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Abstract

The present paper is concerned with the study of manifold-valued multiscale
transforms with a focus on the Stiefel manifold. For this specific geometry we derive
several formulas and algorithms for the computation of geometric means which will
later enable us to construct multiscale transforms of wavelet type. As an application
we study compression of piecewise smooth families of low-rank matrices both for
synthetic data and also real-world data arising in hyperspectral imaging. As a main
theoretical contribution we show that the manifold-valued wavelet transforms can
achieve an optimal N -term approximation rate for piecewise smooth functions with
possible discontinuities. This latter result is valid for arbitrary manifolds.
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1 Introduction

This paper is concerned with two themes, namely the handling of manifold-valued data
in general and more specifically the efficient compression and analysis of sequences of
low-rank matrices.

Low-rank matrix or tensor-valued sequences arise in many important applications,
whenever low-rank approximations of a parameterized family of large matrices or tensors
(which otherwise would not be accessible computationally) are considered.

Examples include, but are not limited to, signal processing (in particular video and
hyperspectral imaging), latent semantic indexing in information retrieval, dynamic graphs
(and the associated graph Laplacians), solutions of high-dimensional time-dependent
PDE’s (such as the chemical master equation or the Schrödinger equation), or more
general parameter dependent linear operators.

In order to connect this specific type of data to geometry, write a matrix A ∈ Rn×n

of rank p as
A = USV", (1)

where
U, V ∈ Rn×p, U"U = V"V = Ip (2)

and
S ∈ Rp×p.

One particular way to arrive at a decomposition of the form (1) is to apply a truncated
singular value decomposition to A in which case S is always a diagonal matrix. Due to
(2), the matrices U, V lie in the orthogonal Stiefel manifold St(n, p), see Section 2.2
below.

In this work we exploit this geometric structure to develop wavelet-type multiscale
decompositions for sequences of low-rank matrices of a fixed rank. These decompositions,
which are in the spirit of [35], turn out to be optimally adapted to piecewise smooth data
which in practice most often occurs. We prove this for general manifolds and confirm our
results numerically. As an application we develop a compression scheme for hyperspectral
image data.
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1.1 Contributions

The contributions of this paper are in two directions. Firstly, we study general manifold-
valued multiscale decompositions and their properties. In this regard, one of our main
findings is an existence theorem for geometric averaging operations based on arbitrary
choices of retractions onto the manifold analogous to the exponential mapping, see Section
2.1. In [27] similar averages are developed which however require the efficient computabil-
ity of the exponential and logarithm mapping of the manifold – an assumption which for
instance in the case of the Stiefel manifold is not fulfilled. Based on geometric averag-
ing operations we show how wavelet-like multiscale decompositions can be constructed.
These constructions are much in the spirit of [35] but with more freedom in the choice of
averaging operations.

After introducing these constructions we prove our main theoretical result. In Theorem
3.6 we show that the manifold-valued wavelet decompositions achieve an optimal best N -
term approximation rate for piecewise smooth functions. For linear wavelet constructions
this result is of course also true and it may be regarded as one of the pillars of their
success. Our result states that this behavior can be retained in arbitrary manifolds.

Secondly, we study a number of results, algorithms and applications tailored to the
specific case of the Stiefel manifold. This geometry which – as we have already outlined
– is of tremendous importance for many applications is not treated in [35] and presents
many challenges. For instance, [35] assumes the efficient computability of exponential
and logarithm mapping, which is not given in the Stiefel manifold, especially for high
dimensional matrices. As a remedy, we develop alternative retractions in Section 2.2.3
and present practical algorithms for their computation. By our general results these
constructions perform as well as those based on the exponential mapping, but with a
huge gain in efficiency.

To demonstrate the practical usefulness of our algorithms we develop a compression
scheme for hyperspectral image data in Section 4.2.

1.2 Relation to Other Work

To put this paper in perspective we comment on some related work. In regards to
multiscale analysis of geometric data there exists by now a substantial body of work
[35, 21, 32, 38, 20]. Our paper builds on these results and ideas. On the other hand, low
rank approximation is probably the oldest and by far most popular and significant model
reduction technique in computational science.

The theory of dynamic low-rank approximation resulting in piecewise smooth families
of low-rank matrices has been studied in [28, 29, 33, 2, 4, 12]. We also refer to this work
for further information on application areas.

Structured low-rank approximation has been studied in [7]. We expect our work to be
extendible to decompositions of the type studied in that paper.

Other applications of data with values in the Stiefel manifold and related geometries
can be found in [1, 18, 24].

Even though in the present paper we confine the discussion to low-rank matrices, we
expect an extension to the tensor case to be feasible, see also [29].
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1.3 Outline

To facilitate the reading we give a brief outline of the paper. In Section 2.1 we start by
defining geometric notions of averages in general manifolds. The main result of this section
is a proof of well-definedness of these constructions, extending classical results in [27].
After that, in Section 2.2.3 we study specific choices for retractions on the Stiefel manifold
which are necessary in the definition of a geometric average. We obtain explicit and
to our knowledge new expressions and algorithms for several computationally attractive
retractions and their inverses.

In Sections 3.2 and 3.1 we give two constructions of multiscale transforms of manifold-
valued functions, inspired by [35] but based on our more general averaging operations.
Then, in Section 3.3 we prove our main theoretical result, namely that these constructions
attain an optimal approximation rate for piecewise smooth functions.

Section 4 contains applications and computational experiments, first with synthetic
data and later, in Section 4.2, we present a method for the compression of hyperspectral
image data. Finally, in Section 4.3 we comment on the interesting work [28] for the
purpose of obtaining piecewise smooth low-rank approximations to a given matrix curve.

1.4 Notation

We use the symbol A ! B to describe that a quantity A is bounded by a fixed constant
times the quantity B. Matrices are always written in boldface letters. We use the symbol
In for the n× n identity matrix and 0n for the n× n zero matrix.

2 Geometric Preliminaries

The present section contains basic geometric facts which we will use later on. In the first
Section 2.1 we treat general manifolds and exhibit useful methods of defining intrinsic
notions of a weighted average of points. These results universally apply to any Riemannian
manifold and are of independent interest.

Then, in Section 2.2 we specify these findings to the geometry of the Stiefel manifold.
In particular we construct several useful notions of retractions which, along with their
inverses, turn out to be efficiently computable.

