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Switzerland



CONVERGENCE OF FINITE DIFFERENCE SCHEMES FOR

SYMMETRIC KEYFITZ-KRANZER SYSTEM

U. KOLEY AND N. H. RISEBRO

Abstract. We are concerned with the convergence of numerical schemes for
the initial value problem associated to the Keyfitz-Kranzer system of equations.
This system is a toy model for several important models such as in elasticity
theory, magnetohydrodynamics, and enhanced oil recovery. In this paper we
prove the convergence of two difference schemes. One of these schemes is
shown to converge to the unique entropy solution. Finally, the convergence is
illustratred by several examples.

1. Introduction

In this paper, we consider the Cauchy problem for the n× n symmetric system
of Keyfitz-Kranzer type

(1.1)

{
ut + (uφ(|u|))x = 0, x ∈ Ω = R× (0, T ),

u(x, 0) = u0(x), x ∈ R,

where T > 0 is fixed, u =
(
u(1), . . . , u(n)

)
: R× [0, T ) → Rn is the unknown vector

map with |u| =
√
u(1)2 + · · ·+ u(n)2, u0 =

(
u(1)
0 , . . . , u(n)

0

)
the initial data, and

φ : R → R is given (sufficiently smooth) scalar function (see Section 2 for the
complete list of assumptions). Systems of this type was first considered in [10, 12]
and later on by several other authors [4], as a prototypical example of a non-strictly
hyperbolic system. This type of system is a model system for some phenomena in
magnetohydrodynamics, elasticity theory and enhanced oil-recovery. This system
also has similarities to a model of chromatography [1] and to a model describing
polymer flooding in porous media [16]. For the flux function F (u) = uφ(|u|), a
straightforward calculation shows B(u) = dF (u) is the matrix with entries

Bi,j(u) = φ(|u|)δi,j + φ′(|u|)uiuj

|u| , i, j = 1, 2, · · · , n,

where δi,j is the Kronecker delta, given by

δi,j =

{
1, i = j

0, i $= j.

The matrix B(u) is symmetric, therefore the system (1.1) is hyperbolic, that is, all
the eigenvalues of B(u) are real and the corresponding collection of eigenvectors is
complete. It is easy to see that the first eigenvalue of B(u) is λ1 = φ(|u|)+φ′(|u|) |u|
and other n − 1 eigenvalues are λi = φ(|u|), i = 1, 2, · · · , n − 1. The presence of
multiple eigenvalues shows that the system (1.1) is not strictly hyperbolic.

Date: March 5, 2012.
Key words and phrases. Keyfitz-Kranzer system, finite difference scheme, existence.
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2 U. KOLEY AND N. H. RISEBRO

Due to the nonlinearity, discontinuities in the solution may appear independently
of the smoothness of the initial data and weak solution must be sought. A weak
solution is defined as follows:

Definition 1.1. We say u(x, t) a weak solution to (1.1) if

D.1 u(x, t) ∈ L∞(R× R+).
D.2 For all test functions ψ ∈ C∞

0 (R× [0,∞))

(1.2)

∫∫

R×R+

uψt + uφ(|u|)ψx dxdt+

∫

R
u0ψ(x, 0) dx = 0,

It is well known that weak solutions may be discontinuous and they are not
uniquely determind by their initial data. Consequently, an entropy condition must
be imposed to single out the physically correct solution. Therefore the Cauchy
problem is viewed in the framework of entropy solutions. For (1.1), an entropy
formulation was first introduced by Freistühler [5, 6], and seemingly independently,
by Panov [14]. An entropy solution to (1.1) is defined as follows:

Definition 1.2. A bounded measurable function u(x, t) is called an entropy solution
to (1.1) if

D.1 For all test functions ψ ∈ C∞
0 (R× [0,∞))

(1.3)

∫∫

R×R+

uψt + uφ(|u|)ψx dxdt+

∫

R
u0ψ(x, 0) dx = 0,

D.2 r = |u| is an entropy solution (in the sense of Kružkov [11]) of the scalar
conservation law

(1.4)

{
rt + (rφ(r))x = 0, t > 0,

r(x, 0) = |u0(x)| .

Regarding the existence, uniqueness of solutions and continuous dependence of
solutions on the initial data we have the following result

Theorem 1.1. The system (1.1) has the following properties:

(E) The system has a solution for u0 ∈ L∞(R).
(U) For any such u0, there is precisely one solution u with the property that

r =: |u| satisfies the scalar conservation laws (1.4) and Kružkov’s entropy
criterion.

(S) This solution u depends L1
loc(R) continuously on the initial data u0.

This theorem was first proved in [6] by using the famous equivalence result of
Wagner [17]. The key idea behind this proof is to view the system (1.1) as an
extended system, consisting of (1.1) and an additional conservation law by r (1.4),
with Wagner’s transformation theory. On the other hand, in [14], Panov gave a
“direct” proof of both existence and uniqueness. The existence was proved by
showing the convergence of the singularly perturbed problems

uε
t + (uεφ(|uε|))x = εuε

xx,

to an entropy solution as ε → 0. The idea behind the existence proof was first to
show the existence of a measure-valued solution ν(t,x) of the Cauchy problem (1.1).
Then he showed that indeed ν(t,x) is regular: ν(t,x)(u) = δ(u − u(t, x)), u(t, x) ∈
L∞(R× R+,Rn) and consequently this gives existence of a solution to (1.1).
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In view of the analytic properties of the solutions of (1.1), several different meth-
ods for computing the solution suggest themselves. Foremost among these methods
is Glimm’s scheme [8]. Regarding other numerical methods, it is tempting to use the
equation satisfied by r, and view r as an independent variable. Defining v ∈ Sn−1

by vr = u, we formally have that

rt + (rφ(r))x = 0(1.5)

(rv)t + (rφ(r)v)x = 0(1.6)

or

vt + φ(r)vx = 0.(1.7)

As a strategy, one can then solve (1.5) first, and then either (1.6) or (1.7). These
should then hold subject to the constraint |v| = 1. Without this constraint, (1.5)–
(1.6) is a “triangular” system of conservation laws, see [3]. Using any monotone
scheme for (1.5) and (1.6) will ensure the strong convergence of the approximate
solutions to (1.5) and the weak-star convergence of the approximate solutions to
(1.6). This approach was used in [7]. To show that u = rv is an entropy solution to
(1.1), one must show (for the approximations) that the limit of |v| = 1 if |v0| = 1.
In this paper, for the semi discrete scheme, we discretize (1.1) in space and show
the convergence of approximate solution to a weak solution of (1.1). But we are
unable to extend our analysis to the fully discrete scheme based on discretizing
(1.1). To overcome this difficulty, we propose another scheme based on discretizing
(1.5)–(1.7) and prove the convergence of approximate solution to unique entropy
solution of (1.1).

The present paper can be divided into four parts:
1. In Section 2, we present the mathematical framework used in this paper. In

particular, we used a compensated compactness result in the spirit of Tartar [15]
but the proof is based on div-curl lemma and does not rely on the Young measure.

