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Abstract

This paper is a contemporary review of QMC (“quasi-Monte Carlo”)
methods, i.e., equal-weight rules for the approximate evaluation of
high dimensional integrals over the unit cube [0, 1]s. It first intro-
duces the by-now standard setting of weighted Hilbert spaces of func-
tions with square-integrable mixed first derivatives, and then indicates
alternative settings, such as non-Hilbert spaces, that can sometimes
be more suitable. Original contributions include the extension of the
fast CBC (“component-by-component”) construction of lattice rules
that achieve the optimal convergence order (i.e., a rate of almost 1/N ,
where N is the number of points, independently of dimension) to so-
called POD (“product-and-order-dependent”) weights, as seen in some
recent applications.
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1 Introduction and some QMC basics 3

1 Introduction and some QMC basics

Quasi-Monte Carlo (QMC) methods are deterministic methods for high di-
mensional integration that aim to outperform the classical Monte Carlo
method. In the last 15 years great progress has been made, often in the
setting of “worst-case” errors in a “weighted” Hilbert space, as introduced
originally by Sloan and Woźniakowski in [51]. This we shall call the “stan-
dard setting”, and a first aim of this paper is to explain that standard setting.
But much of the paper will be concerned with extensions that go beyond the
standard setting. These extensions include non-Hilbert space settings, infi-
nite dimensional problems, and non-standard choices of “weights”.

The paper is in part motivated by a recent application [29] by the present
authors of QMC methods to the computation of expected values of function-
als of the solutions of second-order partial differential equations with random
coefficients. While we will not review the paper [29] here, that work encour-
aged us to look beyond the standard setting. For instance, the dimensionality
in that problem is not just high, but truly infinite. And the weights that we
are led to use are certainly non-standard (see §1.4). And although that paper
in its final form is concerned with the particular kind of QMC method known
as lattice rules, and stayed within a Hilbert space setting, in the course of the
research we considered many other possibilities, and still believe that other
QMC methods and non-Hilbert space settings offer exciting possibilities for
this and other applications.

For the majority of this article we will focus on the integration problem
over the s-dimensional unit cube

Is(F ) =

∫

[0,1]s
F (y) dy , (1)

with the dimensionality s being large but finite. An N -point QMC approxi-
mation to the integral (1) is an equal-weight quadrature rule of the form

Qs,N(F ) =
1

N

N∑

i=1

F (y(i)) , (2)

with a well chosen set of points P = {y(1), . . . ,y(N)} ⊂ [0, 1]s.
What is so good about QMC rules? Why not use, for example, a product

of 1-dimensional Gauss rules? The short answer is that while product Gauss
rules might work well, and indeed might be the recommended option when
s is small (see, for example the book by Stroud [56]), every product rule is
infeasible when s is large. Suppose for example that s = 100. Then even a
product of 2-point rules will require 2100 points, a number of points that is
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certain to be beyond our reach for many lifetimes. This is a manifestation of
the famous curse of dimensionality [2].

But even if product rules are excluded, why do we restrict ourselves to
equal weights? The QMC rules integrate constants exactly, but in general
fail to integrate exactly all polynomials of higher degree. Perhaps if we
allowed the weights to be unequal we could integrate exactly at least some
higher degree polynomials? Once again the curse of dimensionality is against
us: for example if we want to integrate exactly all multilinear polynomials
(that is, all functions that are linear with respect to each variable yj) then
we must satisfy 2s independent conditions. But perhaps the real reason for
using equal weights is that this is the simplest choice to analyse; and the
analytical challenges become considerable when s is large.

Error bounds for QMC methods generally take the form of an inequality

|Is(F )−Qs,N(F )| ≤ D(P) V (F ) , (3)

in which the first factor, a discrepancy, is independent of F , and is a measure
of the quality of the point set P , while the second factor is independent of
the point set, and is a measure of the difficulty of the integrand F . The
prototype of such inequalities is the Koksma-Hlawka inequality, which we
shall review briefly in §1.3. An inequality of this form has the nice feature
that, for a given function F , the error bound will be reduced to the extent
that we can reduce the discrepancy of the point set P . (Note, however, that
the error itself might not be reduced – the guarantee is only about the error
bound.)

Much of the literature of QMC methods talks about worst-case error, not
discrepancy. It may help to avoid later pain to realize that they usually refer
to the same thing. To define worst-case error, suppose that the integrand
F is constrained to lie in some Banach space W with norm ‖F‖W . (The
choice of function space is limited by the natural requirement that W is
embedded in the space C([0, 1]s) of continuous functions, so that pointwise
function values make sense. We will see many examples later. For now think
of s = 1, and take either W = C[0, 1] or W = H1[0, 1], the space of square-
integrable functions on [0, 1], with some appropriate norm in H1[0, 1].) Then
the worst-case error is defined by

ewor(P ;W) := sup{|Is(F )−Qs,N(F )| : ‖F‖W ≤ 1} . (4)

It follows, since the error depends linearly on ‖F‖W , that for all F ∈ W we
have

|Is(F )−Qs,N(F )| ≤ ewor(P ,W) ‖F‖W , (5)
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which is of the same form as (3), with the discrepancy replaced by the worst-
case error, and V (F ) replaced by the norm ‖F‖W . Often V (F ) is a seminorm
rather than a norm, but the distinction is often unimportant. (We could
equally well use a seminorm in the definition of the worst-case error, but it
would be non-standard to do so.) If D(P) is the smallest possible constant
in (3) and V (F ) is a norm or seminorm, then D(P) is indeed a worst-case
error.

1.1 The standard setting for QMC

In the standard setting, introduced in [51], the quantity V (F ) is a norm in a
Hilbert space Hs,γ of functions F whose mixed first derivatives are all square-
integrable over [0, 1]s; and these norms also incorporate weights, which are
positive numbers γ1, γ2, . . . , γs designed to quantify the different degrees of
difficulty associated with the different components of y in (1). We will always
assume that

γ1 ≥ γ2 ≥ . . . ≥ γs > 0 , (6)

corresponding to the idea that the first component of y is the hardest one
for this integrand, the second component the next hardest, and so on. The
inner product in the (real) space H1,γ1 is

〈F,G〉1,γ1 := F (1)G(1) +
1

γ1

∫ 1

0

F ′(y)G′(y) dy , F,G ∈ H1,γ1 ,

thus the corresponding norm squared is

‖F‖21,γ1 = |F (1)|2 + 1

γ1

∫ 1

0

|F ′(y)|2 dy , F ∈ H1,γ1 . (7)

For s = 2 the norm squared in H2,γ (we leave the inner product to be inferred
from the norm) is defined by

‖F‖22,γ := |F (1, 1)|2

+
1

γ1

∫ 1

0

∣∣∣∣
∂F

∂y1
(y1, 1)

∣∣∣∣
2

dy1 +
1

γ2

∫ 1

0

∣∣∣∣
∂F

∂y2
(1, y2)

∣∣∣∣
2

dy2

+
1

γ1γ2

∫

[0,1]2

∣∣∣∣
∂2F (y1, y2)

∂y1∂y2

∣∣∣∣
2

dy1dy2 .

Note that a small value of γ2 forces the partial derivative ∂F
∂y2

to be small if
F is to stay within the unit ball in H2,γ .
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The point of this definition of ‖F‖2,γ is that it has tensor product struc-
ture: for the special case F (y1, y2) = G(y1)H(y2) it is easily seen that
‖F‖2,γ = ‖G‖1,γ1‖H‖1,γ2 .

For general s we can write the norm squared in the more compact form

‖F‖2s,γ :=
∑

u⊆{1:s}

γ−1
u

∫

[0,1]|u|

∣∣∣∣
∂|u|F

∂yu

(yu, 1)

∣∣∣∣
2

dyu , (8)

where {1 : s} := {1, . . . , s}, so that the sum is over all subsets u of {1, . . . , s},
with yu denoting the components yj of y with j ∈ u, and with (yu, 1) denoting
the vector of length s whose jth component is yj if j ∈ u and is 1 if j /∈ u,
and where γu denotes the product

γu :=
∏

j∈u

γj . (9)

Weights of this kind are nowadays referred to as “product” weights. In [51]
it was assumed that γ1 = 1, but this assumption is now considered to be
unnecessary and too restrictive.

A short history of the standard setting is that the 1998 paper [51] proved
non-constructively that for eachN ≥ 1 there exist QMC points {y(1), . . . ,y(N)} ⊂
[0, 1]s for which the worst-case error is bounded by c/

√
N , with c independent

of s, if and only if
∞∑

j=1

γj < ∞ . (10)

Then in 2000 Hickernell andWoźniakowski in [21] proved (again non-constructively)
that the bound can be improved to cδ/N1−δ for arbitrary δ > 0 under a
stronger condition on the weights, most simply that

∞∑

j=1

γ1/2
j < ∞. (11)

The paper [52] then showed that there exists a QMC rule for which the worst-
case error has a bound of the form cδ/N1−δ even if the choice of QMC rule
is restricted to the relatively small class of shifted lattice rules, see §1.2. The
proof, like that in [51], uses an averaging argument (that there is at least one
choice as good as the average) and is non-constructive. In 2002 Sloan, Kuo
and Joe in [47] devised a component-by-component (or CBC) construction
of a shifted lattice rule that for N prime achieves the c/

√
N bound for the

worst-case error in the standard setting, thereby achieving for prime N a
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constructive proof of the result in [51]. In [48] the same authors proposed a
randomised version of the CBC construction, which was shown subsequently
by Kuo [28] and Dick [5] to achieve the cδ/N1−δ bound under the condition
(11). Fast implementations of CBC constructions were introduced by Nuyens
and Cools in [40] and [41], while modified algorithms for obtaining lattice
rules that are extensible in N were given in [4] and [7]. These made feasible
the construction of explicit lattice rules that match the rates of convergence
of the worst-case error in the existence results for all values of s and N that
are likely to be of interest.

1.2 Lattice methods

Much of this review will focus on an important family of QMC rules called
shifted lattice rules. They take the form

Qs,N(F ) =
1

N

N∑

i=1

F

({
iz

N
+∆

})
, (12)

where z ∈ Ns is known as the generating vector, ∆ ∈ [0, 1]s is the shift, and
the braces around {w} mean to take the fractional part of each component
of the vector w. Shifted lattice rules therefore require the specification of
two vector quantities: an integer vector z ∈ Ns, and a real number vector
∆ ∈ [0, 1]s.

Lattice rules without shift, i.e., ∆ = 0, were originally introduced in a
periodic function space setting, see for example [46], but by now are seen
to have an important role even for non-periodic spaces. In the last formula
∆ is deterministic. In contrast, a randomly shifted lattice rule takes the
same form (12) in which as before z ∈ Ns is a prescribed generating vector,
but now each component of ∆ ∈ [0, 1]s is a random variable uniformly and
independently distributed in [0, 1]. Randomly shifted lattice rules have come
to play an important role, as we foreshadowed in §1.1.

From a practical point of view there are multiple advantages in using a
randomized QMC rule: while enjoying nearly the optimal rate of convergence,
a randomly shifted lattice rule is unbiased and provides a simple and practical
error estimation, just like the Monte Carlo method. (See [9, Section 5] for a
brief explanation of how this error estimation is done in practice.)

The component-by-component (or CBC) algorithm was invented for peri-
odic spaces by Korobov [27] many years ago, and rediscovered by Sloan and
Reztsov in [49]. The subsequent developments in the non-periodic setting
have already been foreshadowed in §1.1.
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In the CBC algorithm the integers z1, . . . , zs are chosen one at a time, in
the natural order. Suppose that z1, . . . , zs−1 are already determined. Then zs
is determined by minimising a certain quantity (the shift-averaged worst-case
error) over the (at most N − 1) possible values of 1 ≤ zs ≤ N − 1 that are
coprime with N . For further details about the CBC algorithm, see §4.