2.1 Retractions and Averages

For now we consider a general Riemannian manifold M with metric 〈·, ·〉M . We assume
some familiarity with the basics of Riemannian geometry, a good entrance point into this
topic is [13]. An important operation in our analysis will be the addition of a tangent
vector to a point. Classically, this is done via the exponential mapping expx(ξ) which
maps a tangent vector ξ ∈ TxM to the endpoint of the (locally) unique geodesic curve
emanating from x with initial speed ξ. The exponential mapping also possesses an inverse
which maps two points x, y ∈ M to the (locally) unique vector log(x, y) ∈ TxM such that

expx (log(x, y)) = y. (3)

4



In order to arrive at computationally efficient algorithms we are also considering alterna-
tive pairs (f, g) of functions, analogous to the pair (exp, log).

Definition 2.1. A pair (f, g) of functions

f : TM → M, g : M ×M (4)

is called a retraction pair if

f (x, g (x, y)) = y, for all x, y ∈ M, (5)

and

f (x, 0) = x,
∂

∂ξ
f(x, 0) = Id for all x ∈ M. (6)

In general f will only be locally defined around M and g around the diagonal of
M ×M . Certainly, the pair (exp, log) satisfies the above assumptions [13] and therefore
forms a retraction pair.

Given a retraction pair (f, g), points xi, i = 1, . . . , d and weights (wi)di=1 ∈ R such
that

d∑

i=1

wi = 1 (7)

we define the average
avg ((wi), (xi))

as the unique point x∗ which satisfies

d∑

i=1

wig (x∗, xi) = 0. (8)

Remark 2.2. The motivation for (8) comes from the linear theory, where g(x, y) = y−x.

We now show the important fact that for any retraction pair, the definition (8) yields
a well-defined notion of average.

Proposition 2.3. The average is locally well-defined and unique for any retraction pair
(f, g).

Even if the Riemannian metric does not play a role in Proposition 2.3, we employ it
as an auxiliary device in the proof because we want to make use of the following result
which is proven in [23, Corollary 2.6 (a)].

Theorem 2.4. Assume that Bρ(p) is a convex geodesic ball around x ∈ M with ρ small
enough (see [23] for precise details). There exists ε > 0 such that for every vector field Υ
defined on Bρ such that

‖Υ‖ ≤ ε and ‖Id+∇Υ‖ ≤ ε

(∇ denoting the covariant derivative), there exists a unique point x∗ ∈ Bρ such that

Υ(x∗) = 0.
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Proof of Proposition 2.3. A short computation involving (6) and (5) shows that by putting

Υy(x) := g(x, y)

to be the vector field of difference vectors pointing to x ∈ M , we get

∇ξΥx(x) = −ξ, x ∈ M, ξ ∈ TxM, (9)

where ∇ denotes the covariant derivative. Indeed, this may be seen by first differentiating
(5) w.r.t. x (if necessary in a chart) which yields

∂

∂x
f(x, g(x, y)) +

∂

∂ξ
f(x, g(x, y))

∂

∂x
g(x, y) = 0.

Using (6) this implies that with x = y

Id+
∂

∂x
g(x, y) = 0.

Finally, we note that, using the fact that Υy(y) = 0, we deduce that

∂

∂x
Υy(x)

∣∣
x=y

ξ = ∇ξΥy(y),

which gives (9). Therefore, since additionally g(y, y) = 0, and using (7), we have for all
ε > 0 and provided that the points xi are all contained in a sufficiently small geodesic
ball B, that ∥∥∥∥∥

d∑

i=1

wig(x, xi)

∥∥∥∥∥ ≤ ε (10)

and ∥∥∥∥∥Id+∇
d∑

i=1

wiΥxi(x)

∥∥∥∥∥ ≤ ε. (11)

Equations (10) and (11) suffice to establish the claim, using Theorem 2.4.

Remark 2.5. It might appear puzzling that in our proof we used a property (9) of the
covariant derivative ∇Υy even though the statement of the result is completely independent
of the choice of a Riemannian metric on M . The justification lies in the fact that, since
Υx(x) = 0, the expression (9) is independent of the metric, after all.

We have used the results of [23] in our proof of well-definedness of the averaging
operation. In this work one can also find algorithms for the computation of avg ((wi), (xi)).
For completeness we mention a simple iterative fixed-point method in Algorithm 1, which
converges to the desired average. A better choice would be a Newton-type method, see
again [23] and also [1] for more information. In our experiments we have found that
the iteration in Algorithm 1 typically requires 2 − 3 iterations until it reaches machine
precision.
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Algorithm 1: Calculate avg ((wi), (xi)).
y ← x1

while
∥∥∥
∑d

i=1 wig(y, xi)
∥∥∥ > TOL do

y ← f
(
y,
∑d

i=1 wig(y, xi)
)

end while
return y

2.2 The Stiefel Manifold

We now specify our previous findings to the geometry of the Stiefel manifold. But first
we start with a short motivation why we are interested in this particular geometry. After
that we will exhibit several useful choices for retractions.

2.2.1 Connection with Low Rank Matrices

The fact that geometry plays a role in low rank approximation has already been noted in
[1, 18] (and possibly much earlier elsewhere) where it is observed that the space

Mn,p :=
{
A ∈ Rn×n : rank (A) = p

}

of n × n matrices of rank p admits a manifold structure. In this paper we will actually
not use this structure but factorizations of the form (1) with matrices U, V which lie on
the Stiefel manifold

St(n, p) :=
{
X ∈ Rn×p : X"X = Ip

}
.

The main result which enables us to do this is the existence of a smooth singular value
decomposition:

Theorem 2.6 ([6], Theorem 2.4). Assume that γ : t ,→ A(t) ∈ Mn,p is a Cs curve. Then
there exist Cs matrix curves

γV : t ,→ U(t) ∈ St(n, p), γV : t ,→ V(t) ∈ St(n, p), γS : t ,→ S(t) ∈ Rp×p

such that
A(t) = U(t)S(t)V(t)".

We now assume that we are given a piecewise smooth curve γ : I → Mn,p, where
I ⊂ R is an interval. This curve induces three piecewise smooth families

γU : t ,→ U(t) ∈ St(n, p), γV : t ,→ V(t) ∈ St(n, p)

and
γS : t ,→ S(t) ∈ Rp×p.

The curve γS is simply a vector valued curve which can be further processed with standard
data processing methods such as wavelets. For the curves γU , γV this is not the case since
they take values in a nonlinear space. When we wish to compress these curves it is
important to respect the underlying nonlinear constraints so that the columns of the
resulting matrices are maximally uncorrelated, ensuring minimal redundancy.

7



2.2.2 Metric Properties

It is easy to see that the set St(n, p) carries the structure of a smooth manifold by viewing
it as the zero set of the submersion

F :

{
Rn×n → Rp×p

X ,→ X"X− Ip

From this we also see that

dim (St(n, p)) = np− 1

2
p(p+ 1).

Furthermore, it is straightforward to obtain the following simple expression for the tangent
space attached to a point X ∈ St(n, p):

TXSt(n, p) =
{
ξ ∈ Rn×p : ξ"X+X"ξ = 0p

}
.