2. In section 3, we propose an upwind semi discrete finite difference scheme and
prove the convergence of the approximate solution to the weak solution of (1.1).
Main idea behind this proof is to prove first the strong convergence of approximate
solution r∆x = |u∆x| using compensated compactness technique [15, 2]. Next step
is to prove a BV estimate of τ i∆x for i = 1, · · · , n, where τ i∆x = tan(φi

∆x) and φi
∆x

denotes the angle between ui
∆x and r∆x. Then Helly’s theorem combined with the

strong convergence of r∆x gives the strong convergence of approximate solution
u∆x.

3. In section 4, for a fully discrete scheme, we are only able to conclude that u
is only a distributional solution of

ut + (uφ(r))x = 0,

with |u| ≤ r. To overcome this difficulty, i.e., to prove that u is an unique entropy
solution, we propose another fully discrete scheme relying on explicit decoupling of
the variables r and v expressed by the “nonconservative” formulation (1.5)–(1.7)

{
rt + (rφ(r))x = 0,

vt + φ(r) vx = 0,

with r(0) = |u(0)|. It is not difficult to show the convergence of r∆x to r, r being the
unique entropy solution, and the strong convergence of v∆x. In order to conclude
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that u = r v is the unique entropy solution of (1.1), one has to show |w(x, t)| = 1
and this has been achieved in this paper using Wagner transformation [17].

4. Finally, in Section 5, we test our numerical schemes and provide some numer-
ical results.

2. Mathematical Framework

In this section we present some mathematical tools that we shall use in the
analysis. To start with the basic assumptions on the initial data and the funtion
φ(r), we assume that φ is a twice differentiable function φ : [0,∞) → [0,∞) so that

A.1 φ(r) > 0 and φ′(r) ≥ 0 for all relevant r;
A.2 φ(r),φ′(r) and φ′′(r) are bounded for all relevant r;

A.3 meas
{
r
∣∣∣ 2φ′(r) + rφ′′(r) = 0

}
= 0;

A.4 |u0| ∈ L1(R) ∩ L2(R) ∩ L∞(R) ∩B.V.(R).
Next, we recapitulate the results we shall use from the compensated compactness
method due to Murat and Tartar [13, 15]. For a nice overview of applications of
the compensated compactness method to hyperbolic conservation laws, we refer to
Chen [2]. Let M(R) denote the space of bounded Radon measures on R and

C0(R) = {ψ ∈ C(R) : lim
|x|→∞

ψ(x) = 0}.

If µ ∈ M(R), then

〈µ,ψ〉 =
∫

R
ψ dµ, for all ψ ∈ C0(R).

Recall that µ ∈ M(R) if and only if |〈µ,ψ〉| ≤ C ‖ψ‖L∞(R) for all ψ ∈ C0(R). We
define

‖µ‖M(R) = sup {|〈µ,ψ〉| : ψ ∈ C0(R), ‖ψ‖L∞(R) ≤ 1}.

The space
(
M(R), ‖·‖M(R)

)
is a Banach space and it is isometrically isomorphic

to the dual space of
(
C0(R), ‖·‖L∞(R)

)
, while we define the space of probablity

measures

Prob(R) = {µ ∈ M(R) : µ is nonnegative and ‖µ‖M(R) = 1}.

Then we can state the fundamental theorem in the theory of compensated com-
pactness.

Theorem 2.1. Let K ⊂ R be a bounded open set and uε : R × [0, T ] → K.
Then there exists a family of probablity measures {ν(x,t)(λ) ∈ Prob(R)}

(x,t)∈R×[0,T ]

(depending weak-star measurably on (x, t)) such that

supp ν(x,t) ⊂ K for a.e. (x, t) ∈ R× [0, T ].

Furthermore, for any continuous function Φ : K → R, we have along a subsequence

Φ(uε)
"
⇀ Φ in L∞(R× [0, T ]) as ε ↓ 0,

where (the exceptional set depends possibly on Φ)

Φ(x, t) := 〈ν(x,t),Φ〉 =
∫

R
Φ(λ)dν(x,t)(λ) for a.e. (x, t) ∈ R× [0, T ].
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In the literature, ν(x,t) is often referred to as a Young measure. Theorem 2.1
provides us with a representation formula for weak limits of nonlinear functions and
Young measures. A uniformly bounded sequence {uε}ε>0 converges to u a.e. on
R× [0, T ] if and only if the corresponding Young measure ν(x,t) reduces to a Dirac
measure located at u(x, t), i.e., ν(x,t) = δu(x,t).

Before we state the compensated compactness theorem, we recall the celebrated
div-curl lemma.

Lemma 2.1 (div-curl lemma). Let Ω be a bounded open subset of R2. With ε > 0
denoting a parameter taking its value in a sequence which tends to zero, suppose

Dε ⇀ D in (L2(Ω))2, Eε ⇀ E in (L2(Ω))2,

{divDε}ε>0 lies in a compact subset of W−1,2
loc (Ω),

{curlEε}ε>0 lies in a compact subset of W−1,2
loc (Ω).

Then along a subsequence

Dε · Eε → D · E in D′(Ω).

We shall use the following compensated compactness result.

Theorem 2.2. Let Ω ⊂ R × R+ be a bounded open set, and assume that {uε}
is a sequence of uniformly bounded functions such that |uε| ≤ M for all ε. Also

assume that f : [−M,M ] → R is a twice differentiable function. Let uε "
⇀ u and

f(uε)
"
⇀ v, and set

(2.1)

(η1(s), q1(s)) = (s− k, f(s)− f(k)) ,

(η2(s), q2(s)) =

(
f(s)− f(k),

∫ s

k
(f ′(θ))2 dθ

)
,

where k is an arbitrary constant. If

ηi(u
ε)t + qi(u

ε)x is in a compact set of H−1
loc (Ω) for i = 1, 2,

then

(1) v = f(u), a.e. (x, t),
(2) uε → u, a.e. (x, t) if meas {u | f ′′(u) = 0} = 0.

For a proof of this theorem, see the monograph of Lu [18]. A feature of the
compensated compactness result above is that it avoids the use of the Young mea-
sure by following an approach developed by Chen and Lu [18, 2] for the standard
scalar conservation law. This is preferable as the fundamenmtal theorem of Young
measures applies most easily to functions that are continuous in all variables.

The following compactness interpolation result (known as Murat’s lemma [13])
is useful in obtaining the H−1

loc compactness needed in Theorem 2.2.

Lemma 2.2. Let Ω be a bounded open subset of R2. Suppose that the sequence
{Lε}ε>0 of distributions is bounded in W−1,∞(Ω). Suppose also that

Lε = L1,ε + L2,ε,

where {L1,ε}ε>0 is in a compact subset of H−1(Ω) and {L2,ε}ε>0 is in a bounded

subset of Mloc(Ω). Then {Lε}ε>0 is in a compact subset of H−1
loc (Ω).

