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Eidgenössische Technische Hochschule

CH-8092 Zürich
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A NOTE ON FRONT TRACKING FOR THE

KEYFITZ-KRANZER SYSTEM

N. H. RISEBRO AND F. WEBER

Abstract. A front tracking method is developed for the n × n symmetric
Keyfitz-Kranzer system and convergence of the approximations to the strong
generalized entropy solution of the system as defined by Panov [13] is proved.
We also present numerical examples and compare the front tracking approxi-
mation with the finite difference upwind schemes constructed in [9].

1. Introduction

We consider the Cauchy problem for the n× n symmetric Keyfitz-Kranzer type
system,

ut + (uφ(|u|))x = 0, (x, t) ∈ R× (0, T ),(1a)

u(x, 0) = u0(x), x ∈ R,(1b)

where T > 0 is given, u = (u(1), . . . , u(n)) : R× (0, T ) → Rn the unknown and with

|u| :=
√
u(1)2 + · · ·+ u(n)2 , u0 = (u(1)

0 , . . . , u(n)
0 ) ∈ L∞(R,Rn), the initial data, and

φ(r) ∈ C1(R+) a scalar function with

rφ(r)
r→0+−−−−→ 0.(2)

System (1) was first considered in [8, 11] as a prototype of a nonstrictly hyperbolic
system of conservation laws. In physics, it serves as a model for the elastic string
[8], but it also appears in magnetohydrodynamics, where it is for example used to
explain certain features of the solar wind [2]. Related systems of equations appear
in chromatography [1] or in polymer flooding in porous media [14].

We denote the flux function F (u) := uφ(|u|). Its Jacobian matrixA(u) := DF (u)
is

A(u) = φ(|u|)1+
φ′(|u|)
|u| u⊗ u

where 1 denotes the n×n identity matrix. The matrix A(u) is symmetric, therefore
its eigenvalues are real and the corresponding collection of eigenvectors is complete,
and system (1) is hyperbolic. The eigenvalues of A(u) are λ1(u) = φ(|u|)+φ′(|u|)|u|
with multiplicity 1 and λ2(u) = φ(|u|) with multiplicity n− 1. Due to the presence
of eigenvalues with multiplicity > 1, system (1) is not strictly hyperbolic in the
sense of Lax [10]. The eigenspaces Ei(u), i = 1, 2, corresponding to the eigenvalues
λi(u), are

E1(u) = span{u}, E2(u) = E1(u)
⊥,

and thus we have for vi ∈ Ei with |vi| = 1, denoting r := u/|u|,

∇λ1(u) · v1 = 2φ′(r) + φ′′(r)r, ∇λ2(u) · v2 = 0.(3)

Date: April 12, 2012.
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2 N. H. RISEBRO AND F. WEBER

So the first characteristic field is either genuinely nonlinear or linearly degenerate
(if 2φ′(|u|) + φ′′(|u|)|u| = 0) and the second characteristic field is always linearly
degenerate.

Due to the nonlinearity of equation (1a), discontinuities can appear in its solu-
tion, no matter how smooth the initial data is. Therefore one seeks a weak solution
to the equation, that is, one requires the differential equation to be satisfied only
in the distributional sense,
∫ T

0

∫

R
uψt + uφ(|u|)ψx dx dt+

∫

R
u0(x)ψ(x, 0) dx = 0, ∀ψ ∈ C1,1

0 (R× [0, T )).

It is well known that weak solutions are not necessarily unique and therefore addi-
tional admissibility criteria have to be imposed to select the relevant solution. In the
context of conservation laws, this is usually done by restricting to solutions satisfy-
ing in addition an entropy condition, which are therefore called entropy solutions.
For system (1), the notion of an entropy solution was introduced by Freistühler
[3, 4] and by Panov [13]. It is defined as follows:

