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Abstract

Anisotropic decompositions using representation systems based on parabolic scaling such as curve-
lets or shearlets have recently attracted significantly increased attention due to the fact that they
were shown to provide optimally sparse approximations of functions exhibiting singularities on lower
dimensional embedded manifolds. The literature now contains various direct proofs of this fact and
of related sparse approximation results. However, it seems quite cumbersome to prove such a canon
of results for each system separately, while many of the systems exhibit certain similarities.

In this paper, with the introduction of the notion of parabolic molecules, we aim to provide
a comprehensive framework which includes customarily employed representation systems based on
parabolic scaling such as curvelets and shearlets. It is shown that pairs of parabolic molecules have
the fundamental property to be almost orthogonal in a particular sense. This result is then applied
to analyze parabolic molecules with respect to their ability to sparsely approximate data governed
by anisotropic features. For this, the concept of sparsity equivalence is introduced which is shown to
allow the identification of a large class of parabolic molecules providing the same sparse approximation
results as curvelets and shearlets. Finally, as another application, smoothness spaces associated with
parabolic molecules are introduced providing a general theoretical approach which even leads to novel
results for, for instance, compactly supported shearlets.

Keywords: Curvelets, Nonlinear Approximation, Parabolic Scaling, Shearlets, Smoothness Spaces,
Sparsity Equivalence

2000 Mathematics Subject Classification. Primary 41AXX, Secondary 41A25, 53B, 22E.

1 Introduction

Recently, a paradigm shift could be observed in applied mathematics, computer science, and electrical
engineering. The novel paradigm of sparse approximations now enables not only highly efficient encoding
of functions and signals, but also provides intriguing new methodologies, for instance, for recovery of
missing data or separation of morphologically distinct components. At about the same time, scientists
began to question whether wavelets are indeed perfectly suited for image processing tasks, the main reason
being that images are governed by edges while wavelets are isotropic objects. This mismatch becomes
also evident when recalling that Besov spaces can be characterized by the decay of wavelet coefficient
sequences however Besov models are clearly deficient to adequate capturing of edges.

1.1 Geometric Multiscale Analysis

These two fundamental observations have led to the research area of geometric multiscale analysis whose
main goal is to develop representation systems, preferably containing different scales, which are sensitive
to anisotropic features in functions/signals and provide sparse approximations of those. Such represen-
tation systems are typically based on parabolic scaling, and we exemplarily mention (first and second
generation) curvelets [8], contourlets [12], and shearlets [25]. Browsing through the literature, it becomes
evident that some properties such as sparse approximation of so-called cartoon images are quite similar
for some systems such as curvelets and shearlets, whereas other systems such as contourlets show a some-
how different behavior. Delving more into the literature we observe that for those systems exhibiting
similar sparsity behavior many results were proven with quite resembling proofs. One might ask: Is this
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cumbersome close repetition of proofs really necessary? We believe that the answer is no and that a
general framework for representation systems based on parabolic scaling does not only solve this problem
but even more provide a fundamental understanding of such systems and allow for a categorization of
these.

1.2 Parabolic molecules

The main goal of this paper is to proclaim the framework of parabolic molecules as a general concept
encompassing in particular curvelets and both band-limited and compactly supported shearlets. The idea
of molecules in geometric multiscale analysis dates back to the seminal work by Candès and Demanet [5],
in which they studied the curvelet representation of wave propagators by using what they called curvelet
molecules. Later, Guo and Labate adopted this idea and introduced shearlet molecules in [21].

Both such generalization approaches however suffer from the fact that they are solely designed to
weaken the conditions of the particular respective systems, namely curvelets and shearlets. In contrast to
this, our philosophy is to introduce molecules, which encompass a wide class of directional representation
systems by using parabolic scaling as a unifying concept. This is justified by the fact that all known
systems providing optimally sparse approximation of cartoon images follow a parabolic scaling law; and
it is strongly believed that this is necessary. In fact, our framework is general enough to, for instance,
include all known curvelet-type as well as shearlet-type constructions to date.

Our main result (Theorem 2.9) will show that the Gramian matrix between any two systems of
parabolic molecules satisfies a strong off-diagonal decay property and is in that sense very close to a
diagonal matrix. This will become key to transfer the celebrated properties of curvelet systems to other
systems based on parabolic scaling; a fact which we can summarize in the following meta-result:

Meta-Theorem. All frame systems based on parabolic scaling (specifically curvelets and shearlets) posses
the exact same approximation properties, whenever the generating functions are sufficiently smooth, as
well as localized in space and frequency.

This meta-theorem has been verified on a case-by-case basis for a number of different systems. In
this paper, for the first time, a rigorous framework is provided which applies to, for instance, all known
curvelet or shearlet constructions at once. This will be exemplarily demonstrated by the results on
sparse approximation (Theorem 4.6) and anisotropic smoothness spaces (Theorem 4.10) which are indeed
universally applicable to all parabolic molecules.

1.3 Sparsity Equivalence

Focussing on the property of sparse approximation of images governed by anisotropic features, it might
be even more beneficial to derive a categorization of parabolic molecules according to their approximation
behavior. We accommodate this request by introducing the notion of sparsity equivalence in Subsection
4.1, which leads to equivalence classes and further to the sought classification. As a byproduct, our
framework yields a simple derivation of the results in [20, 27] from [8]. In fact, our results provide a
systematic way to analyze the sparse approximation of cartoon images of systems by elements of the
class of parabolic molecules categorized by equivalence classes of sparsity equivalence.

1.4 Contribution and Expected Impact

Summarizing, the significance of the notion of parabolic molecules as a higher level viewpoint lies in
the fact that it not only provides a general framework which contains various directional representation
systems as special cases and enables a quantitative comparison of such, but it moreover allows the transfer
of results concerning properties of such systems without repeating quite similar proofs. A few examples,
for which this conceptually new approach is fruitful, will be presented in Section 4 including optimally
sparse approximations of cartoon-like images.

We therefore anticipate this novel framework to have the following impacts:

• A thorough understanding of the ingredients of representation systems based on parabolic scaling
which are crucial for an observed behavior such as sparse approximations of cartoon images, thereby
also categorizing different (sparsity) behaviors.
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• A framework within which results can be directly transferred from one system to others without
repetition of similar proofs. This will allow to establish a desired result for a system based on
parabolic scaling by choosing, for instance, a shearlet or curvelet system best suited for the proof,
and transfer the result subsequently to any other systems by utilizing the results in this paper.

• An approach to design new representation systems based on parabolic scaling depending on several
parameters whose impact on, for instance, sparse approximation behavior is then known in advance.

1.5 Extensions

The framework introduced in this paper and the derived results are amenable to generalizations and
extensions. We briefly discuss a few examples.

• Other Systems. This general framework supports the introduction of novel systems based on
parabolic scaling fulfilling a list of desiderata designed according to a particular application. Such
systems can now be objectively compared with other systems according to, for instance, sparse
approximation properties.

• Systems with Continuous Parameters. One might also ask whether a similar general framework
for systems based on parabolic scaling with continuous parameters can be introduced. In light of
Subsection 4.1, this however requires a different sparsity model; one conceivable path would be to
compare their ability to resolve wavefront sets.

• Further Properties. In this paper, we studied the impact of our general framework on the problems
of sparse approximation and anisotropic function spaces. This strategy can certainly be also used for
other applications such as efficient decomposition of the Radon transform, which has been studied
both for shearlets [15] and curvelets [7], as well as the analysis of geometric separation as studied
in [13].

• Weighted Norms. When aiming at transferring results such as sparse decompositions of curvilinear
integrals [6] or sparse decompositions of the Radon transform [7], sometimes weighted !p norms
might need to be analyzed.

• Higher Dimensions. We have formulated our results in the bivariate setting. However, an extension
to arbitrary dimensions is possible using essentially the same arguments. This is especially relevant
since by now several different curvelet and shearlet constructions exist for three-dimensional data
[30, 26, 23].

1.6 Outline

This paper is organized as follows. In Section 2, the notion of parabolic molecules is introduced. It
is then shown in Section 3 that curvelets and both band-limited and compactly supported shearlets
are special cases of this framework. Almost orthogonality of pairs of parabolic molecules is proven in
Section 5. Finally, in Section 4, this result is utilized for two applications. First, in Subsection 4.1, using
the novel concept of sparsity equivalence a large class of parabolic molecules providing the same sparse
approximation results as curvelets and shearlets is identified. Second, in Subsection 4.2, smoothness
spaces associated with parabolic molecules are studied.

1.7 Notation

We comment on the notation which we shall use in the present work. Denote by Lp(Rd) the usual
Lebesgue spaces with associated norm ‖ ·‖p. For a discrete set Λ equipped with the counting measure we
denote the corresponding Lebesgue space by !p(Λ) or !p if Λ is known from the context. The associated
norm will again be denoted ‖ · ‖p. We use the symbol 〈·, ·〉 indiscriminately for the inner product on the
Hilbert space L2(Rd) as well as for the Euclidean inner product on Rd. The Euclidean norm 〈x, x〉1/2
of a vector x ∈ Rd will be denoted by |x|. For a function f ∈ L1(Rd) we can define the Fourier
transform f̂(ω) :=

∫
Rd f(x) exp(−2πi〈x,ω〉)dx. By density this definition can be extended to tempered
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distributions f . We shall also use the notation T to denote the one-dimensional torus which can be
identified with the half-open interval [0, 2π). Sometimes we will use the notations (x)+ := max(x, 0)
&x' := max{l ∈ Z : l ≤ x}, and 〈x〉 := (1 + x2)1/2. Finally, we use the symbol A ! B to indicate that
A ≤ CB with a uniform constant C.