Finally, we shall need the following Kolmogorov’s compactness lemma.
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Lemma 2.3 (L1
loc compactness, see [9]). Let uε : R × [0,∞) → R be a family of

functions such that for each positive T ,

|uε(x, t)| ≤ CT , (x, t) ∈ R× [0, T ]

for a constant CT independent of ε. Assume in addition that for all compact B ⊂ R
and for t ∈ [0, T ]

sup
|ξ|≤|ρ|

∫

B
|uε(x+ ξ, t)− uε(x, t)| dx ≤ νB,T (|ρ|),

for a modulus of continuity ν. Furthermore, assume for s and t in [0, T ] that
∫

B
|uε(x, t)− uε(x, s)| dx ≤ ωB,T (|t− s|) as ε ↓ 0,

for some modulus of continuity ωT . Then there exists a sequence εj → 0 such that
for each t ∈ [0, T ] the function {uεj (t)} converges to a function u(t) in L1

loc(R).
The convergence is in C([0, T ];L1

loc(R)).

3. A Semi discrete Finite difference scheme

We start by introducing some notation needed to define the semi discrete finite
difference schemes. Throughout this paper we reserve ∆x to denote a small pos-
itive numbers that represent the spatial discretization parameter of the numerical
schemes. Given ∆x > 0, we set xj = j∆x for j ∈ Z and for any function u = u(x)
admitting pointvalues we write uj = u(xj). Furthermore, let us introduce the
spatial grid cells

Ij = [xj−1/2, xj+1/2),

where xj±1/2 = xj ± ∆x/2. Let D± denote the discrete forward and backward
differences, i.e.,

D±uj = ∓uj − uj±1

∆x
.

Also, a discrete Leibnitz rule holds:

D±(ujvj) = ujD±vj + vj±1D±uj

Furthermore, for any C2 function f , using the Taylor expansion on the sequence
f(uj) we obtain

D±f(uj) = f ′(uj)D±uj ±
∆x

2
f ′′(ξ±j )(D±uj)

2,

for some ξ±j between uj±1 and uj . We will make frequent use of this, which states

that a discrete chain rule holds up to an error term of order ∆x(D±uj)2. To a
sequence {uj}j∈Z we associate the function u∆x defined by

u∆x(x) =
∑

j∈Z
uj1Ij (x),

similarly, we also define r∆x as

r∆x(x) =
∑

j∈Z
rj1Ij (x),
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where 1A denotes the characteristic function of the set A, viz.

1A(x) =

{
1, for x ∈ A

0, for x /∈ A.

Throughout this paper we use the notations u∆x, r∆x to denote the functions asso-
ciated with the sequence {uj}j∈Z and {rj}j∈Z respectively. For later use, recall that

the L∞(R) norm, the L1(R) norm, the L2(R) norm, and the BV (R) semi-norm of
a lattice function u∆x is defined respectively as

‖u∆x‖L∞(R) = sup
j∈Z

|uj | ,

‖u∆x‖L1R) = ∆x
∑

j∈Z
|uj | ,

‖u∆x‖L2R) = ∆x
∑

j∈Z
|uj |2 ,

|u∆x|BV (R) =
∑

j∈Z
|uj − uj−1| .

Observe that all the eigenvalues of the system (1.1) are positive by our assumptions.
We consider the following semi discrete upwind finite difference scheme of the form

(3.1) u′
j(t) +D− (φ(rj(t))uj(t)) = 0, for j ∈ Z, t > 0,

with initial values

(3.2) uj(0) =
1

∆x

∫ xj+1/2

xj−1/2

u0(x) dx.

Here rj(t) = |uj(t)|. Now it is easy to see that {uj(t)}j∈Z satisfy the (infinite)
system of ordinary differential equations and it is natural to view (3.1) as an or-
dinary differential equation in L2(R)n. To show the local (in time) existence and
uniqueness of differentiable solutions we must show that the right hand side of (3.1)
is Lipschitz continuous in L2(R)n. Set

F (u∆x)j = D− (φ(rj)uj) .

The infinite system of differential equations (3.1) can then be written

d

dt
(u∆x(t)) = F (u∆x)∆x.

We view F (u∆x)∆x as an element in L2(R)n. We must show that

(3.3) ‖F (u∆x)∆x − F (v∆x)∆x‖L2(R)n ≤ γ ‖u∆x − v∆x‖L2(R)n

for some locally bounded γ = γ(u∆x, v∆x) and for a fixed ∆x > 0. Set r̃j = |vj |,
note that

|rj − r̃j | ≤
|uj + vj |
rj + r̃j

|uj − vj | .

Then

‖F (u∆x)− F (v∆x)‖L2(R)n ≤ 2

∆x

(
sup
j

|uj | ‖φ′‖L∞ ‖r∆x − r̃∆x‖L2(R)

+ ‖φ‖L∞ ‖u∆x − v∆x‖L2(R)n

)

≤ γ ‖u∆x − v∆x‖L2(R)n
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Therefore F is locally Lipschitz continuous, and there is a τ > 0 so that the initial
value problem (3.1) has a unique differentiable solution for t ∈ [0, τ), if τ < ∞,
then

lim
t↑τ

‖u∆x(t)‖L2(R)n = ∞.

We shall proceed to show that the L2 norm remains bounded if it is bounded
initially, so the solution can be defined up to any time.

Lemma 3.1. Let {uj(t)} be defined by (3.1), and let rj(t) = |uj(t)|. Then

‖r∆x(t)‖L1(R) ≤ ‖r∆x(0)‖L1(R) ,

‖r∆x(t)‖L2(R) ≤ ‖r∆x(0)‖L2(R) ,

‖r∆x(t)‖L∞(R) ≤ ‖r∆x(0)‖L∞(R) .

Furthermore, there is a constant C, independent of ∆x and T , such that

(3.4)

∫ T

0

∑

j

∫ rj

rj−1

(
r2j − s2

)
φ′(s) ds+∆x

∑

j

φj−1∆x |D−uj |2 dt ≤ C.

Proof. Let η be a differentiable function η : Rn → R, take the inner product of
(3.1) with ∇uη(uj) to get

(3.5)
d

dt
η(uj) +D− (φjη(uj))

+ [(∇uη(uj), uj)− η(uj)]D−φj + φj−1
∆x

2
d2uηj−1/2 (D−uj , D−uj) = 0.

Here φj = φ(rj), and d2η denotes the Hessian matrix of η, so that

d2uηj−1/2 = d2uη(uj−1/2)

for some uj−1/2 between uj and uj−1. By a limiting argument, the function η(u) =
|u| can be used. This function is convex, i.e., d2u |u| ≥ 0. This means that

(3.6)
d

dt
rj +D−(rjφ(rj) ≤ 0.

Multiplying by ∆x and summing over j we get

(3.7) ‖r∆x(t)‖L1(R) ≤ ‖|u0|‖L1(R) .

Furthermore, if rj(t) ≥ rj−1(t), then drj(t)/dt ≤ 0. This shows that 0 ≤ rj(t) ≤
supj |uj(0)|. Hence, if ‖|u0|‖L∞(R) < ∞, then r∆x is bounded independently of t
and ∆x.

Choosing η(u) = |u|2 in (3.5) we get

d

dt
r2j (t) +D−

(
r2jφj

)
+ r2jD−φj + φj−1∆x |D−uj |2 = 0.

We have that

D−
(
r2jφj

)
+ r2jD−φj =

2

∆x

∫ rj

rj−1

sφ(s) + s2φ′(s) ds+
1

∆x

∫ rj

rj−1

(
r2j − s2

)
φ′(s) ds

= D−g(rj) +
1

∆x

∫ rj

rj−1

(
r2j − s2

)
φ′(s) ds,
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where

(3.8) g(r) = 2

∫ r

0
sφ(s) + s2φ′(s) ds.