Definition 1.1. [13] Let φ ∈ C(R+) satisfy (2). A bounded measurable vector-
valued function is called a strong generalized entropy solution if the function r(x, t) =
|u(x, t)| is the entropy solution of

rt + (φ(r)r)x = 0, (x, t) ∈ R,(4a)

r(x, 0) = r0(x) = |u0(x)|, x ∈ R,(4b)

that is, (4) is satisfied in the weak sense and in addition it holds for all en-
tropy/entropy flux pairs (p, q), where p(r) is convex and q(r) defined by q′(r) =
(φ(r)r)′p′(r),

p(r)t + q(r)x ≤ 0, in D′(R× (0, T )),

and u satisfies

(5)

∫ T

0

∫

R
uψt + uφ(r)ψx dx dt+

∫

R
u0(x)ψ(x, 0) dx = 0,

∀ψ ∈ C1,1
0 (R× [0, T )).

In [13], Panov proved existence and uniqueness of the entropy solution of (1):

Theorem 1.1. There exists a unique strong generalized entropy solution u ∈
L∞(R × (0, T )) of (1) as in Definition 1.1. It can be obtained as the limit of
solutions uε in L1

loc(R× (0, T )) of the parabolic equation

uε
t + (φ(|uε|)uε)x = εuε

xx

as ε → 0.

To prove that there is a unique u satisfying (5), in [12], the author defined
v := u/r. Then v satisfies

(Av)t + (Bv)t = 0, in D′(R× (0, T )),(6a)

v(x, 0) = v0(x) =
u0(x)

r0(x)
, x ∈ R,(6b)

A = A(x, t) = r(x, t), (x, t) ∈ R× (0, T ),(6c)

B = B(x, t) = φ(r(x, t))r(x, t), (x, t) ∈ R× (0, T ).(6d)

For this type of equation, we have the following result:
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Theorem 1.2. [12] Let v be a solution of

(Av)t + (Bv)t = 0, in D′(R× (0, T )),(7a)

v(x, 0) = v0(x), x ∈ R,(7b)

where A,B ∈ L∞(R× (0, T )) satisfy

ess limt→0+ A(x, t) = A(x, 0) in L1
loc(R), A(x, 0) ∈ L∞(R);(8a)

|B| ≤ N(ε)(A+ ε) a.e. in R× (0, T ) for all ε > 0, εN(ε)
ε→0+−−−−→ 0;(8b)

At +Bx = 0 in D′(R× (0, T )).(8c)

Then we have

(i) The problem (7) has a weak solution v(x, t);
(ii) ess limt→0+ A(x, t)v(x, t) = A(x, 0)v0(x) in L1

loc(R);
(iii) If A(x, 0)v0(x) = 0 a.e. on R, then A(x, t)v(x, t) = 0 a.e. on R × (0, T )

(uniqueness).

Note that the coefficients A and B in (6) satisfy the conditions (8) in Theorem
1.2 if r is the entropy solution of (4).

Existence and uniqueness of the solution to (1) and in addition L1
loc-continuous

dependence of the solution on the initial data u0 have also been shown by Freistühler
[4] using Wagner’s transformation theory [15]. Numerical studies of system (1)
for the particular case where φ(r) = r2 have been conducted in [5, 6] and finite
difference schemes which can be applied for a large class of functions φ have been
developed in [9].

1.1. Solution of the Riemann problem. The Riemann problem for system (1),

u0(x) =

{
uL, x < 0,

uR, x > 0,
(9)

for n = 2 has been solved in [8]. The structure of the solution for a general n
is similar, due to the multiplicity of the second eigenvalue. Since the eigenvector
corresponding to the first eigenvalue λ1(u) is parallel to the solution u, v := u/|u|
does not change along the corresponding composite wave. The second characteristic
field is a contact discontinuity, owing to (3), and the elements of the eigenspace
corresponding to the second eigenvalue λ2(u) are orthogonal to u. Therefore r := |u|
does not change across the contact discontinuity. So the solution of a Riemann
problem with left state uL and right state uR consists of left, right and middle states
separated by shocks, rarefaction waves or contact discontinuities along which only
r changes and by contact discontinuities along which only v changes. In particular
we have that v does not change across the waves corresponding to λ1(u).