1.3 The classical setting and what goes wrong

Here we briefly review the “classical” theory for obtaining bounds of the
QMC error for non-periodic functions, and explain the problem with its ap-
plicability in high dimensions. (For functions that are 1-periodic with respect
to each of the s variables there is a different theory based on Fourier analysis
– see [46] and [34]. We shall not discuss the periodic case in this review.)

As foreshadowed in §1, the Koksma-Hlawka inequality plays an important
role classically. This inequality takes the form

|Is(F )−Qs,N(F )| ≤ D∗(P) VHK(F ) . (13)

Here VHK(F ) is the variation of F in the sense of Hardy and Krause, see
e.g. [34], and D∗(P) is the (classical) star discrepancy of the QMC set
P = {y(1), . . . ,y(N)}, defined by

D∗(P) := sup
y∈[0,1]s

|discrP(y)| ,

where discrP(·) is the local discrepancy function

discrP(y) := y1y2 · · · ys −
∣∣{i : y(i) ∈ [0,y)}

∣∣
N

, y ∈ [0, 1]s , (14)

with [0,y) := [0, y1)× [0, y2)× · · ·× [0, ys). We shall discuss and prove more
general versions of the Koksma-Hlawka inequality in §3.1.

The local discrepancy function is the difference between the volume of the
rectangular region [0,y) and the fraction of the QMC points that lie in the
region. Intuitively, a small value of star discrepancy means that the points
are closer to being uniformly distributed.

By definition, an infinite sequence of points y(1),y(2), . . . in [0, 1]s is a
low-discrepancy sequence if for arbitrary N ≥ 1 the star discrepancy of its
first N members satisfies

D∗(P) ≤ C
(lnN)s

N
, (15)
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for some constant C > 0 which is independent ofN but may depend on s. Ex-
amples of low-discrepancy sequences include Halton sequences [11], Sobol ′ se-
quences [53], Faure sequences [8], Niederreiter sequences [33, 34], andNiederreiter-
Xing sequences [35].

Although a bound of the form (15) indicates an ultimate order of conver-
gence theoretically higher than the classical Monte Carlo rate of 1/

√
N , that

bound is unsatisfactory when the dimensionality is high because, for fixed s,
(lnN)s/N keeps growing with increasing N until N is exponentially large
in s.

In contrast to that somewhat negative observation is a remarkable result
proved in [12], that there exists a sequence of QMC point sets for which the
star discrepancy is of order

√
s/N (with an unknown constant), or alter-

natively,
√

s ln s lnN/N (with an explicit constant). However, no-one yet
knows how to construct QMC points that satisfy a bound of this kind.

1.4 Why go beyond the standard setting?

Within the standard setting we now know (see §1.1) that, with the help of
suitable weights, we can obtain close to order 1/N for the worst-case error,
with an implied constant independent of the dimension s, so allowing QMC
methods to be applicable to really high dimensional problems. Why might
one want to go beyond the standard setting? One argument concerns the
choice of weights. While the theoretical results concerning weights in §1.1
might be considered interesting, there have been few if any convincing pre-
scriptions of the weights to use in any particular application: in most appli-
cations the choice of weights has been ad hoc. In the paper [29], in contrast,
the choice of weights is an essential ingredient in the analysis. Interestingly,
the weights found there turn out to be not of the product form (9), but are
rather of “product-and-order-dependent” or “POD” form, in general defined
by

γu = Γ|u|
∏

j∈u

γj , (16)

where |u| denotes the cardinality, or the order, of u. The multiplier Γ|u| in
front of the product is a positive number that depends only on the order
|u| of the subset u, hence is said to be order-dependent. In the particular
application in [29] the multiplier Γ|u| is found to be Γ|u| = (|u|!)ν for some
positive number ν that is independent of u. Thus for the problem considered
in [29] confining ourselves to product weights, see (9), is no longer reasonable.
Fortunately, a more general notion of weights (in which at the extreme all of
the 2s weights γu in (8) are chosen independently) has already been proposed
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in [50]. An efficient CBC construction is not available for general weights,
but an efficient CBC construction can be devised for the particular case of
POD weights, as we show for the first time in §5 ahead.

Sometimes the Hilbert space aspect of the standard setting is a major
restriction. This is often the case for problems whose natural setting is Rs.
If for simplicity we think for a moment of functions in only one dimension,
that is s = 1, then an integral of the form

I1(f) :=

∫ ∞

−∞
f(x) ρ(x) dx ,

where ρ is a given probability density function on R, can be reformulated as
a problem on the unit cube by the transformation

y = Φ(x) :=

∫ x

−∞
ρ(t) dt ,

under which the integral I1(f) becomes

I1(f) =

∫ 1

0

F (y) dy = I1(F ) , with F (y) = f(Φ−1(y)) .

But the resulting integrand lies in our space H1,γ1 , defined by (7), if and only
if F ′ ∈ L2[0, 1], where by the chain rule

F ′(y) =
f ′(x)

Φ′(x)
=

f ′(Φ−1(y))

ρ(Φ−1(y))
.

The problem comes from the requirement to square the denominator ρ(x):
it is often the case that the resulting integral

∫ 1

0

|F ′(y)|2 dy =

∫ 1

0

∣∣∣∣
f ′(Φ−1(y))

ρ(Φ−1(y))

∣∣∣∣
2

dy =

∫ ∞

−∞

|f ′(x)|2

ρ(x)
dx

diverges. In contrast, if the requirement were merely that F ′ ∈ L1[0, 1], then
the demand would be merely

∫ 1

0

|F ′(y)| dy =

∫ ∞

−∞
|f ′(x)| dx < ∞ ,

which is much more commonly satisfied.
We shall discuss more general Banach space settings in §3 (which may be

viewed as a “second course” on QMC).
There is another family of QMC methods called digital nets, see [34]. We

shall not discuss results relating to digital nets in this review. For recent
developments of digital nets, including analysis in weighted spaces and con-
structions that achieve higher order convergence (i.e., a convergence rate of
order N−α for α > 1), we refer the reader to the book by Dick and Pil-
lichshammer [6].
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1.5 A new kind of example

Suppose that

a(y) = a(y1, . . . , ys) := 1 +
s∑

j=1

yαj
j2

, (17)

is a physical quantity that depends on s independent random variables y1, . . . , ys,
each uniformly distributed over [0, 1], and that 0 < α ≤ 1. We note that

1 ≤ a(y) ≤ 1 +
∞∑

j=1

1

j2
= 1 +

π2

6
∀y ∈ [0, 1]s, ∀s ≥ 1 .

Our problem is to find the expected value of the reciprocal of a,

F (y) :=
1

a(y)
. (18)

Since the yj are i.i.d. uniform over [0, 1], this expectation is given by

Is(F ) =

∫

[0,1]s

1

a(y)
dy =

∫ 1

0

. . .

∫ 1

0

1

a(y1, . . . , ys)
dy1 . . . dys .

It is easily verified that Is(F ) is well-defined for α > 0.
The integrand F (y) is a simplified model of an elliptic partial differ-

ential equation with a random coefficient, as studied in [29]. Though the
latter problem is beyond the scope of this paper, there as here the variables
y1, y2, . . . are parameters in a “probability space”. The big difference in that
problem is the presence of another variable x ∈ R2 or R3 corresponding to
position in physical space; and that one has to solve an elliptic PDE with
respect to the physical variable x.

If we write the definition (18) instead as an algebraic equation,

a(y)F (y) = 1,

then the present example has the flavour of the elliptic PDE considered in
[29], while avoiding all PDE complications.

Suppose that we want to approximate Is(F ) by a randomly shifted lattice
rule, see (12). Then obviously we need to know a good choice for the integer
vector z. In turn, if we want to generate a good choice of z by the CBC
algorithm (see §1.2 and §4) then we need to know a good choice of the weights
γu to steer the CBC algorithm.
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The first step towards a rational choice of weights is to determine (or
obtain a bound on) the norm ‖F‖s,γ . To this end, by direct differentiation
of F we easily find, with dj := α/j2,

∂F

∂yj
= −

djy
α−1
j

[a(y)]2
, 1 ≤ j ≤ s ,

∂2F

∂yjyk
=

2 djdk(yjyk)α−1

[a(y)]3
, 1 ≤ j, k ≤ s, j -= k ,

and for the mixed first partial derivative with respect to the variables with
labels in u,

∂|u|F

∂yu

=
|u|!

∏
j∈u(−djy

α−1
j )

[a(y)]|u|+1
.

Hence, on using a(y) ≥ amin we find, for α > 1/2,

∫

[0,1]|u|

∣∣∣∣
∂|u|F

∂yu

(yu, 1)

∣∣∣∣
2

dyu ≤
(|u|!)2

∏
j∈u d

2
j

(2α− 1)|u|a2(|u|+1)
min

,

and on defining bj := dj/(
√
2α− 1 amin) = α/(j2

√
2α− 1 amin), we obtain a

bound on the norm (8),

‖F‖2s,γ ≤ 1

a2min

∑

u⊆{1:s}

(|u|!)2
∏

j∈u b
2
j

γu
. (19)

We observe that, as α → 1/2, the bound approaches infinity, even though
the expectation of 1/a(y) is well defined for all 0 < α ≤ 1. We thus see that
non-Hilbert space norms might be advantageous in order to cover as wide
a class of integrands as possible. This is one motivation for considering the
Banach space setting in §3 ahead.

For simplicity we assume for the remainder of this subsection that α = 1;
it is suggested, however, that the reader track the α dependence through the
ensuing derivations.

Given the bound (19) on the norm, how can we decide on the best choice
of weights γu, and go on to obtain an error bound for |Is(F )−Qs,N(F )|? The
principle used in [29] is that we should choose weights that as far as possible
minimize the error bound (5). Bearing in mind the upper bound (19), that
means we should choose weights that minimize the right-hand side of

|Is(F )−Qs,N(F )| ≤ ewor(P ;Hs,γ)
1

amin




∑

u⊆{1:s}

(|u|!)2
∏

j∈u b
2
j

γu




1/2

. (20)
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We shall show later in §4, see Theorem 5, that if Qs,N is a randomly shifted
lattice rule constructed by the CBC algorithm, and if we interpret the error
in (20) as the root-mean-square error averaged over shifts, then the right-
hand side of (20) can be further bounded (for the simplest case of prime N)
by



 2

N

∑

∅(=u⊆{1:s}

γλ
u (ρ(λ))

|u|




1/(2λ)

1

amin




∑

u⊆{1:s}

(|u|!)2
∏

j∈u b
2
j

γu




1/2

, (21)

where

ρ(λ) :=
2ζ(2λ)

(2π2)λ
+

(
1

3

)λ

.

Here ζ(x) :=
∑∞

k=1 1/k
x for x > 1 is the Riemann zeta function, and λ

is any number satisfying 1/2 < λ ≤ 1. Obviously we get the best rate of
convergence, a rate close to 1/N , by taking λ close to 1/2, but λ must remain
strictly greater than 1/2 because ζ(x) → ∞ as x → 1.

In [29, Theorem 6.3] it is shown (and the reader can easily verify) that
(21) is minimized, and bounded independently of s, by choosing the weights
to be

γu =

(
|u|!

∏

j∈u

bj√
ρ(λ)

) 2
1+λ

.

Thus the best choice of weights, in the sense of minimising the error bound,
is a POD (“product-and-order-dependent”) weight, and this choice gives a
rate of convergence that is independent of s, and arbitrarily close to 1/N
when λ is close to 1/2.

