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Abstract

The present article studies off-diagonal decay properties of Moore-Penrose pseudoinverses of (bi-
infinite) matrices satisfying an analogous condition. Off-diagonal decay in our paper is considered
with respect to specific index distance functions which incorporates those usually used for the study of
localization properties for wavelet frames but also more general systems such as curvelets or shearlets.
Our main result is that if a matrix satisfies an off-diagonal decay condition, then its Moore-Penrose
pseudoinverse satisfies a similar condition. Applied to the study of frames this means that, if a
wavelet, curvelet or shearlet frame is intrinsically localized, then its canonical dual is, too.

Keywords: Frame Localization, Curvelets, Shearlets, nonlinear Approximation

2000 Mathematics Subject Classification. Primary 41AXX, Secondary 41A25, 53B, 22E.

1 Introduction

This paper is concerned with results on off-diagonal decay properties of the Moore-Penrose pseudoinverse
A+ = (a+λ,λ′)λ,λ′∈Λ of a symmetric (bi-infinite) matrix A = (aλ,λ′)λ,λ′∈Λ satisfying an off-diagonal decay
condition. This is in general a difficult problem, especially if no additional structural properties for A
are assumed. Our main result is that if A satisfies a condition of the form

|aλ,λ′ | ≤ C0ω(λ,λ
′)−N

for a specific type of index distance function ω : Λ × Λ → R+, then, if A is also well-conditioned as an
operator from l2(Λ) to itself, the entries of the Moore-Penrose pseudoinverse A+ satisfy the analogous
estimate

|a+λ,λ′ | ≤ C ′ω(λ,λ′)−N+

for some N+ > 0 which depends on N,C0 and the spectrum of A and which goes to infinity with N . The
precise dependence of N+ on the various parameters will be made explicit. The index distance function
ω has to be of a specific kind. Index functions which fall into our framework for instance arise naturally
in the study of the off-diagonal decay properties of the Gramian matrix of wavelet, curvelet, or shearlet
frames. See [11, 3, 29] and the references therein for more information regarding these systems.

In this context, the study of off-diagonal decay properties is of fundamental importance: applications
such as compression, approximation and the study of function spaces crucially depend on them. In
connection with frames, the study of off-diagonal properties of the Gramian matrix is usually referred to
as localization, see [18, 15, 8, 24] for related results on Gabor- or wavelet frames. In this lingo, our main
result is that if a wavelet, curvelet or shearlet frame is intrinsically localized, then its dual frame is, too.
More precisely, given a frame Ψ = (ψλ)λ∈Λ for a Hilbert space H with canonical dual frame Ψ̃ =( ψ̃λ)λ∈Λ

such that
f =

∑

λ∈Λ

(f,ψλ)Hψ̃λ =
∑

λ∈Λ

(f, ψ̃λ)Hψλ for all f ∈ H, (1)

a condition of the form
|(ψλ,ψλ′)H| ≤ C0ω(λ,λ

′)−N (2)

implies that

|(ψ̃λ, ψ̃λ′)H| ≤ C+ω(λ,λ′)−N+
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and also
|(ψ̃λ,ψλ′)H| ≤ C+ω(λ,λ′)−N+

for some N+ which depends on ω, C0, N and the frame bounds of Ψ. There exists a variety of applications
where results of this kind are crucial. For instance, localization properties imply that the primal frame
Ψ and the dual frame Ψ̃ generate the same function spaces. In particular their approximation properties
are equivalent.

Another important application concerns the compression of operators F : H → H. Given f ∈ H, by
(1) we can represent it via the frame coefficient sequence ((f,ψλ)H)λ∈Λ. Discretization of the operator
F entails the computation of the mapping

((f,ψλ)H)λ∈Λ %→ ((Ff,ψλ)H)λ∈Λ

which can be represented in matrix form as F :=
(
F ψ̃λ,ψλ′

)

λ,λ′∈Λ
. It turns out that localization proper-

ties of the matrix F are often crucial to enable an efficient (i.e., linear complexity) matrix multiplication

c %→ Fc

for c = ((f,ψλ)H)λ∈Λ and f possessing a sparse representation in Ψ̃ [1, 5]. However, often the matrix

entries of F cannot be computed or estimated directly, the reason being that the dual frame Ψ̃ is not
accessible explicitly. What usually can be computed are the entries of the matrix

F̃ := ((Fψλ,ψλ′)H)λ,λ′∈Λ

and often it can be deduced that this matrix is indeed well-localized. Our results on localization imply
that in this case also the matrix F is well-localized, thus enabling efficient discretization of F . As a final
application we also show that one can use our results to prove optimal complexity of adaptive frame
methods in the spirit of [32].
Caveat Emptor. We want to remark at this point that, as it is common for results on exponential
localization, our results are mainly of a qualitative nature, meaning that if N becomes large, so does
N+. The precise value of N+ which is guaranteed by our proof can (and will) be much smaller than N .
Most annoyingly, it depends on the constant C0 from (2). This remark also applies to previous results
on frame localization which – in contrast to our results – are confined to the study of wavelet frames, see
e.g. [30, 9].

1.1 Previous Work and Novelties

Our main result can be seen as a generalization of [24, 30] beyond the setting of wavelet bases. It fits best
into the theory of exponential localization which has been studied in an abstract setting in [18, 15, 8, 12, 24]
and which is mainly confined to the study of wavelet- and Gabor frames. There exist quite deep studies
of localization properties of the inverses of matrices [19, 20] but all of them crucially require very strong
structural properties which are not valid for the problems which motivate us. In particular, properties
such as inverse closedness of the Banach algebra of off-diagonal decay matrices do in general not hold for
affine systems such as wavelets.

Our motivation for this work is to analyze the localization properties of more general frames than
wavelet- and Gabor frames, with a particular focus on shearlets and curvelets. These novel systems have
had a dramatic impact on both pure and applied mathematics in recent years; the former for their ability
to diagonalize Fourier Integral Operators [31, 2], the latter for their ability to sparsely represent (and
hence efficiently compress) multivariate functions with singularities along curved hypersurfaces [22, 3, 28].

The main contribution of this paper is an extension of known results on exponential localization to
these systems. This turns out to be quite nontrivial: Previous results heavily rely on a certain algebraic
structure of the index set Λ, which is however not valid for anisotropic systems like shearlets and curvelets.

Nevertheless we demonstrate that analogous results can be established under much weaker require-
ments on ω and Λ, making our approach much more robust. Specifically, we can apply our machinery to
obtain localization properties for more general frames than wavelet frames, most notably shearlets and
curvelets . We consider such results to be especially important, since, in contrast to wavelet- or Gabor
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frames, for anisotropic frame systems it is with current technology impossible to get a good grip on the
structure of the dual frame. For instance [25] recently gave the first construction of shearlet frames which
are compactly supported. These frames are not tight and it is certainly of interest to understand the
properties of the associated dual frames. Our results provide a first step in that direction.

We also would like to stress that our results are of much wider generality, in that they hold for
arbitrary matrices, which are not necessarily Gramians of frame systems.

1.2 A Brief Outline

In the following Section 2 we start by introducing the fundamental concept of localization and collecting
the assumptions which we will require later. Section 3 contains our main result, namely that the Moore-
Penrose pseudoinverse of a localized matrix is localized, too. Note that thus far, all results hold for
general matrices with no reference to frame theory. We close with some applications to the study of
wavelet- shearlet- and curvelet frames in Section 4.