The metric properties of the Stiefel manifold are slightly more complicated. In particular
there exist two nonequivalent canonical choices for a metric on St(n, p). The first one
views the manifold as a factor of the orthogonal group O(n):

St(n, p) = O(n)/O(n− p),

by identifying the Stiefel manifold St(n, p) with the equivalence classes

[Q] :=

{
Q

(
Ip 0
0 Qn−p

)
: Qn−p ∈ O(n− p)

}
,

Q ∈ O(n). The tangent space of St(n, p) at [Q] is identified with the horizontal space at
Q consisting of vectors

Q

(
µ −η"

η On−p

)
, (12)

where µ ∈ Rp×p is skew symmetric, see [18]. The Riemannian metric is defined by restric-
tion of the metric on O(n). The so-defined metric is sometimes called the canonical metric.
Another approach defines the Riemannian metric by viewing St(n, p) as a Riemannian
submanifold of Rn×p with the metric coming from the inner product

〈ξ, η〉 := tr
(
ξ"η

)
.

We will mainly focus on the latter approach which we call the embedded metric.

2.2.3 Retraction Pairs

We now turn to the problem of defining retractions on the Stiefel manifold. A natural
choice would be to take the exponential function. Of course, the functions exp and log
depend on the Riemannian metric imposed on St(n, p).

Exponential function for canonical metric. For the canonical metric the expo-
nential and logarithm functions can be easily defined using the matrix exponential

exp(ξ) :=
∑

j≥0

ξj

j!
, ξ ∈ sl(n)

8



and its local inverse log. Then, for a vector ξ ∈ TXSt(n, p), X = [Q] ∈ St(n, p), where ξ
has a repesentation of the form (12) we can put

expX(ξ) :=

[
Q exp

((
µ −η"

η On−p

))]
.

Algorithmically, these formulas require us to deal with n × n matrix operations which
is clearly impractical if p is much smaller than n. There exist other expressions for the
exponential function associated with the canonical metric which only require the handling
of n× p matrices, see [18], but no simple expression for the logarithm function is known
to us.

Exponential function for embedded metric. For the embedded metric, a
formula for the computation of the exponential function is given by

expX(ξ) = (X, ξ) exp

(
X"ξ −ξ"ξ
Ip X"ξ

)(
Ip
0p

)
exp

(
−X"ξ

)
,

see e.g. [18, 1]. Again, we are not aware of a computationally simple expression for the
logarithm mapping.

Closest Point Projection.
Our requirement is that f and g should both be computable efficiently. Probably the

most efficient choice for f is given by

f(X, ξ) := π(X+ ξ),

where ξ ∈ TXSt(n, p) and
π : Rn×p → St(n, p)

denotes the closest-point projection onto St(n, p) with respect to the metric induced by
〈·, ·〉. This can be computed via a polar decomposition of a matrix X = RH with
R ∈ St(n, p) and H ∈ Rp×p is symmetric. This decomposition is unique whenever X is
nonsingular and can be computed efficiently [30, 25]. Algorithm 2 gives a quadratically
convergent iterative scheme. Furthermore, for this choice of f , the equation (6) holds
true.

Algorithm 2: Calculate Y = π(Z), the closest point projection of Z ∈ Rn×p onto
St(n, p).

Y ← Z
while

∥∥Y"Y − Ip
∥∥ > TOL do

Y ← Y
(
Ip +

1
2

(
Ip −Y"Y

))

end while
return Y

We also need to find a simple expression for the inverse g of f . It turns out that such
an expression exists.
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Proposition 2.7. Assume that X"Y has only eigenvalues with positive real part (in other
words, −X"Y is a Hadamard matrix). Then we have

g(X,Y) = 2Y

∫ ∞

0

exp(−tX"Y) exp(−tY"X)dt−X

or

π

(
2Y

∫ ∞

0

exp(−tX"Y) exp(−tY"X)dt

)
= Y.

Before we get to the proof we collect some further auxiliary results regarding the
embedded geometry of the Stiefel manifold. For a general matrix Z ∈ Rn×p and X ∈
St(n, p), the orthogonal projection πTXSt(n,p) onto TXSt(n, p) is given by

πTXSt(n,p)(Z) = X+ Z−Xsym
(
X"Z

)
, (13)

where

sym(A) :=
1

2
(A+A")

denotes the symmetric part of a matrix. We also need a description of the normal space
NXSt(n, p) of St(n, p) at a point X ∈ St(n, p). We have

NXSt(n, p) =
{
XS : S ∈ Rp×p, S symmetric

}

and the orthogonal projection onto the normal space is given by

πNXSt(n,p)(Z) = Ysym
(
Y"Z

)
. (14)

With these preparations we can now proceed with the proof of the representation of g.

Proof of Proposition 2.7. Clearly g(X,Y) is uniquely defined as the matrix ξ which lies
both in the tangent space at X and the normal space of Y. Therefore, we must have that

ξ = YS, S ∈ Rp×p, S symmetric,

such that
X" (ξ −X) + (ξ −X)" X = 0p.

Therefore we have
X" (YS−X) + (YS−X)" X = 0p.

Now we use that X"X = Ip and obtain

X"YS+ SY"X− 2Ip = 0p. (15)

Equations of the form (15) are well-known and frequently studied in the area of control
theory, and it turns out that an explicit solution formula for S symmetric is given by the
expression of our proposition, see [36].

In practice we will not use Proposition 2.7 directly, but compute g(X,Y) via the
iterative procedure outlined in Algorithm 3:

Using (14) and (13), this iteration can be computed very efficiently.
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Algorithm 3: Calculate g(X,Y) for f the closest point projection onto St(n, p).

Y ← X1

while max
(∥∥Y − πNXSt(n,p)(Y)

∥∥ ,
∥∥Y − πTXSt(n,p)(Y)

∥∥) > TOL do
Y ← πNXSt(n,p)(Y)
Y ← πTXSt(n,p)(Y)

end while
return Y

Lemma 2.8. The iteration in Algorithm 3 converges towards g(X,Y).

Proof. The iterative procedure in Algorithm 3 is an instance of a very common way
to iteratively compute the intersection of two convex sets (in our case subspaces) by
alternating projections. A proof of convergence of these algorithms can be found in
[3].

Again, in our experiments we have found that the iteration in Algorithm 3 typically
requires 2− 3 iterations until it reaches machine precision.