Using this we find that

(3.9) ‖r∆x(t)‖L2(R) ≤ ‖|u0|‖L2(R) ,

since, by the assumption that φ′ ≥ 0,
∫ rj

rj−1

(
r2j − s2

)
φ′(s) ds ≥ 0.

Hence ‖u∆x(t)‖L2(R)n is bounded independently of ∆x and t. Therefore, the exists
a differentiable solution u∆x(t) to (3.1) for all t > 0. Furthermore, we have the
bound

∫ T

0

∑

j

∫ rj

rj−1

(
r2j − s2

)
φ′(s) ds+∆x

∑

j

φj−1∆x |D−uj |2 dt ≤ C,

for some constant C which is independent of t and ∆x.
!

Now let δ be a positive constant, and let e be some unit vector in Rn. Choose

η(u) = max {δ |u|− (e, u), 0} .

and observe that (∇η(u), u)− η(u) = 0. Furthermore η is convex, so that

d

dt
η(uj) +D−(η(uj)φj) ≤ 0,

which implies that ∑

j

η(uj(t)) ≤
∑

j

η(uj(0)).

We have that η(u) = 0 if u is in the cone Γδ = {u | δ |u| ≤ (e, u)}. Hence this cone is
positively invariant for (3.1). Observe that there is no loss of generality in choosing
the coordinates such that e = (1, . . . , 1)/

√
n. If δ < 1, then the invariant cone is

in the first n-tant in Rn, so that u(i)
j (t) ≥ 0 for all t > 0 if u0 ∈ Γδ. In particular

u(i)
j (t) = 0 if and only if rj(t) = 0.
Therefore, if u0 ∈ {u | |u| ≤ R} ∩ Γδ, then u∆x(x, t) is also in this set. This

enables us to deduce the weak-∗ convergence of a subsequence (which we do not
relabel) of {u∆x}∆x>0.

Let now ηi(r) and qi(r) be given by (2.1) for i = 1, 2. We then have that

(3.10)
d

dt
η1(uj) +D−(q1(rj)) + e1,j = 0,

where

f(r) = rφ(r), q1(r) = f(r)− f(k) and

e1,j = φj−1∆x (D−uj)
T 1

rj−1/2

(
I −

uj−1/2 ⊗ uj−1/2

r2j−1/2

)
(D−uj) .
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For any vector u, the matrix u ⊗ u is defined as u ⊗ u = uiuj . We shall now find
an equation satisfied by η2. First observe that

d

dt
rj + f ′(rj)D−rj −

∆x

2
f ′′ (rj−1/2

)
(D−rj)

2 + e1,j = 0.

Multiplying this with f ′(uj) we get

d

dt
f(rj) + q′2(rj)D−rj − f ′(rj)

∆x

2
f ′′ (rj−1/2

)
(D−rj)

2 + f ′(rj)e1,j = 0.

Set

e2,j =
∆x

2
f ′′ (rj−1/2

)
(D−rj)

2 .

This can be rewritten as

(3.11)
d

dt
η2(rj) +D−q2(rj) +

∆x

2
q′′2 (rj−1/2) (D−rj)

2 − f ′(rj) (e2,j − e1,j) = 0.

Finally set

e3,j =
∆x

2
q′′2 (rj−1/2) (D−rj)

2 ,

and
ei(x, t) = ei,j(t) for x ∈ (xj−1/2, xj+1/2] and i = 1, 2, 3.

Lemma 3.2. We have that ei ∈ Mloc(R× [0, T )) for i = 1, 2, 3.

Proof. Set Ω = R× [0, T ), and let ψ be a test function in L∞(Ω). Note that from
(3.7) and (3.10) it follows that

∫∫

Ω
e1(x, t) dxdt ≤ C,

where the constant C does not depend on ∆x or T . Since e1 ≥ 0, this means that

|〈e1,ψ〉| ≤
∫∫

Ω
|ψ| e1 dxdt ≤ C ‖ψ‖L∞(Ω) ,

and thus e1 ∈ Mloc(Ω). To show the same for e2 and e3 observe that

|D−rj | ≤ |D−uj | .
Since φ(r) > 0, (3.4) implies that

∫ T

0
∆x

∑

j

∆x |D−uj |2 ≤ C,

for some constant C which is independent of ∆x and T . We also have that f ′ and
f ′′ are locally bounded, and r∆x is bounded, this means that, for i = 2, 3,
∫∫

Ω
ei(x, t) dxdt ≤ C

∫ T

0
∆x

∑

j

∆x (D−rj)
2 dt ≤

∫ T

0
∆x

∑

j

∆x |D−uj |2 ≤ C.

Thus also e2 and e3 are in Mloc(Ω). !
Observe that, Lemma 3.2 implies that also f ′(rj)(e1,j − e2,j) is in Mloc(Ω).

Lemma 3.3. Let u∆x be generated by the scheme (3.1) and r∆x = |u∆x|. Then

{ηi(r∆x)t + qi(r∆x)}∆x>0 is compact in H−1
loc ,

where ηi and qi are given by (2.1) for i = 1, 2.
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Proof. Let i = 1 or i = 2, and ψ is a test function in H1
loc(Ω). we define

〈Li,ψ〉 = 〈ηi(r∆x)t + qi(r∆x)x,ψ〉

=

∫ T

0

∫

R
(ηi(r∆x)t + qi(r∆x)x)ψ(x, t) dxdt

=

∫ T

0

∑

j

∫ xj+1/2

xj−1/2

d

dt
ηi(rj)ψ(x, t)− qi(rj)ψx(x, t) dx dt

=

∫ T

0

∑

j

∫ xj+1/2

xj−1/2

d

dt
ηi(rj)ψ(x, t) dx− qi(rj)∆xD−ψ(xj+1/2, t) dt

=

∫ T

0

∑

j

∫ xj+1/2

xj−1/2

d

dt
ηi(rj)ψ(x, t) +D−qi(rj)ψ(xj−1/2, t) dx dt

=

∫ T

0

∑

j

∫ xj+1/2

xj−1/2

(
d

dt
ηi(rj) +D−qi(rj)

)
ψ(x, t) dx dt

+

∫ T

0

∑

j

∫ xj+1/2

xj−1/2

(
ψ(xj−1/2, t)− ψ(x, t)

)
D−qi(rj) dx dt

=: 〈Li,1,ψ〉+ 〈L2,i,ψ〉.