1.3 Notation

We use boldface letters for (bi-infinite) matrices A. The symbol l2(Λ) denotes the usual Lebesgue space
with Λ some (discrete) measure space. For an operator A : l2(Λ) → l2(Λ) we use the symbol σ(A)2 for
its spectrum. In general, for an operator S : H → H with H a Hilbert space we denote its spectrum by
σ(S). The inner product of H is denoted by (·, ·)H. We will also use the notation A ! B to describe that
A is bounded by a uniform constant times B.

2 Basic Assumptions

The present section collects the fundamental assumptions which will be necessary in our results to follow.
We are concerned with matrix operators indexed by an index set Λ which possesses a multiscale structure:

Definition 2.1. The mapping s : Λ → N maps every element λ ∈ Λ to its scale sλ ∈ N.

Furthermore, we equip our index set Λ with a distance function.

Definition 2.2. Let d : λ → R+ be such that

d(λ,λ) = 0 for all λ ∈ Λ.

Then we define the index distance function

ω(λ,λ′) := 2|sλ−sλ′ |
(
1 + 2min(sλ,sλ′ )d(λ,λ′)

)
.

We impose the following assumptions on d and Λ:

Assumption 2.3 (Pseudo-symmetry and pseudo-triangle inequality). There exist constants cT , cS > 0
such that

d(λ,λ′) ≤ cT (d(λ,λ′′) + d(λ′′,λ′)) (3)

and
d(λ,λ′) ≤ cSd(λ

′,λ). (4)

In addition we assume the following admissibility condition, reminiscent of the Schur condition re-
quired in [24]:

Assumption 2.4 (Admissibility). We make the following (M,K)-admissibility assumption that for all
k > K and µ ∈ Λ we have ∑

λ∈Λj

(1 + 2qd(µ,λ))−k ≤ CA2
M(j−q)+ , (5)

where
Λj := {λ ∈ Λ : sλ = j}

and CA > 0.
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Aside from the (M,K)-admissibility assumption we shall require that the index set Λ is well-separated
in a certain sense.

Assumption 2.5 (Separability). There exists a constant cΛ > 1 with

ω(λ,λ′) ≥ cΛ for all λ '= λ′ ∈ Λ. (6)

The following definition introduces the crucial notion of localization for matrices.

Definition 2.6. A matrix
A = (aλ,λ′)λ,λ′∈Λ

is called N -localized if
|aλ,λ′ | ≤ C0ω(λ,λ

′)−N (7)

for a constant C0 > 0.

We will assume that the matrix A is symmetric and possesses a spectral gap:

Definition 2.7. The matrix A viewed as an operator from l2(Λ) to itself possesses a spectral gap if there
exist numbers 0 < A ≤ B < ∞ such that

σ (A)2 ⊂ {0} ∪ [A,B]. (8)

Note that the point 0 must necessarily be an eigenvalue of A since it is isolated.

Assumption 2.8 (Symmetry and spectral gap). The operator A is symmetric and possesses a spectral
gap.

Remark 2.9. Let us pause for a moment to discuss Assumptions 2.4, 2.8, 2.3, 2.5 and their relation to
the assumptions of previous works. We have already mentioned that a stronger form of the Admissibility
Assumption 2.4 can already be found as a Schur condition in the classical work [24]. In [30], a stronger
form of Assumption 2.3 is used for establishing various results on exponential localization. The Spectral
Assumption 2.8 is also used in all previous works on exponential localization that we are aware of, such
as [30, 12], although mostly the eigenvalue zero is not permitted.

Our goal is to extend the results on exponential localization of wavelet Riesz bases to the case of
curvelet and shearlet frames. As it turns out, in this endeavor it is necessary to work with our weaker
assumptions, due to the structure of the associated index distance function to be defined in Section 4.
In our opinion, the main insight of the present article is that actually our weaker assumptions suffice to
prove localization results.

Note that by symmetry of A we actually have that

|aλ,λ′ | ≤ C0 max (ω(λ,λ′),ω(λ′,λ))
−N

The assumption on pseudosymmetry could easily be strengthened to full symmetry, e.g. cS = 1 by sym-
metrizing the index distance function without qualitative changes in the analysis. The triangle-inequality
which only needs to be satisfied up to a constant cT on the other hand indeed complicates the analysis, cf.
the proof of Proposition 3.2.

We remark that Assumption 2.8 implies that A has a closed range [26], and thus, by the closed range
theorem, we can write

l2(Λ) = ker(A)⊕ ran(A). (9)

We are concerned with properties of the Moore-Penrose pseudoinverse A+ of the symmetric matrix A,
which satisfies the normal equations

A2A+ = A. (10)

Lemma 2.10. The matrix A+ can be computed via a Landweber-type iteration by the formula

A+ = β
∑

k∈N

(
I − βA2

)k
A, (11)
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where β = 2
A2+B2 . We have

AA+ = A+A = ProjRan(A), (12)

and (
A+

)2
A = A+. (13)

Proof. We first show that (11) is consistent with (10). This can be seen by writing the infinite sum (11)
as an iteration scheme

A(k+1) = βA+
(
I − βA2

)
A(k).

This shows that the limit of the sequence A(k) satisfies (10). Existence of this limit follows by observing

that the spectrum of the matrices
(
I − βA2

)k
A is contained in the interval [−Brk, Ark] with r :=

B2−A2

A2+B2 < 1:

σ
((

I − βA2
)k

A
)

2
=

{
(1− βν2)kν : ν ∈ {0} ∪ [A,B]

}
⊂ [−Brk, Ark]. (14)

We come to the proof of (12). The operator A2
∣∣
Ran(A)

is bijective with spectrum contained in [A2, B2]

and its inverse is given by the Neumann series
(
A2

∣∣
Ran(A)

)−1
= β

∑

k∈N

(
I − βA

∣∣2
Ran(A)

)k
.

It follows that

AA+
∣∣
Ran(A)

= A
∣∣
Ran(A)

(
A2

∣∣
Ran(A)

)−1
A
∣∣
Ran(A)

= Id
∣∣
Ran(A)

.

On the other hand, we have
AA+

∣∣
Ker(A)

= 0,

which establishes that
AA+ = ProjRan(A).

Noting that AA+ = A+A finally yields (12). It remains to show (13). To this end we use (12) which
reduces the statement to showing that

A+ProjRan(A) = A+

and this is easy to see from the definition and (9).

3 Main result

In this section we show our main result. In our proofs we will for simplicity assume that cS = 1. By
Remark 2.9 this presents no loss in generality.

Consider a symmetric matrix A which possesses a spectral gap. Our main result is the following
theorem.