Vertical Retraction. For the construction of the pair (f, g) we started with the
choice of f and found its inverse g. Another approach to construct a retraction is to
define the function g first and then find out whether the corresponding f is efficiently
computable. A natural choice is to put

g̃(X,Y) := πTXSt(n,p) (Y) = X+Y −Xsym
(
X"Y

)
, (16)

the orthogonal projection onto the tangent space in X. In contrast to the previous ex-
ample, it is now not so clear how to compute the corresponding retraction f̃ . The next
result, which can be found in [24, Chapter IV.9], shows how to easily compute it. For the
convenience of the reader we also provide a short proof.

Proposition 2.9. The function f̃ , satisfying

f̃(X, g̃(X,Y)) = Y for all Y ∈ St(n, p) (17)

and g̃ as in (16) can be taken to be f̃(X, ξ) := π̃X(X+ ξ), where

π̃X(Y) := Y +XS, (18)

where S ∈ Rp×p is symmetric and satisfies the algebraic Riccati equation

Y"Y + SY"X+Y"XS+ S2 − Ip = 0p. (19)

Proof. First note that, if we want (17) to hold, then certainly

f̃(X, ξ) = X+ ξ +XS

for some symmetric matrix S ∈ Rp×p. Therefore, since also

f̃(X, ξ)"f̃(X, ξ) = Ip,

we get the equation (19).
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We would like to remark that the Equation (19) can be solved efficiently, see for
instance [34].

We briefly summarize what we have achieved so far. For the Stiefel manifold we have
constructed efficiently computable pairs (f, g) of functions satisfying (4), (5) and (6).
These will be crucial in our later construction of a multiscale decomposition of Stiefel-
valued curves.

Using the above defined retraction pairs we can now define a geometric averaging
operation on St(n, p) which satisfies certain natural invariance properties.

There exists a natural transitive action τ of the group O(n) on St(n, p) via

τQ(X) := QX, Q ∈ O(n).

Lemma 2.10. For all functions g considered above, the average is invariant under the
action τ : we have

avg ((wi), (τQ(Xi))) = τQ (avg ((wi), (Xi))) .

Proof. This follows from the fact that the functions g are always invariant under the
action of τ .

Lemma 2.10 shows that the geometric averaging operation defined in this section is
invariant under an orthogonal change of coordinates, as it should be. Figure 1 shows the
different choices of retractions for the circle which is equal to St(2, 1).

(a) Retraction pair based on ex-
ponential map

(b) Retraction pair based on clos-
est point projection

(c) Retraction pair based on ver-
tical projection

Figure 1: Different retractions for the circle.

Remark 2.11. In order to compute a weighted average of points (Xi)di=1 a minimal re-
quirement is that there exists a point X∗ such that all operations g(X∗,Xi), i = 1, . . . , d
are well-defined. In this respect, the inverse of the closest-point projection appears to be
the worst choice, see Figure 1. If this requirement is not fulfilled, some ad-hoc strategies
seem necessary. In our experiments we simply compute the linear average of the points
(Xi)di=1 and project the result back onto the manifold.
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3 Wavelet-Like Decompositions of Manifold-Valued
Data

In this section we describe the wavelet-type decomposition of manifold valued data, using
a retraction pair of functions (f, g) as in the previous section. All results of the present
section apply to general manifolds M , therefore, for now, we shall consider a manifold M ,
together with a pair of functions (f, g) such that (4), (6) and (5) hold. Furthermore, we
assume that an averaging operation defined by (8) is well-defined.

For instance in the general case of a Riemannian manifold M and (f, g) = (exp, log),
where exp and log denote the exponential resp. the logarithm function on M , it can be
shown that all these assumptions are valid. Another example is, of course, M the Stiefel
manifold and the functions (f, g) defined in the previous section.

Up to minor variations, the material in Section 3.1 and Section 3.2 is taken from [35].
The main difference is that we allow for more general retractions than the exponential
function and that we utilize a different, in our view more natural notion of geometric
average.

One of the main theoretical results of this paper is contained in Section 3.3 where it
is shown that manifold valued wavelets are capable of approximating piecewise smooth
functions with the same efficiency as globally smooth functions.

The general idea for the construction of manifold valued wavelet transforms is to start
with a linear construction and replace all averaging operations by geometric averages and
all difference operations by the point-point difference function g. For more information
on wavelets in general we recommend [10, 8].

Convention: Since our wavelet constructions will be based on geometric averages
which in general are only locally defined we understand all the theoretical results in this
section under the tacit assumption that all underlying operations are well-defined.

3.1 Interpolating Wavelet Constructions

3.1.1 Linear Case

Here, we describe the construction of interpolating wavelets in manifolds using geometric
averaging operations, see [35, 21, 16] for more information. The corresponding linear
construction is due to Donoho [14]. We first describe this linear construction. The basic
idea is that a smooth function u : R → R can be well approximated by a polynomial. We
now define the sampling operator

uh := (u(hi))i∈Z

and pick an odd integer D. We try to exploit possible redundancies between the samples
u2−j and u2−(j+1) by computing a simple estimate

û2−(j+1) ∼ u2−(j+1) (20)

based only on the knowledge of u2−j . We have already noted that, whenever u is smooth,
it can be well approximated by a polynomial p of degree D. Therefore, it seems natural
to define û2−(j+1) in such a way that p̂2−(j+1) = p2−(j+1) for all polynomials of degree D.
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One can achieve this as follows: Denote πk,j the degree D polynomial which interpolates
the data (

2−j(k − /D/20) . . . 2−jk . . . 2−j(k + /D/20)
u (2−j(k − /D/20)) . . . u (2−jk) . . . u (2−j(k + /D/20))

)
.

Then we can put
û2−(j+1) (k) := πk,j

(
2−(j+1)k

)
, k ∈ Z.

In general, the relation (20) will not be an equality, therefore we need to store the error

αj := (αj(k))k∈Z :=
(
u
(
2−j(k + 1/2)

)
− û2−(j+1)(2k + 1)

)
k∈Z .

We have now transformed the sequence u2−(j+1) into two sequences (u2−j ,αj), each of which
is half the size of the original sequence. Figure 2 shows an illustration of this scheme.
The point of this procedure is that, provided u is smooth, the coefficients of αj measure
the local polynomial approximation error at scale 2−j which decays very fast. Therefore,
most of the coefficients of αj can be set to zero in this case. It is also clear how to invert
the transformation by adding the coefficients of αj to the polynomial imputation of the
coarser sampling f2−j . We can iterate this construction and arrive at a decomposition

u2−J " (u2−J0 ,αJ0+1, . . . ,αJ)

with a minimal scale J0. Here is a fundamental result regarding the decay properties of
the coefficients αj:

Theorem 3.1. Assume that u ∈ Cs with s < D. Then we have

‖αj‖∞ ! 2−sj for j ∈ N.

Several signals which appear in practice are not globally smooth but only piecewise
smooth. Due to the local nature of the wavelet construction, also piecewise smooth func-
tions can be approximated efficiently.