By (3.10), (3.11) and Lemma 3.2 we know that Li,1 ∈ Mloc(Ω). Regarding Li,2 we
have

|〈L2,i,ψ〉| =
∣∣∣
∫ T

0

∑

j

∫ xj+1/2

xj−1/2

∫ x

xj−1/2

ψx(y, t) dy D−qi(rj) dx dt
∣∣∣

≤
∫ T

0

∑

j

∫ xj+1/2

xj−1/2

√
x− xj−1/2

(∫ x

xj−1/2

(ψx(y, t))
2 dy

)1/2
|D−qi(rj)| dx dt

≤
∫ T

0

∑

j

∆x3/2
(∫ xj+1/2

xj−1/2

(ψx(x, t))
2 dx

)1/2
‖q′i‖L∞ |D−rj | dt

≤ ‖q′i‖L∞

∫ T

0

(∑

j

∆x

∫ xj+1/2

xj−1/2

(ψx(x, t))
2 dx

)1/2(
∆x2

∑

j

(D−rj)
2
)1/2

dt

≤ ‖q′i‖L∞

√
∆x

(∫∫

Ω
(ψx(x, t))

2 dxdt
)1/2(∫ T

0
∆x

∑

j

∆x (D−rj)
2 dt

)1/2

≤ C
√
∆x ‖ψ‖H1(Ω) .

Therefore the above estimate shows that L2,i is compact inH−1(Ω). By Lemma 2.2,
we conclude the sequence {ηi(r∆x)t + qi(r∆x)}∆x>0 is compact in H−1

loc (Ω).
!

Lemma 3.4. If

meas
{
r
∣∣∣ 2φ′(r) + rφ′′(r) = 0

}
= 0,

then there is a subsequence of {∆x} (not relabeled) and a function r such that
r∆x → r a.e. (x, t) ∈ Ω. We have that r ∈ C([0, T ];L1(R)). Furthermore, r



12 U. KOLEY AND N. H. RISEBRO

satisfies {
rt + f(r)x ≤ 0, x ∈ R, t > 0,

r = |u0| , x ∈ R, t = 0,

in the distributional sense.

Proof. The strong convergence of r∆x follows from the compensated compactness
theorem, Theorem 2.2 and the compactness of {ηi(r∆x)t + qi(r∆x)x}∆x>0 for i =
1, 2 i.e., Lemma 3.3.

To show the L1 continuity, first note that t 4→ ‖r∆x(·, t)‖L1(R) is a non-increasing
function. Thus for 0 ≤ s ≤ t ≤ T

‖r∆x(·, t)− r∆x(·, s)‖L1(R) =
∫

R
r∆x(x, s)− r∆x(x, t) dx

= −
∫

R

∫ t

s
∂tr∆x(x, τ) dτ dx

≤
∫ t

s

∫

R
e1(x, τ) dx dτ

Now, e1 is in L1(Ω), with norm bounded independently of ∆x. Thus t 4→ r∆x(·, t)
is in C([0, T ];L1(R)) with a modulus of continuity bounded independently of ∆x.
Then

‖r(·, t)− r(·, s)‖L1(R) ≤ ‖r(·, t)− r∆x(·, t)‖L1(R) + ‖r∆x(·, t)− r∆x(·, s)‖L1(R)
+ ‖r∆x(·, s)− r(·, s)‖L1(R) .

The first and the last term above can be made arbitrarily small by choosing ∆x
small, and the middle term is small if s is close to t. Hence t 4→ ‖r(·, t)‖L1(R) is
continuous.

To see that r is a distributional subsolution of the conservation law, multiply
(3.6) with a non-negative test function ψ and integrate over x and t to obtain

∫ T

0

∫

R
r∆xψt + f(r∆x)ψx dxdt+

∫

R
r∆x(0, x)ψ(0, x) dx

≥
∫ T

0

∑

j

f(rj)
1

∆x

∫ xj+1/2

xj−1/2

∫ x+∆x

x
(ψx(x, t)− ψx(z, t)) dz dx dt.

The term on the right tends to 0 as∆x → 0, which shows that r is a subsolution. !

Let now

τ (i)j =
u(i)
j − (uj , e)

(uj , e)
,

if uj $= 0. If uj = 0 set τ (i)j = τ (i)j+1. Observe that this makes sense since u(i)
j = 0

only if rj = 0. We have

d

dt
u(i)
j (t) + u(i)

j (t)D−φj + φj−1(t)D−u
(i)
j = 0.

If u(i)
j (t) > 0 for t < t0 and u(i)

j (t0) = 0 then du(i)
j /dt(t0) ≤ 0. If u(i)

j−1(t0) > 0 then

du(i)
j /dt(t0) > 0, which is a contradiction. Thus if rj0(t0) = 0, then rj(t) = 0 for

all j < j0 and t > t0. Thus the definition of τ (i)j makes sense.
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First note that

D−τ
(i)
j =

(
D−u

(i)
j

)
(uj , e)− u(i)

j (D−uj , e)

(uj , e) (uj−1, e)
.

Using this, we find

d

dt
τ (i)j =

(
du(i)

j /dt− (duj/dt, e)
)
(uj , e)−

(
u(i)
j − (uj , e)

)
(duj/dt, e)

(uj , e)
2

= −
D−

(
u(i)
j φj

)
(uj , e)− u(i)

j (D− (ujφ) , e)

(uj , e)
2

= −φj−1

(
D−u

(i)
j

)
(uj , e)− u(i)

j (D−uj , e)

(uj , e)
2

= −φj−1
(uj−1, e)

(uj , e)
D−τ

(i)
j .

Set

λj =

{
φj−1

(uj−1,e)
(uj ,e)

if rj > 0,

λj+1 if rj = 0.

Now τ (i)j satisfies

(3.12)
d

dt
τ (i)j + λjD−τ

(i)
j = 0.

Lemma 3.5. If ∣∣∣τ (i)∆x(·, 0)
∣∣∣
B.V.(R)

≤ C

for some constant C which is independent of ∆x, then there is a subsequence of

{∆x} (not relabeled) and functions τ (i) in C([0, T ];L1
loc(R) such that τ (i)∆x(·, t) →

τ (i)(·, t) in L1
loc(R).

Proof. Note that λj ≥ 0, and that λj is bounded. Set θj = D−τ
(i)
j . Then θj

satisfies

(3.13)
d

dt
θj + λj−1D−θj + θjD−λj = 0.

Let ηα(θ) be a smooth approximation to |θ| such that

η′′α(θ) ≥ 0 and lim
α→0

ηα(θ) = lim
α→0

(θη′α(θ)) = |θ| .

We multiply (3.13) by η′α(θj) to get an equation satisfied by ηα(θj). Observe that

λj−1η
′
α(θj)D−θj + θjη

′
α(θj)D−λj = λj−1D−ηα(θj) + θjη

′
α(θj)D−λj

+
∆x

2
λj−1η

′′
α(θj−1/2) (D−θj)

2

≥ D− (λjηα(θj))

+ (θjη
′
α(θj)− ηα(θj))D−λj .

Hence
d

dt
ηα(θj) +D− (λjηα(θj)) ≤ (ηα(θj)− θjη

′
α(θj))D−λj .
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Now let α → 0 to obtain

(3.14)
d

dt
|θj |+D− (λj |θj |) ≤ 0.

If we multiply this with ∆x, sum over j and integrate in t, we find that

(3.15)
∣∣∣τ (i)∆x(·, t)

∣∣∣
B.V

≤
∣∣∣τ (i)∆x(·, 0)

∣∣∣
B.V.