Theorem 3.1. For any A which is N + L-localized, e.g.,

|aλ,λ′ | ≤ C0ω(λ,λ
′)−N−L,

with L satisfying (26), and which has a spectral gap, e.g.,

σ(A)2 ⊂ {0} ∪ [A,B],

the Moore-Penrose pseudoinverse A+ is N+-localized with

N+ = N

(
1− log (C0C (1 + βC0C))

log(r)

)−1

(15)

with

r :=
B2 −A2

B2 +A2
< 1,

and C given by (24).
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Proof. We will make use of the Landweber-type expansion (11). Therefore the starting point is to look
at the matrices

A(k) =
(
a(k)λ,λ′

)

λ,λ′∈Λ
=

(
I − βA2

)k
A

Claim 1: There exists a constant C, given by (24), independent of N (and only depending on Λ and ω)
such that ∣∣∣a(k)λ,λ′

∣∣∣ ≤ Ck+1
0 (1 + βCC0)

k Ckω(λ,λ′)−N . (16)

To see this, we iteratively utilize Proposition 3.2 for the matrices I − βA2 and A and use induction in k.
By symmetry of all matrices which occur in our computations, we may restrict ourselves to index pairs
λ,λ′ with sλ ≤ sλ′ . Clearly the claim holds for k = 0. Now assume that

∣∣∣a(k−1)
λ,λ′

∣∣∣ ≤ Ck
0 (1 + βCC0)

k−1 Ck−1ω(λ,λ′)−N . (17)

For the calculation below we shall denote the entries of a matrix B corresponding to indices λ,λ′ by
Bλ,λ′ .

Since A(k) =
(
I− βA2

)
A(k−1), we can invoke Proposition 3.2 together with (17) and deduce that

|AA(k−1)
λ,λ′ | ≤ C0CCk

0 (1 + βCC0)
k−1 Ck−1ω(λ,λ′)−N

and by another application of Proposition 3.2, that

|βA2A(k−1)
λ,λ′ | ≤ βC0CCk+1

0 (1 + βCC0)
k−1 Ckω(λ,λ′)−N

Using again the induction hypothesis (17) and the triangle inequality

∣∣∣
(
I− βA2

)
A(k−1)

λ,λ′

∣∣∣ ≤
∣∣∣A(k−1)

λ,λ′

∣∣∣+
∣∣∣βA2A(k−1)

λ,λ′

∣∣∣

establishes the claim (16).
Claim 2: We have the general estimate ∣∣∣a(k)λ,λ′

∣∣∣ ! rk. (18)

This claim is a simple consequence of the Cauchy-Schwartz inequality and the spectral estimate (14):
Denoting eλ the unit vector in l2(Λ) with all zeros except at the index λ ∈ Λ, we have

∣∣∣a(k)λ,λ′

∣∣∣ =
∣∣∣∣
(
A(k)eλ, eλ′

)

l2(Λ)

∣∣∣∣ ≤
∥∥∥A(k)eλ

∥∥∥
l2(Λ)

‖eλ′‖l2(Λ) ≤ Brk

and this is Claim 2.
We will now combine Claims 1 and 2 in order to obtain the desired result. By (11) we need to get a

grip on
∞∑

k=0

∣∣∣a(k)λ,λ′

∣∣∣ = I + II

with

I :=
k0∑

k=0

∣∣∣a(k)λ,λ′

∣∣∣

and

II :=
∞∑

k=k0+1

∣∣∣a(k)λ,λ′

∣∣∣ ,

and k0 ∈ N arbitrary. Before choosing k0 we first estimate I using (16) and II using (18) as follows:

|I| !
k0∑

k=0

Ck
0 (1 + βCC0)

k Ckω(λ,λ′)−N ! Ck0
0 (1 + βCC0)

k0 Ck0ω(λ,λ′)−N . (19)
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On the other hand we can estimate

|II| !
∞∑

k=k0+1

rk ! rk0 . (20)

In summary we have, for any k0 ∈ N the estimate
∣∣∣a+λ,λ′

∣∣∣ ! Ck0
0 (1 + βCC0)

k0 Ck0ω(λ,λ′)−N + rk0 . (21)

Put D := C0(1 + βCC0)C. We need to balance the two estimates in (21) by finding k0, N+ such that

both can be estimated by a constant times ω(λ,λ′)−N+

. Starting with rk0 this yields

k0 = −N+ log(ω(λ,λ′))

log(r)
. (22)

For the first term in (21) we get

k0 = (N −N+)
log(ω(λ,λ′))

log(D)
. (23)

Setting equal (22) and (23) we get

N+ = N

(
1− log(D)

log(r)

)−1

which proves the result.

Now comes the hard part. The following proposition forms the key technical result needed in the
proof of Theorem 3.1.

Proposition 3.2. With the constant

C :=
4CA

1− 2M−L/2
+

2CA

1− 2−N
+ 1 (24)

we have ∑

λ′′

ω(λ,λ′′)−N−Lω(λ′′,λ′)−N ≤ Cω(λ,λ′)−N (25)

for all

L > max

(
2 log(2cT )

log(cΛ)
N, 2M

)
(26)

and sλ ≤ sλ′ .

Proof. We start by giving a lower bound for a term

Iλ′′ :=
(
1 + 2min(sλ,sλ′′ )d(λ,λ′′)

)(
1 + 2min(sλ′′ ,sλ′ )d(λ′′,λ′)

)
. (27)

We have

Iλ′′ = 1 + 2min(sλ,sλ′′ )d(λ,λ′′) + 2min(sλ′′ ,sλ′ )d(λ′′,λ′) + 2min(sλ,sλ′′ )d(λ,λ′′)2min(sλ′′ ,sλ′ )d(λ′′,λ′)

≥ 1 + 2min(sλ,sλ′ ,sλ′′ ) (d(λ,λ′′) + d(λ′′,λ′)) + 2min(sλ,sλ′′ )d(λ,λ′′)2min(sλ′′ ,sλ′ )d(λ′′,λ′)

≥ 1 + 2min(sλ,sλ′ ,sλ′′ ) 1

cT
d(λ,λ′) + 2min(sλ,sλ′′ )d(λ,λ′′)2min(sλ′′ ,sλ′ )d(λ′′,λ′)

≥ 1

2cT

(
1 + 2min(sλ,sλ′ ,sλ′′ )d(λ,λ′)

)
× . . .

· · ·×
(
1 + 2max(min(sλ,sλ′′ ),min(sλ′′ ,sλ′ )) min (d(λ,λ′′), d(λ′′,λ′))

)
.

Hence, we arrive at the inequality

I−1
λ′′ ≤ 2cT

(
1 + 2min(sλ,sλ′ ,sλ′′ )d(λ,λ′)

)−1
J−1
λ′′ ,

7



with
Jλ′′ :=

(
1 + 2max(min(sλ,sλ′′ ),min(sλ′′ ,sλ′ )) min (d(λ,λ′′), d(λ′′,λ′))

)
.

Since

Jλ′′ ≥ min
(
1 + 2min(sλ,sλ′′ )d(λ,λ′′), 1 + 2min(s′′λ,sλ′ )d(λ′′,λ′)

)
,

it follows that

J−N
λ′′ ≤ max

((
1 + 2min(sλ,sλ′′ )d(λ,λ′′)

)−N
,
(
1 + 2min(sλ′′ ,sλ′ )d(λ′′,λ′)

)−N
)

(28)

It remains to estimate the sum
∑

λ′′∈Λ

ω(λ,λ′′)−N−Lω(λ′′,λ′)−N =
∑

λ′′∈Λ

2−N(|sλ−sλ′′ |+|sλ′′−sλ′ |)ω(λ,λ′′)−LI−N
λ′′ . (29)

First note, that it is sufficient to get the desired bound for the sum

∑

λ′′∈Λ, λ′′ %=λ

2−N(|sλ−sλ′′ |+|sλ′′−sλ′ |)ω(λ,λ′′)−LI−N
λ′′ , (30)

since the estimate for λ′′ = λ is trivial (it accounts for the “+1”-term in (24)). We split this sum into
three terms as follows:

∑

λ′′∈Λ, λ′′ %=λ

2−N(|sλ−sλ′′ |+|sλ′′−sλ′ |)ω(λ,λ′′)−LI−N
λ′′ = I + II + III,

where
I :=

∑

sλ′′≥sλ′

, II :=
∑

sλ′′≤sλ

, III :=
∑

sλ≤sλ′′≤sλ′

.