Theorem 3.2. Assume that u is supported on [−1, 1] and that u
∣∣
[−1,0)

, u
∣∣
[0,1]

∈ Cs with

a possible discontinuity of u in 0 and s < D. Then, by keeping only N log(N) wavelet
coefficients, one can get an approximation uN of u such that

‖u− uN‖2 ≤ N−s.

Proof. We only sketch the proof. Assume w.l.o.g. that N = 2j. Then we can set all
wavelet coefficients of scale > j to zero except for those which contribute to the singularity.
For any fixed scale J , there is a finite number of such coefficients. We also keep these
coefficients up to scale 2sj. Thus, all in all we keep order N log(N) coefficients, and all
the others are set to zero. By Theorem 3.1, this approximation gives an error of order
N−s in the L∞ norm (and thus also in the L2-norm) away from an interval I of size
∼ 2−2sj around the singularity. It remains to estimate the error on the interval I Here,
the L2-error is also of order N−s, due to the small size of the interval.

Theorem 3.2 is of tremendous importance. It states that a piecewise smooth signal
can be encoded up to an error N−s by using about N log(N) coefficients. This is, up to
a logarithmic factor which is usually considered negligible, as good as if the singularity
were not present at all! Also, it can be shown that this result is optimal in the sense that
essentially no better compression strategies for piecewise smooth functions exist [17].
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(a) Given dense sampling u2−(j+1) (b) Downsampling: only consider values u2−j

(c) Compute prediction û2−(j+1) via Deslauriers-
Dubuc subdivision

(d) Keep prediction errors as wavelet coefficients

Figure 2: Illustration of interpolating wavelet scheme.

3.1.2 Nonlinear Case

Our first goal is to extend the constructions and results of Section 3.1.1 to the manifold-
valued setting. To some extent this has been done in [16, 35, 21]. Our construction is
somewhat different from the one in [35] in that we use another notion of geometric mean,
namely the one developed in Section 2.1. This is a minor difference for the nonlinear
construction of interpolating wavelets, but it will make a difference for the construction
of nonlinear average interpolating wavelet transforms which we study below in Section
3.2.

The starting point is the fact that the mapping

S : u2−j ,→ û2−(j+1)

has a very simple structure:

Su2−j(2k) = u2−j(k), Su2−j(2k + 1) =
(D/2)∑

i=−(D/2)

lD(i)u2−j(k − i), (21)

with some sequence l satisfying

(D/2)∑

i=−(D/2)

lD(i) = 1. (22)
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In the literature, the operator S is usually called the Deslauriers-Dubuc subdivision scheme
[11]. It is now immediate to generalize the prediction operator to the nonlinear setting.
Assume we have a pair (f, g) satisfying (4), (5) and (6). Then by Proposition 2.3, the
operator S can also be defined in the M -valued setting: For a function u : R → M we
again use the notation uM

h to denote uniform sampling of meshwidth h > 0. Then we can
define

ûM
2−(j+1)(2k) := uM

2−j(k), ûM
2−(j+1)(2k + 1) := avg

(
(lD(i))(D/2)

i=−(D/2),
(
uM
2−j(k − i)

)(D/2)
i=−(D/2)

)
.

(23)
Similar to the linear case, the wavelet coefficients αM

j are defined as the prediction error
arising from this procedure. However, in contrast to the linear case we cannot simply
subtract two points. Nevertheless the function g gives us a notion of difference vector
between points. Using this notion we can define the wavelet coefficients as follows:

αM
j (k) := g

(
ûM
2−(j+1)(2k + 1), uM

2−(j+1)(2k + 1)
)
∈ TûM

2−(j+1) (2k+1)M, k ∈ Z.

For a function u : R → M we get a decomposition

uM
2−J "

(
uM
2−J0 ,α

M
J0 , . . . ,α

M
J−1

)

The reconstruction procedure is obvious, for instance to go from (uM
2−j ,αM

j+1) to uM
2−(j+1)

we first compute ûM
2−(j+1) from uM

2−j using (23). Then we have

uM
2−(j+1)(2k) = uM

2−j(k), uM
2−(j+1)(2k + 1) = f

(
ûM
2−(j+1)(2k + 1),αM

j+1(k)
)
. (24)

Observe however that the reconstruction procedure constitutes a nonlinear operation in
each step which makes it much more difficult to analyze theoretically.

3.2 Average Interpolating Wavelets

If we are dealing with data which is free of noise, the interpolating wavelet transform is an
appropriate choice. However, in practice one often has to work with noisy data which, due
to the instability of point evaluations, presents difficulties for the interpolating transform
[35]. A remedy to this problem is to work not with point values but with averages of
the function over dyadic boxes. In [15] such constructions are given. We briefly describe
the construction which is a special case of the biorthogonal wavelet transform framework
introduced in [9].

3.2.1 Linear Case

The idea is to discretize not by point evaluation but by integration over dyadic boxes.
The resulting discretization operator for a function u : R → R is defined via

ūh =

(∫

[hk,h(k+1)]

u(t)dt

)

k∈Z
.

Again we need an operator to get from ū2−j to a prediction ˆ̄u2−(j+1) ∼ ū2−(j+1) . This is
done in a similar way as for the interpolating wavelet transform by picking for each k a
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polynomial π̄k,j of degree D, D even, which interpolates the averages of f over dyadic
boxes of size 2−j around k. Then we define

ˆ̄u2−(j+1)(2k) =

∫

[2−jk,2−j(k+1/2)]

π̄j,k(t)dt and ˆ̄u2−(j+1)(2k+1) =

∫

[2−j(k+1/2),2−j(k+1)]

π̄j,k(t)dt.

Observe the redundancies

1

2

(
ˆ̄u2−(j+1)(2k) + ˆ̄u2−(j+1)(2k + 1)

)
= ū2−j(k) for all k ∈ Z. (25)

and
1

2
(ū2−(j+1)(2k) + ū2−(j+1)(2k + 1)) = ū2−j(k) for all k ∈ Z. (26)

Again we can define wavelet coefficients

βj := (αj(k))k∈Z :=
(
ū2−(j+1)(2k + 1)− ˆ̄u2−(j+1)(2k + 1)

)
k∈Z .

Using the redundancies (25), (26) we can reconstruct the values of ū2−(j+1) from ū2−j and
αj via

ū2−(j+1)(2k+1) = ˆ̄u2−(j+1)(2k+1)+βj(k), ū2−(j+1)(2k) = ū2−j(k)−(ū2−(j+1)(2k + 1)− ū2−j(k)) ,

where k ∈ Z. Note that also for this wavelet transform Theorems 3.1 and 3.2 hold true
[15].