If there is a shock in the first characteristic field, it travels with speed

s(u1, u2) =
φ(r1)r1 − φ(r2)r2

r1 − r2
, r1 := |u1|, r2 := |u2|(10)

for left and right states u1 and u2. Again, we see that the shock speed is independent
of v1 := u1/r1 and v2 := u2/r2. On the other hand, the contact discontinuities of
the second field travel at speed s = φ(r1) = φ(r2) (again denoting the left and right
states by u1 and u2) since the absolute value of u does not change across them.
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Example 1.1. The solution of the Riemann problem (1a), (9) with rL := |uL| >
rR := |uR| and φ(r) = r2 is given by

u(x, t) =






uL, x < r2Lt,
rL
rR

uR, r2Lt < x < s(uL, uR)t,

uR, x > s(uL, uR)t,

if r2L < s(uL, uR), where s(uL, uR) is the shock speed given by (10), and

u(x, t) =






uL, x < s(uL, uR)t,
rR
rL

uL, s(uL, uR)t < x < r2Rt,

uR, x > r2Rt,

if r2L > s(uL, uR).

We show now that there is at most one contact discontinuity of the second,
linearly degenerate wave present in the solution u of the Riemann problem (1a),
(9). This means that the function v := u/|u| takes only the two states vL = uL/|uL|
and vR = uR/|uR| which are separated by one discontinuity (and it is a constant
function if vL = vR).

Lemma 1.3. Let u(x, t) solve the Riemann problem (1a), (9), and define v(x, t) :=
u(x, t)/|u(x, t)| and vL := uL/|uL| and vR := uR/|uR|. Then v takes the form

v(x, t) =

{
vL, x < φ(r∗)t,

vR, x > φ(r∗)t,
(11)

for some r∗ ∈ [min{|uL|, |uR|},max{|uL|, |uR|}] for all times t ≥ 0.

Proof. We assume without loss of generality that vL += vR. From Theorem 1.1 we
know that there is exactly one u satisfying (5) given that r := |u| is the entropy
solution of (4). We can therefore construct the solution of the Riemann problem
(1a), (9), by first solving the Riemann problem for r,

r0(x) =

{
rL := |uL|, x < 0,

rR := |uR|, x > 0,
(12)

with (4) and then use this to find the locations where v changes and obtain u = r ·v.
To solve this Riemann problem, we use the lower (or upper) convex envelope f"(r)
(f#(r)) of f(r) := φ(r)r between rL and rR if rL > rR (or if rR > rL) (see 2.2 in
[7]). We denote g := f ′

" if rL < rR and g := f ′
# if rL > rR. Then the solution of

the Riemann problem for r is given by

r(x, t) =






r1, x ≤ g(r1)t,

g−1(x/t), g(r1)t < x ≤ g(rm)t,

rm, x > g(rm)t.

If f is not convex between rL and rR, its convex envelopes contain linear segments
and the function g contains constant segments. So its inverse g−1 consists of con-
tinuous segments along which r is increasing and which correspond to rarefaction
waves, jump discontinuities which correspond to shock waves or contact disconti-
nuities in the r-waves, and segments along which r is constant, these correspond to
the values of r between rarefactions and shocks. We denote the locations in which
g is not differentiable or discontinuous by ri, rL = r1 < · · · < ri < · · · < rm = rR
if rL < rR and similar rR = r1 < · · · < ri < · · · < rm = rL, if rL > rR. If g is not
continuous at ri, we define

g(r+i ) = lim
r ↓ ri

g(r) and g(r−i ) = lim
r ↑ ri

g(r).
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The states ri, i = 1, . . . ,m in the solution r are separated by shocks, rarefaction
waves or contact discontinuities. If g(r+i ) = g(r−i+1), ri and ri+1 are separated
by a shock wave or a contact discontinuity in the r-wave and g(r+i ) = g(r−i+1) =
(f(ri+1)−f(ri))/(ri+1−ri), otherwise there is a rarefaction wave between them and
g(r) = φ(r) + φ′(r)r in r ∈ [min{ri, ri+1},max{ri, ri+1}], so the convex envelope
agrees with the function f . Note also that g is nondecreasing along w(z) := r(x, t),
z := x/t ∈ [g(r+1 ), g(r

−
m)] by construction of the convex envelopes.