We now study these three cases separately.
sλ′′ ≥ sλ′ . The estimate for (30) becomes

I ≤ (2cT )
N

∑

j≥sλ′

2−N(2sλ′′−sλ−sλ′ )
∑

sλ′′=j

(1 + 2sλd(λ,λ′))
−N × . . .

· · ·× ω(λ,λ′′)−L
(
(1 + 2sλd(λ,λ′′))

−N
+ (1 + 2sλ′d(λ′′,λ′))

−N
)

≤ (2cT )
Nc−L/2

Λ

∑

j≥sλ′

2−N(2j−sλ−sλ′ )
∑

sλ′′=j

(1 + 2sλd(λ,λ′))
−N × . . .

· · ·× 2−L/2(s′′λ−sλ)
(
(1 + 2sλd(λ,λ′′))

−N
+ (1 + 2sλ′d(λ′′,λ′))

−N
)

≤ CA(2cT )
Nc−L/2

Λ

∑

j≥sλ′

2−N(2j−sλ−sλ′ ) (1 + 2sλd(λ,λ′))
−N × . . .

· · ·× 2−L/2(j−sλ)
(
2M(j−sλ) + 2M(j−sλ′ )

)

≤ 2CA

1− 2−2N−L/2+M
2−2Nsλ′−L/2sλ′+Msλ′+Nsλ+Nsλ′+L/2sλ−Msλ (1 + 2sλd(λ,λ′))

−N

≤ 2CA

1− 2−L/2+M
2−N(sλ′−sλ) (1 + 2sλd(λ,λ′))

−N
2(M−L/2)(sλ′−sλ)

≤ 2CA

1− 2−L/2+M
ω(λ,λ′)−N .

The first inequality is (28), the second one follows from Assumption (6) and λ′′ '= λ, the third one holds
by Assumption (5), and the rest by choosing

L > max

(
N

2 log(2cT )

log(cΛ)
, 2M

)
(31)
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and a geometric summation.
sλ′′ ≤ sλ. We need to estimate

II ≤ (2cT )
N

∑

j≤sλ

2−N(−2sλ′′+sλ+sλ′ )
∑

sλ′′=j

(1 + 2sλ′′d(λ,λ′))
−N × . . .

· · ·× ω(λ,λ′′)−L
(
(1 + 2sλ′′d(λ,λ′′))

−N
+ (1 + 2sλ′′d(λ′′,λ′))

−N
)

≤ (2cT )
N

∑

j≤sλ

2−N(−2sλ′′+sλ+sλ′ )
∑

sλ′′=j

2N(sλ−sλ′′ ) (1 + 2sλd(λ,λ′))
−N × . . .

· · ·× ω(λ,λ′′)−L
(
(1 + 2sλ′′d(λ,λ′′))

−N
+ (1 + 2sλ′′d(λ′′,λ′))

−N
)

≤ 2CA(2cT )
N

∑

j≤sλ

2−N(−2j+sλ+sλ′ )2N(sλ−j) (1 + 2sλd(λ,λ′))
−N

c−L
Λ

≤ 2CA

∑

j≥0

2−Njω(λ,λ′)−N .

The first estimate is again (28), for the second estimate we utilize the simple fact that

2sλ′′−sλ (1 + 2sλd(λ,λ′′)) ≤ 1 + 2s
′′
λd(λ,λ′′),

the third inequality uses (5) and the fourth one holds for L according to (31).
sλ ≤ sλ′′ ≤ sλ′ . Here we estimate

III ≤ (2cT )
N

∑

sλ≤j≤sλ′

2−N(sλ′−sλ) (1 + 2sλd(λ,λ′))
−N × . . .

· · ·×
∑

sλ′′=j

ω(λ,λ′′)−L
(
(1 + 2sλd(λ,λ′′))

−N
+ (1 + 2sλ′′d(λ′′,λ′))

−N
)

≤ (2cT )
NcL/2

Λ ω(λ,λ′)−N
∑

sλ≤sλ′′≤sλ′

2−L/2(sλ′′−sλ) × . . .

· · ·×
(
(1 + 2sλd(λ,λ′′))

−N
+ (1 + 2sλ′′d(λ′′,λ′))

−N
)

≤ 2CA(2cT )
NcL/2

Λ ω(λ,λ′)−N
∑

sλ≤j≤sλ′′

2−(L/2−M)(j−sλ)

≤ 2CA

∑

j≥0

2−(L/2−M)jω(λ,λ′)−N .

The first estimate is (28), the second one follows from Assumption (6) and λ′′ '= λ, the third one holds by
Assumption (5), and the fourth by choosing L such that (31) holds. We finally conclude that the desired
statement holds true with L satisfying (31). Summing up the estimates for I, II and III finally yields
the desired bound. This proves (26).

Remark 3.3. In the special case cS = cT = 1 a different route leads to a similar result. Putting ρ the
Poincaré metric defined by

θ(λ,λ′) :=

(
d(λ,λ′)2 + |2sλ − 2sλ′ |2

d(λ,λ′)2 + |2sλ + 2sλ′ |2

)1/2

and

ρ (λ,λ′) := log

(
1 + θ(λ,λ′)

1− θ(λ,λ′)

)1/2

one can show that
logRω ∼ ρ

for a constant R. After renormalizing ω := Rω it can be shown that log(ω) satisfies a triangle inequality
which is what is needed to apply the machinery developed in [30, 9] on exponential localization. It turns
out that the resulting localization estimate for the pseudoinverse (valid only for the case cS = cT = 1
which excludes the curvelet index distance to be defined below) is not qualitatively different from ours
which is why we chose to omit the details.
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Remark 3.4. We already mentioned in the introduction that a somewhat unsatisfactory feature of our
result is that the quantity N+ depends on C0. We think that it ought to be possible to remove this
dependency, maybe using some clever application of the tensor-power trick (see http: // www. tricki.
org/ article/ The_ tensor_ power_ trick ), although we have not succeeded in doing so. Once again we
note that known results from wavelet theory also suffer from this caveat. Our result is as strong as known
results for wavelet Riesz bases but much more general in that it can be applied to much more general
scenarios such as shearlet frames.

4 Applications for Frames

4.1 Basic Definitions

Our original motivation comes from the field of applied harmonic analysis where one studies frames,
which are a redundant generalization of orthonormal bases, see [4] for more information.

Definition 4.1. Let H be a Hilbert space and Ψ := (ψλ)λ∈Λ a collection of elements ψλ ∈ H. The system
Ψ is called a frame for H if there exist constants 0 < A ≤ B < ∞ such that

A2‖f‖2H ≤
∑

λ∈Λ

|(f,ψλ)H|2 ≤ B2‖f‖2H. (32)

The frame operator S : H → H, defined as

Sf :=
∑

λ∈Λ

(f,ψλ)H ψλ

is self-adjoint and satisfies
σ(S) ⊂ [A,B]. (33)

The canonical dual frame Ψ̃ =
(
ψ̃λ

)

λ∈Λ
is defined as

ψ̃λ := S−1ψλ

and we have the representation formula

f =
∑

λ∈Λ

(f,ψλ)H ψ̃λ =
∑

λ∈Λ

(f, ψ̃λ)Hψλ, for all f ∈ H. (34)

Remark 4.2. For later convenience we use the following notation for sequences c = (cλ)λ∈Λ ∈ CΛ,
elements f ∈ H and systems Ψ =( ψλ)λ∈Λ ∈ HΛ, Φ = (φµ)µ∈M ∈ HM :

(Ψ,Φ)H := ((ψλ,φµ)H)λ∈Λ,µ∈M ∈ CΛ×M , c)Ψ :=
∑

λ∈Λ

cλψλ, and (f,Ψ)H := ((f,ψλ)H)λ∈Λ ∈ CΛ.