2 Parabolic Molecules

All anisotropic transforms based on parabolic scaling which have appeared in the literature are indexed
by a scale parameter describing the amount of anisotropic scaling, an angular parameter describing the
orientation and a spacial parameter describing the location of an element. Nevertheless, these specific
constructions are based on different principles: For curvelets the scaling is done by a dilation with respect
to polar coordinates and the orientation is enforced by rotations. Shearlets on the other hand are based
on affine scaling of a single generator and the directionality is generated by the action of shear matrices.

It is the purpose of this section to introduce the concept of parabolic molecules which distills the
essential properties out of these constructions in terms of time-frequency localization properties. As it
will turn out, all previous constructions of curvelets and shearlets are instances of this concept, a fact
that enables us to operate in a much more general setup than in previous work.

2.1 Definition of Parabolic Molecules

Let us now describe our setup. We start by defining our parameter space

P := R+ × T× R2,

where a point p = (s, θ, x) ∈ P describes a scale 2s, an orientation θ, and a location x.
Parabolic molecules are defined as systems of functions (mλ)λ∈Λ with each mλ ∈ L2(R2) satisfying

some additional properties. In particular, each function mλ will be associated with a unique point in
P, as we shall make precise below. Since we are dealing with discrete systems (frames) we would like
to operate with discrete sampling sets contained in P. We call such sampling sets parametrizations as
defined below.

Definition 2.1. A parametrization consists of a pair (Λ,ΦΛ) where Λ is a discrete index set and ΦΛ is
a mapping

ΦΛ :

{
Λ → P,

λ ∈ Λ +→ (sλ, θλ, xλ) .

which associate with each λ ∈ Λ a scale sλ, a direction θλ and a location xλ ∈ R2.
There exists a canonical parametrization

Λ0 :=
{
(j, l, k) ∈ Z4 : j ≥ 0, l = −2"

j
2 #−1, · · · , 2"

j
2 #−1

}
,

where for λ = (j, l, k) we define Φ0(λ) := (sλ, θλ, xλ) with sλ := j, θλ := l2−"j/2#π, and xλ :=
R−θλD2−sλk.

We are now ready to define parabolic molecules. Our definition essentially says that molecules have
frequency support in parabolic wedges associated to a certain orientation and spacial support in rectangles
with parabolic aspect ratio.

For this, we will use the following notion. We let Rθ =

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
denote the rotation

matrix of angle θ, and Da := diag(a,
√
a) be the anisotropic dilation matrix associated with a > 0.

Definition 2.2. Let Λ be a parametrization. A family (mλ)λ∈Λ is called a family of parabolic molecules
of order (R,M,N1, N2) if it can be written as

mλ(x) = 23sλ/4a(λ) (D2sλRθλ (x− xλ))

such that ∣∣∣∂β â(λ)(ξ)
∣∣∣ ! min

(
1, 2−sλ + |ξ1|+ 2−sλ/2|ξ2|

)M
〈|ξ|〉−N1 〈ξ2〉−N2 (1)

for all |β| ≤ R. The implicit constants are uniform over λ ∈ Λ.
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Remark 2.3. For convenience our definition only poses conditions on the Fourier transform of mλ. The
number R describes the spatial localization, M the number of directional (almost) vanishing moments and
N1, N2 describe the smoothness of an element mλ. We also refer to Figure 1 for an illustration of the
approximate frequency support of a parabolic molecule.

Figure 1: Left: The weight function min
(
1, 2−sλ + |ξ1|+ 2−sλ/2|ξ2|

)M 〈|ξ|〉−N1 〈ξ2〉−N2 for sλ = 3, M =
3, N1 = N2 = 2. Right: Approximate Frequency support of a corresponding molecule m̂λ with θλ = π/4.

We pause to record the following simple estimates: In polar coordinates we have the representation

m̂λ(r,ϕ) = 2−3sλ/4â(λ)
(
2−sλr cos(ϕ+ θλ), 2

−sλ/2r sin(ϕ+ θλ)
)
exp (2πi〈xλ, ξ〉) .

Equation (1) directly implies that in polar coordinates we have the estimate

|m̂λ(ξ)| ! 2−2sλ/4 min
(
1, 2−sλ(1 + r)

)M 〈
2−sλr

〉−N1 〈2−sλ/2r sin(ϕ+ θλ)〉−N2 . (2)

2.2 Metric Properties of Parametrizations

In order to proceed we need to introduce some additional (metric) properties of index sets and parametriza-
tions. The parameter space P can be equipped with a natural notion of (pseudo) distance, see [29], which
can be extended to a distance between indices by a pullback via a parametrization.

Definition 2.4. Following [5, 29], we define for two indices λ, µ the index distance

ω (λ, µ) := 2|sλ−sµ| (1 + 2sλ0d (λ, µ)) ,

and
d (λ, µ) := |θλ − θµ|2 + |xλ − xµ|2 + |〈eλ, xλ − xµ〉|.

where λ0 = argmin(sλ, sµ) and eλ = (cos(θλ), sin(θλ))
%.

Remark 2.5. The notation ω(λ, µ) is actually a slight abuse of notation since ω is acting on P. Therefore
it should read

ω (ΦΛ(λ),ΦM (µ))

for indices λ ∈ Λ, µ ∈ M with associated parametrizations ΦΛ, ΦM . In order not to overload the notation
we stick with the shorter but slightly less accurate definition.

Remark 2.6. We wish to mention that, in fact, real-valued curvelets or shearlets are not associated with
an angle but with a ray, i.e., θ and θ+π need to be identified. This is not reflected in the above definition,
which is a slight inaccuracy. The ’correct’ definition should assume that |θλ| ≤ π

2 ∈ P1, the projective
line. Therefore, it should read

d (λ, µ) := |{θλ − θµ}|2 + |xλ − xµ|2 + |〈θλ, xλ − xµ〉|
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with {ϕ} the projection of ϕ onto P1 ∼= (−π/2,π/2].
However, for our results it will make no difference which definition is used. Thus we decided to employ

Definition 2.4, which avoids additional technicalities.

We need to impose further conditions on an index set Λ in order to arrive at meaningful results. The
following definition formalizes a crucial property, which is later on required to be satisfied by an index
set in our results.

Definition 2.7. An index set Λ with associated mapping ΦΛ is called k-admissible if

sup
λ∈Λ

∑

µ∈Λ0

ω (λ, µ)−k < ∞,

and
sup
λ∈Λ0

∑

µ∈Λ

ω (λ, µ)−k < ∞.

Lemma 2.8. The canonical index set Λ0 is k-admissible for all k > 2.

Proof. We aim to prove that

sup
µ∈Λ0

∑

λ∈Λ0

ω (µ,λ)−k < ∞. (3)

Writing sµ = j′ in the definition of ω (µ,λ), we need to consider

∑

j∈Z+

∑

λ∈Λ0,sλ=j

2−k|j−j′|
(
1 + 2min(j,j′)d(µ,λ)

)−k
. (4)

According to [5, Equation (A.2)], we have
∑

λ∈Λ0,sλ=j

(1 + 2qd(µ,λ))−2 ! 22(j−q)+ (5)

for any q. Hence, for each k > 2, (4) can be estimated by
∑

j≥0

2−k|j−j′|22|j−j′| < ∞,

which proves (3).

2.3 Main Result

The main result of this paper essentially states that any two systems of parabolic molecules behave in the
same way as far as approximation properties are concerned. Specifically, we show the following theorem,
whose proof is quite technical, wherefore we postpone it to Subsection 5.2.

Theorem 2.9. Let (mλ)λ∈Λ, (pµ)µ∈M be two systems of parabolic molecules of order (R,M,N1, N2) with

R ≥ 2N, M > 4N − 5

4
, N1 ≥ 2N +

3

4
, N2 ≥ 2N. (6)

Then
|〈mλ, pµ〉| ! ω ((sλ, θλ, xλ), (sµ, θµ, xµ))

−N .

This result shows that the Gramian matrix between any two systems of parabolic molecules satisfies
a strong off-diagonal decay property and is in that sense very close to a diagonal matrix. As we shall
see in Section 4, this result has a number of immediate applications, most notably for the approximation
properties of arbitrary frames which are systems of parabolic molecules (they turn out to be equivalent!).

We find it particularly striking that our framework is general enough to include both curvelet-type, as
well as shearlet-type constructions (see Section 3). Therefore, as a consequence of Theorem 2.9, all these
systems satisfy the same celebrated properties of the curvelet construction given in [8]. To demonstrate
the importance of our result, Section 4 discusses selected applications of Theorem 2.9 such as sparsity
equivalence and equivalence of associated smoothness spaces.
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3 Examples of Parabolic Molecules

Having defined parabolic molecules in Section 2 above, it is important to examine the versatility of
this concept. This is done in the present section. The main findings are that essentially all known
constructions in the literature can be cast in our framework and are thus amenable to the techniques and
results developed in this paper.

We divide the section into two subsections. In Subsection 3.1 we study so-called curvelet-like con-
structions. These include curvelets as defined in [4] but also other constructions, such as in [3, 29]. We
show that all these function systems are parabolic molecules. In fact, this result should not come to
much as a surprise: In [5] a similar concept of curvelet molecules is introduced which includes all the
above-mentioned constructions. We also show that curvelet molecules are parabolic molecules.

The real strength of our definition of parabolic molecules is that it includes not only curvelet-type
constructions. In fact, we consider it one of the main findings of this paper that also shearlet-type systems
can be thought of as instances of parabolic molecules, associated to a specific shearlet parametrization
Φσ! We show this result, as well as the admissibility of Φσ, below in Subsection 3.2. After that, to provide
some concrete examples, we study several specific constructions. In particular, we show that compactly
supported shearlet constructions (see e.g. [24]) are parabolic molecules.