2 QMC in a Hilbert space setting

In the standard setting, as described in §1.1, the function space Ws,γ is a
Hilbert space, but not just a Hilbert space: it is a special kind of Hilbert
space called a reproducing kernel Hilbert space, or RKHS, see [1]. Such
Hilbert spaces are often useful in numerical analysis, since a Hilbert space
is an RKHS if and only if point evaluation is a bounded linear functional.
More plainly, if function values at points are to make sense, as we need in (2),
then our Hilbert space must be an RKHS. It turns out that the error analysis
for numerical integration in general, and QMC integration in particular, is
especially simple in an RKHS setting. In this section we describe that error
analysis, then apply it to the standard setting.
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2.1 Reproducing kernel Hilbert spaces

A Hilbert space H with inner product 〈·, ·, 〉H is an RKHS, see [1], if and
only if there is a unique function K : [0, 1]s × [0, 1]s → R, referred to as the
reproducing kernel, with the following properties:

K(y, ·) ∈ H for all y ∈ [0, 1]s ,

K(y,y′) = K(y′,y) for all y,y′ ∈ [0, 1]s ,

F (y) = 〈F,K(y, ·)〉H for all y ∈ [0, 1]s and F ∈ H . (22)

The last property is known as the reproducing property. The existence of the
reproducing kernel is a consequence of the boundedness of point evaluation,
as follows from the Riesz representation theorem, see [1].

The RKHS approach provides a very powerful tool for obtaining QMC
error bounds, provided the kernel is known, and available in closed form.
(This is certainly the case for the standard setting – see (25) below.) This
is because, as we shall now show, there is a simple but completely general
expression for the worst-case error in terms of the reproducing kernel. Thus
the worst-case error in an RKHS becomes a computable expression.

2.2 Worst-case error in an RKHS

Suppose H is an RKHS with reproducing kernel K : [0, 1]s × [0, 1]s → R.
Using (2) and the reproducing property (22) we can write

Qs,N(F ) =
1

N

N∑

i=1

〈F,K(y(i), ·)〉H =

〈
F,

1

N

N∑

i=1

K(y(i), ·)
〉

H

.

In a similar way, any bounded linear functional T on H can be represented
as T (F ) = 〈F, T̃ 〉H, with T̃ (y) = T (K(y, ·)) for all y ∈ [0, 1]s. Assuming
that Is is a bounded linear functional on H (which will always be the case
for the spaces of interest to us), then we can thus write

Is(F ) =

〈
F,

∫

[0,1]s
K(y, ·) dy

〉

H
,

and hence by subtraction,

Is(F )−Qs,N(F ) = 〈F, ξs,N〉H , (23)

where ξs,N is the representer of the error,

ξs,N(y
′) :=Is(K(·,y′))−Qs,N(K(·,y′))



2 QMC in a Hilbert space setting 15

=

∫

[0,1]s
K(y,y′) dy − 1

N

N∑

i=1

K(y(i),y′) .

By the Cauchy-Schwarz inequality, we obtain from (23) the error bound

|Is(F )−Qs,N(F )| = |〈F, ξs,N〉H| ≤ ‖F‖H‖ξs,N‖H .

Equality holds when F is a multiple of ξs,N , thus by the definition of worst-
case error (4) we see that

ewor(P ;H) = ‖ξs,N‖H.

This leads us to the following explicit formula for the worst-case error.

Lemma 1 If H is an RKHS with reproducing kernel K, and if Is is a
bounded linear functional on H, then

[ewor(P ;H)]2 =

∫

[0,1]s

∫

[0,1]s
K(y,y′) dy dy′

− 2

N

N∑

i=1

∫

[0,1]s
K(y(i),y) dy +

1

N2

N∑

i=1

N∑

i′=1

K(y(i),y(i′)) .

Proof: Using the reproducing property of K(·, ·) and the linearity of Is(·)
and Qs,N(·), we obtain

[ewor(P ;H)]2 =

∥∥∥∥∥

∫

[0,1]s
K(y, ·) dy − 1

N

N∑

i=1

K(y(i), ·)

∥∥∥∥∥

2

H

=

〈∫

[0,1]s
K(y, ·) dy − 1

N

N∑

i=1

K(y(i), ·) ,
∫

[0,1]s
K(y, ·) dy − 1

N

N∑

i=1

K(y(i), ·)
〉

H

=

〈∫

[0,1]s
K(y, ·) dy,

∫

[0,1]s
K(y, ·) dy

〉

H
− 2

N

N∑

i=1

〈∫

[0,1]s
K(y, ·) dy , K(y(i), ·)

〉

H

+
1

N2

N∑

i=1

N∑

i′=1

〈
K(y(i), ·), K(y(i′), ·)

〉

H
.

Using again the reproducing property (22), we obtain the desired formula.
♠
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2.3 Error analysis in the standard setting

Recall that Hs,γ denotes the Hilbert space in the standard setting of §1.1.
Then the inner product corresponding to the norm (8) is

〈F,G〉s,γ =
∑

u⊆{1:s}

γ−1
u

∫

[0,1]|u|

∂|u|F

∂yu

(yu, 1)
∂|u|G

∂yu

(yu, 1) dyu , (24)

where γu is again given by (9) and where the notation is as in (8).
It can be shown that the reproducing kernel for the space Hs,γ is

Ks,γ(y,y
′) =

s∏

j=1

(
1 + γj

[
1−max(yj, y

′
j)
])

, y,y′ ∈ [0, 1]s . (25)

(It is a useful exercise, based solely on integration by parts and the definition
of the norm, to verify the reproducing property (22) for s = 1.) An explicit
expression for the worst-case error of the spaceHs,γ is then given by Lemma 1
as

[ewor(P ;Hs,γ)]
2 =

s∏

j=1

(
1 +

γj
3

)
− 2

N

N∑

i=1

s∏

j=1

(
1 +

γj
2

(
1− [t(i)j ]2

))

+
1

N2

N∑

i=1

N∑

i′=1

s∏

j=1

(
1 + γj

(
1−max(t(i)j , t(i

′)
j )

))
. (26)

As we shall explain in §3, this quantity is also known by the name of
“weighted L2 discrepancy”. (The unweighted version, i.e., γj = 1, is due
to Warnock [58]; the weighted version was derived by Joe [23].)

This machinery provided the foundation for the series of developments
foreshadowed in §1.1 and §1.2, from the non-constructive error bounds on
general QMC methods, to the component-by-component (CBC) construc-
tion of randomly shifted lattice rules that achieve the cδ/N1−δ bound with
δ > 0 arbitrary small (probabilistically, since the shift is random) under the
condition (11). More details about the theory and construction of lattice
rules will be given in §4 and §5.

3 Banach space settings with general weights

In this section we go beyond the standard setting in two ways. Firstly, we
move away from Hilbert space settings to Banach space settings. Secondly,
we consider general weights instead of product weights (9).
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More precisely, we assume that the integrand F in (1) admits mixed first
derivatives belonging to Lq for some q ∈ [1,∞], and we define a norm by
combining the derivative terms in the +r sense for r ∈ [1,∞]. Denoting here
the function space byWq,r

s,γ , we derive the weighted Koksma-Hlawka inequality

|Is(F )−Qs,N(F )| ≤ Dq′,r′

s,γ (P) ‖F‖Wq,r
s,γ

, (27)

where q′ and r′ are the Hölder conjugates of q and r respectively, i.e., 1/q +
1/q′ = 1 and 1/r + 1/r′ = 1 for q and r strictly between 1 and ∞, and as
usual 1 is the conjugate of ∞ and vice versa. For the precise definition of the
norm ‖F‖Wq,r

s,γ
and the discrepancy Dq′,r′

s,γ (P) see (30) and (31) below. For
now it suffices to say that the q = r = 2 case corresponds to the standard
setting if we have product weights, while the q = r = 1 case corresponds to
the classical setting if all weights are equal to 1.

We shall explain below that q and r play different roles in the QMC error
bounds, and that decoupling q and r allows for more flexibility in the QMC
analysis.

3.1 Deriving the weighted Koksma-Hlawka inequality

In this subsection we derive the generalized QMC error bound (27), a weighted
version of the Koksma-Hlawka inequality (13). Like the Koksma-Hlawka in-
equality itself, this can be derived from the Zaremba identity [59]. Assuming
that the integrand F in (1) is sufficiently smooth, the Zaremba identity states
that

Is(F )−Qs,N(F )

=
∑

∅(=u⊆{1:s}

(−1)|u|
∫

[0,1]|u|

∂|u|F

∂yu

(yu, 1) discrP(yu, 1) dy , (28)

where discrP(·) is the local discrepancy function defined in (14) and the
notation is the same as in (8).

The validity of the Zaremba identity is easily verified in the case s = 1:
if we adopt the convention that

0 = y(0) ≤ y(1) ≤ . . . ≤ y(N) ≤ y(N+1) = 1 ,

then the right hand side of the identity becomes

−
∫ 1

0

F ′(y)

(
y − |i : y(i) ∈ [0, y)|

N

)
dy = −

N+1∑

i=1

∫ y(i)

y(i−1)

F ′(y)

(
y − i− 1

N

)
dy
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= − 1

N

N∑

i=1

F (y(i)) +

∫ 1

0

F (y) dy ,

where the last step comes from integration by parts and recombination of the
terms. The general case follows in a similar way by recursively applying the
preceding univariate integration by parts with respect to each coordinate yj.

As in (24), we introduce weights γu into the error bound, but now allowing
a different positive weight γu for each subset u ⊆ {1 : s}. For each term in

the sum of (28), we multiply and divide by γ1/2
u to get

Is(F )−Qs,N(F )

=
∑

∅(=u⊆{1:s}

(−1)|u|
∫

[0,1]|u|

∂|u|F

∂yu

(yu, 1) γ
−1/2
u γ1/2

u discrP(yu, 1) dyu .

Clearly nothing has been changed at this point. Next we use Hölder’s in-
equality for integrals with the conjugate exponents q and q′ to obtain

|Is(F )−Qs,N(F )|

≤
∑

∅(=u⊆{1:s}

∥∥∥∥γ
−1/2
u

∂|u|F

∂yu

(yu, 1)

∥∥∥∥
Lq

∥∥γ1/2
u discrP(yu, 1)

∥∥
Lq′ ,

where the Lq norm of a function f is defined as usual by

‖f‖Lq :=






(∫
[0,1]s |f(y)|

q dy
)1/q

for q ∈ [1,∞) ,

ess supy∈[0,1]s |f(y)| for q = ∞ .

Then we use Hölder’s inequality for sums with the conjugate pair r and r′ to
arrive at

|Is(F )−Qs,N(F )| ≤




∑

∅(=u⊆{1:s}

∥∥∥∥γ
−1/2
u

∂|u|F

∂yu

(yu, 1)

∥∥∥∥
r

Lq




1/r

×




∑

∅(=u⊆{1:s}

∥∥γ1/2
u discrP(yu, 1)

∥∥r′

Lq′




1/r′

, (29)

with the usual modification for the case r = ∞ or r′ = ∞.
The first factor in (29) prompts us to define our norm by, for 1 ≤ q ≤ ∞,

‖F‖Wq,r
s,γ
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:=









∑

u⊆{1:s}

∥∥∥∥γ
−1/2
u

∂|u|F

∂yu

(yu, 1)

∥∥∥∥
r

Lq




1/r

for 1 ≤ r < ∞ ,

max
u⊆{1:s}

∥∥∥∥γ
−1/2
u

∂|u|F

∂yu

(yu, 1)

∥∥∥∥
Lq

for r = ∞ ,

(30)

and we denote the corresponding Banach space by Wq,r
s,γ . Note that we have

added the u = ∅ term to the sum to make it a true norm. The expression
without the u = ∅ term is a seminorm which is sometimes referred to as
the variation of F . We define the second factor in (29) to be the weighted
discrepancy of the QMC point set P

Dq′,r′

s,γ (P)

:=









∑

∅(=u⊆{1:s}

∥∥γ1/2
u discrP(yu, 1)

∥∥r′

Lq′




1/r′

for 1 ≤ r′ < ∞ ,

max
∅(=u⊆{1:s}

∥∥γ1/2
u discrP(yu, 1)

∥∥
Lq′ for r′ = ∞ .