Given a frame Ψ we now wish to consider the Gramian

A := (Ψ,Ψ)H := ((ψλ,ψλ′))λ,λ′∈Λ ,

e.g.,

Ac = (c)Ψ,Ψ)H :=

(
(
∑

λ′∈Λ

cλ′ψλ′ ,ψλ)H

)

λ∈Λ

, c ∈ l2(Λ).

Lemma 4.3. We have
σ(A)2 ⊂ {0} ∪ [A,B], (35)

and, denoting the Moore-Penrose pseudoinverse of A by A+, that

(Ψ̃, Ψ̃)H = A+. (36)
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Proof. Equation (35) follows from [15, 7]. In view of (36), in [15, Lemma 3.1] it is shown that

(Ψ̃, Ψ̃)H = (A+)2A,

which, by (13), is equal to A+.

We can now consider an index distance function ω satisfying all of the assumptions of Section 2 and
introduce the notion of an N -localized frame Ψ, meaning that its Gramian A is N -localized. In this
context the main result Theorem 3.1 reads as follows:

Theorem 4.4. Assume that Ψ is a frame of H with frame constants A,B. Assume further that Ψ is
indexed with Λ and that ω is an index distance function on Λ satisfying the assumptions from Section 2.
Then, if Ψ is N -localized, its dual frame Ψ̃ is N+-localized with N+ given by (15).

4.2 Function Spaces and N-term Approximation

A result of the above type is of great interest since it provides information on the properties of dual
frames. We might for instance consider the spaces

Bα
p,q (H) :=

{
f ∈ H : ‖(f,Ψ)‖ḃαp,q < ∞

}
,

with
‖c‖ḃαp,q :=

∥∥∥2αj ‖cj‖lp(Λj)

∥∥∥
lq(N)

,

where cj := (cλ)λ∈Λj and Λj := {λ ∈ Λ : sλ = j}. A natural question to ask is under which circumstances
do we have

B̃α
p,q (H) = Bα

p,q (H) (37)

with
B̃α
p,q (H) =

{
f ∈ H : ‖(f, Ψ̃)‖ḃαp,q < ∞

}
?

The answer lies in the localization properties of the frames Ψ, Ψ̃: It holds that

(f,Ψ) = A(f, Ψ̃) and (f, Ψ̃) = A+(f,Ψ). (38)

In order to verify (37) we thus need to establish that the operators A,A+ are bounded on the space
of sequences with finite ḃαp,q- seminorm. But this follows directly from the fact that both A,A+ are
N -localized with N large enough (depending on p, q,α). We skip the details, which are standard. A
particularly important subcase is p = q = 1

1/2+s and α = 0 which (more or less) describe the elements

f ∈ H approximable by Ψ with an N -term approximation rate s [13]:

B̃0
1

1/2+s ,
1

1/2+s
⊂ As(H,Ψ), (39)

where

As(H,Ψ) =

{
f ∈ H : inf

{
‖f −

∑

λ∈ΛN

cλψλ‖H : |ΛN | = N

}
! N−s

}
.

We remark that the question whether the converse inclusion holds in (39) is delicate and in general
unsolved for frame systems, see for example [17]. How can we verify that a given class C ⊂ H possesses
a certain N -term approximation rate? Of course, we could compute the B̃0

1
1/2+s ,

1
1/2+s

-seminorm for all

elements in C and see whether it stays bounded. This would amount to computing

C̃ := sup
f∈C

∥∥∥(f, Ψ̃)H
∥∥∥
lp(Λ)

, p =
1

1/2 + s
. (40)

However, in general the direct computation of the quantities (f, Ψ̃)H is elusive, since the dual frame is
usually not explicitly known. What we can do is compute

C := sup
f∈C

‖(f,Ψ)H‖lp(Λ) , p =
1

1/2 + s
. (41)
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If this quantity is finite, we can use (38) and N -localization of A+ in order to infer finiteness of C̃ from
the finiteness of the (computable) quantity C.

To make this last statement a bit more precise we give the following simple result:

Proposition 4.5. Assume that A+ is N -localized with N > p−1 max(k,M), where k,M are the con-
stants from Assumption 2.4. Then A+ is bounded on lp(Λ). Consequently, boundedness of C implies
boundedness of C̃.

Proof. Boundedness of A+ =
(
a+λ,λ′

)

λ,λ′∈Λ
on lp(Λ) follows if

max
λ′∈Λ

∑

λ∈Λ

|a+λ,λ′ |p < ∞. (42)

By the localization property, (42) can be bounded, up to a constant, by

max
λ′∈Λ

∑

λ∈Λ

ω (λ,λ′)
−Np

= max
λ′∈Λ

∑

j∈N

∑

λ∈Λj

2−Np|sλ′−j|
(
1 + 2min(sλ′ ,j)d (λ,λ′)

)−Np
.

By Assumption 2.4 we can bound this expression by

∑

j∈N
2−Np|sλ′−j|2M |j−s′λ|,

whenever Np > k. If additionally Np > M the result follows.

A little more work yields the following result which we state without proof.

Proposition 4.6. Assume that A+ is N -localized with N sufficiently large. Then A+ is bounded on
bαp,q(Λ). Consequently, in this case the equation (37) holds true.

Another example concerns the compression of an operator F : H → H using a frame Ψ. What is
typically possible is to compute the matrix F̃ := (FΨ,Ψ) and to show that this matrix is N -localized.
However, in order to infer the operator compression property

F B̃0
1

1/2+s ,
1

1/2+s
⊂ B̃0

1
1/2+s ,

1
1/2+s

(43)

guaranteeing fast algorithmic evaluation of F in the spirit of [1], we actually need to establish off-diagonal
decay properties of the matrix

F := (F Ψ̃, Ψ̃).

Again, since F̃ = A+F, we can use the order N -localization property of A+ to show (43).
To sum up this discussion, our results on localization imply that under certain circumstances, approx-

imation spaces and compression properties can be characterized both using the primal frame Ψ as well
as its dual Ψ̃, whichever is more convenient. This is the main reason for our interest in the topic of the
present paper.

4.3 Examples

We close by giving several examples of frames falling into our setting. In all cases the Hilbert space H
will be of the form L2(Rd) for d ∈ N.

4.3.1 Wavelets

The first example of wavelets is the most widely known one [11]. The frame Ψ is generated by translation
and isotropic dilation of a mother wavelet ψ ∈ L2(Rd):

ψj,k(·) := 2dj/2ψ
(
2j ·−k

)
, j ∈ N+, k ∈ Zd
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and
ψ0,k(·) := ϕ(·− k), k ∈ Zd,

with the so-called scaling function ϕ ∈ L2(Rd). The index set Λ is thus given by N×Zd, where the factor
N represents the scale of the index. The distance function d is given by

d ((j, k), (j′, k′)) =
∥∥∥2−jk − 2−j′k′

∥∥∥
2

and therefore
ω ((j, k), (j′, k′)) = 2|j−j′|

(
1 + 2min(j,j′)

∥∥∥2−jk − 2−j′k′
∥∥∥
2

)
.