3.1 Curvelet-like constructions

3.1.1 Second Generation Curvelets

It is easily verified that curvelet molecules as defined in [5] are instances of parabolic molecules associated
with the canonical parametrization. In particular, second generation curvelets [4] are parabolic molecules
of arbitrary order. We start by describing the construction. Pick two window functions W (r), V (t) which
are both real, nonnegative, C∞ and supported in

(
1
2 , 2

)
and in (−1, 1) respectively. We further assume

that these windows satisfy

∑

j∈Z
W

(
2jr

)2
= 1 for all r ∈ R+ and

∑

l∈Z
V (t− l)2 = 1 for all t ∈

(
−1

2
,
1

2

)
.

Now define in polar coordinates

γ̂(j,0,0)(r,ω) := 2−3j/4W
(
2−jr

)
V
(
2"j/2#ω

)
and γ(j,l,k)(·) := γ(j,0,0)

(
Rθ(j,l,k)

(
·− x(j,l,k)

))
,

where (j, l, k) ∈ Λ0. With appropriate modifications for the low-frequency case j = 0 it is possible to
show that the system

Γ0 :=
{
γλ : λ ∈ Λ0

}

constitutes a Parseval frame for L2(R2). In order to make the frame elements real-valued, it is possible
to identify elements oriented in antipodal directions. This frame is customarily referred to as the tight
frame of second generation curvelets. We now show that this frame forms a system of parabolic molecules
of arbitrary order.

Proposition 3.1. The second generation curvelet frame constitutes a system of parabolic molecules of
arbitrary order associated with the canonical parametrization.

Proof. Due to rotation invariance we may restrict ourselves to the case θλ = 0. Therefore, denoting
γj := γ(j,0,0), we need to show that the function

a(λ)(·) := 2−3sλ/4γj (D2−sλ ·)

satisfies (1) for (R,M,N1, N2) arbitrary. First note that

â(λ)(·) = 23sλ/4γ̂j (D2sλ ·) .

The function â(λ), together with all its derivatives has compact support in a rectangle away from the ξ1-
axis. Therefore, it only remains to show that, on its support, the function â(λ) has bounded derivatives,
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with a bound independent of j. But this follows from elementary arguments, using r =
√

ξ21 + ξ22 ,
ω = arctan (ξ2/ξ1). Then

â(λ)(ξ) = γ̂(j,0,0) (D2jξ) = W (αj(ξ))V (βj(ξ)) ,

where

αj(ξ) := 2−j
√

22jξ21 + 2jξ22 , and βj(ξ) := 2j/2 arctan

(
ξ2

2j/2ξ1

)
.

Now it is a simple calculus exercise to show that all derivatives of αj and βj are bounded on the support
of â(λ) and uniformly in j. This proves the result.

3.1.2 Hart Smith’s Parabolic Frame

Historically, the first instance of a decomposition into parabolic molecules can be found in Hart Smith’s
work on Fourier Integral Operators and Wave Equations [29]. This frame, as well as its dual, again forms
a system of parabolic molecules of arbitrary order associated with the canonical parametrization. We
refer to [29, 1] for the details of the construction which is essentially identical to the curvelet construction,
with primal and dual frame being allowed to differ. The same discussion as above for curvelets shows
that this system consists of parabolic molecules.

3.1.3 Borup and Nielsen’s Construction

Another very similar construction has been given in [3]. In this paper, the focus has been on the study of
associated function spaces. Again, it is straightforward to prove that this system constitutes a system of
parabolic molecules of arbitrary order associated with the canonical parametrization. As a corollary to
our results, it will actually turn out that the spaces defined in [3] coincide with the approximation spaces
corresponding to curvelets, shearlets, and Smith’s transform.

3.1.4 Curvelet Molecules

In [5] the authors introduced the notion of curvelet molecules which are a useful concept in proving
sparsity properties of wave propagators. For the sake of completion, we include the exact definition.

Definition 3.2. Let Λ0 be the canonical parametrization. A family (mλ)λ∈Λ0 is called a family of curvelet
molecules of regularity R if it can be written as

mλ(x) = 23sλ/4a(λ) (D2sλRθλ (x− xλ))

such that for all |β| ≤ R and each N = 0, 1, 2, . . .

|∂βa(λ)(x)| ! 〈x〉−N (7)

and for M = 0, 1, . . .

|â(λ)(ξ)| ! min
(
1, 2−sλ + |ξ1|+ 2−sλ/2|ξ2|

)M
. (8)

This definition is similar to our definition of parabolic molecules, however with two crucial differences:
First, (1) allows for arbitrary rotation angles and is therefore more general. Curvelet molecules on the
other hand are only defined for the canonical parametrization Λ0 (which, in contrast to our definition,
is not sufficiently general to also cover shearlet-type systems). Second, the decay conditions analogous
to our condition (1) are more restrictive in the sense that it requires infinitely many nearly vanishing
moments. In fact, the following result holds:

Proposition 3.3. A system of curvelet molecules of regularity R constitutes a system of parabolic
molecules of order (∞,∞, R/2, R/2).

Proof. The definition of curvelet molecules as above implies that the estimate (8) also holds for all
derivatives of â(λ), see [5]. Furthermore, by (7), all derivatives of â(λ) can be estimated in modulus by
〈|ξ|〉−R, which in turn can be estimated by 〈|ξ|〉−R/2〈ξ2〉−R/2. This yields the desired estimate.

8



3.2 Shearlets

Shearlets were introduced in 2006 as the first directional representation system which not only satisfies
the same celebrated properties of curvelets, but also provides a unified treatment of the continuum and
digital setting. This key property is achieved through utilization of a shearing matrix as a means to
parameterize orientation, which is highly adapted to the digital grid in contrast to rotation. For more
information on shearlets, we refer to the book [25].

It is perhaps not surprising that curvelets and their relatives described above fall into the framework
of parabolic molecules. Here we show the crucial fact that shearlets can be seen as a special case of
parabolic molecules as well. Consider the discrete index set

Λσ :=
{
(ε, j, l, k) ∈ Z2 × Z4 : ε ∈ {0, 1}, j ≥ 0, l = −2"

j
2 #, · · · , 2"

j
2 #
}
, (9)

and the shearlet system
Σ := {σλ : λ ∈ Λσ} ,

with
σ(ε,0,0,k)(·) = ϕ(·− k), σ(ε,j,l,k)(·) = 23j/4ψε

j,l,k

(
Dε

2jS
ε
l,j ·−k

)
, j ≥ 1,

where D0
a = Da, D1

a := diag(
√
a, a), Sl,j :=

(
1 l2−"j/2#

0 1

)
and S1

l,j =
(
S0
l,j

)%
. Then we define shearlet

molecules of order (R,M,N1, N2), which is a generalization of shearlets adapted to parabolic molecules,
in particular including the classical shearlet molecules introduced in [21], see Subsection 3.2.5.

Definition 3.4. We call Σ a system of shearlet molecules of order (R,M,N1, N2) if the functions
ϕ, ψ0

j,l,k, ψ1
j,l,k satisfy

|∂βψ̂ε
j,l,k(ξ1, ξ2)| ! min (1, |ξ1+ε|)M 〈|ξ|〉−N1〈ξ2−ε〉−N2 (10)

for every β ∈ N2 with |β| ≤ R.

Remark 3.5. In our proofs it is nowhere required that the directional parameter l runs between −2"
j
2 # and

−2"
j
2 # Indeed, l running in any discrete interval −C2"

j
2 #, . . . , C2"

j
2 # would yield the exact same results, as

a careful inspection of our arguments shows. Likewise, in certain shearlet constructions, the translational
sampling runs not through k ∈ Z2 but through τZ2 with τ > 0 a sampling constant. Our results are also
valid for this case with the similar proofs. The same remark applies to all curvelet-type constructions.

Now we can show the main result of this section, namely that shearlet systems with generators
satisfying (10) are actually instances of parabolic molecules associated with a specific shearlet-adapted
parametrization Φσ.

Proposition 3.6. Assume that the shearlet system Σ constitutes a system of shearlet molecules of order
(R,M,N1, N2). Then Σ constitutes a system of parabolic molecules of order (R,M,N1, N2), associated
to the parametrization (Λσ,Φσ), where

Φσ(λ) = (sλ, θλ, xλ) :=
(
j, επ/2 + arctan(−l2−"j/2#), (Sε

l )
−1 Dε

2−jk
)
.

Proof. We confine the discussion to ε = 0, the other case being the same. Further, we will suppress the
superscript ε as well as the subscript j, l, k in our notation. We need to show that

a(λ)(·) := ψ
(
D2sλSl,sλR

%
θλD2−sλ ·

)

satisfies (1). The Fourier transform of a(λ) is given by

â(λ)(·) = ψ̂
(
D2−sλS

−%
l,sλ

R%
θλD2sλ ·

)
.

The matrix S−%
l,sλ

R%
θλ

has the form

S−%
l,sλ

R%
θλ =

(
cos(θλ) sin(θλ)

0 −l2−"sλ/2# sin(θλ) + cos(θλ)

)
=:

(
a b
0 c

)
.

9



We claim that the quantities a and c are uniformly bounded from above and below, independent of j, l.
To see this, consider the functions

τ(x) := cos(arctan(x)) and ρ(x) := x sin(arctan(x)) + cos(arctan(x)),

which are bounded from above and below on [−1, 1], as an elementary discussion shows (in fact this
boundedness holds on any compact interval). Clearly, we have

a = τ
(
−l2"

sλ
2 #

)
and c = ρ

(
−l2"

sλ
2 #

)

Since we are only considering indices with ε = 0, we have
∣∣∣−l2"

sλ
2 #

∣∣∣ ≤ 1, which, by the above implies

uniform upper and lower boundedness of the quantities a, c, i.e., there exist numbers 0 < δa ≤ ∆a < ∞,
0 < δc ≤ ∆c < ∞ such that for all j, l we have

δa ≤ a ≤ ∆a and δc ≤ c ≤ ∆c.

The matrix D2−sλR%
θλ
S−%
l,sλ

D2sλ has the form

(
a 2−sλ/2b
0 c

)
.