≤ C

Note that, since τ (i)∆x(·, t) has bounded variation and satisfies (3.12), it is L1
loc Lips-

chitz continuous in t, that is

(3.16)

∥∥∥τ (i)∆x(·, t)− τ (i)∆x(·, s)
∥∥∥
L1

loc(R)
≤ sup

j
λj

∣∣∣τ (i)(·, 0)
∣∣∣
B.V.

|t− s| .

Hence, the above estimates (3.15), (3.16) and an application of Kolmogorov’s com-

pactness criterion (Lemma 2.3) shows that τ (i) = lim∆x→0 τ
(i)
∆x is continuous in t,

with values in L1
loc(R). In other words, the convergence is in C([0, T ];L1

loc(R)). !

Now we have the strong convergence of r∆x and of τ (i)∆x. This means that also
u∆x converges strongly to some function u in C([0, T ];L1

loc(R)) since we have

(3.17) u(i)
∆x = r∆x sin

(
ϕ(i)
∆x

)
,

where

ϕ(i)
∆x = tan−1

(
τ (i)∆x

)

and τ 4→ tan−1(τ) is a continuous function.

Theorem 3.1. Let φ be a twice differentiable function φ : [0,∞) → [0,∞) such
that φ(r) > 0 and φ′(r) ≥ 0, and

meas
{
r
∣∣ 2φ′(r) + rφ′′(r) = 0

}
= 0.

Let u∆x be defined by (3.1)–(3.2). If u0 ∈ Γδ for some δ < 1, u0 ∈ L1(R) ∩ L∞(R)
and ∣∣∣τ (i)∆x

∣∣∣
B.V.(R)

≤ C for i = 1, . . . , n

and C is independent of ∆x, then there exists a function u in C([0, T ];L1
loc(R))

such that u∆x → u as ∆x → 0. The function u is a weak solution to (1.1).

Proof. We have already established convergence. Regarding the continuity, since

r∆x and τ (i)∆x are L1
loc(R) continuous in time, (3.17) implies that also u has this

continuity.
It remains to show that u is a weak solution. To this end, observe that1

∫ T

0

∫

R
D− (u∆xφ(r∆x))ψ(x, t) dxdt = −

∫ T

0

∫

R
u∆xφ(r∆x)D+ψ(x, t) dxdt.

As ∆x → 0, D+ψ → ψx for any ψ ∈ C1
0 (Ω). This means that u is a weak

solution. !

1Here we “extend” the definition of D− and D+ to arbitrary functions in the obvious manner.
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4. fully discrete schemes

In this section, we propose two different fully discrete schemes and shown one
of them converges to the unique entropy solution of (1.1). We start by introduc-
ing some notations needed to define the fully discrete finite difference schemes. We
reserve∆t to denote a small positive number that represent the temporal discretiza-
tion parameter of the numerical schemes. For n = 0, 1, · · · , N , where N∆t = T , for
some fixed time horizon T > 0, we set tn = n∆t. For any function v(t), admitting
pointvalues, we let Dt

+ denote the discrete forward difference operator in the time
direction, i.e.,

Dt
+v(t) =

v(t+∆t)− v(t)

∆t
.

Furthermore, we introduce the spatial-temporal grid cells

Inj = [xj−1/2, xj+1/2)× [tn, tn+1).

As before, to a sequence
{
un
j

}
j∈Z,n≥0

we associate the function u∆x defined by

u∆x(x, t) =
∑

j∈Z,n≥0

un
j 1In

j
(x, t),

similarly, we also define r∆x as

r∆x(x, t) =
∑

j∈Z,n≥0

rnj 1In
j
(x, t),

where 1A denotes the characteristic function of the set A.
First, we consider the following fully discrete finite difference scheme

(4.1) Dt
+u

n
j +D−

(
un
j φ

(∣∣un
j

∣∣)) = 0,

with initial values

u0
j =

1

∆x

∫ xj+1/2

xj−1/2

u0(x) dx.

As before, it is not difficult to prove the following lemma:

Lemma 4.1. If u0 ∈ L2(R)n ∩ L∞(R)n,

(4.2)
‖u∆x(·, tn)‖2L2(R)n ≤ ‖u0‖2L2(R)n ,

‖u∆x(·, tn)‖2L∞(R)n ≤ ‖u0‖2L∞(R)n ,

for all n > 0, furthermore

(4.3) ∆t∆x
N−1∑

n=0,j∈Z
∆x

∣∣D−u
n
j

∣∣2 ≤ 2 ‖u0‖2L2(R)n ,

where N = ceil(T/∆t).

Next, regarding the strong convergence of R := r2, we have the following result

Lemma 4.2. Suppose

(4.4)
lim
r↓0

φ′(r)

r
≤ ∞,

meas
{
r
∣∣∣ 3φ′(r) + 2rφ′′(r) = 0

}
= 0,
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then there is a subsequence of {R∆x} (not relabeled) and a function R such that
R∆x → R a.e. (x, t) ∈ Ω. We have that R ∈ L∞([0, T ];L1(R)). Furthermore, R
satisfies {

Rt +G(R)x ≤ 0, x ∈ R, t > 0,

R = |u0|2 , x ∈ R, t = 0,

in the distributional sense.

Since R∆x converges strongly to R, also r∆x will converge strongly to r :=
√
R.

The sequence {u∆x}∆x>0 is uniformly bounded, so a subsequence will converge
weak ∗ to some function u ∈ L∞(Ω). Hence the limit u is a distributional solution
of

ut + (uφ(r))x = 0.

In order to conclude that u is a weak solution to (1.1), we would have to show that
|u| = r. We have not been able to prove this, and merely conclude that |u| ≤ r.
The reason for this is that v 4→ |v| is convex, and that weak limits of a convex
function are not less than the convex function of the weak limit.

To overcome this difficulty, we propose another fully discrete scheme based on
explicit decoupling of the variables r and v.

4.1. A scheme which enforces the entropy condition. Let us define w∆x =
u∆x
r and let r∆x and w∆x satisfies

(4.5)

{
rn+1
j = rnj −∆tD−fn

j , n ≥ 0,

r0j =
∣∣u0

j

∣∣ ,

and

(4.6)

{
wn+1

j = wn
j −∆tφn

j D−wn
j , n ≥ 0,

r0jw
0
j = u0

j .

Regarding the convergence of the approximations {r∆x} we choose

(4.7) ∆t ‖f ′‖L∞(R) ≤ ∆x.

We list some useful properties of r∆x in the next lemma [9].

Lemma 4.3. Assume that the CFL condition (4.7) holds and r0 ∈ BV (R)∩L∞(R).
Then for each ∆x > 0 we have that

(a) −M ≤ r∆x(x, t) ≤ M , for all x and t > 0.
(b) For n ≥ 0 the functions

n 4→ ∆x
∑

j∈Z

∣∣rnj
∣∣ , n 4→

∑

j∈Z

∣∣rnj − rnj−1

∣∣ , n 4→
∑

j∈Z

∣∣rn+1
j − rnj

∣∣

are non-increasing. In particular this means that the family {r∆x}∆x>0 is
(uniformly in ∆x) bounded in L∞(R+;L1(R)) ∩ BV(R× R+).