As observed before, contact discontinuities in the second wave (along which only
v changes) travel at speed φ(r∗), so they are either in places where g(r−i ) ≤ φ(r∗) ≤
g(r+i ), r

∗ = ri or where g(r
+
i ) ≤ φ(r∗) ≤ g(r−i+1), r

∗ ∈ [min{ri, ri+1},max{ri, ri+1}].
We must show that there is at most one interval [min{ri, ri+1},max{ri, ri+1}],
i ∈ {0, . . . ,m} (where we set r0 = −∞ and rm+1 = ∞) such that g(r−i ) ≤ φ(r∗) ≤
g(r+i ) or g(r

+
i ) ≤ φ(r∗) ≤ g(r−i+1).

We assume by contradiction that there are at least two contact discontinuities
σ1 and σ2 present in the second wave traveling with speeds φ(r∗) and φ(r∗∗). Thus
there exists ri1 and ri2 such that

φ(r∗) < g(r−i1) ≤ g(r+i2) < φ(r∗∗),(13)

so the wave of the second family is slower than the wave of the first family at
x = g((r−i1))t and faster than the first one at x = g(r+i2)t. This means that there

exists i1 ≤ j < j + 1 ≤ i2 such that φ(rj) < g(r−j ) and φ(rj+1) > g(r+j+1). If

g(r−j ) = g(r+j+1), the states rj and rj+1 are separated by a shock wave or a contact

discontinuity in the r-wave and g(r−j ) = g(r+j+1) = (f(rj+1) − f(rj))/(rj+1 − rj),
so

φ(rj) <
φ(rj+1)rj+1 − φ(rj)rj

rj+1 − rj
< φ(rj+1),

which implies

φ(rj) < φ(rj+1) and φ(rj) > φ(rj+1).

This is a contradiction. If on the other hand g(r−j ) < g(r+j+1), the states rj
and rj+1 are separated by a rarefaction wave and g(r) = φ(r) + φ′(r)r for r ∈
[min{rj , rj+1},max{rj , rj+1}], so

φ(rj) < φ(rj) + φ′(rj)rj < φ(rj+1) + φ′(rj+1)rj+1 < φ(rj+1),(14)

and g(r) = φ(r) + φ′(r)r is strictly increasing in r ∈ [rj , rj+1] if rj < rj+1 and
striclty decreasing in [rj+1, rj ] if rj > rj+1. Equation (14) implies that φ′(rj) > 0
and φ′(rj+1) < 0. However, g is strictly increasing in [rj , rj+1] (if rj < rj+1), this
means that

g′(r) = 2φ′(r) + φ′′(r)r > ε, r ∈ [rj , rj+1]

for some ε > 0, and thus

rg′(r) = 2rφ′(r) + φ′′(r)r2 > εr, r ∈ [rj , rj+1].

We notice that rg′(r) = (r2φ′(r))′, and thus

r2φ′(r)− r2jφ
′(rj) >

ε

2
(r2 − r2j ), r ∈ [rj , rj+1],

which implies

φ′(r) >
ε
2 (r

2 − r2j ) + r2jφ
′(rj)

r2
> 0, r ∈ [rj , rj+1],

contradicting (14). In a similar way we find for rj+1 < rj ,

r2φ′(r)− r2j+1φ
′(rj+1) < − ε

2
(r2 − r2j+1), r ∈ [rj+1, rj ],
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for some ε > 0, implying φ′(r) < 0 in r ∈ [rj+1, rj ] and therefore also contradicting
(14). Consequently, we have at most one contact discontinuity of the second wave
in the solution of the Riemann problem and v has the form (11).

Remark 1.1. One of the strict inequalities in (13) could in fact be an equality.
But if this is the case, we could go through the steps above to arrive at the same
conclusion.

!