Using the upper boundedness of a, b, c and the chain rule, we can estimate for any |β| ≤ R:

|∂β â(λ)(ξ)| ! sup
|γ|≤R

∣∣∣∣∂
γψ̂

((
a 2−sλ/2b
0 c

)
ξ

)∣∣∣∣ !
(
|ξ1|+ 2−sλ/2|ξ2|

)M
.

For the last estimate we utilized the moment estimate for ψ̂, which is given by (10). This gives us the
moment property required in (1).

Now we need to show the decay of ∂β â(λ) for large frequencies ξ. Again, due to the fact that a, b, c
are bounded from above and a, c from below, and utilizing the large frequency decay estimate in (10), we
can estimate

|∂β â(λ)(ξ)| ! sup
|γ|≤R

∣∣∣∣∂
γψ̂

((
a 2−sλ/2b
0 c

)
ξ

)∣∣∣∣ !
〈∣∣∣∣

(
a 2−sλ/2b
0 c

)
ξ

∣∣∣∣

〉−N1

〈cξ2〉−N2

! 〈|ξ|〉−N1 〈ξ2〉−N2 .

The statement is proven.

The following result shows that, just like the canonical parametrization, the shearlet parametrization
Λσ is admissible.

Lemma 3.7. The shearlet parametrization (Λσ,Φσ) is k-admissible for k > 2.

Proof. We show the analogue to Equation (5) for the shearlet parametrization, the rest of the proof is
analogous to the proof of Lemma 2.8. Hence, we aim to prove that

∑

λ∈Λσ,sλ=j

(1 + 2qd(µ,λ))−2 ! 22(j−q)+ (11)

for any q and µ ∈ Λ0. Without loss of generality we assume that θµ = 0, xµ = 0 (the general case follows
identical arguments with slightly more notational effort). Further, as before we only restrict ourselves to
the case ε = 0, the other case being exactly the same.

First we consider the case q > j. In this situation, the expression in (11) can be bounded by a uniform
constant.

Now we turn to the other case j ≥ q. In this case we use the fact that, whenever |l| ! 2−j/2, we have
∣∣∣arctan

(
−l2−" j

2 #
)∣∣∣ "

∣∣∣l2−" j
2 #
∣∣∣ and |S−1

l D2−jk| " |D2−jk|,

10



to estimate (11) by

∑

l

∑

k

(
1 + 2q

(∣∣∣l2−" j
2 #
∣∣∣
2
+
∣∣∣2−" j

2 #k2
∣∣∣
2
+
∣∣∣2−jk1 − l2−" j

2 #k22
−" j

2 #
∣∣∣
))−2

.

This can be interpreted as a Riemann sum and bounded (up to a constant) by the corresponding integral
∫

R2

dx

2−3j/2

∫

R

dy

2−j/2

(
1 + 2q(y2 + x2

2 + |x1 − x2y|)
)−2

,

compare [5, Equation (A.3)]. This integral is bounded by a constant times 22(j−q) as can be seen by
making the substitution x1 → 2qx1, x2 → 2q/2x2, y → 2q/2y. This shows (11) and thus completes the
proof.

These results show that the parabolic molecule concept is a unification of previous systems. In the
remainder of this section we examine the shearlet constructions which are on the market and show that
they indeed fit into our framework.

3.2.1 Bandlimited Shearlets

We start with the classical shearlet construction which yields bandlimited generators. We consider two
functions ψ1, ψ2 satisfying

supp ψ̂1 ⊂
[
−1

2
,− 1

16

]
∪
[
1

16
,
1

2

]
, supp ψ̂2 ⊂ [−1, 1] ,

∑

j≥0

∣∣∣ψ̂1

(
2−jω

)∣∣∣
2
= 1 for |ω| ≥ 1

8
,

and
2#j/2$∑

l=−2#j/2$

∣∣∣ψ̂2

(
2"j/2#ω + l

)∣∣∣
2
= 1 for |ω| ≤ 1.

Now we define our basic shearlet ψ0 via

ψ̂0(ξ) := ψ̂1(ξ1)ψ̂2

(
ξ2
ξ1

)
.

It follows from standard arguments that the system

Σ0 :=
{
23j/4ψ0

(
D0

2jS
0
l,j ·−k

)
: j ≥ 0, l = −2"

j
2 #, · · · , 2"

j
2 #
}

constitutes a Parseval frame for the Hilbert space L2 (C)∨ with

C :=

{
ξ : |ξ1| ≥

1

8
,
|ξ2|
|ξ1|

≤ 1

}
.

In the same way we can construct a Parseval frame Σ1 for L2 (C′)∨,

C′ :=

{
ξ : |ξ2| ≥

1

8
,
|ξ1|
|ξ2|

≤ 1

}
.

by reversing the coordinate axes. Finally, we can consider a Parseval frame

Φ :=
{
ϕ(·− k) : k ∈ Z2

}

for the Hilbert space L2

([
− 1

8 ,
1
8

]2)∨
.

Proposition 3.8. The system Σ := Σ0∪Σ1∪Φ constitutes a shearlet frame which is a system of parabolic
molecules of arbitrary order.

Proof. To show this, by Proposition 3.6, all we need to show is that the generators ψ0, ψ1 satisfy (10) for
arbitrary orders (R,M,N1, N2). This, however, follows directly from the fact that the underlying basis
functions are bandlimited.
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3.2.2 Bandlimited Shearlets with Nice Duals

The bandlimited shearlet frame Σ as described above suffers from the fact that we do not know much
about its dual frames. In particular, we do not know whether there exists a dual frame which is also a
system of parabolic molecules. For several results such as those in Subsection 4.2 it is however necessary
to have such a construction. In [18] this problem was successfully resolved by carefully glueing together
the two bandlimited frames associated with the two frequency cones. In other words, there exist shearlet
frames Σ with dual frame Σ′ such that both Σ and Σ′ form systems of parabolic molecules of arbitrary
order.

3.2.3 Smooth Parseval Frames of Shearlets

In [22] another modification of the bandlimited shearlet construction is given by carefully glueing together
two boundary elements along the seamlines with angle π/4. It can be shown that this yields a Parseval
frame with smooth and well-localized elements. Again, it is straightforward to check that the system
constructed in [22] constitutes a system of parabolic molecules of arbitrary order.

3.2.4 Compactly Supported Shearlets

We next analyze compactly supported shearlets [24], and prove that they also form instances of parabolic
molecules. Currently known constructions of compactly supported shearlets involve separable generators,
i.e.,

ψ0(x1, x2) := ψ1(x1)ψ2(x2), ψ1(x1, x2) := ψ0(x2, x1). (12)

with a wavelet ψ1 and a scaling function ψ2. We would like to find conditions on ψ1,ψ2 such that (10) is
satisfied for given parameters (R,M,N1, N2), i.e., that the associated shearlet frame forms a system of
shearlet molecules.

First we define the crucial property of vanishing moments for univariate wavelets.

Definition 3.9. A univariate function g possesses M vanishing moments if
∫

R
g(x)xkdx = 0, for all k = 0, . . . ,M − 1.

In the frequency domain, vanishing moments are characterized by polynomial decay near zero, as is
well known.

Lemma 3.10. Suppose that g : R → C is continuous, compactly supported and possesses M vanishing
moments. Then

|ĝ(ξ)| ! min (1, |ξ|)M .

Proof. First, note that, since g is continuous and compactly supported, it is in L1(R) and therefore its
Fourier transform is bounded. This takes care of frequencies ξ with |ξ| ≥ 1. For small ξ observe that, up
to a constant we have ∫

R
g(x)xkdx =

(
d

dξ

)k

ĝ(0).

Hence, if g possesses M vanishing moments, all derivatives of order < M of the Fourier transform ĝ
vanish at 0. Furthermore, since g is compactly supported, its Fourier transform is analytic. Therefore

|ĝ(ξ)| ! |ξ|M ,

which proves the claim.

Proposition 3.11. Assume that ψ1 ∈ CN1 is a compactly supported wavelet with M + R vanishing
moments, and ψ2 ∈ CN1+N2 is also compactly supported. Then, with ψε defined by (12), the associated
shearlet system Σ constitutes a system of parabolic molecules of order (R,M,N1, N2).

12



Proof. In view of Proposition 3.6 we need to show that the estimate (10) holds. We only consider the
case ε = 0 and drop the superscript. The inverse Fourier transform of ∂βψ is, up to a constant given by
xβψ(x). We first handle the case |ξ1| > 1. By smoothness and compact support of ψ1,ψ2, we find that
for any |β| ≤ R the function

∂(N1,N1+N2)xβψ

is in L1(R), hence it has a bounded Fourier transform which is given, up to a constant by

ξN1
1 ξN1+N2

2 ∂βψ̂(ξ).

It follows that the function
〈ξ1〉N1〈ξ2〉N1+N2∂βψ̂(ξ)

is bounded. Using the simple fact that 〈x〉〈y〉 ! 〈
√

x2 + y2〉, we get

∂βψ(ξ) ! 〈‖ξ‖〉−N1〈ξ2〉−N2 .

Now let β be such that |β1| < R. Then the function

xβψ(x) = xβ1
1 xβ2

2 ψ1(x1)ψ2(x2),

restricted to the variable x1 possesses at least M vanishing moments, due to the assumption that ψ1

possesses M + R vanishing moments. Lemma 3.10 then proves the decay of order min
(
1, |ξ1|M

)
for the

derivatives of ψ̂.

Remark 3.12. Several assumptions on the generators ψ1, ψ2 could be weakened, for instance the sep-
arability of the shearlet generators is not crucial for the arguments to go through. In particular, our
arguments nowhere require neither compact support nor bandlimitedness.

3.2.5 Shearlet Molecules of [21]

In [21] the results of [5] are established for shearlets instead of curvelets. A crucial tool in the proof is
the introduction of a certain type of shearlet molecules which are similar to curvelet molecules discussed
above, but tailored to the shearing operation rather than rotations.