(c) Moreover r∆x(·, t) → r(·, t) strongly in L1(R) for all t ≥ 0, where r ∈
Lip([0, T ];L1(R)) and is the unique entropy (in the sense of Kružkov) so-
lution of the conservation law

(4.8)

{
rt + f(r)x = 0,

r(x, 0) = |u(x, 0)| .
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Observe that, we can write the scheme (4.6) as

wn+1
j =

(
1− λφn

j

)
wn

j + λφn
j w

n
j−1.

If λφn
j < 1 for all j, then wn+1

j is a convex combination of wn
j and wn

j−1. Thus

(4.9) inf
j
w0

j ≤ wn
j ≤ sup

j
w0

j , n > 0.

and

(4.10) |w∆x(·, t)|B.V.(R)n ≤ |w∆x(·, 0)|B.V.(R)n .

Furthermore
(4.11)

∆x
∑

j

∣∣wn+1
j − wn

j

∣∣ ≤ ∆t ‖φ‖L∞

∑

j

∣∣wn
j − wn

j−1

∣∣ ≤ C∆t |w∆x(·, tn)|B.V.(R)n .

Hence the map t 4→ w∆x(·, t) is L1- Lipschitz continuous. Finally, the above es-
timates (4.10), (4.11) and an application of Kolmogorov’s compactness criterion
(Lemma 2.3) shows that w = lim∆x→0 w∆x is continuous in t, with values in
(L1

loc(R))n.
Multiply the equation (4.5) for rn+1

j with that (4.6) for wn+1
j to get

rn+1
j wn+1

j =
(
rnj −∆tD−f

n
j

) (
wn

j −∆tφn
j D−w

n
j

)

= rnj w
n
j −∆t

(
wn

j D−f
n
j + fn

j D−w
n
j

)
+∆t2φn

j D−f
n
j D−w

n
j

= rnj w
n
j −∆t

(
wn

j D−f
n
j + fn

j−1D−w
n
j

)
−∆t

(
fn
j − fn

j−1

)
D−w

n
j

+∆t2φn
j D−f

n
j D−w

n
j

= rnj w
n
j −∆tD−

(
fn
j w

n
j

)
+∆t

(
fn
j − fn

j−1

)
D−w

n
j

(
λφn

j − 1
)
.

Then we have

(4.12) Dt
+

(
rnj w

n
j

)
+D−

(
fn
j w

n
j

)
= ∆t

(
λφn

j − 1
) (

fn
j − fn

j−1

)
D−w

n
j =: enj .

Let now ψ ∈ C∞
0 (Ω) be a test function, multiply the above equation by ψ and

integrate over Ω to get

∞∑

n=1,j

∫ tn+1

tn

∫ xj+1/2

xj−1/2

rnj w
n
j D

t
−ψ + fn

j w
n
j D+ψ dxdt

+
1

∆t

∫ ∆t

0

∑

j

∫ xj+1/2

xj−1/2

r0jw
0
jψ dxdt =

∑

n,j

∫ tn+1

tn

∫ xj+1/2

xj−1/2

enj ψ dxdt.

Since we have the convergence of r∆x and w∆x, the left hand side of this converges
to ∫∫

Ω
rwψt + f(r)wψx dxdt+

∫

R
r(x, 0)w(x, 0)ψ(x, 0) dx.

Regarding the right hand side we have

∣∣∣
∑

n,j

∫ tn+1

tn

∫ xj+1/2

xj−1/2

enj ψ dxdt
∣∣∣ ≤ ∆t ‖ψ‖L∞(Ω) (λ ‖φ‖L∞ + 1)∆t

∑

n,j

∣∣fn
j − fn

j−1

∣∣ ∣∣wn
j − wn

j−1

∣∣

≤ ∆tC ‖ψ‖L∞(R) ‖w∆x(x, 0)‖L∞(R)n T ‖r∆x(x, 0)‖B.V.(R) ,
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where T is such that suppψ ⊂ [0, T ]. Hence
∫∫

Ω
rwψt + f(r)wψx dxdt+

∫

R
r(x, 0)w(x, 0)ψ(x, 0) dx = 0.

Hence, we see that rw is a weak solution to the Cauchy problem

(rw)t + (f(r)w)x = 0.

In other words, (r, rw) is a weak solution to

(4.13)
rt + f(r)x = 0,

(r w)t + (φ(r)r w)x = 0.

Next, we follow the argument given in [6] and conclude that |w| = 1 using Wagner
transformation.

Finally, collecting all the results above, we have proved the following theorem.

Theorem 4.1. Assume that u0 ∈ B.V.(R). If λ = ∆t/∆x satisfies the CFL-
condition λ < supx f

′(|u0(x)|), and u∆x is defined by (4.5), (4.6), then u =
lim∆x→0 u∆x is the unique entropy (in the sense of Definition 1.2) solution to (1.1).

Remark 4.1. We propose another scheme based on discretizing the “conservative”
form (1.5)–(1.6). Let r∆x and u∆x satisfy

(4.14)

{
rn+1
j = rnj −∆tD−f(rnj ), n ≥ 0,

r0j =
∣∣u0

j

∣∣ ,
and

(4.15) un+1
j = un

j −∆tD−
(
un
j φ(r

n
j )
)
,

for n ≥ 0 and f(r) = rφ(r), with u0
j given by (3.2). In this case, using the strong

convergence of r∆x, it is easy to show that u = lim∆x→0 u∆x is a distributional
solution of

ut + (uφ(r))x = 0.

In this case, again using Wagner transformation, it is easy to prove |u| = r. In
other words, u = lim∆x→0 u∆x is the unique entropy solution of (1.1).

5. Numerical experiments

We close this paper by demonstrating how these schemes work in practice. We
perform all the computations for 2× 2 system with φ(r) = r2.

5.1. Numerical Experiment-1. In this case we approximate the system (1.1)
with initial data

U0(x) =

{
Ul, x < 0,

Ur, x > 0.

It is not difficult to find the exact solution of (1.1) in this case. For the sake of
completeness we write the explicit form of the exact solutions U(x, t) = Ū(x/t).

If |Ul| < |Ur|, then

Ū(ξ) =






Ul, ξ ≤ |Ul|2 ,
Um, |Ul|2 ≤ ξ ≤ 3 |Ul|2 ,
( ξ3 )

1/2 Ur
|Ur| , 3 |Ul|2 ≤ ξ ≤ 3 |Ur|2

Ur, ξ ≥ 3 |Ur|2 ,
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If |Ul| > |Ur|, then

Ū(ξ) =






Ul, ξ ≤ |Ul|2 ,
Um, |Ul|2 ≤ ξ ≤ |Ul|2 + |Ul| |Ur|+ |Ur|2 ,
Ur, ξ ≥ |Ul|2 + |Ul| |Ur|+ |Ur|2 ,

with Um = |Ul|
|Ur|Ur in both cases.

In what follows, we test the fully discrete explicit numerical scheme (4.1) with
initial data

U0(x) =

{
U−, x < 0,

U+, x > 0,

where

U− = (0.5, 1.5), U+ = (1.5, 2.0),

for the first experiment and

U− = (1.5, 2.0), U+ = (0.5, 1.5),

for the second experiment. The computations are performed on a computational
domain [−5, 20] with 4000 mesh points. To enforce the CFL condition we set the
time step ∆t = (CFL)∆x/3 sup |U0|2, where we use a CFL number 0.75. Although
we do not plot the exact solutions, a comparison of the computational results dis-
played in Figs 5.1 with the exact solution shows good agreement.