(31)

With the definitions (30) and (31), we obtain the weighted Koksma-Hlawka
inequality in (27).

The weighted Koksma-Hlawka inequality (29) was first derived by Sloan
andWoźniakowski [51], but with q always equal to r. The unweighted version,
i.e., all weights γu = 1, had appeared earlier in the QMC literature, but again
seemingly always with q = r; it was derived by Zaremba [59] for q = r = 2
and by Sobol′ [54] for general q = r. The classical Koksma-Hlawka inequality
can be recovered by taking the unweighted version with q = r = 1; it was
proved by Koksma [26] for dimension s = 1 and generalized by Hlawka [22]
for s ≥ 1. Actually, the classical Koksma-Hlawka inequality in its original
form has the variation in the sense of Hardy and Krause instead of the norm
of F ; this variation is precisely the norm without the u = ∅ term whenever
all mixed first partial derivatives are continuous on [0, 1]s, see e.g., [34].

As an exercise, the reader might wish to check for which parameters q
and r and which weights γu the function F (y) in §1.5 belongs to Wq,r

s,γ and
has its norm bounded independently of s.

3.2 Connection between discrepancy and worst-case
error

It turns out that the weighted discrepancy Dq′,r′
s,γ (P) is precisely the worst-

case error in the space Wq,r
s,γ , indicating that the weighted Koksma-Hlawka

inequality is tight.
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Lemma 2 Let P be a finite point set in [0, 1]s. Then

ewor(P ;Wq,r
s,γ) = Dq′,r′

s,γ (P) .

Proof: For a function F in the unit ball of Wq,r
s,γ , the weighted Koksma-

Hlawka inequality (27) yields

|Is(F )−Qs,N(F )| ≤ Dq′,r′

s,γ (P) , (32)

so to prove the lemma it would be sufficient to construct an integrand for
which equality is attained in (32). This is possible for q, r ≥ 2. For q = 1 or
r = 1 (i.e., q′ = ∞ or r′ = ∞), instead a “nearly worst-case” integrand F ε is
constructed for arbitrary ε > 0, one for which

|Is(F ε)−Qs,N(F
ε)| ≥ Dq′,r′

s,γ (P)− ε .

Under more general function space settings, this result is discussed in [13]
for q = r and in [17] for general q, r; a proof for q = r = 1 is given in [16]
and a proof for q, r ≥ 2 is given in [19]. ♠

3.3 Two special cases: q = r = 2 and q = r = 1

Most QMC analyses follow one of two approaches. The first approach uses the
Hilbert space setting of q = r = 2, and studies the weighted L2 discrepancy
D2,2

s,γ(P). This has the nice explicit representation

[D2,2
s,γ(P)]2 =

∑

∅(=u⊆{1:s}

γu

[
1

3|u|
− 2

N

N∑

i=1

∏

j∈u

1− [t(i)j ]2

2

+
1

N2

N∑

i=1

N∑

i′=1

∏

j∈u

(
1−max(t(i)j , t(i

′)
j )

)]
, (33)

which we met already for the product weight case as a worst-case error in
(26). Two QMC constructions related to this formula are [47, 48].

The other important approach uses the non-Hilbert setting of q = r = 1
(and thus q′ = r′ = ∞) and so studies the weighted star discrepancy

D∞,∞
s,γ (P) = max

∅(=u⊆{1:s}
sup

yu∈[0,1]|u|
γ1/2
u discrP(yu, 1)

= sup
y∈[0,1]s

max
∅(=u⊆{1:s}

γ1/2
u discrP(yu, 1) =: D∗

s,γ(P) ,
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see e.g., [51, 57, 24, 6]. (We remark that our scaling with weights γ1/2
u is

consistent with [51, 57], but the scaling γu was used in [24, 6].) Unlike the
L2 counterpart, there is no easy formula for computing the weighted star
discrepancy for a given point set (except when the dimensionality s is as low
as 2 or 3), and one must work with some form of upper bound. We will
discuss recent constructive results from both approaches in §4.

3.4 The benefit of decoupling q and r

The idea of decoupling q and r originated from the works of Hickernell, Sloan
and Wasilkowski [17, 19], who observed that since the Lq norm for a function
defined on the unit cube increases with increasing q, and the +r norm for a
vector increases with decreasing r, we have the partial ordering

‖F‖W1,∞
s,γ

≤ ‖F‖Wq1,r1
s,γ

≤ ‖F‖Wq2,r2
s,γ

≤ ‖F‖W∞,1
s,γ

,

D∞,1
s,γ (P) ≥ D

q′1,r
′
1

s,γ (P) ≥ D
q′2,r

′
2

s,γ (P) ≥ D1,∞
s,γ (P) , (34)

for all {
1 ≤ q1 ≤ q2 ≤ ∞ ,

∞ ≥ r1 ≥ r2 ≥ 1 ,

{
∞ ≥ q′1 ≥ q′2 ≥ 1 ,

1 ≤ r′1 ≤ r′2 ≤ ∞ .

This partial ordering implies the embedding

W∞,1
s,γ ⊂ Wq2,r2

s,γ ⊂ Wq1,r1
s,γ ⊂ W1,∞

s,γ

with continuous injections.
Thus in the weighted Koksma-Hlawka inequality (27) we are able to have

a smaller norm paired with a larger discrepancy, or a larger norm paired with
a smaller discrepancy. The trade-off between the norm and the discrepancy
determines the final QMC error bound. It is therefore important to consider
the norm and the discrepancy together, rather than focusing solely on the
discrepancy (as is done in many QMC analyses).

We also see that decoupling q and r allows for more flexibility in the
QMC analysis. Observe that the partial ordering (34) does not allow for a
comparison between D2,2

s,γ(P) and D∞,∞
s,γ (P) in general, thus the two special

cases discussed in §3.3 have been treated separately in the past. However,
if a given integrand can be bounded in a larger norm, say, W∞,1

s,γ , then the
smaller discrepancy D1,∞

s,γ (P) can be used, and in this case all existing bounds
on other larger discrepancies, including both D2,2

s,γ(P) and D∞,∞
s,γ (P), can be

applied.
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3.5 The weighted space Wq,r
s,γ and generalizations

It is easy to see that different values of the parameter r yield equivalent
norms in the function space Wq,r

s,γ , thus do not change the function space
itself. However, as we shall see later in §3.9, tractability results can depend
on the specific value of r.

In the norm (30), ∂|u|F
∂yu

is evaluated at (yu, 1), meaning that the compo-
nents of y with indices outside the set u are replaced by 1. Instead we could
use an arbitrary anchor a ∈ [0, 1] (the choice a = 1/2 is popular). There
is also an unanchored variant which, instead of freezing a component at the
anchor value, integrates a component out, see e.g., [50]. For simplicity we
shall consider in this paper only the anchored space, and only the anchor
a = 1.

Since the integrals arising from practical problems are often formulated
over Rs rather than the unit cube, the paper [30] considered a generalization
of the function space for unbounded integrands in Rs.

Earlier works by Hickernell [13, 14] considered unweighted spaces with
general q = r, with a generalization of the function space that covers both
the anchored and unanchored variants. Later works by Hickernell, Sloan and
Wasilkowski [16, 17, 18, 19] considered weighted spaces with general anchor,
general product domain, and general product measure; the papers [16, 18]
focused on the case q = r = 1 while [17, 19] allowed for general q and r.

3.6 Anchored decomposition

Let Wq,r
u,γ denote the subspace of Wq,r

s,γ containing functions F (y) that depend
only on the set of variables whose indices belong to a set u ⊆ {1 : s}. Denote
this set of variables by yu. Every function inWq,r

s,γ has a unique decomposition
of the form

F (y) =
∑

u⊆{1:s}

Fu(yu) ,

where Fu belongs to the space Wq,r
u,γ and satisfies also the condition that for

all u -= ∅
Fu(yu) = 0 if yj = 1 for any j ∈ u .

This is sometimes called the anchored decomposition. It was shown in [31]
that an explicit formula for Fu is given by

Fu(yu) =
∑

v⊆u

(−1)|u|−|v|F (yv, 1) .
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Similar decompositions exist for a general anchor and other more general
variants of the function space, see [31]. The best known of these decomposi-
tions is the ANOVA decomposition, see e.g., [3, 55].

From the anchored decomposition of F we have

∂|u|F

∂yu

(yu, 1) =
∑

u′⊆{1:s}

∂|u|Fu′

∂yu

(yu, 1) =
∂|u|Fu

∂yu

(yu) .

The last equality holds because if there is an index j ∈ u but j /∈ u′, then
Fu′ does not depend on yj and its partial derivative with respect to yj is 0;
while if there is an index j ∈ u′ but j /∈ u, then fixing yj at 1 annihilates Fu′ .
It then follows that the norm in Wq,r

s,γ can also be expressed, for 1 ≤ q ≤ ∞
and 1 ≤ r < ∞, in either of the forms

‖F‖Wq,r
s,γ

=




∑

u⊆{1:s}

∥∥∥∥γ
−1/2
u

∂|u|Fu

∂yu

(yu)

∥∥∥∥
r

Lq




1/r

=




∑

u⊆{1:s}

‖Fu‖rWq,r
s,γ




1/r

,

with the obvious modification for r = ∞. Hence we have a decomposition
of the norm corresponding to the anchored decomposition. (Note that there
needs to be a precise match between the chosen norm and the type of de-
composition. For example, the unanchored variant of the norm should be
combined with the ANOVA decomposition.)

It is generally too costly or even infeasible to compute the anchored de-
composition of a given function F ; however, the concept of an anchored
decomposition is useful as a technical tool in QMC error analysis.

3.7 Extension of RKHS analysis to Banach space set-
ting

As argued in [13], see also [14, Section 3.2], we can often extend by continuity
the inner product 〈·, ·, 〉W defined on W ×W to H× J , where H ⊃ W , and
J ⊂ W . This allows the RKHS machinery with a given reproducing kernel
to be extended to Banach spaces. More specifically, we have from (23) and
the definition of the inner product (24) that

Is(F )−Qs,N(F ) = 〈F, ξs,N〉W2,2
s,γ

=
∑

u⊆{1:s}

γ−1
u

∫

[0,1]|u|

∂|u|F

∂yu

(yu, 1)
∂|u|ξs,N
∂yu

(yu, 1) dyu .

For any y ∈ [0, 1]s the kernel Ks,γ(·,y) given by (25) has sufficient smooth-
ness to lie not only in W2,2

s,γ but also in W∞,1
s,γ , thus the reproducing property
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of the kernel holds for all F ∈ Wq,r
s,γ and for all q and r. Likewise ξs,N ∈ W∞,1

s,γ

and so the above equality holds for all F ∈ Wq,r
s,γ for all q and r.

Introducing weights γ1/2
u and applying Hölder’s inequality twice with con-

jugate pairs q, q′ and r, r′ in the same manner as we did in §3.1, we obtain
another form of the weighted Koksma-Hlawka inequality

|Is(F )−Qs,N(F )|

≤ ‖F‖Wq,r
s,γ




∑

u⊆{1:s}

∥∥∥∥γ
1/2
u

∂|u|ξs,N
∂yu

(yu, 1)

∥∥∥∥
r′

Lq′




1/r′

.