Definition 3.13. Let Λσ be the shearlet index set as in (9). A family (mλ)λ∈Λσ is called a family of
shearlet molecules of regularity R if it can be written as

mλ(x) = 23sλ/4a(λ)
(
Dε

2sλS
ε
l,jx− k

)

such that for all |β| ≤ R and each N = 0, 1, 2, . . .

|∂βa(λ)(x)| ! 〈x〉−N

and for M = 0, 1, . . .

|â(λ)(ξ)| ! min
(
1, 2−sλ + |ξ1|+ 2−sλ/2|ξ2|

)M
.

By the results in [21], the shearlet molecules defined therein satisfy the inequality (10) with the
choice of parameters (R,N,N1, N2) = (∞,∞, R/2, R/2). Therefore, in view of Proposition 3.6, shearlet
molecules of regularity R as defined in [21] form systems of parabolic molecules of order (∞,∞, R/2, R/2).
Thus, we derive an analogous result to Lemma 3.3 for shearlet molecules:

Proposition 3.14. A system of shearlet molecules of regularity R constitutes a system of parabolic
molecules of order (∞,∞, R/2, R/2).

Let us finish this section on examples of parabolic molecules by making the following

Remark 3.15. By now we hope to have convinced the reader that there is a whole zoo of different
constructions in the literature which can all be put under one roof using the concept of parabolic molecules.
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4 Applications

In this section we discuss selected applications of the developed theory. A particular focus will be on
approximation properties of parabolic molecule systems (mλ)λ∈Λ, especially if they form a frame, e.g.,

‖f‖L2(R2) ∼
∑

λ∈Λ

|〈f,mλ〉|2,

see e.g., [9]. It is well known, that in this case one can robustly represent any function f ∈ L2(R2) as a
sum

f =
∑

λ∈Λ

〈f,mλ〉m̃λ,

where (m̃λ)λ∈Λ is a dual frame. Approximation properties of a frame system (mλ)λ∈Λ are usually studied
in terms of the sparsity of the coefficient sequence (〈f,mλ〉)λ∈Λ. Below, in Subsection 4.1 we show that
essentially any frame system which consists of parabolic molecules satisfies the same approximation prop-
erties as the curvelet frame constructed in [4]. This, in particular, implies almost optimal approximation
results for the class of cartoon images (see below for a definition) for all constructions mentioned in Sec-
tion 3, for instance compactly supported or bandlimited shearlets. The above-mentioned approximation
property may actually be regarded as the main raison d’ètre of curvelet-like systems and is therefore of
central importance.

In Subsection 4.2 we go further and show that practically any reasonable definition of a function space
norm based on a coefficient sequence (〈f,mλ〉)λ∈Λ is equivalent for any two frame systems consisting of
parabolic molecules. This shows for instance that finiteness of a function space norm defined via the
curvelet frame implies finiteness of the analogous norm defined via compactly supported shearlet frames,
whenever the generators possess sufficient smoothness and directional vanishing moments. This result
has not been known before.

Remark 4.1. It is in general not the case that the dual frame (m̃λ)λ∈Λ of a frame (mλ)λ∈Λ of parabolic
molecules needs to consist of parabolic molecules, too. However, it can be shown, based on the concept of
intrinsic localization, that the so-called canonical dual frame of (mλ)λ∈Λ is of a similar form in a certain
sense [19].

4.1 Sparse Image Approximation

Multivariate problems are typically governed by anisotropic features such as edges in images. A cus-
tomarily employed model for such data is the class E2(R2) of so-called cartoon images which is defined
by

E2(R2) = {f ∈ L2(R2) : f = f0 + f1 · χB},

where B ⊂ [0, 1]2 with ∂B a closed C2-curve and f0, f1 ∈ C2
0 ([0, 1]

2). Questions of efficient encoding
of such a model class can be formulated in terms of optimal approximation properties. Given a frame
system (mλ)λ ⊆ L2(R2), an appropriate measure for the approximation behavior is the decay rate of the
error of best N -term approximation, i.e., of ‖f −fN‖22, where fN denotes the best N -term approximation
by (mλ)λ of some f ∈ E2(R2), obtained as

fN = argmin‖f −
∑

λ∈ΛN

cλmλ‖22 s.t. #ΛN ≤ N.

A small technical problem occurs due to the fact that the representation system might not form an
orthonormal basis in which case the computation of the best N -term approximation is far from being
understood. To circumvent this problem, usually the error of approximation by the N largest coefficients
of (〈f,mλ〉)λ∈Λ is considered, which then certainly also provides a bound for the error of best N -term
approximation. Typically, the asymptotics of this error are studied in terms of the !p-norms of the
coefficient sequences of f for small values of p. Indeed, it is easily seen that membership of the coefficient
sequence of f in an !p space for small p implies good N -term approximation rates, whenever the given
representation system constitutes a frame, see, e.g., [27, 10].
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In [14] it was shown that the optimally achievable decay rate of the error of approximation of some
f ∈ E2(R2) under the natural assumption of polynomial depth search is

‖f − fN‖22 3 N−2, as N → ∞.

Furthermore, it was proven in [8] and in [20, 27] that both curvelets and shearlets attain this rate up to
a log-factor. Apparently, these (parabolic) systems behave similarly concerning sparse approximation of
anisotropic features.

The next definition provides a formalization of this concept by introducing the notion of sparsity
equivalence. It is based on the connection between best N -term approximation rate and !p norms.

Definition 4.2. Let (mλ)λ∈Λ and (pµ)µ∈M be systems of parabolic molecules of order (R,M,N1, N2)
and (R̃, M̃ , Ñ1, Ñ2), respectively, and let 0 < p ≤ 1. Then (mλ)λ∈Λ and (pµ)µ∈M are sparsity equivalent
in !p, if ∥∥∥(〈mλ, pµ〉)λ∈Λ,µ∈Λ0

∥∥∥
(p→(p

< ∞.

Intuitively, systems of parabolic molecules being in the same sparsity equivalence class should have
the same sparse approximation behavior with respect to cartoon images. The next result shows that this
is indeed the case.

Proposition 4.3. Let (mλ)λ∈Λ and (pµ)µ∈M be systems of parabolic molecules of order (R,M,N1, N2)
and (R̃, M̃ , Ñ1, Ñ2), respectively, which are sparsity equivalent in !2/3. If (mλ)λ∈Λ possesses an almost
best N -term approximation rate of order N−1+ε for cartoon images for any ε > 0, then so does (pµ)µ∈M .

Proof. This is a direct consequence of the definition of sparsity equivalence and standard arguments, see
for instance [10].

This result enables us to provide a very general class of systems of parabolic molecules which optimally
sparsely approximate cartoon images by using the known result for curvelets. For this, we first analyze
when a system is sparsity equivalent to the tight frame of bandlimited curvelets.

First, we state a simple result concerning operator norms on discrete !p spaces.

Lemma 4.4. Let I, J be two discrete index sets, and let A : !p(I) → !p(J), p > 0 be a linear mapping
defined by its matrix representation A = (Ai,j)i∈I, j∈J . Then we have the bound

‖A‖(p(I)→(p(J) ≤ max



sup
i

∑

j

|Ai,j |r, sup
j

∑

i

|Ai,j |r



1/r

,

where r := min(1, p).

Proof. The proof for p < 1 follows easily using the fact that

|a+ b|p ≤ |a|p + |b|p for a, b ∈ R.

To show the case p ≥ 1 one only shows the assertion for p = 1,∞, which is trivial. The claim then follows
by interpolation.

The next theorem proves the central fact that any system of parabolic molecules of sufficiently high
order is sparsity equivalent to the bandlimited curvelet frame from Subsection 3.1.1.

Theorem 4.5. Assume that 0 < p ≤ 1, (Λ,ΦΛ) is a k-admissible parametrization, and Γ0 = (γλ)λ∈Λ0 the
tight frame of bandlimited curvelets. Further, assume that (mλ)λ∈Λ is a system of molecules associated
with Λ of order (R,M,N1, N2) such that

R ≥ 2
k

p
, M > 4

k

p
− 5

4
, N1 ≥ 2

k

p
+

3

4
, N2 ≥ 2

k

p
.

Then (mλ)λ∈Λ is sparsity equivalent to Γ0.
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Proof. We need to show that

∥∥∥(〈mλ, γµ〉)λ∈Λ,µ∈Λ0

∥∥∥
(p→(p

= max



sup
µ∈Λ

∑

λ∈Λ0

|〈mλ, γµ〉|p, sup
λ∈Λ0

∑

µ∈Λ

|〈mλ, γµ〉|p



1/p

< ∞.

By Theorem 2.9, we have

|〈mλ, γµ〉| ! ω(λ, µ)−
k
p .

It follows that

max



sup
µ∈Λ

∑

λ∈Λ0

|〈mλ, γµ〉|p, sup
λ∈Λ0

∑

µ∈Λ0

|〈mλ, γµ〉|p




! max



sup
µ∈Λ

∑

λ∈Λ0

ω(λ, µ)−k, sup
λ∈Λ0

∑

µ∈Λ0

ω(λ, µ)−k



 < ∞,

due to the k-admissibility of the parametrization of Λ.

This result in combination with Proposition 4.3 now leads to the main result of this subsection.

Theorem 4.6. Assume that (mλ)λ∈Λ is a system of parabolic molecules of order (R,M,N1, N2) such
that

(i) (mλ)λ∈Λ constitutes a frame for L2(R2),

(ii) Λ is k-admissible for all k > 2,

(iii) it holds that

R ≥ 6, M > 12− 5

4
, N1 ≥ 6 +

3

4
, N2 ≥ 6.

Then the frame (mλ)λ∈Λ possesses an almost best N -term approximation rate of order N−1+ε, ε > 0
arbitrary for cartoon images.