In this case we have cΛ = 2 and cS = cT = 1. The approximation spaces Bα
p,q in this case are the

well-known Besov spaces [13, 16]. Our results imply that for a sufficiently well-localized wavelet frame,
Besov spaces can be characterized by both the primal as well as the dual frame coefficients. A signal
class C which is particularly well-approximable by wavelets is the class of smooth functions with point
singularities. We refer to [14] for details.

The significance of our localization result to wavelet frames is limited because by now several wavelet
constructions exist where the dual frame is explicitly given as another wavelet frame with explicitly
specified properties [6]. In the next examples we go beyond wavelets.

4.3.2 Curvelets and Shearlets

We start with briefly reviewing the idea behind curvelets and shearlets. They both represent a two-
dimensional generalization of wavelets which is optimally adapted to anisotropic structures such as piece-
wise smooth functions with curved singularities [3, 29]. In order to achieve this, two main ingredients
are necessary, namely an anisotropic dilation operation which maps a square to a rectangle obeying the
parabolic scaling relation

width ∼ length2,

as well as a directional operation which can either be rotation (curvelets) or shearing (shearlets). We refer
to [3, 29] for more information. One of the reasons for the success of curvelet and shearlets is that they
are capable to optimally approximate the set C of bivariate, piecewise C2 functions with C2 singularity
curves [3, 28, 22] and to optimally compress propagation operators for wave equations [2, 23].

The construction of useful curvelet and shearlet frames is not yet at a stage comparable to that of
wavelet constructions. In particular, only recently the first compactly supported shearlet frames have
been constructed in [25]. For these frames it is in general not known what their duals look like and what
properties they have. In this respect, studying the associated localization properties is relevant.

We now show that our results can be applied to curvelets and shearlets, but first we introduce the
index distance function ω which is natural for these frames, see [23, 2, 31].

Remark 4.7. In order to understand the rest of this section the reader must be familiar with the con-
structions of curvelet and shearlet frames in [2, 23, 29, 25]. A full description of these works would be
beyond the scope of this paper which is why we formulate our results directly in terms of the associated
index sets and the corresponding index distance function.

In general curvelets and shearlets form a frame Γ = (γλ)λ∈Λ for L2(R2) Every index λ in the index
set Λ consists of a scale sλ ∈ N, a direction θλ ∈ [−π,π) and a location xλ ∈ R2. Specifically for curvelets
we have

ΛC =
{
(j, l, k) ∈ N× Z× Z2 : −2*j/2+−1 ≤ l < 2*j/2+−1

}

and for λ = (j, l, k) ∈ Λ we have

sλ = j, θλ = πl2−*j/2+, xλ = Rθλ

(
k12

−j , k22
−j/2

))
, k = (k1, k2),

and Rθ denotes the rotation matrix by angle θ ∈ [0, 2π). For shearlets we have

ΛS =
{
(j, l, k, ε) ∈ N× Z× Z2 × {0, 1} : −2*j/2+ ≤ l < 2*j/2+

}
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and for λ = (j, l, k, ε) ∈ Λ we have

sλ = j, θλ = επ/2 + arctan
(
−l2−*j/2+

)
, xλ = (Sε

l )
−1Dε

2−jk,

where S0
l denotes the shear matrix

(1 l
0 1

)
, S1

l =
(1 0
l 0

)
and D0

s = diag(s, s1/2), D1
s = diag(s1/2, s). It

is possible to construct bandlimited tight frames of curvelets or shearlets but often tightness has to be
sacrificed for other desirable properties, such as compact support in space, to be fulfilled. In general
this yields curvelet frame systems Γ = (γλ)λ∈ΛC or shearlet frame systems Σ = (σλ)λ∈ΛS which are
well-localized with respect to the index distance ω(λ,λ′) = 2|sλ−sλ′ |(1 + d(λ,λ′)) where d denotes the
distance function as defined in the next definition.

Definition 4.8. Define the parabolic pseudodistance operating on ΛC or ΛS by

d(λ,λ′) := |θλ − θλ′ |2 + |xλ − xλ′ |2 + |〈eλ, xλ − xλ′〉| , (44)

where eλ := (cos(θλ), sin(θλ))).

We would like to emphasize the following important point:

The index distance ω is the natural notion of index distance for shearlet and curvelet frames!
It is the equivalent of the well-known index distance for wavelets studied in Section 4.3.1.

The above statement has first been observed in [31] and used in [2] for curvelets and in [23] for shearlets.
This should serve as a motivation for studying localization properties with respect to ω. We still need

to verify that ω satisfies all the assumptions from Section 2. This is done in the following lemma.

Lemma 4.9. We have

cΛS =
5

4
, cΛC = 2, cS = 2, cT = 5. (45)

The index distance ω is (2, 2)-admissible on both ΛC and ΛS. The admissibility constant CA for the
curvelet parameterization is given by (46).

Proof. Admissibility. In order to establish the admissibility we need to consider the quantity

∑

λ∈Λj

(1 + 2qd(µ,λ))−2 ≤ c2S
∑

λ∈Λj

(1 + 2qd(λ, µ))−2

for µ arbitrary. We only consider the case j ≥ q, since for j ≤ q, the quantity to be estimated can be
bounded by the case j = q. In the curvelet case the sum on the right-hand side can be estimated by

∑

l∈Z

∑

k∈Z2

(
1 + |2q/2θµ − 2q/2θλ|2 + |〈eλ, 2q/2xµ − 2q/2xλ〉|2 + |〈e⊥λ , 2q/2xµ − 2q/2xλ〉|2 + |〈eλ, 2qxµ − 2qxλ〉|

)−2
,

in the shearlet case, the same estimate holds with an additional sum over ε ∈ {0, 1}. Let us start by
showing the admissibility for the curvelet parameterization in which case we have to estimate the quantity

sup
θ∈T,x∈R2

∑

l∈Z

∑

k∈Z2

(
1 + |θ − 2q/2−*j/2+πl|2 + |x2 − 2q/2−*j/2+k2|2 + |x1 − 2q/2−jk1|2 + |x1 − 2q−jk1|

)−2

which can be bounded by

2 sup
θ∈T,x∈R2

∑

l∈Z

∑

k∈Z2

(
1 + |θ − 2(q−j)/2l|2 + |x2 − 2(q−j)/2k2|2 + |x1 − 2q−jk1|

)−2

Writing this in the form

22(j−q)+1 sup
θ∈T,x∈R2

∑

l∈Z

∑

k∈Z2

22(q−j)
(
1 + |θ − 2(q−j)/2l|2 + |x− 2(q−j)/2k2|2 + |x− 2q−jk1|

)−2
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this can be seen as a Riemann sum approximation of the integral

22(j−q)+1

∫

R

∫

R2

fθ,x(ξ, y)dydξ,

with
fθ,x(ξ, y) :=

(
1 + |θ − ξ|2 + |x2 − y2|2 + |x1 − y1|

)−2
.