It can be verified that the second factor on the right-hand side is precisely
the worst-case error ewor(P ;Wq,r

s,γ), which is exactly the weighted discrepancy

Dq′,r′
s,γ (P).
This approach can be useful when we are given a reproducing kernel and

cannot use the Zaremba identity.

3.8 Relation between discrepancies with different r

We recall from (34) that for fixed 1 ≤ q′ ≤ ∞

D
q′,r′1
s,γ (P) ≥ D

q′,r′2
s,γ (P) for all 1 ≤ r′1 < r′2 ≤ ∞ .

We now provide two lemmas relating these discrepancies in other ways by
modifying the weights.

The first lemma provides a result in the opposite direction to the inequal-
ity above. It allows us to use known results for r = 1, 2 to draw conclusions
for other values of r.

Lemma 3 Let 1 ≤ q′ ≤ ∞ and 1 ≤ r′1 < r′2 ≤ ∞. Define new weights

γ̃u := γa
u , u ⊆ {1 : s},

for arbitrary a ∈ [0, 1]. Then

D
q′,r′1
s,γ (P) ≤




∑

∅(=u⊆{1:s}

γ

(1−a)r′1r
′
2

2(r′2−r′1)
u





r′2−r′1
r′1r

′
2

D
q′,r′2
s,γ̃ (P) ,

with the convention that for r′2 = ∞ we have (r′2 − r′1)/(r
′
1r

′
2) = 1/r′1.
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Proof: This result is proved in [17, Lemma 1] via a relationship between
the corresponding norms. Here we use a similar argument to prove the result
directly. We have

D
q′,r′1
s,γ (P) =




∑

∅(=u⊆{1:s}

∥∥γ1/2
u discrP(yu, 1)

∥∥r′1
Lq′




1/r′1

=




∑

∅(=u⊆{1:s}

γ
(1−a) r′1/2
u

∥∥γa/2
u discrP(yu, 1)

∥∥r′1
Lq′




1/r′1

≤




∑

∅(=u⊆{1:s}

γ
(1−a) r′1t/2
u




1/(r′1t)

×




∑

∅(=u⊆{1:s}

∥∥γa/2
u discrP(yu, 1)

∥∥r′2
Lq′




1/r′2

,

where we applied Hölder’s inequality with t being the Hölder conjugate of
r′2/r

′
1, that is, t = 1/(1− r′1/r

′
2) = r′2/(r

′
2 − r′1). ♠

The second lemma allows us to trade a lower convergence rate for the
discrepancy in return for less restrictive conditions on the weights.

Lemma 4 Let 1 ≤ q′ ≤ ∞ and 1 ≤ r′1 ≤ r′2 < ∞. Define new weights

γ̃u := γ
r′2/r

′
1

u .

Then

D
q′,r′2
s,γ (P) ≤

[
D

q′,r′1
s,γ̃ (P)

]r′1/r′2
.

Proof: This result is proved in [19, Lemma 1] for a special discrepancy, but
the same argument holds here. We have

D
q′,r′2
s,γ (P) =




∑

∅(=u⊆{1:s}

∥∥γ1/2
u discrP(yu, 1)

∥∥r′2
Lq′




1/r′2

≤




∑

∅(=u⊆{1:s}

∥∥γ̃1/2
u discrP(yu, 1)

∥∥r′1
Lq′




1/r′2

=
[
D

q′,r′1
s,γ̃ (P)

]r′1/r′2
,
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where we used the estimate ‖discrP(yu, 1)‖
r′2/r

′
1

Lq′ ≤ ‖discrP(yu, 1)‖Lq′ , follow-
ing from the fact that r′2/r

′
1 ≥ 1 and |discrP(y)| ≤ 1 for all y ∈ [0, 1]s. ♠

3.9 Tractability

Tractability of multivariate problems has attracted much attention recently.
For the full story see the books by Novak and Woźniakowski [38, 39]. Here
we only briefly discuss the general concept.

Roughly speaking, the integration problem is tractable in a function space
if there exists a quadrature rule whose worst-case error is bounded polyno-
mially in N−1 and s, with an implied constant that is independent of both
N and s; it is said to be strongly tractable if the bound is independent of s.

Tractability for the standard setting, i.e., the Hilbert space W2,2
s,γ = Hs,γ

with product weights, was analyzed in [37]; it was proved that (10) is a nec-
essary and sufficient condition on the weights to achieve strong tractability.

For the Banach spacesWq,r
s,γ with product weights, it was proved in a series

of related papers [16, 17, 18, 19] that a necessary and sufficient condition for
strong tractability is essentially

∞∑

j=1

γr′/2
j < ∞ . (35)

(There are some exceptions: the necessity of condition (35) for q = 1 does
not seem to be known, and for q < 2 the exponent r′/2 in the sufficiency of
condition (35) should be replaced by r′/2 − δ for δ > 0 arbitrarily small.)
The main observation here is that the tractability conditions are determined
by the value of r alone. This is another supporting reason for decoupling q
and r.

Note that the sufficiency of condition (35) was obtained in [17] by relating
all discrepancies to D∞,∞

s,γ (P) or D2,2
s,γ(P) using Lemma 3, and then apply-

ing non-constructive results. Constructive results generally require stronger
assumptions on the weights; we will discuss these in §4.

3.10 Infinite dimensional integration

Integration in the infinite dimensional setting has been analyzed in a number
of recent papers, see, e.g., [36, 32, 15, 42, 10], mostly in a Hilbert space
setting. In a formal sense there is little difficulty in considering integration
with an infinite number of variables, in that for a function F of infinitely
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many variables y = (y1, y2, . . .), we define the integral of F as

I(F ) = lim
s→∞

∫

[0,1]s
F (y1, . . . , ys, a, a, . . .) d(y1, . . . , ys) ,

whenever this limit exists, for some fixed anchor a ∈ [0, 1]. Moreover, the
QMC approximation is always applied to F (y1, . . . , ys, a, a, . . .) for a suitable
s, thus we only ever need to evaluate functions with a finite number of vari-
ables different from the anchor a. But an additional level of error analysis
is needed to handle the truncation to a finite number of variables different
from a, and a new question presents itself, namely how should the cost of
evaluating F (y1, . . . , ys, a, a, . . .) depend on s? The papers cited above have
obtained results relating to the last question under various hypotheses, with
the only common agreement being that the cost should increase with s. The
model should of course depend on the problem at hand.

Note that the probabilistic example in §1.5 has a natural extension to
infinite dimensions: all we need to do is to let the sum in (17) go from 1 to
∞ instead of from 1 to s. The problem considered in that section is then
obtained by choosing the anchor to be a = 0 and setting all variables yj with
j ≥ s+1 to have the value 0, and the infinite dimensional version corresponds
to letting s → ∞.

4 Constructive QMC methods

4.1 CBC construction of lattice rules based on “shift-
averaged” worst-case error

Here we describe the construction of randomly shifted lattice rules in the
Hilbert space W2,2

s,γ . We denote by D2,2
s,γ(z,∆) the worst-case error (or dis-

crepancy) of a shifted lattice rule inW2,2
s,γ ; an explicit formula can be obtained

from (33). Since we will use random shifts, the criterion we use for the CBC
construction of the generating vector z is the shift-averaged worst-case error
eN,s,γ(z) defined by

e2N,s,γ(z) :=

∫

∆∈[0,1]s
[D2,2

s,γ(z,∆)]2 d∆ .

Using term-by-term integration of (33) it can be shown that

e2N,s,γ(z) =
∑

∅(=u⊆{1:s}

γu

(
1

N

N−1∑

k=0

∏

j∈u

[
B2

({
kzj
N

})
+m

]
−m|u|

)
, (36)
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where the braces again indicate taking the fractional part of a real number,
and m = 1/3 in the current space with anchor 1. In general, m = a2−a+1/3
for a general anchor a, and m = 0 for the unanchored variant. (Note the
sum now runs from 0 to N − 1, which is allowable because the k = 0 and
k = N terms are equal.)

Starting with z1 = 1, for each d = 2, 3, . . . , s the CBC algorithm chooses
zd to be the value from set UN := {1 ≤ u ≤ N − 1 : gcd(u,N) = 1}
that minimizes e2N,d,γ(z1, . . . , zd−1, zd), with the previously chosen compo-
nents z1, . . . , zd−1 held fixed. The total number of choices in each dimension
is given by the Euler totient function

φ(N) = |UN | = |{1 ≤ u ≤ N − 1 : gcd(u,N) = 1}| . (37)

The computational cost for the CBC construction with general weights is
exponential in s, but it can be as low as O(sN lnN) operations for some
special forms of weights including POD weights; this will be discussed in §5.
The following theorem provides the theoretical justification for the CBC con-
struction.

Theorem 5 The generating vector z constructed by the CBC algorithm,
minimizing e2N,s,γ(z) in each step, satisfies for any λ ∈ (1/2, 1]

e2N,s,γ(z) ≤




∑

∅(=u⊆{1:s}

γλ
u (ρ(λ))

|u|




1/λ

[φ(N)]−1/λ .

with

ρ(λ) :=
2ζ(2λ)

(2π2)λ
+mλ ,

where ζ(x) is the Riemann zeta function as in §1.5, and φ(N) is the totient
function given by (37).

Proof: This result is partially derived in [50, Theorem 3(A)] for primeN by
exploiting the connection between the Sobolev and Korobov spaces. Rather
than building on the derivation of [50], here we provide a direct proof, for
general N .

The Bernoulli polynomial has the expansionB2(x) =
∑

h (=0 e
2πihx/(2π2h2).

Thus the constant m inside the product in (36) can be interpreted as the
h = 0 term. A crucial technical step if an argument later in this proof is
to work is to remove this h = 0 term from the product. We proceed as
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follows. Writing bj := B2({kzj/N}) and adopting the convention that an
empty product is 1, we have

e2N,s,γ(z) =
1

N

N−1∑

k=0

∑

u⊆{1:s}

γu
∏

j∈u

(bj +m)−
∑

u⊆{1:s}

γum
|u|

=
1

N

N−1∑

k=0

∑

u⊆{1:s}

γu
∑

v⊆u

m|u|−|v|
∏

j∈v

bj −
∑

u⊆{1:s}

γum
|u|

=
1

N

N−1∑

k=0

∑

v⊆{1:s}

∑

v⊆u⊆{1:s}

γum
|u|−|v|

∏

j∈v

bj −
∑

u⊆{1:s}

γum
|u|

=
1

N

N−1∑

k=0

∑

v⊆{1:s}

γ̃v
∏

j∈v

bj − γ̃∅

=
∑

∅(=v⊆{1:s}

γ̃v

(
1

N

N−1∑

k=0

∏

j∈v

bj

)
,

where we introduced auxiliary weights defined by

γ̃v :=
∑

v⊆u⊆{1:s}

γu m
|u|−|v| , v ⊆ {1 : s} . (38)

Next we prove that the CBC construction yields

e2N,s,γ(z) ≤




∑

∅(=v⊆{1:s}

γ̃λ
v

(
2ζ(2λ)

(2π2)λ

)|v|



1/λ

[φ(N)]−1/λ (39)

for all λ ∈ (1/2, 1]. This can be proved by induction on s. The base step
s = 1 is straightforward to verify, and we omit the details here. Assume now
that we have chosen the first s − 1 components z1, . . . , zs−1 and that (39)
holds with s replaced by s−1. Using the expansion of B2 and the “character
property” of lattice rules (namely, that 1

N

∑N−1
k=0 e2πikh·z/N is 1 if h · z ≡ 0

(mod N) and 0 otherwise), we can write

e2N,s,γ(z) =
∑

∅(=v⊆{1:s}

γ̃v

(
1

N

N−1∑

k=0

∏

j∈v

∑

h (=0

e2πihkzj/N

2π2h2

)

=
∑

∅(=v⊆{1:s}

γ̃v
(2π2)|v|

(
1

N

N−1∑

k=0

∑

hv∈(Z\{0})|v|

e2πikhv·zv/N

∏
j∈v h

2
j

)
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=
∑

∅(=v⊆{1:s}

γ̃v
(2π2)|v|

(
∑

hv∈(Z\{0})|v|
hv·zv≡0 (mod N)

1∏
j∈v h

2
j

)
.