3.2.2 Nonlinear Case

Average interpolating wavelet transforms can also be defined in the manifold-valued con-
text, at least to some extent. Several problems arise, mostly due to the fact that it is not
clear how to define an averaging operation of an N -valued function over a dyadic box.
Certainly, such operations exist in a geometric setting, see [27], but the problem with
these constructions is that in general the redundancy relation (26) fails.

At least for practical purposes a partial remedy is to start from a midpoint pyramid

ūM
J , ūM

J−1, . . . , ū
M
J0 (27)

satisfying the consistency condition

ūM
j (k) = avg

((
1

2
,
1

2

)
,
(
ūM
j+1(2k), ū

M
j+1(2k + 1)

))
(28)

for a minimal scale J0 and a maximal scale J and J0 ≤ j < J . In practice, one is given a
sequence of data ūM

J , say of length 2J . Then one can define a midpoint pyramid (27) by
taking (28) as a definition.

Next we note the fact that in the linear case the prediction operator which maps ū2−j

to ˆ̄u2−(j+1) can be written as

ˆ̄u2−(j+1)(2k + 1) =
D/2∑

i=−D/2+1

rD(i)ū2−j(k − i) (29)
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for some sequence rD satisfying

D/2∑

i=−D/2+1

rD(i) = 1.

Motivated by (29) and (25) we put

ˆ̄uM
j+1(2k + 1) = avg

((
rD(i)

)D/2

i=−D/2+1
,
(
ūM
j (k − i)

)D/2

i=−D/2+1

)
(30)

and
ˆ̄uM
j+1(2k) = f

(
ūM
j (k),−g

(
ūM
j (k), ˆ̄uM

j+1(2k + 1)
))

. (31)

By (31) we get the redundancy relation

ūM
j (k) = avg

((
1

2
,
1

2

)
,
(
ˆ̄uM
j+1(2k), ˆ̄u

M
j+1(2k + 1)

))
. (32)

One should compare the relations (32) and (28) with the linear relations (25) and (26).
We can now define wavelet coefficients

βM
j (k) := g

(
ˆ̄uM
j+1(2k + 1), ūM

j+1(2k + 1)
)
∈ Tˆ̄uM

j+1(2k+1)M, k ∈ Z.

The reconstruction procedure proceeds similarly to the linear one. Given (ūM
j , βM

j ) we
first compute ˆ̄uM

j+1 using (30) and (31). Then we get the reconstruction of the odd indices
via

ūM
j+1(2k + 1) = f

(
ūM
j (k), βM

j (k)
)
.

To reconstruct the even indices we make use of (28) and (32) to find that

ūM
j+1(2k) = f

(
ūM
j (k),−g

(
ūM
j (k), ūM

j+1(2k + 1)
))

.

We have constructed a way to transform a midpoint pyramid into a wavelet decomposition

(ūM
J0 , β

M
J0 , . . . , β

M
J−1)

and vice versa.

Remark 3.3. Our construction easily extends to the regular multivariate case by defining
the notion of midpoint pyramid as a uniformly weighted average of four points. Note
that in [35] a different generalization to the multivariate case is given which e.g. in the
bivariate setting first applies a wavelet transform in the vertical direction and then in
the horizontal direction. Doing this one runs into trouble when computing the wavelet
coefficients corresponding to the diagonal direction which requires the computation of a
univariate wavelet transform of tangent vectors. We think that our approach of computing
two dimensional transforms using geometric averages is more natural.
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3.3 Approximation Properties

We now turn to the theoretical properties of the manifold-valued wavelet constructions.
The average interpolating construction described in Section 3.2.2 starts from a midpoint
pyramid, which in practice can be constructed from a discrete sequence of data via (28)
. However, it is not clear how to associate to a given function u : R → M an infinite
midpoint pyramid satisfying the downsampling relation (28), or a similar one. This fact
makes an asymptotic analysis of the decay of the wavelet coefficients impossible. For this
reason we focus on the interpolating wavelet transform for manifold-valued data described
in Section 3.1.2.

In the remainder of this section we once and for all fix an odd integer D > 0 and
associate to an arbitrary function u : R → M its nonlinear interpolating wavelet transform

(
uM
2−J0 ,α

M
J0 , . . .

)

as in Section 3.1.2.
Before we formulate our main results we need to introduce some notation.
For a sequence α of vectors (α(k))k∈Z we use the symbol

‖α‖∞ = sup
k∈Z

‖α(k)‖M ,

where ‖ · ‖M indicates the Riemannian metric on M . Further, we want to be able to
compare two sequences u = (u(k))k∈Z, v = (v(k))k∈Z. Here we use the notation

distM(u, v)∞ := sup
k∈Z

distM(u(k), v(k)),

where distM denotes the geodesic distance in M . Finally, with α as above and β of
the same form, we also want to compare these two sequences. Denoting for two vectors
γ ∈ TxM , δ ∈ TyM

distTM(γ, δ) := distM(x, y) + ‖γ − Ptxy(δ)‖M ,

Ptxy denoting parallel transport from y to x [13] we write

distTM(α, β)∞ := sup
k∈Z

distTM(α(k), β(k)).

Then the following analog of Theorem 3.1 holds:

Theorem 3.4. Assume that u ∈ Cs for s < D. Then we get the following decay rate for
the wavelet coefficients:

‖αM
j ‖∞ ! 2−sj (33)

with the implied constant uniform on compact sets. Conversely, if (33) holds for the
wavelet decomposition of u, then for all ε > 0 we have u ∈ Cs−ε.

Proof. This has been proven in [21].
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Theorem 3.4 tells us something about the decay of the wavelet coefficients associated
with a smooth function. The potential use of this result is clear: by setting all small
coefficients to zero, one should expect to still obtain a very good approximation of the
original function. This intuition turns out to be correct, but it is far from trivial in
the nonlinear case. The key issue lies in the stability properties of the reconstruction
procedure. More specifically, one needs to address the question of how a change of the
wavelet coefficients affects the reconstruction. To this end we consider the reconstruction
operator

Rj :
(
uM
2−J0 ,α

M
J0 , . . . ,α

M
j−1

)
,→ uM

2−j

using (24).
The following result holds.

Theorem 3.5. Assume that (f, g) satisfy (6), (5) and (4). Assume we are given two
wavelet decompositions

U :=
(
uM
2−J0 ,α

M
J0 , . . . ,α

M
j−1

)

and
V :=

(
vM2−J0 , β

M
J0 , . . . , β

M
j−1

)

Then there exists a constant C independent of j such that

distM (Rj(U), Rj(V))∞ ≤ C

(
distM (u2−J0 , v2−J0 )∞ +

j−1∑

i=J0

distTM

(
αM
i , βM

i

)
)
.

Proof. This has been shown in [20].

