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Eidgenössische Technische Hochschule

CH-8092 Zürich
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Abstract. We investigate parallel algorithms for the solution of the
shallow-water equation in a space-time framework. For periodic solu-
tions, the discretized problem can be written as a large cyclic non-linear
system of equations. This system of equations is solved with a Newton
iteration which uses two levels of preconditioned GMRES solvers. The
parallel performance of this algorithm is illustrated on a number of nu-
merical experiments.

1 Introduction

In this paper we consider the shallow water equation as a model for the behavior
of a fluid in a rectangular basinΩ = (0, Lx)×(0, Ly) which is excited periodically.
The excitation is caused by periodic swayings of the ground of the basin with
a frequency ω, imposing a periodic behavior of the fluid with the period T =
2π/ω [4].

In the classical approach to solve such problems, the transient behavior of
the fluid is simulated starting from an arbitrary initial state. This simulation is
continued until some periodic steady-state evolves.

We model the fluid in space-time Ω× [0, T ). We will impose periodic bound-
ary conditions in time. The discretization of the shallow water equations by finite
differences in space and time leads to a very large nonlinear system of equations
that requires parallel solution. The parallelization is done by domain decompo-
sition where the subdomains partition space and time in a natural way. This is a
large advantage over the classical approach where only space can be partitioned.
At the same time, the number of degrees of freedom is larger by O(T/∆t).

Approaches that admit parallelization in time exist but are quite recent and
not very popular yet. In the ‘parareal’ approach [6], the time interval [0, T ] is
divided in subintervals. On each of these the given system of ODEs is solved.
The global solution is obtained by enforcing continuity at the interfaces. Stoll
and Wathen [10] discuss an ‘all-at-once’ approach to solve a PDE-constrained
optimization problem. In this problem a state has to be controlled in such a way
that it is driven into a desired final state at time T . The discretization is by finite
elements in space and finite differences (backward Euler) in time. A symmetric
saddle-point problem has to be solved in this approach.

! Corresponding author. mailto:arbenz@inf.ethz.ch
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2 Governing equations

The shallow water equations with fringe forcing and Laplacian damping are given
by [4, 12]

∂ta(x, t) + (u ·∇)a = −a∇·u, x ∈ Ω, t > 0, (1a)

∂tu(x, t) + (u ·∇)u = −g∇h+ ε∆u− Λu, x ∈ Ω, t > 0, (1b)

u · n = 0, x ∈ ∂Ω, t > 0. (1c)

Equations (1a) and (1b) model conservation of mass and momentum, respec-
tively. Here, u is the velocity vector, h is the fluid surface level, z is the ground
level, and a is the depth of the fluid (Fig. 1),

h(x, t) = z(x, t) + a(x, t). (2)

h

a

z

Fig. 1. Illustration of the definition of the ground level z, the water depth a and the
surface level h (blue: the fluid surface h; red: the ground surface z).

The ground level z consists of a static part z0 and a forcing term f oscillating
with period T ,

z(x, t) = z0(x) + f(x, t), f(x, t) = f(x, t+ T ).

The gravitational constant g in (1b) determines the phase velocity of the shallow
water waves as

√
ga. The fringe forcing −Λu is used to damp the waves along the

boundary ∂Ω of the computational domain such that it acts like a non-reflecting
outflow boundary condition. Λ(x) is zero away from the boundary such that
the forcing term has no effect in most of the interior of Ω. As x approaches
∂Ω, the fringe function Λ rises smoothly to a large value such that the forcing
term dominates the other terms in (1b) and we effectively solve the equation
∂tu ≈ −Λu which forces u rapidly toward zero.

The periodicity of the forcing term f(x, t) transfers to the solution

a(x, t) = a(x, t+ T ), u(x, t) = u(x, t+ T ), x ∈ Ω, t > 0. (3)
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These equations give rise to periodic boundary conditions in space and time
for our model (1) that we solve in Ω × [0, T ). Using the periodic boundary
conditions (3) together with (1c) we get from the conservation of mass (1a) that

0 =

∫

Ω
∂ta dx+

∫

Ω
∇·(au)dx = dt

∫

Ω
a dx+

∫

∂Ω
au · n dS = dt

∫

Ω
a dx, (4)

which means that the amount of fluid is conserved over time. This amount is
determined by the initial data.