By translation-invariance we only need to consider θ = 0 and x = 0 in the evaluation of the integral. The
above integral provides an upper bound for the sum

22(j−q)+1
∑

l∈Z

∑

k∈Z2

22(q−j) min
(ξ,y)∈Il,k

fθ,x(ξ, y)

with
Il,k := 2(q−j)/2[l, l + 1]× 2q−j [k1, k1 + 1]× 2(q−j)/2[k2, k2 + 1].

Since

|fθ,x(2(q−j)/2l, 2q−jk1, 2
(q−j)/2k2)− min

(ξ,y)∈Il,k
fθ,x(ξ, y)| ≤ diam(Il,k)‖∇fθ,x‖L∞[Il,k]

≤
√
5‖∇fθ,x‖L∞[Il,k]

we can bound ∑

λ∈Λj

(1 + 2qd(µ,λ))−2

by

c2S2
2(j−q)+1

(∫

R

∫

R2

f0,0(ξ, y)dydξ +
√
5 sup
(θ,x)∈I0,0

∑

l∈Z

∑

k∈Z2

‖∇fθ,x‖L∞[Il,k]

)
.

This shows the (2, 2)-admissibility of ΛC with an admissibility constant

CA = 8

(∫

R

∫

R2

f0,0(ξ, y)dydξ +
√
5 sup
(θ,x)∈I0,0

∑

l∈Z

∑

k∈Z2

‖∇fθ,x‖L∞[Il,k]

)
< ∞. (46)

We have used the fact that cS = 2 which we prove below. The shearlet case can be handled in an
analogous way.
Separability. To show that cΛC = 2 we need to establish that

ω(λ,λ′) = 2|sλ−sλ′ |(1 + 2min(sλ,sλ′ )d(λ,λ′)) ≥ 2, for all λ '= λ′ ∈ ΛC .

Clearly, we only need to consider the case sλ = s′λ since otherwise we would have |sλ − sλ′ | ≥ 1 which
would establish the claim. Furthermore we can assume that θλ = θλ′ , since otherwise

1 + 2j |θλ − θλ′ |2 ≥ 1 + 2j
(
π2−*j/2+

)2
≥ 2.

It remains to consider the case sλ = sλ′ , θλ = θλ′ and xλ '= xλ′ . Since rotation by θλ is an isometry we
get

1 + 2j |xλ − xλ′ |2 + 2j |〈eλ, xλ − xλ′〉| = 1 + 2j2−2jδ21 + 2j2−jδ22 + 2j2−jδ1 ≥ 2,

where λ = (j, l, k), λ′ = (j, l, k′) and δ = k − k′ '= 0. Along similar lines it can be shown that also
cΛS = 5

4 . Again we may assume that j = j′. We first consider the case ε = ε′ = 0 (the case ε = ε′ = 1
being the same). Then

|θλ − θλ′ |2 =
∣∣∣arctan

(
−l2−*j/2+

)
− arctan

(
−l′2−*j/2+

)∣∣∣
2
≥ 1

4
|l′ − l|22−2*j/2+,

since
∣∣l2−*j/2+

∣∣ ≤ 1 and d
dx arctan(x) = 1

1+x2 . Therefore we only need to consider the case λ =
(j, l, k, ε), λ′ = (j, l, k′, ε). In this case we have

|xλ − xλ′ |2 =
(
2−jδ1 − l2−*j/2+δ2

)2
+ 2−2*j/2+δ22 ,
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where δ = k − k′. If δ2 '= 0 the above quantity is greater or equal 2−j which is what we need. If δ2 = 0
and δ1 '= 0 we invoke the final term of d and estimate

|〈eλ, (Sε
l )

−1Dε
2−j (δ1, 0)

)〉| = cos(θλ)2
−jδ1 ≥ 1√

2
2−j .

This proves the case ε = ε′. For the case ε '= ε′ we only need to consider the boundary case λ =
(j, 2*j/2+, k, 0) and λ′ = (j,−2*j/2+, k′, 1). In this case θλ = θλ′ = π

4 . Also here one can show that

|xλ − xλ′ |2 + |〈eλ, xλ − xλ′〉| ≥ 1√
2
2−j ,

whenever xλ '= xλ′ . This proves the first two statements regarding the constants cΛS and cΛC .
Pseudo-symmetry and pseudo-triangle inequality. The equality for cS follows by going through
the proof of [2, Proposition 2.2] and keeping track of the implicit constants. The pseudo triangle inequality
has also been proven in [2] but it is fair to say that the proof is somewhat difficult to follow. Additionally,
only the existence of a finite constant cT is asserted there. For the convenience of the reader we present
an alternative proof which will provide us with the desired expression for the constant cT . We operate
in the coordinate system spanned by eλ, e⊥λ and use the following notation from [2]:

xλ = (0, 0)), eλ = (1, 0)), xλ′ = (x1, x2)
), eλ′ = (cos(α), sin(α))), xλ′′ = (y1, y2)

), eλ′′ = (cos(β), sin(β))).

We get
d(λ,λ′) = |x1|+ |x1|2 + |x2|2 + |α|2, (47)

d(λ,λ′′) = |y1|+ |y1|2 + |y2|2 + |β|2, (48)

d(λ′′,λ′) = |cos(β)(x1 − y1) + sin(β)(x2 − y2)|+ |x1 − y1|2 + |x2 − y2|2 + |α− β|2. (49)

First, we note that by the usual triangle inequality it holds that

|x1|2 + |x2|2 + |α|2 ≤ 2
(
|y1|2 + |y2|2 + |β|2 + |x1 − y1|2 + |x2 − y2|2 + |α− β|2

)
. (50)

It remains to estimate |x1| by d(λ,λ′′) + d(λ′′,λ′). If we fix any ε > 0 this follows easily for |x1 − y1| ≥ ε
since then

|x1| ≤| y1|+ |y1 − x1| ≤ |y1|+ ε−1|y1 − x2|2 ≤ ε−1 (d(λ,λ′′) + d(λ′′,λ′)) . (51)

For |x1 − y1| := δ < ε and any fixed constant ν > 0 we only need to consider the case |β| ≤ νδ1/2 and
|x2 − y2| ≤ νδ1/2, since otherwise we would have

|x1| ≤| y1|+ δ ≤ |y1|+ ν−2(|β|2 + |x2 − y2|2) ≤ ν−2 (d(λ,λ′′) + d(λ′′,λ′)) . (52)

Now we note that

| cos(β)(x1 − y1)| ≥
√
1− |β|2|y1 − x1| ≥

√
1− ν2ε|y1 − x1| (53)

and similarly
| sin(β)(x2 − y2)| ≤ ν2δ ≤ ν2|x1 − y1|. (54)

Putting together (53) and (54) we arrive at

|cos(β)(x1 − y1) + sin(β)(x2 − y2)| ≥ (
√
1− ν2ε− ν2)|x1 − y1|,

which, using the inequality √
1− ν2ε ≥ 1−

√
εν,

valid for 0 < ν, ε < 1 and putting τ := 1−
√
εν − ν2, implies

|x1| ≤ τ−1 (|y1|+ |cos(β)(x1 − y1) + sin(β)(x2 − y2)|) ≤ τ−1 (d(λ,λ′′) + d(λ′′,λ′)) . (55)

Now we may put ε = 1
3 and ν = 1√

3
to obtain from (51), (52) and (55) that

|x1| ≤ 3 (d(λ,λ′′) + d(λ′′,λ′))

This inequality, together with (50) and (47), (48), (49) finally yields

d(λ,λ′) ≤ 5 (d(λ,λ′′) + d(λ′′,λ′)) ,

which is what we wanted.
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We close with the following result which is a direct consequence of Theorem 3.1.