Now we separate the terms depending on whether or not the element s is
included in the set v, to obtain the recursive expression

e2N,s,γ(z1, . . . , zs−1, zs) = e2N,s−1,γ(z1, . . . , zs−1) + θ(zs) , (40)

where (suppressing the dependence of θ on z1, . . . , zs−1)

θ(zs) :=
∑

s∈v⊆{1:s}

γ̃v
(2π2)|v|

(
∑

hs∈Z\{0}

1

h2
s

∑

hv\{s}∈(Z\{0})|v|−1

hv\{s}·zv\{s}≡−hszs (mod N)

1∏
j∈v\{s} h

2
j

)
.

If z∗s denotes the value chosen by the CBC algorithm in dimension s, then
(since the minimum is always smaller than or equal to the average) we have
for all λ ∈ (0, 1] that

[θ(z∗s)]
λ ≤ 1

φ(N)

∑

zs∈UN

[θ(zs)]
λ

≤ 1

φ(N)

∑

zs∈UN

∑

s∈v⊆{1:s}

γ̃λ
v

(2π2)|v|λ

·
(

∑

hs∈Z\{0}

1

|hs|2λ
∑

hv\{s}∈(Z\{0})|v|−1

hv\{s}·zv\{s}≡−hszs (mod N)

1∏
j∈v\{s} |hj|2λ

)
,

where we used the inequality (sometimes mistakenly referred to as Jensen’s
inequality) (∑

k

ak

)λ

≤
∑

k

aλk , ak ≥ 0 , λ ∈ (0, 1] . (41)

Next we separate the terms depending on whether or not hs is a multiple of
N , to obtain

[θ(z∗s)]
λ ≤

∑

s∈v⊆{1:s}

γ̃λ
v

(2π2)|v|λ
· 2ζ(2λ)

N2λ

(
∑

hv\{s}∈(Z\{0})|v|−1

hv\{s}·zv\{s}≡0 (mod N)

1∏
j∈v\{s} |hj|2λ

)

+
1

φ(N)

∑

zs∈UN

N−1∑

c=1

∑

s∈v⊆{1:s}

γ̃λ
v

(2π2)|v|λ
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·
(

∑

hs∈Z\{0}
hs≡−cz−1

s (mod N)

1

|hs|2λ
∑

hv\{s}∈(Z\{0})|v|−1

hv\{s}·zv\{s}≡c (mod N)

1∏
j∈v\{s} |hj|2λ

)
,

where z−1
s denotes the multiplicative inverse of zs in UN , i.e., zsz−1

s ≡ 1
(mod N). For fixed c satisfying 1 ≤ c ≤ N−1, we have {cz−1

s (mod N) : zs ∈
UN} = {cz (mod N) : z ∈ UN}. Let g = gcd(c,N). Then gcd(c/g,N/g) = 1,
and

∑

zs∈UN

∑

hs∈Z\{0}
hs≡−cz−1

s (mod N)

1

|hs|2λ
=

∑

z∈UN

∑

hs∈Z\{0}
hs≡−cz (mod N)

1

|hs|2λ

=
∑

z∈UN

∑

m∈Z

1

|mN − cz|2λ

= g−2λ
∑

z∈UN

∑

m∈Z

1

|m(N/g)− (c/g)z|2λ

= g−2λ
∑

z∈UN

∑

h∈Z\{0}
h≡−(c/g)z (mod N/g)

1

|h|2λ

≤ g−2λg

N/g−1∑

a=1

∑

h∈Z\{0}
h≡a (mod N/g)

1

|h|2λ

= g1−2λ · 2ζ(2λ)
(
1− (N/g)−2λ

)

≤ 2ζ(2λ) ,

with the last step following because g ≥ 1 and λ > 1/2. The condition
λ > 1/2 is needed to ensure that ζ(2λ) < ∞. Hence we have

[θ(z∗s)]
λ ≤

∑

s∈v⊆{1:s}

γ̃λ
v

(2π2)|v|λ
· 2ζ(2λ)

N2λ

(
∑

hv\{s}∈(Z\{0})|v|−1

hv\{s}·zv\{s}≡0 (mod N)

1∏
j∈v\{s} |hj|2λ

)

+
1

φ(N)

∑

s∈v⊆{1:s}

γ̃λ
v

(2π2)|v|λ
· 2ζ(2λ)

(
∑

hv\{s}∈(Z\{0})|v|−1

hv\{s}·zv\{s} (≡0 (mod N)

1∏
j∈v\{s} |hj|2λ

)

≤ 1

φ(N)

∑

s∈v⊆{1:s}

γ̃λ
v

(
2ζ(2λ)

(2π2)λ

)|v|

.
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This together with (40) and the induction hypothesis yield the result (39).
Finally we express the result in terms of the original weights. Writing

αλ := 2ζ(2λ)/(2π2)λ and using (38) and (41), we have
∑

∅(=v⊆{1:s}

γ̃λ
v α

|v|
λ ≤

∑

v⊆{1:s}

∑

v⊆u⊆{1:s}

γλ
u m

(|u|−|v|)λ α|v|
λ −

∑

u⊆{1:s}

γλ
u m

|u|λ

=
∑

u⊆{1:s}

γλ
u

∑

v⊆u

m(|u|−|v|)λ α|v|
λ −

∑

u⊆{1:s}

γλ
u m

|u|λ

=
∑

u⊆{1:s}

γλ
u (αλ +mλ)|u| −

∑

u⊆{1:s}

γλ
u m

|u|λ

≤
∑

∅(=u⊆{1:s}

γλ
u (αλ +mλ)|u| .

This completes the proof. ♠

Theorem 6 If the weights satisfy
∑

|u|<∞

γλ
u (ρ(λ))

|u| < ∞ for some λ ∈ (1/2, 1], (42)

or if we have product weights satisfying
∞∑

j=1

γλ
j < ∞ for some λ ∈ (1/2, 1], (43)

then the randomly shifted lattice rule constructed by the CBC algorithm based
on e2N,s,γ(z) satisfies

√
E
[
D2,2

s,γ(z, ·)
]2 ≤ C [φ(N)]−1/(2λ) ,

where E denotes the expectation with respect to the random shift which is
uniformly distributed over [0, 1]s, and C is independent of s and N but goes
to infinity as λ → 1/2.

Proof: The result for general weights follows directly from Theorem 5 and
the definition of e2N,s,γ(z). In the case of product weights, we can write the
sum in (42) as

∑
|u|<∞ γλ

u (ρ(λ))
|u| =

∏∞
j=1(1 + ρ(λ)γλ

j ) = exp(
∑∞

j=1 ln(1 +

ρ(λ)γλ
j ). The condition (43) is then deduced from the property that ln(1 +

x) ≤ x for all x ≥ 0. ♠

Since 1/φ(N) = O(ln lnN/N), if (42) or (43) in Theorem 6 holds with λ
arbitrarily close to 1/2, then we have the convergence rate O(N−1+δ) for
arbitrary δ > 0, with the implied constant approaching infinity as δ → 0.
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4.2 CBC construction based on weighted R

There is another search criterion that can be used in the CBC construction
of lattice rules: we shall refer to it as “weighted R”, see (47) below. It arises
from a discrepancy bound involving the classical star discrepancy. Joe [24]
proved a bound on the weighted star discrepancy D∞,∞

s,γ (P) for such a CBC
construction with product weights and prime N . This was subsequently
extended to general weights and/or composite N in [43, 44, 45].

The search criterion used for general weights [43, 45] has a fundamental
difference from the criterion used for product weights [24, 44]. The dis-
crepancy bounds established in [24, 44] can be applied to all discrepancies
Dq′,r′

s,γ (P), but the same is not true for the results in [43, 45]. Moreover,
the results in [43, 45] rely on a (restrictive) monotonicity assumption on the
weights

γu ≥ γv whenever v ⊆ u . (44)

In particular, this condition does not hold for POD weights.
Here we present a discrepancy bound for general weights, which (i) uses

a direct extension of the search criterion from [24, 44] for product weights,
(ii) applies to all discrepancies Dq′,r′

s,γ (P), and (iii) does not require the mono-
tonicity assumption (44). The results obtained in this subsection are new.

Recall that we have for all q′, r′ ≥ 1

Dq′,r′

s,γ (P) ≤ D∞,1
s,γ (P) =

∑

∅(=u⊆{1:s}

γ1/2
u [D∗(Pu)] ,

where D∗(Pu) is the classical star discrepancy of Pu, the projection of the
point set P in the coordinates yu. When P is a lattice rule with generating
vector z, it follows from [34, Theorem 3.10 and Theorem 5.6] that

D∗(Pu) ≤ 1−
(
1− 1

N

)|u|

+
RN(zu)

2
,

where

RN(zu) :=
1

N

N−1∑

k=0

∏

j∈u

(
1 +

∑

−N/2<h≤N/2
h (=0

e2πihkzj/N

|h|

)
− 1 . (45)

Hence we conclude that for all q′, r′ ≥ 1

Dq′,r′

s,γ (P) ≤
∑

∅(=u⊆{1:s}

γ1/2
u

(
1−

(
1− 1

N

)|u|
)

+
RN,s,γ(z)

2
, (46)
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where
RN,s,γ(z) :=

∑

∅(=u⊆{1:s}

γ1/2
u RN(zu) . (47)

Theorem 7 The generating vector z constructed by the CBC algorithm,
minimizing RN,s,γ(z) in each step, satisfies

RN,s,γ(z) ≤
2

N

∑

∅(=u⊆{1:s}

γ1/2
u (clat lnN)|u| ,

where

clat := sup
N≥2

{
1

lnN
+ 2 +

2π2(N − 1)

3φ(N) lnN

}
.

Proof: First we remark that the search criterion used in [24, 44] is precisely
RN,s,γ(z) for product weights, while the search criterion used in [43, 45] for
general weights is

R̃N,s,γ(z) :=
∑

∅(=u⊆{1:s}

γ1/2
u R̃N(zu) ,

where

R̃N(zu) :=
1

N

N−1∑

k=0

∏

j∈u

∑

−N/2<h≤N/2
h (=0

e2πihkzj/N

|h| . (48)

(Remember that the weight γu in [24, 44] should be substituted by γ1/2
u to be

consistent with our notation here.) Notice that R̃N(zu) in (48) differs from
RN(zu) in (45) in two places: it does not have a 1 added to the sum over
h, and it does not have the −1 at the end. It was proved in [45] for general
N ≥ 2 that the CBC construction based on R̃N,s,γ(z) yields

R̃N,s,γ(z) ≤
2

N

∑

∅(=u⊆{1:s}

γ1/2
u

(
2 lnN +

2π2(N − 1)

3φ(N)

)|u|

, (49)

and the proof did not require the monotonicity condition (44); the condition
(44) was only used in the step for connecting the discrepancy D∞,∞

s,γ (P) to

R̃N,s,γ(z).
In the proof of Theorem 5 we removed the constant m from the product

in the expression of e2N,s,γ(z) by defining a set of auxiliary weights. Here we
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use the same argument to remove the constant 1 from the product in (45).
We can show that

RN,s,γ(z) = R̃N,s,γ̃(z)

for some auxiliary weights

γ̃1/2
v :=

∑

v⊆u⊆{1:s}

γ1/2
u , v ⊆ {1 : s} .