Using the above stability result, we can now prove a nonlinear analog of Theorem 3.2.
In order to avoid technical complications we assume that u : [−1, 1) → M is periodic.

Theorem 3.6. Assume that u : [−1, 1) → M is a periodic Cs function (s < D) apart
from a discontinuity at 0. Then, using N log(N) wavelet coefficients, one can obtain an
approximation uN such that

∫

[−1,1]

distM (u(t), uN(t))
2 dt ! N−2s.

Proof. Using Theorem 3.5, the proof proceeds with similar arguments as the proof of the
linear version, Theorem 3.2. Without loss of generality, we put N = 2j. Let

(
uM
2−J0 ,α

M
J0 , . . .

)

be the wavelet decomposition of f . Assume we have the full data u2−2sj at hand. We
first examine what happens if we build an approximation ũ of u from u2−2sj by setting all
wavelet coefficients of higher scale to zero. By Theorem 3.5, Theorem 3.4 and the locality
of the wavelet reconstruction, we observe that, away from an interval I of size ∼ 2−2sj

around 0, we get an approximation error

sup
t∈[−1,1)\I

dist(u(t), ũ(t)) ! 2−2s2j.
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See also [39, 19] for more details. Therefore we get that
∫

[−1,1)\I
distM (u(t), ũ(t))2 dt ! 2−4s2j. (34)

On the other hand, the error
distM (u(t), ũ(t))

is bounded on I. Therefore we have
∫

I

distM (u(t), ũ(t))2 dt !
∫

I

1dt ! 2−2sj. (35)

Putting together (34) and (35) we arrive at the estimate
∫

[−1,1)

distM (u(t), ũ(t))2 dt ! 2−2sj. (36)

Equation (36) gives the right magnitude of approximation error but clearly way too many
coefficients are needed for ũ, which requires order 22sj nonzero wavelet coefficients. We
now perform a further compression step, reducing the number of nonzero wavelet coeffi-
cients to order j2j. To do this, we observe that by Theorem 3.5 it would be sufficient to
threshold the wavelet coefficients

U :=
(
uM
2−J0 ,α

M
J0 , . . . ,α

M
2sj−1

)

to
V :=

(
uM
2−J0 , β

M
J0 , . . . , β

M
2sj−1

)

such that
distM (R2sj(U), R2sj(V))∞ ! 2−sj, (37)

and such that the number of nonzero wavelet coefficients in V is of order N log(N). To do
this we note that at each scale k, only a fixed finite number 2L+1 of wavelet coefficients

(
αM
k (−L), . . . ,αM

k (L)
)

gets affected by the singularity at 0. All the other wavelet coefficients

αM,smooth
k :=

(
. . . ,αM

k (−L− 2),αM
k (−L− 1),αM

k (L+ 1),αM
k (L+ 2), . . .

)

are only affected by the smooth part of u and therefore (by the locality of the construction
and Theorem 3.4) decay of order 2−sk. We now obtain our compression V by setting to

zero all coefficients αM,smooth
k for all scales j, j +1, . . . , 2sj. Due to the decay properties

of αM,smooth
k and Theorem 3.5, we get (37). It remains to count the number of nonzero

coefficients in V. There are order 2j coefficients up to scale j. For the scales j + 1, j +
2, . . . , 2sj we have 2L + 1 coefficients which amounts to a total of order j2j coefficients.
This proves the theorem.

Theorem 3.6 confirms that the nonlinear wavelet transform indeed satisfies the same
important properties as its linear counterpart.
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Remark 3.7. We already mentioned that an asymptotic analysis of the nonlinear average
interpolating wavelet construction is not possible. Nevertheless, one could still analyze
the heuristic construction of Section 3.2.2 for finite data. We postpone this for future
work. Note also that the possibilities for constructing more general wavelet transforms in
manifolds are limited, cf. [22].

4 Computational Experiments and Applications

We return to the specific case of the Stiefel manifold and present some computational
experiments, starting first with synthetic data. For our experiments we have chosen
the pair (f, g) constructed in 2.2.3 based on closest point projection. For the plots of
the wavelet coefficients in Figures 3 and 4 we made use of the plotting routines of the
Symmlab100 MATLAB package, available from http://www.stanford.edu/~slansel/
SymmLab/. We are grateful to the authors of this package for making their software codes
publicly available.

4.1 Synthetic Data

Our first experiment deals with a smooth matrix curve (and its svd)

A(t) = U(t)Σ(t)V(t)" = sin (tE) + noise ∈ R10×10, (38)

with some random 10 × 10 matrix E. We have used the first 3 columns of U(t) as a
curve in St(10, 3) and performed a nonlinear average interpolating wavelet transform of
this curve with D = 4. We performed a thresholding operation by setting all wavelet
coefficients to zero which exceed the threshold of 0.01. The results can be seen in Figure
3. We can observe two things: First, the thresholding operation serves as a denoising
operation. We remark that this is in general not the case with the interpolating wavelet
transform. Second, if the noise level is set to zero, almost all wavelet coefficients are
negligible, resulting in huge compression rates.

Our second experiment deals with a matrix curve which possesses a point singularity.
We chose the curve

A(t) = U(t)Σ(t)V(t)" = sin (tE) +
(
1− t2

)1/2
cos (tF) ∈ R10×10, (39)

E, F random 10× 10 matrices, and again used the first 3 columns of U(t) as a curve in
St(10, 3). This time our analysis was performed using the interpolating wavelet transform
with D = 3. The results are shown in Figure 4. We can nicely observe that all coefficients
which do not correspond to the point singularity are almost negligible and only those
around the singularity must be kept. The wavelet transform finds pointwise singularities
by itself. On the right of Figure 4, a thresholding operation has been performed which
results in overall savings of more than ninety percent.

4.2 Hyperspectral Image Compression

After some preliminary experiments on synthetic data in Section 4.1 we now apply our
methods to a real problem in imaging science namely the compression of hyperspectral
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(a) Stickplot of norms of wavelet coefficients of
the first three columns of U(t) as defined in (38).
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(b) Hard thresholding with threshold 0.01
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(c) Blue: Original curve of coefficient with index
(2, 2). Red: Reconstruction after thresholding.

Figure 3: Wavelet transform of (38).

images. In our numerical experiments on real data we have always used the average
interpolating construction from Section 3.2.2 due to its noise insensitivity. We stress
once again that this is just one selected application, there are many other situations
where smooth curves of low-rank matrices appear naturally, for instance latent semantic
indexing, dynamic graph compression or linear operators depending on a parameter.

In our experiments we mainly focused on data compression. Since wavelet methods are
capable of detecting large temporal variations in data, several other tasks such as feature
detection, inpainting, classification, ... could be tackled. We postpone a more detailed
study to future work. Before we describe our application we give a brief introduction to
hyperspectral imaging.