Theorem 4.10. Assume we have a shearlet frame Γ = (γλ)λ∈ΛS which is N -localized with respect to ω,
meaning that

|〈γλ, γλ′〉| ≤ C0ω(λ,λ
′)−N for all λ,λ′ ∈ ΛS ,

with
ω(λ,λ′) = 2|sλ−sλ′ |

(
1 + 2min(sλ,sλ′ )d(λ,λ′)

)
,

and d given by (44). Then the canonical dual frame Γ̃ is N+-localized with N+ given by (15) and
cS , cT , cΛS given by (45).

4.4 Adaptive Frame Methods for Elliptic Operator Equations

We give another application concerning the adaptive solution of elliptic operator equations in the spirit
of [32, 9]. Our exposition mainly utilizes the notation of [9]. Consider a Gelfand triple

B ⊂ H ⊂ B′,

meaning that B is a Banach space, B′ its dual with respect to the pairing (·, ·)H and the embeddings are
dense.

Consider further a boundedly invertible operator F : B → B′ and, given f ∈ B′ we seek u ∈ B so that

Fu = f. (56)

For concreteness we can think of H = L2(Rd), B = H1(Rd), and F = ∆. For a frame Ψ for H we also
need to define the frame analysis operator

GΨ :

{
H → l2(Λ)
g %→ (f,Ψ)H

and its dual the frame reconstruction operator

G∗
Ψ :

{
l2(Λ) → H
c %→ c)Ψ

We call a frame Ψ = (ψλ)λ∈Λ for H a Gelfand frame if Ψ ⊂ B, Ψ̃ ⊂ B′, and there exists a Gelfand triple
(Bd, l2(Λ),B′

d) of sequence spaces such that the operators

G∗
Ψ :

{
Bd → B
c %→ c)Ψ

and GΨ̃ :

{
B → Bd

f %→
(
f, Ψ̃

)

H

are bounded. In addition, suppose that there exists an isomorphism DB : Bd → l2(Λ) such that its
l2(Λ) adjoint D∗

B is also an isomorphism. For B = H1(Rd) and H = L2(Rd) and Ψ a wavelet (or
curvelet/shearlet) frame we would typically have

Bd = {c : (2sλcλ)λ∈Λ ∈ l2(Λ)} = ḃ12,2(Λ) ∩ l2(λ) and DB = D∗
B : c %→ (2sλcλ)λ∈Λ.

We briefly sketch how it can be seen that also curvelet and shearlet frames for the Gelfand tripleH1(R2) ⊂
L2(R2) ⊂ H−1(R) can be constructed. First, observe that the tight curvelet frame constructed in [2]
is indeed a Gelfand frame as desired (this follows quite straightforwardly from considering the Fourier
supports of the frame elements). Then, utilize the fact that every reasonable curvelet or shearlet frame is
localized with the tight curvelet frame, meaning that their cross-Gramian has fast off-diagonal decay [21].
Finally, using e.g. Theorem 4.10, we see that also its dual is localized with the tight curvelet frame. With
arguments akin to those of Section 4.2 it follows that all these frames span the same function spaces,
and in particular any shearlet frame which is intrinsically localized and localized with the tight curvelet
frame from [2] constitutes a Gelfand frame for the triple H1(R2) ⊂ L2(R2) ⊂ H−1(R). The practical use
of this fact is however limited by the fact that no constructions of Gelfand frames of curvelet or shearlets
are known for finite domains D ⊂ R2. This is a challenging problem of ongoing interest [27] and we hope
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that useful constructions will appear in the near future. Now, the system (56) can be discretized to the
infinite discrete system

Fc = f (57)

with
F = (D∗

B)
−1GΨFG∗

ΨD
−1
B and f = (D∗

B)
−1GΨf.

Under our assumptions, the operator F : l2(Λ) → l2(Λ) is bounded and boundedly invertible on its
range ran(F) = ran((D∗

B)
−1GΨ), [9, Lemma 4.1]. Therefore, the discrete system (57) can in principle be

inverted by applying an iterative solver such as a damped Richardson iteration. In practice one has to
compute with finite quantities and therefore only an inexact application of the matrix F can be computed
using a suitable matrix-vector multiplication routine [5]. In general the result of such an application lies
outside of ran(F) and a possible error in the kernel of F will not decrease in subsequent iterations, see
the discussions in [32, 9, 10]. Defining Q : l2(Λ) → ran(F) the orthogonal projection onto the range of
F, it is possible to show that this does not have a negative effect on the complexity of the algorithms in
these papers, provided that Q is bounded on a certain weak lp space. This condition would for instance
follow from the fact that Q is N -localized with a sufficiently large N [5, 32]. Establishing its validity has
only been shown for certain simple cases with B = B′ = H [9]. Even for the case of wavelet frames and
the Laplace equation, it is an open question whether it holds true.

As a remedy, in [32] it is shown that using an arbitrary bounded projector

P : l2(Λ) → l2(Λ)

with
ker(P) = ker(G∗

ΨD
−1
B ) (58)

one can modify the algorithms from [32, 9, 10] to provably converge with optimal computational com-
plexity provided that the matrix P is N -localized with N sufficiently large. Let us consider the simple
case of the Laplace equation, in which case the operator DB is the diagonal matrix with entries (2sλ)λ∈Λ

(both for wavelet and curvelet/shearlet frames). Take a wavelet, curvelet or shearlet frame Ψ for H and
consider the (injective) mapping

Z :

{
B → l2(Λ)
f %→ DBGΨ̃f

By the definition of a Gelfand frame, this mapping is bounded. We also have that

G∗
ΨD

−1
B Zf = G∗

ΨD
−1
B DBGΨ̃f = G∗

ΨGΨ̃f = f for all f ∈ B. (59)

Therefore, we can put

P :=

{
l2(Λ) → l2(Λ)
c %→ ZG∗

ΨD
−1
B c

and see, using (59), that this mapping is indeed a projector with (58). To find the matrix representation
of P we consider the systems

DBΨ̃ :=
(
2sλ ψ̃λ

)

λ∈Λ
D−1

B Ψ :=
(
2−sλψλ

)
λ∈Λ

and note that
P =

(
DBΨ̃, D−1

B Ψ
)

H
(60)

We claim that P is localized, provided that Ψ is localized. Indeed, by Theorem 4.4, the cross-Gramian
(Ψ̃,Ψ)H is N+-localized, provided that Ψ is N -localized with N sufficiently large. This means that

∣∣∣(ψ̃λ,ψλ′)H
∣∣∣ ! 2−|sλ−sλ′ |N+

(1 + d(λ,λ′))−N+

.

Consequently, by (60), for the entries of P = (pλ,λ′)λ,λ′∈Λ we have the estimate

|pλ,λ′ | = 2sλ−sλ′
∣∣∣(ψ̃λ,ψλ′)H

∣∣∣ ! 2−|sλ−sλ′ |(N+−1)(1 + d(λ,λ′))−N+

,

which shows that P is N+ − 1-localized. In summary, we can construct a projector P ensuring optimal
solvability of the discrete operator equation (57) using the algorithm modSolve from [32] for any frame
system Ψ which is sufficiently localized. This includes in particular curvelet and shearlet frames, but to
our knowledge our findings are also new in the more classical case of wavelet frames.
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