Proof. This follows from Proposition 4.3, Theorem 4.5, and the fact, proven in [8], that Γ0 provides the
respective N -term approximation rate.

We remark that condition (ii) holds in particular for the shearlet parametrization. Hence this result
allows a simple derivation of the results in [20, 27] from [8]. In fact, Theorem 4.6 provides a systematic
way to, in particular, prove results on sparse approximation of cartoon images.

4.2 Function Spaces

Based on the concept of decomposition spaces introduced in [16], Borup and Nielsen have studied curvelet-
like function spaces in [3]. We would like to apply our results to show that these spaces can be char-
acterized by the transform coefficients in any frame which also forms a system of parabolic molecules.
Consider the curvelet frame

Γ0 :=
{
γj,l,k : (j, l, k) ∈ Λ0

}

introduced in Subsection 3.1.1. Following [3] we define for p, q,α > 1 the function spaces Gα
p,q given by

the norm

‖f‖Gα
p,q

:=




∑

j≥0,l



2αj
(
∑

k

|〈f, γj,l,k〉|p
)1/p




q


1/q

. (13)
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This definition might seem somewhat odd, since the summation with respect to the directional parameter
l is done with respect to the !q norm. For this reason and also for some minor technical reasons, we study
another, similar family of function spaces, namely the spaces Sα

p,q given by the norm

‖f‖Sα
p,q

:=




∑

j≥0



2αj




∑

k,l

|〈f, γj,l,k〉|p



1/p





q



1/q

. (14)

Remark 4.7. We would like to emphazise that all the results shown in this section also hold for the spaces
defined by (13), but with slightly more technical effort arising from the need to handle mixed Lebesgue
spaces [2]. We also remark that the function spaces defined via (14) can be interpreted as a decomposition
spaces of the form studied in [3] with a mixed Lebesgue space Y = !q!p (see [3] for more information).

For technical reasons the definition in (14) forces us to work with a slightly stronger notion of admis-
sibility than given in Definition 2.7:

Definition 4.8. An index set Λ with associated mapping ΦΛ is called strongly (k, l)-admissible if it is
k-admissible and if ∑

λ∈Λj

(1 + 2qd(µ,λ))−k ! 2l(j−q)+ ,

where
Λj := {λ ∈ Λ : sλ = j} .

Lemma 4.9. The canonical parametrization (Λ0,Φ0) and the shearlet parametrization (Λσ,Φσ) are both
strongly (k, 2)-admissible for any k > 2.

Proof. This has already been shown earlier in (5) for the canonical parametrization and in (11) for the
shearlet parametrization.

The aim of this section is to show the following theorem.

Theorem 4.10. Let Σ = {σλ : λ ∈ Λ} be a frame for L2(R2) with dual frame Σ̃ = {σ̃λ : λ ∈ Λ}.
Assume further that Σ, Σ̃ are both parabolic molecules of arbitrary order with a strongly (k, l) admissible
parametrization for some k, l. Then the following are equivalent norms on Sα

p.q:

‖f‖Sα
p,q

∼




∑

j≥0



2αj




∑

λ∈Λj

|〈f,σλ〉|p



1/p





q



1/q

∼




∑

j≥0



2αj




∑

λ∈Λj

|〈f, σ̃λ〉|p



1/p





q



1/q

.

Remark 4.11. Of course it would be possible to show a quantitative version of Theorem 4.10 in the
sense that Σ and Σ̃ are only required to form a system of parabolic molecules of finite, sufficiently large
order, depending on p, q,α.

Before we start with the proof of Theorem 4.10 we recall the following result which is a very useful
inequality, sometimes called the discrete Hardy inequality, see [11]. To state this result we define for a
sequence a = (ak)k∈N the (quasi) norm

‖a‖(αq :=

(
∑

k∈N

(
2kα|ak|

)q
)1/q

.

The discrete Hardy inequalities are as follows.

Lemma 4.12. Assume that with λ > α and r ≤ q we have that either

|bk| ! 2−λk




k∑

j=0

(
2λj |aj |

)r



1/r

, (15)
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or

|bk| !




∞∑

j=k

|aj |r



1/r

. (16)

Then we have
‖b‖(αq ! ‖a‖(αq .

Observe that defining ak :=
∥∥(〈f, γλ〉)λ∈Λk

∥∥
p
, we have ‖f‖Sα

p,q
= ‖a‖(αq . Armed with these useful

facts, we may now proceed with the proof of Theorem 4.10.

Proof of Theorem 4.10. We start by fixing some notation:

fΓ := (〈f, γµ〉)µ∈Λ0 , fΓj := (〈f, γµ〉)µ∈Λ0
j
, fΣ := (〈f,σλ〉)λ∈Λ , fΣj := (〈f,σλ〉)λ∈Λj

.

Further, we write Γj =
{
γµ : µ ∈ Λ0

j

}
and similar for the systems Σ, Σ̃. Define

A := 〈Γ,Σ〉, Ai,j := 〈Γi,Σj〉, Ã := 〈Σ̃,Γ〉, Ai,j := 〈Σ̃i,Γj〉.

We have
fΣ =

(
fΓ

)%
A, fΣi =

∑

j≥0

(
fΓj

)%
Ai,j , fΓ =

(
fΣ

)%
A, fΓi =

∑

j≥0

(
fΣj

)%
Ai,j .

Let us first assume that p ≥ 1. Then we would like to show that




∑

j≥0



2αj




∑

λ∈Λj

|〈f,σλ〉|p



1/p





q



1/q

< ∞,

whenever 


∑

j≥0



2αj




∑

µ∈Λ0
j

|〈f, γµ〉|p



1/p





q



1/q

< ∞.

For this, we obtain

bi :=
∥∥fΣi

∥∥
p
=

∥∥∥∥∥∥

∑

j≥0

(
fΓj

)%
Ai,j

∥∥∥∥∥∥
p

≤
∑

j≥0

∥∥∥
(
fΓj

)%
Ai,j

∥∥∥
p
= di + ei, (17)

where
di :=

∑

j>i

∥∥∥
(
fΓj

)%
Ai,j

∥∥∥
p

and ei :=
∑

j≤i

∥∥∥
(
fΓj

)%
Ai,j

∥∥∥
p
.

Next, we will prove that the inequalities (15), (16) are satisfied for the sequences di, ei, respectively. By
Lemma 4.12, this proves the desired claim.

We start by deriving the following estimate for di:

di ≤
∑

j>i

∥∥(fΓj
)
‖p‖Ai,j

∥∥
(p→(p

To further analyze ‖Ai,j‖(p→(p
, we employ Lemma 4.4 to obtain

‖Ai,j‖(p→(p
≤ max



 sup
µ∈Λ0

i

∑

λ∈Λj

|〈γµ,σλ〉|, sup
λ∈Λj

∑

µ∈Λ0
i

|〈γµ,σλ〉|



 (18)

Using the fact that Γ and Σ are parabolic molecules of arbitrary order, Theorem 2.9 implies that for N
arbitrary,

|〈γµ,σλ〉| ! ω(µ,λ)−N . (19)
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By (19) and the fact that the parametrization for Λ is strongly admissible, we can further estimate the
first term in (18) by

sup
µ∈Λ0

i

∑

λ∈Λj

ω(µ,λ)−N = 2−N |i−j| sup
µ∈Λ0

i

∑

λ∈Λj

(
1 + 2min(i,j)d(µ,λ)

)−N
! 2−(N−l)|i−j|.

The second term is treated similarly, and we wind up with

‖Ai,j‖(p→(p
! 2−N |i−j| (20)

for N arbitrarily large. In particular, this implies that

di !
∑

j>i

∥∥(fΓj
)∥∥

p
!




∑

j>i

∥∥(fΓj
)∥∥

p




1/r

with r := min(1, q), and this is (16). Similarly we can estimate

ei !
∑

j≤i

2−N(i−j)
∥∥(fΓj

)∥∥
p
= 2−Ni

∑

j≤i

2Nj
∥∥(fΓj

)∥∥
p
! 2−Ni




∑

j≤i

(
2Nj

∥∥(fΓj
)∥∥

p

)r




1/r

which is (15). Applying Lemma 4.12 yields




∑

j≥0



2αj




∑

λ∈Λj

|〈f,σλ〉|p



1/p





q



1/q

!




∑

j≥0



2αj




∑

µ∈Λ0
j

|〈f, γµ〉|p



1/p





q



1/q

which proves one half of the desired norm equivalence. The other half (and the case of Σ̃) can be shown
in exactly the same way. Therefore, for p ≥ 1, the claim of the theorem is proven.

Let us now turn to the case p < 1. For this, we need to replace the estimate (17) with

|bi| :=
∥∥fΣi

∥∥
p
=

∥∥∥∥∥∥

∑

j≥0

(
fΓj

)%
Ai,j

∥∥∥∥∥∥
p

!

∥∥∥∥∥∥

∑

j≤i

(
fΓj

)%
Ai,j

∥∥∥∥∥∥
p

+

∥∥∥∥∥∥

∑

j>i

(
fΓj

)%
Ai,j

∥∥∥∥∥∥
p

≤




∑

j≤i

∥∥fΓj
∥∥p
p
‖Ai,j‖p(p→(p




1/p

+




∑

j>i

∥∥fΓj
∥∥p
p
‖Ai,j‖p(p→(p




1/p

!




∑

j≤i

∥∥fΓj
∥∥r
p
‖Ai,j‖r(p→(p




1/r

+




∑

j>i

∥∥fΓj
∥∥r
p
‖Ai,j‖r(p→(p




1/r

=: di + ei,

where r := min(p, q). Now we can use (20) and proceed as above to show that the Hardy inequalities
are satisfied for di and ei. Then, the application of Lemma 4.12 finishes the proof.

As a corollary we can consider the shearlet frame Σ constructed in [18] and briefly described in
Subsection 3.2.2 and arrive at the following theorem.