Hence, the CBC construction based on RN,s,γ(z) is identical to the CBC
construction based on R̃N,s,γ̃(z) for auxiliary weights γ̃v, and the bound
(49) applies, but with weights γu replaced by γ̃v. Writing αN := 2 lnN +
(2π2/3)(N − 1)/φ(N), we have

∑

∅(=v⊆{1:s}

γ̃1/2
v α|v|

N =
∑

v⊆{1:s}

∑

v⊆u⊆{1:s}

γ1/2
u α|v|

N −
∑

u⊆{1:s}

γ1/2
u

=
∑

∅(=u⊆{1:s}

γ1/2
u (1 + αN)

|u| .

This completes the proof. ♠

We can say more about the special case of product weights. We shall need
the following result which appeared in [20, 57] in a similar form. However,
our choice of the parameters a and b here yields a better overall constant ab.

Lemma 8 Suppose that τj ≥ 0 for all j ≥ 1 and
∑∞

j=1 τj < ∞. Let δ, a and
b satisfy

0 < δ < min

(
1, 2

∞∑

j=1

τj

)
, a :=

2

δ

∞∑

j=1

τj ,
∞∑

j=b+1

τj ≤
δ

2
.

Then for all n > 0 we have

∞∏

j=1

(1 + τj lnn) ≤ abnδ.

Proof: For any arbitrary a ≥ 1 and b ≥ 1, we can write

∞∏

j=1

(1 + τj lnn) ≤
b∏

j=1

(a+ τj lnn)
∞∏

j=b+1

(1 + τj lnn)
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= ab
b∏

j=1

(
1 +

τj lnn

a

) ∞∏

j=b+1

(1 + τj lnn)

= ab exp

(
b∑

j=1

ln

(
1 +

τj lnn

a

)
+

∞∑

j=b+1

ln(1 + τj lnn)

)

≤ ab exp

(
lnn

a

b∑

j=1

τj + lnn
∞∑

j=b+1

τj

)
,

where we used the property ln(1 + x) ≤ x for all x ≥ 0. The result follows
by choosing a and b as specified in the lemma. ♠

Theorem 9 For any δ ∈ (0, 1), if the weights satisfy

∑

|u|<∞

γ1/2
u

(
clat |u|
e δ

)|u|

< ∞ (50)

or if we have product weights satisfying
∞∑

j=1

γ1/2
j < ∞ , (51)

then the lattice rule constructed by the CBC algorithm based on RN,s,γ(z)
satisfies, for all q′, r′ ≥ 1,

Dq′,r′

s,γ (P) ≤ C N−1+δ ,

where C is independent of s and N but depends on δ and tends to infinity as
δ → 0.

Proof: It is argued in [43] that Bernoulli’s inequality yields 1−(1−1/N)|u| ≤
|u|/N . Thus for general weights the first term on the right-hand side of (46)
is bounded by

∑

∅(=u⊆{1:s}

γ1/2
u

(
1−

(
1− 1

N

)|u|
)

≤ 1

N

∑

∅(=u⊆{1:s}

γ1/2
u |u| .

For the second term RN,s,γ(z)/2 on the right-hand side of (46) we use
the bound in Theorem 7. It is shown in [45], and easily verified, that
N−δ (lnN)|u| ≤ (|u|/(e δ))|u|, which yields

RN,s,γ(z) ≤ 2

N1−δ

∑

∅(=u⊆{1:s}

γ1/2
u

(
clat|u|
e δ

)|u|

.
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The result then follows by combining these two estimates.
For product weights, it is proved in [24] that

∑

u⊆{1:s}

γ1/2
u

(
1−

(
1− 1

N

)|u|
)

≤ 1

N
max

(
1,

∞∑

j=1

γ1/2
j

1 + γ1/2
j

)
exp

( ∞∑

j=1

γ1/2
j

)
,

while Theorem 7 yields RN,s,γ(z) ≤ (2/N)
∏s

j=1(1 + clat γ
1/2
j lnN). We now

use Lemma 8 to conclude that

RN,s,γ(z) ≤
2

N1−δ

(
2 clat
δ

∞∑

j=1

γ1/2
j

)b

,

where b satisfies clat
∑∞

j=b+1 γ
1/2
j ≤ δ/2. The result for product weights now

follows by combining these two estimates. ♠

The following theorem allows us to construct a lattice rule with a lower
convergence rate when the decay of weights is not sufficient fast.

Theorem 10 For any δ ∈ (0, 1), suppose we have general weights satisfying

∑

|u|<∞

γν
u

(
clat |u|
e δ

)|u|

< ∞ for some ν >
1

2
,

or product weights satisfying

∞∑

j=1

γν
j < ∞ for some ν >

1

2
. (52)

Define new weights γ̃u := γ2ν
u for all |u| < ∞ in the case of general weights,

or γ̃j := γ2ν
j for all j ≥ 1 in the case of product weights. Then the lattice

rule constructed by the CBC algorithm based on RN,s,γ̃(z) with new weights
γ̃ satisfies, for all q′ ≥ 1 and r′ ≥ 2ν,

Dq′,r′

s,γ (P) ≤ C N−1/(2ν)+δ ,

where C is independent of s and N but depends on ν and on δ and tends to
infinity as δ → 0.
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Proof: We have
∑

|u|<∞ γ̃1/2
u (clat |u|/(e δ))|u| < ∞ in the case of general

weights, and
∑∞

j=1 γ̃
1/2
j < ∞ in the case of product weights. Using Lemma 4

with r′2 = r′ ≥ 2ν and r′1 = r′/(2ν) ≥ 1 so that r′2/r
′
1 = 2ν, we obtain

Dq′,r′

s,γ (P) ≤
[
Dq′,r′/(2ν)

s,γ̃ (P)
]1/(2ν)

.

The proof is completed by using this bound together with Theorem 9, with
γ replaced by γ̃. ♠

We remark that the CBC constructions based on e2N,s,γ(z) and RN,s,γ(z)
can both be used in the Hilbert space setting with q = r = 2. We now briefly
discuss their pros and cons. Firstly, to obtain close to order 1/N convergence

in the case of product weights, both constructions require
∑∞

j=1 γ
1/2
j < ∞,

but if the weights satisfy a weaker condition then a slower convergence rate is
obtained. Similar results hold for general weights, but the required condition
on general weights for RN,s,γ(z) appears to be tougher. Secondly, the quan-
tity e2N,s,γ(z) is some average of D2,2

s,γ(P) over random shifts, while RN,s,γ(z)
is part of a very loose upper bound on D2,2

s,γ(P). Thus one might expect the
quality of the lattice rule constructed from e2N,s,γ(z) to be better. Finally,
Theorem 6 is a probabilistic result and it requires random shifts, while The-
orems 9 and 10 are completely deterministic and do not require any shift
(although shifts might still be used for practical error estimation).

4.3 Low-discrepancy sequences

Niederreiter [33, 34], Halton [11], and Sobol′ [53] sequences are low-discrepancy
sequences in [0, 1]s that can be generated explicitly, and that are extensi-
ble in both s and N . Furthermore, all projections of these sequences have
good quality according to the classical star discrepancy bounds. See [25]
for parameters to construct Sobol′ sequences in more than twelve thousand
dimensions.

Throughout this section, let PNie, PHal, and PSob denote Niederreiter,
Halton, and Sobol′ sequences, respectively.

Theorem 11 The first N points of the s-dimensional sequence P ∈ {PNie,PHal,PSob}
satisfy, for any q′ ∈ [1,∞) and r′ ∈ [1,∞),

Dq′,r′

s,γ (P) ≤ D∞,r′

s,γ (P) =




∑

∅(=u⊆{1:s}

γr′/2
u [D∗(Pu)]

r′




1/r′

,
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with

D∗(PNie
u ) ≤ 1

N

∏

j∈u

(cNie j logκ(j + κ) ln(κN)) ,

D∗(PHal
u ) ≤ 1

N

∏

j∈u

(cHal j log2(j + 1) ln(eN)) ,

D∗(PSob
u ) ≤ 1

N

∏

j∈u

(cSob j log2(j + 1) log2 log2(j + 3) ln(2N)) ,

where κ is the base for the Niederreiter sequence, and cNie, cHal, cSob are
independent of s and N . The case r′ = ∞ can be obtained by the obvious
adjustment.

Proof: The bounds on D∗(PNie
u ), D∗(PHal

u ), D∗(PSob
u ) were proved in [57],

[20], and [57], respectively, see also [50]. ♠

Requirements on the weights are stated in the next theorem only for the
simpler case of product weights. The theorem indicates that low-discrepancy
sequences defined independently of weights can nevertheless adapt well to
given weights. The conditions on the weights are stronger than (51) in The-
orem 9, but it is not known whether or not the stronger requirements are
artifacts of the method of proof.

Theorem 12 Let P ∈ {PNie,PHal,PSob}. Suppose for some ν ≥ 1/2 we
have product weights satisfying

∞∑

j=1

γν
j j ln j < ∞ when P ∈ {PNie,PHal}, (53)

or
∞∑

j=1

γν
j j ln j ln ln j < ∞ when P = PSob, (54)

then the first N points of the s-dimensional sequence P satisfy, for all q′ ≥ 1,
r′ ≥ 2ν and any δ > 0,

Dq′,r′

s,γ (P) ≤ C N−1/(2ν)+δ ,

where C is independent of s and N but depends on ν and on δ and tends to
infinity as δ → 0.
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Proof: For product weights and using Dq′,r′
s,γ (P) ≤ Dq′,1

s,γ (P), the discrep-
ancy bounds in Theorem 11 lead to

Dq′,r′

s,γ (PNie) ≤ 1

N

s∏

j=1

(
1 + γ1/2

j cNie j logκ(j + κ) ln(κN)
)
,

Dq′,r′

s,γ (PHal) ≤ 1

N

s∏

j=1

(
1 + γ1/2

j cHal j log2(j + 1) ln(eN)
)
,

Dq′,r′

s,γ (PSob)

≤ 1

N

s∏

j=1

(
1 + γ1/2

j cSob j log2(j + 1) log2 log2(j + 3) ln(2N)
)
.

The result for ν = 1/2 then follows from Lemma 8. This result was proved
in [57] for PNie and PSob, and in [20] for PHal; in both papers the result was
formulated for D2,2

s,γ(P).
To prove the result for ν > 1/2, we define new weights γ̃j := γ2ν

j for
all j ≥ 1. Using Lemma 4 as in the proof of Theorem 10, we obtain
Dq′,r′

s,γ (P) ≤ [Dq′,r′/(2ν)
s,γ̃ (P)]1/(2ν). The proof is completed by inserting the

bound for Dq′,r′/(2ν)
s,γ̃ (P). ♠

5 The CBC construction for POD weights

The criteria used in §4 for the two lattice CBC constructions take similar
forms: see (36) in the case of e2N,s,γ(z), and (47) and (45) in the case of
RN,s,γ(z). We now describe the fast CBC construction for the generic crite-
rion

e2N,s(z1, . . . , zs) :=
∑

∅(=u⊆{1:s}

γu

(
1

N

N−1∑

k=0

∏

j∈u

ω

({
kzj
N

}))

(in which the −1 and −m|u| terms have been omitted because they are in-
dependent of z), with POD weights, see (16). We need only very minor
modifications of the “order-dependent” case in [4, Section 4.1].