3 Newton iteration

Equations (1a)–(1b) can be writen in matrix form as

A(a,u)

[
a
u

]
=

[
0

−g∇z

]
(5)

where

A(a,u) =

[
∂t+ u ·∇+ (∇·u)· 0

g∇ ∂t+ (u ·∇) ·−ε∆+ Λ·

]
. (6)

We use Newton’s method to solve this nonlinear equation. To that end we lin-
earize (5) at (a$,u$). Substituting a = a$ + δa and u = u$ + δu in (5) and
omitting higher order terms we obtain

∂t(δa) +∇δa · u$ + δa ∇·u$ +∇a$ · δu+ a$ ∇·δu = −∂ta$ −∇(a$u$),

∂t(δu) + (δu ·∇)u$ + (u$ ·∇)δu+ g∇δa+ Λδu− ε∆δu

= −∂tu$ − (u$ ·∇)u$ − g∇h− Λu$ + ε∆u$,

which can formally be written as

H(a$,u$)

[
δa
δu

]
=

[
rh
ru

]
(7)

with

H(a$,u$) =

[
∂t + u$ ·∇+∇·u$I (∇a$) · + a$ ∇·

g∇ ∂t +
∂u
∂x + (u$ ·∇) + Λ− ε∆

]
.

Here, ∂u/∂x denotes the Jacobian.

A formal algorithm for solving the nonlinear system of equations (5) now
reads
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Algorithm 3.1 Newton iteration for periodic solutions of the shallow water
equation

1: Choose initial approximations (a(0),u(0)).
2: for k = 0, . . . , maxIt−1 do
3: Determine residuals according to (5)

[
r(")h

r(")
u

]
=

[
0

−g∇z

]
−A(a("),u("))

[
a(")

u(")

]
.

4: If ‖r(")h ‖2 + ‖r(")
u ‖2 < η2(‖a(")‖2 + ‖u(")‖2) then exit.

5: Solve

H(a("),u("))

[
δa

δu

]
=

[
r(")h

r(")
u

]

for the Newton corrections δa, δu.
6: Update the approximations a(k+1) := a(") + δa, u(k+1) := u(") + δu.
7: end for

4 Discretization

We approximate the shallow-water equation (1) by finite differences in space and
time [3, 5]. To that end we define grid points

(xi, yj , tk) = (i∆x, j∆y, k∆t), ∆x = Lx/Nx, ∆y = Ly/Ny, ∆t = T/Nt. (8)

Fig. 2. Grid points for u (!), v ("), a (•).
Here, Nx = Ny = 5.

In this and the following sections we
write x = (x, y) and u = (u, v). We
approximate the functions a, u, and
v at points with (partly) non-integer
indices as indicated in Fig. 2,

a(k)
i+ 1

2 ,j+
1
2
≈ a(xi+ 1

2
, yj+ 1

2
, tk),

u(k)
i,j+ 1

2
≈ u(xi, yj+ 1

2
, tk),

v(k)
i+ 1

2 ,j
≈ v(xi+ 1

2
, yj , tk).

The corresponding grids are called h-
grid, u-grid, and v-grid, with NxNy,
(Nx−1)Ny, and Nx(Ny−1) interior
grid points, respectively. Notice that
values of u and v at grid points on the
boundary vanish according to (1c).

The finite difference equations corresponding to (1) are defined in one of these
grids. Function values of h, u, and v that are required on another grid than where
they are defined are obtained through linear interpolation. In (1) derivatives in
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x- and y-direction are replaced by central differences. The derivatives in time are
discretized by a fourth-order ‘slightly backward-facing’ finite difference stencil,

∂

∂t
f(t) ≈ 1

12∆t
[3f(t+∆t) + 10f(t)− 18f(t−∆t) + 6f(t− 2∆t)− f(t−3∆t)] .

The systems (5) and (7) can now be transcribed in systems in the ∼NtNxNy

unknowns a(k)
i+ 1

2 ,j+
1
2
, u(k)

i,j+ 1
2
, and v(k)

i+ 1
2 ,j

, see [3] for details. Most of the time in

Algorithm 3.1 is spent in step 5 in the solution of the linear system (7). The
straightforward second-order central difference 1

2∆t (f(t+∆t)− f(t−∆t)) could
also be used to approximate ∂f/∂t. It however has drawbacks. Most of all, it
splits the problem in two independent subproblems if Nt is even.

5 Numerical solution

The system matrix H in (7) has a block structure typical for three-dimensional
finite difference discretizations (Fig. 3). The principal 3×3 block structure of H
stems from the three components a, u, and v. The components corresponding
to the spatial derivatives give rise to tridiagonal blocks. The components corre-
sponding to the temporal derivative entail cyclic blocks with five bands. These
bands can be seen quite well in Fig. 3 because the index in t-direction varies
more slowly than the indices of the spatial directions.

Fig. 3. MATLAB spy of H for Nx =Ny = 20 and Nt = 9. The most prominent 3×3
block structure stems from the three components a, u, and v. The diagonal blocks are
cyclic.