2. Front tracking

The aim is to approximate the strong generalized entropy solution to (1) by a
front tracking method for the system

rt + (φ(r)r)x = 0, (x, t) ∈ R× (0, T ),(15a)

ut + (uφ(r))x = 0, (x, t) ∈ R× (0, T ),(15b)

u(0, x) = u0(x), x ∈ R,(15c)

r(0, x) = r0(x) = |u0(x)|, x ∈ R,(15d)

with r0 ∈ L∞(R) ∩ BV (R) and u0 ∈ L∞(R). The idea is to first approximate the
entropy solution r to the scalar equation (15a) via front tracking and then use this
to find an approximation of the solution u to (15b) which satisfies |u| = r.

We start by describing the front tracking algorithm for the scalar conservation
laws (15a). We denote M := ‖r0‖L∞(R) and δ > 0 a small number. We let ri = δi,
−M ≤ iδ ≤ M , and discretize the spatial domain by a grid {xj = jδ, j ∈ Z}.
Then, r0 is approximated by a piecewise constant function rδ0 taking in each cell
[jδ, (j + 1)δ) one of the values in Uδ := {ri | i ∈ Z, ri ≤ M}, and the flux function
φ(r)r := f(r) is approximated by a piecewise linear interpolation fδ,

fδ(r) = f(rj) +
f(rj+1)− f(rj)

rj+1 − rj
(r − rj),

r ∈ [rj , rj+1), j ∈ Z, |j| ≤ Mδ−1.(16)

Then we solve the initial value problem

rt + fδ(r)x = 0, (x, t) ∈ R× (0, T ),(17a)

r(x, 0) = rδ0(x), x ∈ R,(17b)

exactly and denote the solution by rδ. This means that in each step, we solve
the Riemann problems between the states of the piecewise constant function, then
track the discontinuities, which we will call r-fronts, until they interact, solve the
emerging Riemann problem and so on. Note that the solution of each Riemann
problem is again a piecewise constant function taking values in Uδ because fδ is
piecewise linear with breakpoints ri ∈ Uδ. It can be shown that the number of
interactions between fronts is finite in t ∈ (0,∞), so the process terminates (see
e.g. Lemma 2.6 in [7]). Moreover, the solution rδ of (17) satisfies the Kružkov
entropy condition and we have, see [7]

Theorem 2.1. (i) The solutions rδ to the differential equation (17) are uni-
formly bounded in δ for all t ∈ (0, T ):

‖rδ(·, t)‖L∞(R) ≤ ‖r0‖L∞(R), t ∈ (0, T ),

(ii) The total variation of rδ is bounded by the total variation of the initial data
for all times t ∈ (0, T ),

TV(rδ(·, t)) ≤ TV(r0), t ∈ (0, T ),
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(iii) As the discretization parameter δ goes to zero, the sequence (rδ)δ>0 converges
in C((0, T );L1

loc(R)) to a function r which is the unique entropy solution of
(15a), (15d), that is

p(r)t + q(r)x ≤ 0 in D′(R× (0, T )),

for all entropy pairs (p(r), q(r)), where p is convex and q defined by q′(r) =
(φ(r)r)′p′(r).

This follows from the convergence results for the front tracking method applied
to scalar conservation laws, see [7].

Next, we approximate u0 by a piecewise constant function uδ
0 such that |uδ

0| = rδ0
and solve the system

ut + (uφ(rδ))x = 0, (x, t) ∈ R× (0, T ),(18a)

u(x, 0) = uδ(x), x ∈ R.(18b)

Since rδ is piecewise constant and we assume φ to be continuous, the first equation
(18a) reduces to the transport equation

ut + φ(rδ)ux = 0

away from the discontinuities of rδ. Hence in these regions the values of uδ
0 are

transported along the lines x = φ(rδ)t + x0 in the (x, t)-plane until they hit a
discontinuity in rδ. Across the r-fronts, φ(r) changes and therefore also the speed
at which the values of uδ are transported. However, as we have seen in Section 1.1,
the quantity v = u/|u| does not change across an r-shock, only the length of the
vector u changes to the value of r = |u| on the other side of the shock, so the same
should hold for the approximation vδ := uδ/|uδ|.