A hyperspectral image is an image where intensities corresponding to many different
wavelengths are recorded separately [5]. The result is a parameterized family A(λ) ∈
RN×N of matrices, λ being the wavelength. We would like to emphasize that, when the
wavelength λ varies continuously we get a smooth curve A(λ). In practice, only a finite
number of wavelengths is recorded, typically at the order of hundreds or more. A related
imaging technique is inferometry, where even more frequency bands are recorded. It is to
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the first three columns of U(t) as defined in (39).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
7

6

5

4

3

2

7

6

5

4

3

(b) Hard thresholding with threshold 0.01

Figure 4: Wavelet transform of (39).

be expected that in the near future technology will advance to develop sensors capable
of recording many more spectral bands, in the order of many thousand or even millions.
This technique is called ultraspectral imaging [31]. For completeness we also mention the
term multispectral imaging which refers to only a few frequency bands.

Due to its capacity to record information across the full range of the spectrum and re-
cent technological advances, the scope of applicability of hyperspectral imaging is tremen-
dous. We restrict ourselves to mentioning only a few important ones: In mineralogy, hy-
perspectral imaging is used for the detection of oil fields, while the US military uses this
technique for the surveillance and detection of humans. A less controversial application
is the monitoring of the constitution of plants and crops in agriculture.

Usually, the size of a hyperspectral image can be quite large which calls for efficient
means to compress such data. Since a hyperspectral image can be interpreted as dense
samples of a smooth matrix curve, it is reasonable to use a compression strategy which
takes advantage of this fact.

In Algorithm 4 we propose a simple strategy for the compression of a hyperspectral
image

Ai ∈ RN×N , i = 1, . . . , T

corresponding to recordings A(λi) at wavelength λi.

Algorithm 4: Compression scheme for hyperspectral image stack Ai ∈ RN×N , i =
1, . . . , T .

1. Decompose each matrix Ai, i = 1, . . . , T into small blocks, say, of size 12× 12.
2. Approximate each block by a rank 2 approximation for each i = 1, . . . , T .
3. In each block perform wavelet compression of the rank 2 approximation. This
amounts to wavelet thresholding for data with values in the Stiefel manifold.

Remark 4.1. There is nothing exceptional about our choice of blocksize or the rank of the
low-rank approximation in each block in Algorithm 4, any other choice would do. There
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is of course a lot of room for improvement; for instance the rank of the low-rank approx-
imation could be chosen differently for each block by an adaptive procedure. We confine
ourselves to our simple algorithm since the primary goal of this work is to demonstrate
the usefulness of manifold-valued wavelet transforms, especially for the Stiefel manifold.

Remark 4.2. Note that the more frequency bands are recorded, the better the performance
of the wavelet compression is to be expected. This is because one needs at least 8-16
sampling points at the lowest scale (depending on D) in order to render the wavelet scheme
well-defined. This limits the achievable compression rate. In our experiments, almost all
wavelet coefficients could be discarded and we conjecture that it would be possible to achieve
much higher compression rates for ultraspectral images with more frequency bands using
our algorithm.

Figure 5 shows an example of Algorithm 4 applied to real hyperspectral image data.
The data is taken from http://earthexplorer.usgs.gov/ and represents a sample of
the Dehradun region in India, recorded with the Hyperion sensor aboard NASA’s Earth
Observation-1 (EO1) satellite. The sensor records wavelengths in the range of 355 −
2577nm at a sampling interval of about 10nm. The dataset we used is an image cube of
size 144× 144× 128.

The resulting compression only requires about 7% of the original data, compared
to about 30% by only using the low rank approximation without wavelet thresholding.
In view of the present article, one should compare the difference between the low rank
approximation and its wavelet compression, which is barely noticeable, see Figure 5. This
represents a compression of the low-rank approximation by a factor about 1 : 5, essentially
without any noticeable degradation.

Remark 4.3. So far we have not specified how we actually carry out Step 2 in Algorithm
4. We will comment on this issue later in Section 4.3 below. In addition we would like to
point to the recent work [37] where sensing devices are constructed which directly sense a
sparse representation without going through the usual procedure of first recording the full
image and then throwing away almost all of the data. It seems conceivable that in the
future sensors capable of directly recording a low rank approximation of an image can be
constructed, although this is just speculation.

Remark 4.4. We reiterate that we do not claim that the compression scheme for hy-
perspectral images presented in this work is superior to state-of-the-art methods which
are currently in use. The point is to demonstrate the usefulness of our flexible compres-
sion scheme for curves of low rank matrices. Of particular importance is the fact that
our scheme provably achieves (asymptotically) optimal compression rates for piecewise
smooth families of low-rank matrices. In fact, we are not aware of any other method in
the literature which satisfies a similar property. Another distinctive property of the ap-
proach presented in this paper is that features such as point singularities can be detected
automatically and non-adaptively simply by looking for the largest coefficients.

4.3 Obtaining Smooth Low-Rank Approximations

In all our analysis the underlying assumption is that the curve of low-rank matrices is
smooth, or at least piecewise smooth. This seems like a problem since usually low-rank
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approximations are computed via svd which is nonunique, therefore one should not expect
low-rank approximation curves computed via svd to be smooth.

Fortunately, a remedy exists. In [28] a method is given to obtain smooth dynamical
low-rank approximations to matrix curves A(t) ∈ Rn×n, t > 0.

The idea is to not compute a low-rank approximation for each matrix but to solve the
ODE

Ẋ(t) = min
ξ∈TMn,p

∥∥∥Ȧ(t)− ξ
∥∥∥
2
, X(0) = X0, (40)

whereX0 is some initial rank p approximation toA(0). The computation of the solution of
(40) can be done using geometric ODE integrators [26]. This is very efficient since typically
the matrices Ȧ(t) are much sparser than the matrices A(t). Moreover, in [28] it is shown
that the approximation quality of X(t) is equivalent to the best possible approximation
by a rank p matrix, at least as long as the first singular values stay well-separated. If
singular values interlace, e.g. new singular vectors enter the best approximation, then the
algorithm (40) needs to be restarted. By this procedure one obtains a piecewise smooth
rank p approximation of A(t). In [33] several important applications of this algorithm are
given, each one of them producing piecewise smooth curves on the Stiefel manifold which
can be processed by the Stiefel-valued wavelet transform developed in this paper.
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Figure 5: Algorithm 4 applied to hyperspectral image. Shown are wavelengths of about
(from top to bottom): 355nm, 455nm, 555nm, 655nm, 755nm, 855nm. Left column: origi-
nal frame. Middle column: low-rank approximation. Right column: wavelet compression.
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