As H is non-symmetric we solve system (7) by the GMRES algorithm [9].
The preconditioner is based on the specific structure of H. In a first step, we
approximate H by replacing all diagonal and off-diagonal blocks with the closest
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cyclic or Toeplitz blocks [1], i.e., the elements in each (off-)diagonal of a block
are replaced by the average of the respective (off-)diagonal. The cyclic Nt×Nt

blocks of the modified H can now be diagonalized by applying FFTs from left
and right. There are Nx(Ny−1) + (Nx−1)Ny +NxNy independent FFTs to be
applied from either side. Notice that the eigenvalues of the cyclic blocks come
in complex conjugate pairs such that complex arithmetics is required in the
following steps.

After these diagonalizations, the matrix splits in N ′
t = (Nt−1)/2 separate

but complex spatial problems, corresponding to the individual Fourier modes
k = 0, . . . , N ′

t . In general, the systems are still too large to be factored. There-
fore, in the second step, we use preconditioned GMRES solvers to solve the Nt

systems of equations in parallel. We form the preconditioner with the same recipe
as before: quantities along the x-axis with equal y-coordinate are averaged to
make the tridiagonal blocks Toeplitz blocks. After the diagonalization by FFTs,
we arrive at Nt · Nx independent Ny × Ny problems which can be solved by
Gaussian elimination.

6 Parallelization

Our code is parallelized making use of Trilinos [2, 11], a collection of numeri-
cal software packages. We use the GMRES solver in the package AztecOO. As
AztecOO can only solve real valued systems, we additionally use the package
Komplex that generates an equivalent real valued problem out of a complex
problem by splitting real and imaginary parts. This is not optimal, because the
current implementation of this package explicitly generates the real valued sys-
tem, which uses again time and memory space. One could avoid this overhead
by using Belos, which is also able to solve complex systems (by means of generic
programming). Additionally we use the FFTW library for the Fourier transforms
and DGBTRF and DGBTRS from LAPACK to solve the banded systems.

In general, the matrices and vectors are distributed such that each process
gets approximately the same number of rows. For A and H, the spatial domain
is divided into mx intervals along the x-axis and my intervals along the y-axis.
The time domain is divided into mt intervals. Each process gets then equations
corresponding to all variables in one of these mxmymt blocks. Because of this
partitioning we set the number of processes equal to mxmymt.

To construct the small systems we need to average and then to perform a
Fourier transform in the time direction. To do this efficiently we need to have
the entries for a certain spatial point at all time steps local in one processor’s
memory. So, the matrix is redistributed in “stripes”, where each processor gets
all rows corresponding to all time steps for some quantities. To construct the
smallest systems we need to have the variables in x-direction grouped together
on one processor. During the solution process, we need to have the smallest
systems (each connect all y-values) local on one process, such that the (serial)
factorization and forward and backward substitution can be performed. While
the matrices need only to be redistributed in the beginning of each Newton
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iteration step, the solution vectors and right hand sides have to be redistributed
prior to every outer GMRES iteration step. In the inner GMRES iterations the
vectors need only to be redistributed within the group of processes that solves a
certain system. Apart from the fact that each redistribution consumes time, it
also uses memory.

Solving the Nt systems in parallel is not straightforward as their condition
numbers vary considerably. Some of the systems are diagonally dominant while
others are close to singular, cf. Fig. 7. It turned out that the iteration count
of one solve is a good prediction of the iteration count of the next solve of the
same system. This makes it possible to design a simple, adaptive, and effective
load balancing strategy and assign fewer or more processors to a solver. Notice
that the matrices split in Ny subblocks which makes the parallelization of these
solvers straightforward.

7 Experiments

For the numerical experiments, we use a configuration which yields a periodic
steady-state solution with a primary and a secondary wave system (Fig. 4). The
primary wave system is generated by a localized oscillation at the ground in
the shape of a Gaussian. These waves propagate toward the boundary of the
computational domain where they are damped out by the fringe forcing such
that no waves are reflected from the boundaries. The propagation of these waves
is non-uniform because the waves steepen and their speed is reduced in the more
shallow regions of the basin. A small submerged hill in the shallow region of
the basin leads to reflections of the primary waves. This results in a secondary
wave system which is centered at this hill. Figure 5 shows four snapshots of the
periodic steady-state solution taken at t = 0, T/4, T/2, and 3T/4, respectively.

The discretization parameters of the numerical experiments are listed in Ta-
ble 1. Note that case 3 uses fewer grid points in the t-direction due to memory
limitations.