We consider the interaction of a u-front corresponding to a contact discontinuity
traveling at speed φ(rδ) with an r-front. We denote the left and right state of the
resulting Riemann problem by uL and uR respectively and we assume that before
the interaction rL = |uL| and rR = |uR| holds. The r-front has therefore speed
sr = (φ(rL)rL−φ(rR))/(rL− rR) and the contact discontinuity is propagated with
speed svR = φ(rR) on the right side of the r-front and with speed svL = φ(rL) on
the left side of the r-front. Notice that either

svR ≥ sr ≥ svL or svL ≥ sr ≥ svR ,

which means that contact discontinuities enter the shock only from the one side
and leave it on the other side. This implies in particular that the generalized Lax
entropy condition described in [8] is satisfied at the shock. Furthermore, we never
have to resolve the interaction of two contact discontinuities of the second wave,
as such interactions cannot occur. Let us assume without loss of generality that
svR > sr (the other case is treated similarly). Then the solution of the Riemann
problem is, denoting the location of the interaction by (x0, t0)

uδ(x, t) =






uL, x− x0 < svL(t− t0)
rL
rR

uR, svL(t− t0) ≤ x− x0 < sr(t− t0)

uR, sr(t− t0) < x− x0.

(19)
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It follows that the Rankine-Hugoniot condtion is satisfied across the shock and that
|uδ| = rδ, so (rδ, uδ) constructed in this way is a solution of

rδt + fδ(rδ)x = 0, (x, t) ∈ R× (0, T ),

uδ
t + (uδφ(rδ))x = 0, (x, t) ∈ R× (0, T ),

uδ(x, 0) = uδ
0(x), x ∈ R,

rδ(x, 0) = rδ0(x) = |uδ
0(x)|, x ∈ R,

satisfying |uδ(x, t)| = rδ(x, t) almost everywhere. Moreover, since rδ satisfies the
Kružkov entropy condition, uδ is the unique strong generalized entropy solution of

uδ
t + (φδ(|uδ|)uδ)x = 0, (x, t) ∈ R× (0, T ),

uδ(x, 0) = uδ
0(x), x ∈ R,

where φδ(r) = fδ(r)/r with fδ defined by (16), in the sense of Definition 1.1.

2.1. Convergence.

Proposition 2.2. If u0 ∈ L∞(R) and r0 ∈ L∞(R) ∩ BV (R), the approximations
(rδ, uδ) computed by the method described in Section 2 converge in L∞-weak-* to
the unique strong generalized entropy solution u ∈ L∞(R × (0, T )) of system (1)
as defined in Definition 1.1, when the discretization parameter δ goes to zero. If
additionally v0 := u0/r0 ∈ BV (R), the convergence is in C((0, T );L1

loc(R)) and the
solution u(·, t) ∈ BV (R) .

Proof. From Theorem 2.1, we obtain strong convergence of the sequence (rδ)δ>0

to the entropy solution r of (15a), (15d). Moreover, since by the second point
in Theorem 2.1, (rδ)δ>0 is uniformly bounded, the same holds for the sequence
(uδ)δ>0, since by construction of the method |uδ| = rδ. By Alaoglu’s Theorem, we
can therefore extract a L∞-weak-* convergent subsequence, still denoted (uδ)δ>0:

uδ ∗
⇀ u ∈ L∞(R× (0, T )). We show that the limit u is a weak solution of (15b).
To this end, we define for arbitrary test functions ψ ∈ C1,1

0 (R× [0, T ))

Iδ(ψ) =

∫ T

0

∫

R
uδψt + φ(rδ)uδψx dx+

∫

R
uδ
0(x)ψ(x, 0) dx,

Ĩδ(ψ) =

∫ T

0

∫

R
uδψt + φ(r)uδψx dx+

∫

R
uδ
0(x)ψ(x, 0) dx,

Since uδ are a weak solutions of (18), Iδ(ψ) = 0 for all ψ ∈ C1,1
0 (R × [0, T )). Fur-

thermore, because rδ → r strongly in L1
loc(R× (0, T )) and ‖uδ‖L∞ ≤ M uniformly

in δ, we have by Lebesgue’s dominated convergence theorem,

lim
δ→0

(Iδ(ψ)− Ĩδ(ψ)) = lim
δ→0

∫ T

0

∫

R
(φ(rδ)− φ(r))uδψx dx = 0,

so Ĩδ(ψ) → 0 as δ → 0. Using uδ ∗
⇀ u and the strong convergence uδ

0 → u0 in L1
loc,

we deduce,

lim
δ→0

Ĩδ(ψ) =

∫ T

0

∫

R
uψt + φ(r)uψx dx+

∫

R
u0(x)ψ(x, 0) dx = 0.