5.2. Numerical experiment- 2. In this case, we test our fully discrete explicit
numerical scheme (4.5)–(4.15) with initial data U0 = r0w0, where

r0(x) =

{
r−, x < 0,

r+, x > 0,

with

r− = 1.0, r+ = 0.75,

for the first and third numerical experiments and

r− = 0.75, r+ = 1.0,

for the second and fourth numerical experiments. Similarly, for w0 we take

w0(x) =






(1.0, 0.0), x < 0.2

(cos(8π(x− 0.2)), sin(8π(x− 0.2))), 0.2 ≤ x ≤ 0.7,

(1.0, 0.0), x ≥ 0.7,

for the first and second numerical experiments and

w0(x) =

{
(1.0, 0.0), x ≤ 0.2,

(−1.0, 0.0), x ≥ 0.2,

In this case also, it is easy to find the exact solution. Although we do not plot the
exact solutions, we give the explicit form of the exact solution. The exact solution
is given by U = rw with

r(x, t) =

{
r−, x ≤ s t,

r+, x ≥ s t,
with s = r2− + r−r+ + r2+,
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Figure 5.1. Left column: Experiment-1: The dotted-dashed
curve represents the first component of U , the solid curve repre-
sents the second component. Right column: Experiment-2: The
dotted-dashed curve represents the first component of U , the solid
curve represents the second component.



KEYFITZ-KRANZER 21

and

w(x, t) =






w0(x− r2−t), x ≤ r2−t,

w0(
r−
r+

(x− r2−t)), r2−t ≤ x ≤ s t,

w0(x− r2+t), x ≥ s t,

for the first and third numerical experiments. Similarly,

r(x, t) =






r−, x ≤ 3r2−t,

(x/3t)1/2, 3r2−t ≤ x ≤ 3r2+t

r+, x ≥ 3r2+t,

and

w(x, t) =






w0(x− r2−t), x ≤ r2−t,

w0(
r−
r+

(x− r2−t)), r2−t ≤ x ≤ 3r2−t,

w0(
2

3
√
3r+

x3/2t−1/2), 3r2−t ≤ x ≤ 3r2+t

w0(x− r2+t), x ≥ 3r2+t,

for the second and fourth numerical experiments.
In all the experiments computational domain is [−1, 4] and we use Neumann

boundary conditions at the left boundary. We also use a CFL number 0.75 and
4000 mesh points for all the experiments. A comparison of the computational
results displayed in Figs 5.2–5.3 with the exact solution shows good agreement.

Below we show the computational results for four different qualitatively signifi-
cant sets of data: a compression or an expansion wave in r inisiated slightly behind a
continuous pulse or a discontinuous contact wave in w. Fig 5.2–5.3 display the com-
puted solution at three different times. In the plots, the dot-dash curve represents
the first component of U and the dotted curve represents the second component,
while the solid curve represents the r-component of (r, U).

References

[1] L. Ambrosio, G. Crippa, A. Figalli, and L. V. Spinolo,: Existence and uniqueness results for
the continuity equation and applications to the Chromatography system. Nonlinear Conser-
vation Laws and Applications., Volume 153, Part 2, 195-204, 2011.

[2] G. -Q. Chen,: Compactness methods and nonlinear hyperbolic conservation laws. In some
current topics on nonlinear conservation laws, pp. 33-75. Amer. Math. Soc., Providence, RI,
2000.

[3] G. M. Coclite, S. Mishra, and N. H. Risebro,: Convergence of an Engquist-Osher scheme
for a multi-dimensional triangular system of conservation laws. Math. Comp., 79(269), pp.
71-94, 2010.

[4] C. De Lellis,: Notes on hyperbolic systems of conservation laws and transport equations.
Handbook of differential equations: evolutionary equations., Vol. III, 277382,Amsterdam,
2007.

[5] H. Freistühler,: On the Cauchy problem for a class of hyperbolic systems of conservation
laws. J. Differential Equations., 112(1994), pp. 170-178.

[6] H. Freistühler,: Rotational degeneracy of hyperbolic systems of conservation laws. Arch.
Rational Mech. Anal., 112(1994), pp. 170-178.

[7] H. Freistühler, and E. B. Pitman,: A numerical study of a rotationally degenerate hyperbolic
system. Part-II. The Cauchy problem . SIAM. J. Numer. Anal., 32(3), pp. 741-753, 1995.

[8] J. Glimm,: Solutions in large for nonlinear hyperbolic systems of equations. Comm. Pure.
Appl. Math., 18(1965), pp. 95-105.



22 U. KOLEY AND N. H. RISEBRO

−1 0 1 2 3 4
−1

−0.5

0

0.5

1

(a) T = 0

−1 0 1 2 3 4
−1

−0.5

0

0.5

1

(b) T = 0

−1 0 1 2 3 4
−1

−0.5

0

0.5

1

(c) T = 0.25

−1 0 1 2 3 4
−1

−0.5

0

0.5

1

(d) T = 0.25

−1 0 1 2 3 4
−1

−0.5

0

0.5

1

(e) T = 0.75

−1 0 1 2 3 4
−1

−0.5

0

0.5

1

(f) T = 0.75

Figure 5.2. Left column: Experiment-1: A shock wave initiated
behind a continuous rotational wave. The dotted-dashed curve rep-
resents the first component of U , the dotted curve represents the
second component and the solid curve represents r. Right column:
Experiment-2: An expansion wave initiated behind a continuous
rotational wave. The dotted-dashed curve represents the first com-
ponent of U , the dotted curve represents the second component and
the solid curve represents r.
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Figure 5.3. Left column: Experiment-3: A shock wave initi-
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curve represents the first component of U , the dotted curve repre-
sents the second component and the solid curve represents r. Right
column: Experiment-4: An expansion wave initiated behind a dis-
continuous rotational wave. The dotted-dashed curve represents
the first component of U , the dotted curve represents the second
component and the solid curve represents r.
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12-05 C. Winteler, R. Käppeli, A. Perego, A. Arcones, N. Vasset, N. Nishi-
mura, M. Liebendörfer and F.-K. Thielemann
Magneto-rotationally driven Supernovae as the origin of early galaxy
r-process elements?

12-04 P. Grohs
Intrinsic localization of anisotropic frames

12-03 P. Grohs
Geometric multiscale decompositions of dynamic low-rank matrices

12-02 D. Kressner and C. Tobler
htucker - A Matlab toolbox for tensors in hierarchical Tucker format

12-01 F.Y. Kuo, Ch. Schwab and I.H. Sloan
Quasi-Monte Carlo methods for high dimensional integration - the stan-
dard (weighted Hilbert space) setting and beyond

11-72 P. Arbenz, A. Hiltebrand and D. Obrist
A parallel space-time finite difference solver for periodic solutions of the
shallow-water equation

11-71 M.H. Gutknecht
Spectral deflation in Krylov solvers: A theory of coordinate space based
methods

11-70 S. Mishra, Ch. Schwab and J. Šukys
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