Theorem 4.13. The curvelet frame Γ0 and the shearlet frame Σ constructed in [18] span the same
approximation spaces.
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We remark that the same conclusion holds for the frames described in Subsections 3.1.2 and 3.1.3.
Without proof we also mention that Theorem 4.10 and Theorem 4.13 also hold for the spaces Gα

p,q. The
proof is similar but slightly more technical.

We wish to stress that in fact this result for the first time proves the meta-theorem that curvelet- and
shearlet properties are equivalent.

Remark 4.14. A similar result to Theorem 4.13 has recently been shown in [28]. The proofs in this
paper only apply to bandlimited constructions which present considerably less technical difficulty.

5 Proof of Theorem 2.9

The present sections presents the proof of our main result, namely the almost orthogonality of any two
systems of parabolic molecules of sufficient order. Since the argument is quite involved we start by
collecting some useful lemmata below in Subsection 5.1 before we go on to the proof of the main result,
Theorem 2.9 in Subsection 5.2.

5.1 Some Estimates

Here we collect several estimates which will turn out useful in the proof of Theorem 2.9. The following
lemma can be found in [17, Appendix K.1].

Lemma 5.1. For N > 1 and a, a′ ∈ R+, we have the inequality

∫

R
(1 + a|x|)−N (1 + a′|x− y|)−N

dϕ ! max(a, a′)−1(1 + min(a, a′)|y|)−N .

As a corollary we can show the next result.

Lemma 5.2. Assume that |θ| ≤ π
2 and N > 1. Then we have for a, a′ > 0 the inequality

∫

T
(1 + a| sin(ϕ)|)−N (1 + a′| sin(ϕ+ θ)|)−N

dϕ ! max(a, a′)−1(1 + min(a, a′)|θ|)−N . (21)

Proof. For ϕ ∈ T, we have the estimate

| sin(ϕ)| ≥






|ϕ| ϕ ∈ I1 :=
[
−π

2 ,
π
2

]
,

|ϕ− π| ϕ ∈ I2 :=
[
π
2 ,π

]
,

|ϕ+ π| ϕ ∈ I3 :=
[
−π,−π

2

]
.

In order to use Lemma 5.1 we now split T into nine intervals depending on ϕ+ θ,ϕ ∈ I1, I2, I3. Then the
left-hand side of (21) can be estimated by nine terms of the form

∫

R
(1 + a|ϕ|)−N (1 + a′|ϕ+ ϑ+ θ|)−N

dϕ,

where ϑ ∈ {0,±π,±2π}. By Lemma 5.1 this expression can be bounded by a constant times

max(a, a′)−1(1 + min(a, a′)|θ + ϑ|)−N .

Now it remains to note that for ϑ ∈ {±π,±2π} and |θ| ≤ π
2 we have |θ + ϑ| ≥| θ|. This proves the

lemma.

Define the expression

Sλ,M,N1,N2(r,ϕ) := min
(
1, 2−sλ(1 + r)

)M (
1 + 2sλ/2| sin(ϕ+ θλ)|

)−N2 (
1 + 2−sλr

)−N1 .

The following lemma will be used in order to decouple the angular and the radial variables.
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Lemma 5.3. We have the estimate

min
(
1, 2−sλ(1 + r)

)M (
1 + 2−sλr

)−N1
(
1 + 2−sλ/2r| sin(ϕ+ θλ)|

)−N2

! Sλ,M−L,N1,L(r,ϕ)

for every 0 ≤ L ≤ N2.

Proof. After picking L we can estimate the quantity on the left hand side by

min
(
1, 2−sλ(1 + r)

)M−L (
1 + 2−sλr

)−N1

(
min (1, 2−sλ(1 + r))

1 + 2−sλ/2r| sin(ϕ+ θλ)|

)L

.

We need to show that

min (1, 2−sλ(1 + r))

1 + 2−sλ/2r| sin(ϕ+ θλ)|
!

(
1 + 2sλ/2| sin(ϕ+ θλ)|

)−1
. (22)

In order to prove (22), we distinguish three cases:

• r ≥ 2sλ : In this case we derive

min (1, 2−sλ(1 + r))

1 + 2−sλ/2r| sin(ϕ+ θλ)|
≤ 1

1 + 2−sλ/2r| sin(ϕ+ θλ)|
≤ 1

1 + 2−sλ/22sλ | sin(ϕ+ θλ)|

≤
(
1 + 2sλ/2| sin(ϕ+ θλ)|

)−1
.

• r ≤ 1: For r ≤ 1 we have

min (1, 2−sλ(1 + r))

1 + 2−sλ/2r| sin(ϕ+ θλ)|
! 2−sλ !

(
1 + 2sλ/2| sin(ϕ+ θλ)|

)−1
.

• 1 < r < 2sλ : In this case we have

min (1, 2−sλ(1 + r))

1 + 2−sλ/2r| sin(ϕ+ θλ)|
=

1 + r

r

1
2sλ
r + 2sλ/2| sin(ϕ+ θ)|

.

Since r > 1 we have that 1+r
r ≤ 2 and since r < 2sλ , we have that 2sλ

r ≥ 1. This proves the
statement.

Lemma 5.4. For A,B > 0 and

M > A− 5

4
, N2 ≥ B, N1 ≥ A+ 3/4,

we have the estimate

2−
3
4 (sλ+sµ)

∫

R+

∫

T
Sλ,M,N1,N2(r,ϕ)Sµ,M,N1,N2(r,ϕ)rdrdϕ ! 2−A|sλ−sµ|

(
1 + 2min(sλ,sµ)/2|θλ − θµ|

)−B
.

Proof. We assume that sµ ≥ sλ and start by showing the angular decay: By Lemma 5.2 and N2 ≥ B,
we have

2−
3
4 (sλ+sµ)

∫

R+

∫

T
Sλ,M,N1,N2(r,ϕ)Sµ,M,N1,N2(r,ϕ)rdrdϕ ! S · 2 3

4 (sµ−sλ)
(
1 + 2sλ/2|θλ − θµ|

)−B
,

where

S := 2−2sµ

∫

R+

min
(
1, 2−sλ(1 + r)

)M
min

(
1, 2−sµ(1 + r)

)M (
1 + 2−sλr

)−N1
(
1 + 2−sµr

)−N1 rdr. (23)
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The remaining estimate
S ! 2−(A+3/4)|sλ−sµ|

is established by splitting up this integral into the four cases r < 1, 1 ≤ r < 2sλ , 2sλ ≤ r < 2sµ and
r ≥ 2sµ .
Case 1: 0 ≤ r ≤ 1
Here we only use the moment property and estimate

(23) ! 2−2sµ

∫ 1

0
2−sλM2−sµMr2M+1dr

≤ 2−sµ(2+M)2−sλM

≤ 2−(A+3/4)(sµ−sλ).

Case 2: 1 ≤ r ≤ 2sλ

For this case, we estimate

(23) ! 2−2sµ

∫ 2sλ

1
2−sµMrM

(
2−sλr

)−N1 rdr

= 2−(M+2)sµ2N1sλ

∫ 2sλ

1
rM+1−N1dr

≤ 2−(M+2)sµ2N1sλ2(M+2−N1)sλ

= 2−(M+2)(sµ−sλ)

≤ 2−(A+3/4)(sµ−sλ).

Case 3: 2sλ ≤ r ≤ 2sµ

For this case, we estimate

(23) ! 2−2sµ

∫ 2sµ

2sλ

(
2−sµr

)M (
2−sλr

)−N1 rdr

= 2−(2+M)sµ2N1sλ

∫ 2sµ

2sλ
rM+1−N1dr

! 2−(2+M)sµ2N1sλ2(M+2−N1)sµ

= 2−N1(sµ−sλ)

≤ 2−(A+3/4)(sµ−sλ).

Case 4: 2sµ ≤ r
For this case, we estimate

(23) ! 2−2sµ

∫ ∞

2sµ

(
2−sλr

)−N1
(
2−sµr

)−N1 rdr

= 2−2sµ2N1sµ2N1sλ

∫ ∞

2sµ
r−2N1+1dr

= 2−2sµ2N1sµ2N1sλ2(−2N1+2)sµ

= 2−N1(sµ−sλ)

≤ 2−(A+3/4)(sµ−sλ).

The proof is completed.

5.2 Almost Orthogonality

We now have all ingredients to prove our main result, which is Theorem 2.9.
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Proof of Theorem 2.9. To keep the notation simple, we assume that θλ = 0 and define s0 := min(sλ, sµ).
Further, we set

δx := xλ − xµ, δθ := θλ − θµ.

By definition, we can write

mλ(·) = 2
3
4 sλa(λ) (D2sλRθλ(·− xλ)) , pµ(·) = 2

3
4 sµb(µ)

(
D2sµRθµ(·− xµ)

)
,

where both a(λ) and b(µ) satisfy (1). We have the equality

〈mλ, pµ〉 = 〈m̂λ, p̂µ〉 = 2−
3
4 (sλ+sµ)

∫

R2

â(λ) (D2−sλRθλξ) b̂
(µ)

(
D2−sµRθµξ

)
exp (−2πiξ · δx) dξ

= 2−
3
4 (sλ+sµ)

∫

R2

Lk
(
â(λ) (D2−sλRθλξ) b̂

(µ)
(
D2−sµRθµξ

))
L−k (exp (−2πiξ · δx)) dξ,(24)

where L is the symmetric differential operator (acting on the frequency variable) defined by

L := I − 2s0∆ξ −
22s0

1 + 2s0 |δθ|2
∂2

∂ξ21
.

We have

L−k (exp (−2πiξ · δx)) =
(
1 + 2s0 |δx|2 + 22s0

1 + 2s0 |δθ| 〈eλ, δx〉
2

)−k

exp (−2πiξ · δx) , (25)

where eλ denotes the unit vector pointing in the direction described by the angle θλ. By Lemma 5.5 and
for k ≤ R

2 , we have the inequality

Lk
(
â(λ) (D2−sλRθλξ) b̂

(µ)
(
D2−sµRθµξ

))
! Sλ,M−N2,N1,N2(ξ)Sµ,M−N2,N1,N2(ξ).