Thus, (r, u) is a weak solution of (15). The results in [13] imply that the weak
solution of (15) for which in addition r is the entropy solution of (15a), is unique
and |u| = r, so the limit u is the unique entropy solution of (1).

In order to prove the second statement, we assume TV(v0) ≤ K < ∞, where
v0 := u0/r0, if r0 += 0, and v0 := 0, if r0 = 0. We set vδ := uδ/rδ, if r0 += 0,
and vδ := 0, if r0 = 0, so vδ0 is a piecewise constant approximation of v0 and its
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total variation is bounded by K + c for some 0 < c < ∞ for δ small enough. We
prove that the total variation of vδ(·, t) is bounded by the total variation of vδ0. By
the construction of the method, vδ is a piecewise constant function and its total
variation can only change in places where we solve a Riemann problem. We have
solved this Riemann problem in Section 2 and see from (19) that vδ changes only
across one of the discontinuities and that the size of the jump in v is exactly the
one present before solving the Riemann problem. So the total variation of vδ does
not change when solving a Riemann problem and therefore stays constant for all
t. We observe next that the total variation of uδ is bounded independently of t, δ.
For t ∈ (0, T ) we let tj , tj+1 two consecutive collision times such that t ∈ (tj , tj+1]

and denote for t ∈ (tj , tj+1] by xj
k(t) the position of the k-th front from the left at

time t and by uj
k the value of uδ between the fronts located at xj

k(t) and xj
k+1(t).

Then we can write uδ(x, t) for t ∈ (tj , tj+1] in the form

uδ(x, t) =

Nj∑

k=1

(uj
k − uj

k−1)χ[xj
k(t),∞)(x) + uj

1

denoting by Nj the number of discontinuities in R×(tj , tj+1]. So the total variation

of uδ at time t is given as the sum of the jumps across the discontinuities xj
k(t) (we

denote rjk = |uj
k| and vjk = uj

k/|u
j
k|, k = 1, . . . , Nj , (u

j
k)

(l) the lth component of uk
j ,

l = 1, . . . , n, k = 1, . . . , Nj , and the same for vjk),

TV(uδ(·, t)) =
n∑

l=1

∑

k

|(uj
k)

(l) − (uj
k−1)

(l)|

=
n∑

l=1

∑

k

|rjk (v
j
k)

(l) − rjk−1 (v
j
k−1)

(l)|

≤
n∑

l=1

∑

k

(
|(rjk − rjk−1)(v

j
k)

(l)|+ |rjk−1||(v
j
k)

(l) − (vjk−1)
(l)|

)

≤ TV(rδ(·, t)) + ‖rδ(·, t)‖L∞TV(vδ(·, t))
≤ TV(r0) + ‖r0‖L∞(TV(v0) + c),

where we have used the second statement in Theorem 2.1 to bound the total varia-
tion of rδ. We can use the bound on the total variation to show that uδ is Lipschitz
continuous in time. To do so, we let t ∈ (tj , tj+1] and r ∈ (ti, ti+1], with i ≤ j and
r ≤ t. Then

∫

R
|uδ(x, t)− uδ(x, tj)| dx =

∫

R

∣∣∣∣
∫ t

tj

d

dτ
uδ(x, τ) dτ

∣∣∣∣ dx

≤
∫

R

∫ t

tj

Nj∑

k=1

|uj
k − uj

k−1|
∣∣xj′

k (τ)
∣∣δx=xj

k(τ)
dτ dx

≤
∫ t

tj

Nj∑

k=1

|uj
k − uj

k−1|
∣∣xj′

k (τ)
∣∣ dτ

The speeds xk′

j (t) are bounded by

S := max
|z|≤sup |uδ|

{λ1(z),λ2(z)} < ∞
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which is bounded away from infinity because uδ is bounded uniformly in t, δ and η.
Thus,

∫

R
|uδ(x, t)− uδ(x, tj)| dx ≤ S(t− tj)

Nj∑

k=1

|uj
k − uj

k−1|

≤ S(t− tj) TV(uδ(·, t))
≤ S(t− tj) TV(u0).

