϕ̃k(t)

∥∥∥∥∥

≤ C |S(t)− S̃(t)|
ε2

+

∥∥∥∥∥

K−1∑

k=0

c1k(t) (ϕk(t)− ϕ̃k(t))

∥∥∥∥∥ + ‖c1(t)− c̃(t)‖

≤ C |S(t)− S̃(t)|
ε2

+

√√√√
K−1∑

k=0

‖ϕk − ϕ̃k‖2 + ‖c1(t)− c̃(t)‖ .

We rewrite equation (4) as

i ε2 ˙̃c = F1 c̃ + (F̃ − F1) c̃ , for t ∈ [0, ∆t] .

Lemma 4 and elementary Lemma 2.8 of [6] give ‖c(t)− c̃(t)‖ ≤ C (δt)4

ε2 (∆t)2. Lemma 3 and

the error in the splitting of (3) then yield the result.

Finally, Theorems 3, 4, and the triangle inequality give us an estimate of the local error:

‖u(∆t)− ũ(∆t) ‖ ≤ C (δt)4

ε2
(∆t) + C ε (∆t)3 ≤ C ε (∆t)3

if we choose

δt ≤ ε3/4
√
∆t .

This shows that the number N of time-steps for solving (3) via a splitting is at least N ≥
√

∆t ε−3/4 for the semiclassical splitting Algorithm 4. With such a choice of N , standard

arguments and Theorem 2 imply the result on the global error in our main Theorem 1.
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