Then, by (24) and (25) it follows that

|〈mλ, pµ〉| ! 2−
3
4 (sλ+sµ)

∫

R2

Sλ,M−N2,N1,N2(ξ)Sµ,M−N2,N1,N2(ξ)dξ

(
1 + 2s0 |δx|2 + 22s0

1 + 2s0 |δθ| 〈eλ, δx〉
2

)−k

for all k ≤ R
2 . Now we can use Lemma 5.4 and the fact that R ≥ 2N to establish that

|〈mλ, pµ〉| ! 2−2N |sλ−sµ|
(
1 + 2s0 |δθ|2

)−N
(
1 + 2s0 |δx|2 + 22s0

1 + 2s0 |δθ| 〈eλ, δx〉
2

)−N

≤ 2−2N |sλ−sµ|
(
1 + 2s0 |δθ|2 + 2s0 |δx|2 + 22s0

1 + 2s0 |δθ| 〈eλ, δx〉
2

)−N

! 2−2N |sλ−sµ|
(
1 + 2s0

(
|δθ|2 + |δx|2 + |〈eλ, δx〉|

))−N
= ω(λ, µ)−N .

The last inequality follows from the equation in the last line of the proof of [5, Lemma 2.3]. This proves
the desired statement.

Lemma 5.5. Assume that (6) holds for two systems of parabolic molecules of order (R,M,N1, N2).
Utilizing the notion of the proof of Theorem 2.9, we have

Lk
(
â(λ) (D2−sλRθλξ) b̂

(µ)
(
D2−sµRθµξ

))
! Sλ,M−N2,N1,N2(ξ)Sµ,M−N2,N1,N2(ξ)

for all k ≤ R/2.

Proof. We show that
∣∣∣Lk

(
â(λ) (D2−sλRθλξ) b̂

(µ)
(
D2−sµRθµξ

))∣∣∣ !

min
(
1, 2−sλ(1 + r)

)M (
1 + 2−sλr

)−N1
(
1 + 2−sλ/2r| sin(ϕ+ θλ)|

)−N2

·min
(
1, 2−sµ(1 + r)

)M (
1 + 2−sµr

)−N1
(
1 + 2−sµ/2r| sin(ϕ+ θµ)|

)−N2

(26)
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which, using Lemma 5.3 with L = N2, implies the desired statement. To show (26) we use induction
in k, namely we show that if we have two functions a(λ), b(µ) satisfying (1) for R,M,N1, N2, then the
expression

L
(
â(λ) (D2−sλRθλξ) b̂

(µ)
(
D2−sµRθµξ

))

can be written as a finite linear combination of terms of the form

ĉ(λ) (D2−sλRθλξ) d̂
(µ)

(
D2−sµRθµξ

)

with c, d satisfying (1) and R replaced by R−2, see Lemma 5.6. Iterating this argument we can establish
that for k ≤ R/2

Lk
(
â(λ) (D2−sλRθλξ) b̂

(µ)
(
D2−sµRθµξ

))
(27)

can be expressed as a finite linear combination of terms of the form

ĉ(λ) (D2−sλRθλξ) d̂
(µ)

(
D2−sµRθµξ

)
(28)

with ∣∣∣ĉ(λ)(ξ)
∣∣∣ ! min

(
1, 2−sλ + |ξ1|+ 2−sλ/2|ξ2|

)M
〈|ξ|〉−N1 〈ξ2〉−N2 , (29)

and an analogous estimate for d(µ). Combining (28) and (29), we obtain that

|(27)| !

min
(
1, 2−sλ +

∣∣(D2−sλRθλξ)1
∣∣+ 2−sλ/2

∣∣(D2−sλRθλξ)2
∣∣
)M

〈|D2−sλRθλξ|〉
−N1 〈

∣∣(D2−sλRθλξ)2
∣∣〉−N2

·min
(
1, 2−sµ +

∣∣(D2−sµRθµξ
)
1

∣∣+ 2−sµ/2
∣∣(D2−sµRθµξ

)
2

∣∣
)M 〈∣∣D2−sµRθµξ

∣∣〉−N1 〈
∣∣(D2−sµRθµξ

)
2

∣∣〉−N2 .

Transforming this inequality into polar coordinates as in (2) yields (26). This finishes the proof.

Lemma 5.6. Given two functions a(λ), b(µ) satisfying (1) for R,M,N1, N2. Then the expression

L
(
â(λ) (D2−sλRθλξ) b̂

(µ)
(
D2−sµRθµξ

))

can be written as a finite linear combination of terms of the form

ĉ(λ) (D2−sλRθλξ) d̂
(µ)

(
D2−sµRθµξ

)

with c, d satisfying (1) for R− 2,M,N1, N2.

Proof. Recall the definition

L := I − 2s0∆ξ −
22s0

1 + 2s0 |δθ|2
∂2

∂ξ21

To show this statement we treat the three summands of the operator L separately. The first part is the
identity, and therefore the statement is trivial. To handle the second part, the frequency Laplacian 2s0∆,
we use the product rule

∆(fg) = 2
(
∂(1,0)f∂(1,0)g + ∂(0,1)f∂(0,1)g

)
+ (∆f)g + f(∆g).

Therefore we need to estimate the derivatives of degree 1 and the Laplacians of the two factors in the
product

â(λ) (D2−sλRθλξ) b̂
(µ)

(
D2−sµRθµξ

)
=: A(ξ)B(ξ).

We start with the first factor,

A(ξ) = â(λ)
(
2−sλ cos(θλ)ξ1 − 2−sλ sin(θλ)ξ2, 2

−sλ/2 sin(θλ)ξ1 + 2−sλ/2 cos(θλ)ξ2
)
.
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Define
A1(ξ) := ∂(1,0)â(λ) (D2−sλRθλξ) and A2(ξ) := ∂(0,1)â(λ) (D2−sλRθλξ) .

By definition, the functions A1, A2 satisfy (1) with R replaced by R − 1. An application of the chain
rule shows that

∂(1,0)A(ξ) = 2−sλ cos(θλ)A1(ξ) + 2−sλ/2 sin(θλ)A2(ξ).

Analogously, one can compute

∂(0,1)A(ξ) = −2−sλ sin(θλ)A1(ξ) + 2−sλ/2 cos(θλ)A2(ξ),

and the exact same expressions for B using the obvious definitions for B1, B2. We get

∂(1,0)A∂(1,0)B = 2−sλ−sµ cos(θλ) cos(θµ)A1B1 + 2−sλ/2−sµ sin(θλ) cos(θµ)A2B1

+ 2−sµ/2−sλ sin(θµ) cos(θλ)A1B2 + 2−sλ/2−sµ/2 sin(θλ) sin(θµ)A2B2.

It follows that 2s0∂(1,0)A∂(1,0)B can be written as a linear combination as claimed (recall that s0 =
min(sλ, sµ)). The same argument applies to the product 2s0∂(0,1)A∂(0,1)B.

It remains to consider the factor
(∆A)B +A(∆B),

where, for symmetry reasons, we only treat the summand

(∆A)B.

In fact, it suffices to only consider

(∂(2,0)A)B =
(
2−2sλ cos(θλ)

2A11 + 2−3sλ/2+1 sin(θλ) cos(θλ)A12 − 2−sλ sin(θλ)
2A22

)
B

with Aij defined in an obvious way, satisfying (1) with R replaced by R − 2. The term (∂(2,0)A)B, and
hence (∆A)B, can be handled in the same way, as can A(∆B). This takes care of the term 2s0∆ in the
definition of L.

Finally we need to handle the last term in the definition of L, namely

22s0

1 + 2s0 |θµ|2
∂2

∂ξ21

for θλ = 0 (otherwise the second order derivative would be in the direction of the unit vector with angle
θλ with obvious modifications in the proof). With our notation and using the product rule we need to
consider terms of the form

(
∂(2,0)A

)
B,

(
∂(1,0)A

)(
∂(1,0)B

)
, A

(
∂(2,0)B

)
,

and show that each of them, multiplied by the factor 22s0
1+2s0 |θµ|2 , satisfies the desired representation. Let

us start with (
∂(2,0)A

)
B,

which, using the fact that sin(θλ) = 0, can be written as

2−2sλA11B,

and which clearly satisfies the desired assertion. Now consider the expression
(
∂(1,0)A

)(
∂(1,0)B

)

which can be written as

2−sλ2−sµ cos(θµ)A1B1 + 2−sλ2−sµ/2 sin(θµ)A1B2.

25



The first summand in this expression clearly causes no problems. To handle the second term we need to
show that

22s0

1 + 2s0 |θµ|2
2−sλ2−sµ/2 sin(θµ) ! 1. (30)

Here we have to distinguish two cases. First, assume that |θµ| ≤ 2−s0/2. Then we can estimate

sin(θµ) ! 2−s0/2,

which readily yields the desired bound for (30). For the case |θµ| ≥ 2−s0/2 we estimate

22s0

1 + 2s0 |θµ|2
2−sλ2−sµ/2 sin(θµ) !

22s0

1 + 2s0/2|θµ|
2−s02−s0/2|θµ| ≤

22s0

2s0/2|θµ|
2−s02−s0/2|θµ| = 1

which shows (30) also for this case.
We are left with estimating the term

A
(
∂(2,0)B

)

which can be written as

2−2sµ cos(θµ)
2AB11 + 2−3sµ/2+1 sin(θµ) cos(θµ)AB12 + 2−sµ sin(θµ)

2AB22.

The first two terms are of a form already treated, and the last term can be handled using the fact that
sin(θµ)2 ≤ θ2µ.
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