Similarly, we find
∫

R
|uδ(x, tj)− uδ(x, ti)| dx ≤ S(tj − ti) TV(u0)

and
∫

R
|uδ(x, ti)− uδ(x, r)| dx ≤ S(ti − r) TV(u0).

Hence
∫

R
|uδ(x, t)− uδ(x, r)| dx ≤ S(t− r) TV(u0),(20)

which is uniform in δ.
Using the uniform L∞- and total variation bounds for uδ and the Lipschitz

continuity in time, (20), we can apply Kolmogorov’s Compactness Theorem to
conclude convergence of a subsequence (uδn)n∈N to a limit u with bounded total
variation in C((0, T );L1

loc(R)). As we have shown before, the limit u is the unique
strong generalized entropy solution of (1). Since the limit is unique, not only a
subsequence, but the whole sequence (uδ)δ>0 converges. !

3. Numerical experiments

We test the method described in Section 2 with φ(r) = r2 − 4r + 5.5. This
function has a minimum at r = 2, so the ordering of the eigenvalues changes, and
in addition we have (f(r))′′ = (φ(r)r)′′ = 0 at r = 4/3, and the flux function is
nonconvex. We test the method with the following initial data

r0 = sin(πx) + 1.5, v0 =

(
sin(πx)
cos(πx)

)
, x ∈ [−1, 1],(21)

with periodic boundary conditions. A plot of the wave fronts is shown in Figure 1.
Note that the eigenvalues are nonnegative for all r ≥ 0. We can therefore use the

difference schemes constructed in [9], to compute an approximation to the solution
of (1a), (21), and compare the results. We denote for a given ∆x,∆t > 0, by
xj = j∆x, j ∈ Z, the discretization in space, by tn = n∆t, n = 0, . . . , N , where
N∆t = T , the discretization in time (∆t small enough such that it satisfies a CFL-
condition), and by un

j , r
n
j the approximations of the solutions u, r := |u| of (1) in

the cell Inj := [xj−1/2, xj+1/2) × [tn, tn+1). Then we approximate the solution of
(1) by the upwind scheme

un+1
j = un

j − ∆t

∆x
(un

j φ(|un
j |)− un

j−1φ(|un
j−1|)), j ∈ Z, n = 1, . . . , N,(22a)

u0
j =

1

∆x

∫ xj+1/2

xj−1/2

u0(x) dx, j ∈ Z.(22b)
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Figure 1. The wave fronts in the (x, t)-plane for initial value prob-
lem (21) and φ(r) = r2 − 4r + 5.5, δ = 0.02.

We also considered a scheme based on decoupling of the variables u and r;

rn+1
j = rnj − ∆t

∆x
(rnj φ(r

n
j )− rnj−1φ(r

n
j−1)), j ∈ Z, n = 1, . . . , N,(23a)

ũn+1
j = ũn

j − ∆t

∆x
(ũn

j φ(r
n
j )− ũn

j−1φ(r
n
j−1)), j ∈ Z, n = 1, . . . , N,(23b)

ũ0
j =

1

∆x

∫ xj+1/2

xj−1/2

u0(x) dx, j ∈ Z,(23c)

r0j = |ũ0
j |, j ∈ Z.(23d)

In Figure 2, we observe a good agreement of the approximations. Note that the
front tracking method has the advantage that it can also be used if the flux function
is such that its Jacobian has negative eigenvalues.
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ETH Zürich,
HG G 57.2, Rämistrasse 101, Zürich, Switzerland.
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