Suppose we are at the point in the CBC algorithm where we want to
choose the dth component zd. It makes sense to consider e2N,d(z1, . . . , zd) =:
E2

d(zd) as a function of zd. We can write

E2
d(zd) =

1

N

N−1∑

k=0

d∑

*=1

Γ*

∑

u⊆{1:d}
|u|=*

∏

j∈u

[
γj ω

({
kzj
N

})]
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=
1

N

N−1∑

k=0

d∑

*=1

Γ*

(
∑

u⊆{1:d−1}
|u|=*

∏

j∈u

[
γj ω

({
kzj
N

})]

︸ ︷︷ ︸
pd−1,!(k)

+ γd ω

({
kzd
N

}) ∑

u⊆{1:d−1}
|u|=*−1

∏

j∈u

[
γj ω

({
kzj
N

})]

︸ ︷︷ ︸
pd−1,!−1(k)

)

= e2N,d−1(z1, . . . , zd−1)

+
γd
N

N−1∑

k=0

ω

({
kzd
N

})(
d∑

*=1

Γ* pd−1,*−1(k)

)
, (55)

with e2N,0 := 0, and the products pd,*(k) are defined recursively by

pd,0(k) := 1 ,

pd,*(k) := pd−1,*(k) + γd ω

({
kzd
N

})
pd−1,*−1(k) . (56)

Let ZN := {0, 1, . . . , N − 1} denote the set of the integers modulo N ,
and let UN := {u ∈ ZN : gcd(u,N) = 1} denote the multiplicative group of
integers modulo N as before, with |UN | = φ(N). We need to evaluate E2

d(zd)
for every choice of zd ∈ UN , which suggests the definition of the vectors

E2
d :=

[
E2

d(z)
]
z∈UN

, pd,* := [pd,*(k)]k∈ZN
, (57)

and the matrix

ΩN :=

[
ω

({
kz

N

})]

z∈UN
k∈ZN

=

[
ω

(
kz mod N

N

)]

z∈UN
k∈ZN

. (58)

We now observe from (55) that the vector E2
d can be expressed in terms of

a matrix-vector product with the matrix ΩN as

E2
d := 1φ(N) e

2
N,d−1(z1, . . . , zd−1) +

γd
N

ΩN

(
d∑

*=1

Γ* pd−1,*−1

)

where 1t denotes a vector of ones of length t. The CBC algorithm picks the
value of zd ∈ UN which corresponds to the smallest entry in E2

d. Then it is
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clear from (56) that the vectors pd,* for the next iteration can be obtained
recursively via

pd,* := pd−1,* +ΩN(zd) .∗ pd−1,*−1

where ΩN(zd) denotes the row of ΩN corresponding to the chosen zd, and the
operator .∗ denotes the element-wise vector multiplication. Since the vectors
pd−1,* are no longer needed in the next iteration, we can simply overwrite
pd−1,* with pd,*. Hence, starting with the vectors p0,* := 1N , we require only
O(sN) storage for POD weights.

The trick now is to order the indices z ∈ UN and k ∈ ZN in (57) and (58)
in a clever way to allow fast matrix-vector multiplications. For this we can
follow the discussion in [4, Section 4.2]; it covers prime N and the case where
N is a power of a prime. In particular, the only change needed specifically
for POD weights is the update step, [4, Top of page 2177],

p〈g−1〉
d,* := Π/

g−1 pd,* = p〈g−1〉
d−1,* + γd Ω

〈g−1〉
pm (zd) .∗ p〈g−1〉

d−1,*−1 .

The overall CBC construction cost is then O(sN lnN) operations.
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784–802 (1967). English translation: U.S.S.R. Comput. Maths. Math.
Phys. 7, 86–112 (1967).

[54] I. M. Sobol′, Multidimensional Quadrature Formulas and Haar
Functions, Nauka, Moscow, 1969 (in Russian).

[55] I. M. Sobol′, Sensitivity estimates for nonlinear mathematical models,
Matematicheskoe Modelirovanie, 1990, V. 2, N 1, 112–118 (in
Russian), English translation in: Mathematical Modeling and
Computational Experiment, 407–414 (1993).

[56] A. H. Stroud, Approximate Calculation of Multiple Integrals,
Prentice-Hall, Englewood Cliffs, NJ, 1971.

[57] X. Wang, Strong tractability of multivariate integration using
quasi-Monte Carlo algorithms, Math. Comp. 72, 823–838 (2003).

[58] T. T. Warnock, Computational investigations of low-discrepancy point
sets, in Applications of Number Theory to Numerical Analysis
(S. K. Zaremba, ed.), Academic Press, New York, 1972, pages 319–343.

[59] S. K. Zaremba, Some applications of multidimensional integration by
parts, Ann. Poln. Math. 21, 85–96 (1968).

Author addresses

1. F. Y. Kuo, School of Mathematics and Statistics, University of New
South Wales, Sydney NSW 2052, Australia.
mailto:f.kuo@unsw.edu.au

2. Ch. Schwab, Seminar for Applied Mathematics, ETH Zürich, ETH
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“QUASI-MONTE CARLO METHODS FOR

HIGH-DIMENSIONAL INTEGRATION: THE STANDARD
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Abstract

We report an error in Theorem 4.1 of our paper [F. Y. Kuo, Ch. Schwab and I. H. Sloan,
“Quasi Monte-Carlo methods for high-dimensional integration: the standard (weighted
Hilbert space) setting and beyond”, ANZIAM J. 53 (2011) 1–37]. This error does not
affect the case of product weights, and is not relevant to the unanchored variant of the
Sobolev space, but requires a modification of the CBC construction of lattice rules for
the case of the anchored Sobolev space and general weights. We provide the necessary
correction to Theorem 4.1, and to a related error in Theorem 4.3. The error bounds
are unaffected by this correction, but the CBC construction in the anchored Sobolev
space becomes more costly than in the unanchored case, and the resulting lattice rule is
no longer extensible in dimension. For these reasons, we recommend the unanchored
Sobolev space for the practical construction of lattice rules.

Correction

Equation (4.5) of our paper [1] is invalid for the anchored Sobolev space (m =

a2 − a + 1/3 with a denoting the anchor) because the auxiliary weights defined by
equation (4.3) implicitly depend on the dimension s. The unanchored case (m = 0) is
unaffected because the auxiliary weights are the same as the original weights. We state
a revised version of Theorem 4.1 and outline a correction to its proof. We also state a
revised version of Theorem 4.3.
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Revised Theorem 4.1 A generating vector z can be constructed by a CBC algorithm
such that, for any λ ∈ (1/2, 1],

e2
N,s,γ(z) ≤

 ∑
∅,u⊆{1:s}

γλu (ρ(λ))|u|
1/λ

[φ(N)]−1/λ,

with
ρ(λ) :=

2ζ(2λ)
(2π2)λ

+ mλ ,

where m = 0 in the unanchored case and m = a2 − a + 1/3 in the anchored case with
anchor a, ζ(x) is the Riemann zeta function as in Section 1.5, and φ(N) is the Euler
totient function given by equation (4.2).

(i) For product weights (γu =
∏

j∈u γ j), the CBC algorithm minimizes

e2
N,d,γ(z1, . . . , zd) = −

d∏
j=1

(1 + mγ j) +
1
N

N−1∑
k=0

d∏
j=1

(
1 + γ j

[
B2

({
kz j

N

})
+ m

])
,

step by step for each d = 2, 3, . . . , s. In this case, the CBC algorithm is extensible
in s.

(ii) In the unanchored case with general non-product weights, the CBC algorithm
minimizes

e2
N,d,γ(z1, . . . , zd) =

∑
∅,u⊆{1:d}

γu

 1
N

N−1∑
k=0

∏
j∈u

B2

({
kz j

N

}) ,
step by step for each d = 2, 3, . . . , s. In this case, the CBC algorithm is extensible
in s.

(iii) In the anchored case with general non-product weights, the CBC algorithm
minimizes an auxiliary quantity depending on s,

ẽ2
N,d,̃γs

(z1, . . . , zd) :=
∑

∅,v⊆{1:d}

γ̃s,v

 1
N

N−1∑
k=0

∏
j∈v

B2

({
kz j

N

}) ,
step by step for each d = 2, 3, . . . , s, with auxiliary weights defined by

γ̃s,v :=
∑

v⊆u⊆{1:s}

γu m|u|−|v|, v ⊆ {1 : s}.

In this case, the CBC algorithm is not extensible in s.

Outline of the proof. The CBC error bound with product weights is proved in
the references [5, 30]. The original proof for Theorem 4.1 remains valid for the
unanchored case (with product weights or general non-product weights), since in this



[3] Correction 3

case the introduction of auxiliary weights is unnecessary. For the anchored case with
general non-product weights, we proceed as in the original proof to obtain

e2
N,s,γ(z) = ẽ2

N,s,̃γs
(z).

Then we prove by induction that the CBC construction based on the auxiliary quantity
yields, for each d = 1, 2, . . . , s,

ẽ2
N,d,̃γs

(z1, . . . , zd) ≤

 ∑
∅,v⊆{1:d}

γ̃λs,v

(
2ζ(2λ)
(2π2)λ

)|v|1/λ

[φ(N)]−1/λ

for all λ ∈ (1/2, 1]. Since the auxiliary weights depend only on the maximal dimension
s and do not change with the induction index d, we now indeed have the recursive
expression

ẽ2
N,d,̃γs

(z1, . . . , zd−1, zd) = ẽ2
N,d−1,̃γs

(z1, . . . , zd−1) + θ(zd),

where (suppressing the dependence of θ on z1, . . . , zd−1)

θ(zd) :=
∑

d∈v⊆{1:d}

γ̃s,v

(2π2)|v|

( ∑
hd∈Z\{0}

1
h2

d

∑
hv\{d}∈(Z\{0})|v|−1

hv\{d}·zv\{d}≡−hdzd (mod N)

1∏
j∈v\{d} h2

j

)
.

The proof can then be completed following the argument in the original proof.

Revised Theorem 4.3. A generating vector z can be constructed by a CBC algorithm
such that

RN,s,γ(z) ≤
2
N

∑
∅,u⊆{1:s}

γ1/2
u (clat ln N)|u| ,

where

clat := sup
N≥2

{
1

ln N
+ 2 +

2π2(N − 1)
3 φ(N) ln N

}
.

The CBC algorithm minimizes an auxiliary quantity depending on s,

R̃N,d,̃γs
(z1, . . . , zd) :=

∑
∅,v⊆{1:d}

γ̃1/2
s,v R̃N(zv),

step by step for each d = 2, 3, . . . , s, with auxiliary weights defined by

γ̃1/2
s,v :=

∑
v⊆u⊆{1:s}

γ1/2
u , v ⊆ {1 : s}.

In this case, the CBC algorithm is not extensible in s.
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Remark

The discussion in Section 5 on the fast CBC construction for product and order
dependent (POD) weights is valid for the given generic criterion with POD weights,
including the unanchored Sobolev space with POD weights. However, for the
anchored Sobolev space with POD weights, the CBC algorithm minimizes an auxiliary
quantity that depends on auxiliary weights, but the POD form for the original weights
is not preserved in the auxiliary weights. In this sense, Section 5 does not apply to the
anchored Sobolev space. Similarly, Section 5 does not apply to the CBC construction
based on weighted R. It is therefore our recommendation to work with the unanchored
Sobolev space whenever possible.

We now address the computational cost of the fast CBC construction for POD
weights. In each step of the construction, there is a ‘search’ cost of O(N log N)
operations which corresponds to the use of Fast Fourier Transforms for a matrix–vector
multiplication, and there is an ‘update’ cost of O(dN) operations at step d which is
needed for recursively accumulating a required sum. The construction cost is therefore

O
( s∑

d=1

(N log N + dN)
)

= O(sN log N + s2N)

operations, with O(sN) storage requirement. If the POD weights are of finite order
q� s, then the cost is reduced to O(sN log N + qsN) operations, with O(qN) storage
requirement.
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