Table 1. Discretization parameters for the numerical experiments

case Nx Ny Nt

1 100 100 99
2 200 200 99
3 400 400 39

All numerical experiments from Table 1 converge relatively fast (Fig. 6(a)).
The residual norm is reduced approximately by an order of magnitude per New-
ton iteration such that sufficiently converged solutions can be obtained typically
within less than ten Newton steps. In the wave system with a hill we observe
convergence problems at least in one case. To encounter them, we will in the fu-
ture increase the robustness of the Newton iteration by backtracking (line search,
damping) [8].
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y

x

Fig. 4. Configuration for the numerical experiments with an oscillating perturbation
in the center and a small submerged hill in the shallow region of the basin (top left).

(a) t = 0 (b) t = T/4 (c) t = T/2 (d) t = 3T/4

Fig. 5. Snapshots of the converged periodic solution at different phases.

The numbers of outer GMRES iterations per Newton step is shown in Fig. 7a.
It increases successively with each Newton step. The number of inner GMRES
iterations (Fig. 7b) shows a strong dependence on the Fourier mode number k.
The required work for the small mode numbers is significantly larger than for
high mode numbers. This effect can be explained by the diagonal dominance of
the inner systems of equations. The mode number k corresponds physically to a
frequency and enters the inner systems as a factor on the diagonal entries. There-
fore, the inner systems for high mode numbers (high frequencies, k ≈ N ′

t) are
diagonally dominant and are easier to solve than the inner systems for small k.

The strong dependence between the mode number k and the number of inner
GMRES iterations could lead to a strong load imbalance for the parallel tasks.
Therefore, a dynamic scheduling of the inner GMRES solutions was used. It tries
to balance the workload across the parallel threads. To this end, the numbers of
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(a) (b)

Fig. 6. Convergence of the residual norm over the Newton iterations: (a) without hill
(no secondary wave system), (b) with a hill (dotted blue: case 1, dashed green: case 2,
solid red: case 3).

inner iterations from the previous Newton step are used to estimate an optimal
distribution of the parallel tasks to the different threads.

The parallel performance of the solver was measured on the large Brutus
cluster at ETH Zurich4 with AMD Opteron 8380 Quad-Core CPUs and an In-
finiband QDR network. Typical turn-around times on 100 cores for case 3 were
approximately 430 s. In these simulations, the spatial grid was decomposed into
5 subdomains in each direction and the temporal direction was split into 4 in-
tervals.

Figure 8 illustrates the speed-up and parallel efficiency of the solver by in-
creasing the number of cores from 1 to 100 for the case 1. In view of the relatively
small size of case 1, the relevant modules of the solver (solution, construction of
the preconditioner, and update of the Newton matrix) scale reasonably well. The
immediate drop in the efficiency from 1 to multiple processes is due to the reshuf-
fling of the data to localize the FFT’s which is not necessary for Nprocess = 1.

8 Conclusions

We have presented a concept for the parallelization of a periodic shallow-water
problem in space and in time. The presented results illustrate that the algorithm
converges quickly towards the steady-state solution of the problem. Numerical
experiments of different sizes show that the algorithm scales reasonably well.
Nevertheless, a more efficient preconditioner would improve the performance of
the present algorithm. It could be promising to further exploit the periodic-
ity of the sought solution by replacing, for instance, the finite-difference stencil
for the time derivative by a Fourier spectral method. This approach has been
investigated by the authors for a one-dimensional Burgers equation [7].

4 http://www.clusterwiki.ethz.ch/legacy/Brutus
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(a) (b)

Fig. 7. Number of inner/outer GMRES iterations for case 1 without hill: (a) outer
GMRES iterations per Newton iteration (dotted blue: case 1, dashed green: case 2,
solid red: case 3), (b) inner GMRES iterations as a function of the mode number k
(blue ×: single instances of the inner GMRES; solid red: average over all instances of
the inner GMRES).

The proposed algorithm should be seen in the context of the current devel-
opment of supercomputers. The availability of more and more processing units
will require modern solvers for fluid dynamics problems to distribute the work
to ever more parallel threads. For a large class of fluid dynamics problems with
(quasi-) periodic steady-state solutions, this could be achieved by parallelizing
the time domain, in addition to a state-of-the-art domain decomposition in space.
The classical solution procedure consists of a (often explicit Runge-Kutta) time
stepping scheme that is executed for about five periods until the (quasi-) peri-
odic solution is reached. (Here, a period refers to the time for the slowest wave
to traverse the domain.) If the spatial grid is refined for accuracy reasons, the
CFL stability condition requires that the time step size is reduced proportion-
ally despite a smooth temporal behavior of the solution. Finally, parallelism is
restricted to the space dimension(s).

The space-time approach requires additional memory space to store the ma-
trix and preconditioner in the Newton step. But even if a space-time approach
leads to an increased overall workload, the turn-around time of the latter can be
reduced due to the increased parallelism.
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