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ADAPTIVE GALERKIN APPROXIMATION ALGORITHMS

FOR PARTIAL DIFFERENTIAL EQUATIONS

IN INFINITE DIMENSIONS

CHRISTOPH SCHWAB AND ENDRE SÜLI

Abstract. Space-time variational formulations of infinite-dimensional Fokker–Planck (FP) and
Ornstein–Uhlenbeck (OU) equations for functions on a separable Hilbert space H are developed.
The well-posedness of these equations in the Hilbert space L2(H,µ) of functions on H, which
are square-integrable with respect to a Gaussian measure µ on H, is proved. Specifically, for
the infinite-dimensional FP equation, adaptive space-time Galerkin discretizations, based on
a tensorized Riesz basis, built from biorthogonal piecewise polynomial wavelet bases in time
and the Wiener–Hermite polynomial chaos in the Wiener–Itô decomposition of L2(H,µ), are
introduced. The resulting space-time adaptive Wiener-Hermite polynomial Galerkin discretiza-
tions of the infinite-dimensional PDE are proved to converge quasioptimally in the sense that
they produce sequences of finite-dimensional approximations which attain the best possible al-
gebraic rates afforded by the tensor-products of multiresolution (wavelet) time-discretizations
and of systems of tensorized Wiener–Hermite polynomial chaos expansions in L2(H,µ). Here,
quasioptimality is understood with respect to the nonlinear, best N -term approximation bench-
mark of the solution. As a consequence, the proposed adaptive Galerkin solution algorithms
exhibit dimension-independent performance, which is optimal with respect to the algebraic
best N -term rate afforded by the solution and the regularity of the multiresolution (wavelet)
time-discretizations in the finite-dimensional case, in particular. All constants in our error and
complexity bounds are shown to be independent of the number of “active” coordinates iden-
tified by the proposed adaptive Galerkin approximation algorithms. The computational work
and memory required by the proposed algorithms scale linearly with the support size of the
coefficient vectors in the approximations, with dimension-independent constants.

1. Introduction

Partial differential equations in infinite dimensions arise in a number of relevant applications;
most notably as forward and backward Kolmogorov equations for stochastic Partial Differential
Equations (sPDEs for short), we refer to, e.g., [4, 3] and the references therein. Citing [9, p. X],
“parabolic equations on Hilbert spaces appear in mathematical physics to model systems with
infinitely many degrees of freedom. Typical examples are provided by spin configurations in sta-
tistical mechanics and by crystals in solid state theory. Infinite-dimensional parabolic equations
provide an analytic description of infinite-dimensional diffusion processes in such branches of ap-
plied mathematics as population biology, fluid dynamics, and mathematical finance.” In spite of
their prominence in a range of relevant applications, the numerical solution of PDEs in infinite di-
mensions appears to have received only scant attention in the mathematical literature. Numerical
approximations to such equations are mostly attempted by path simulations in the corresponding
stochastic partial differential equation. Their path-wise solutions belong to function spaces over
finite-dimensional domains and can be, therefore, approximated by standard discretization tech-
niques, combined with Monte Carlo path sampling. In the present paper, we propose and analyze a
novel, deterministic, adaptive, spectral-Galerkin approach to the construction of finite-dimensional
numerical approximations to the deterministic forward equation in infinite-dimensional spaces,

The research reported in this paper was carried out at the Hausdorff Institute for Mathematics (HIM), Bonn,
during the HIM-Trimester on “High Dimensional Approximation”, May–August 2011.

C.S. was partially supported by the European Research Council (ERC) under the FP7 programme ERC AdG
247277. E.S. was partially supported by the EPSRC Science and Innovation award to the Oxford Centre for
Nonlinear PDE (EP/E035027/1).
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2 CHRISTOPH SCHWAB AND ENDRE SÜLI

which exhibit certain optimality properties. The proposed approach is based on space-time varia-
tional formulations of these equations, which are posed in Gel’fand-triples of Sobolev spaces over a
separable Hilbert H with respect to a Gaussian measure µ, and on the use of Riesz bases of these
spaces, which have been developed for linear and nonlinear parabolic PDEs in finite dimensions
in [19, 5, 14]. We use here the general approach developed by Cohen, Dahmen and DeVore in a
series of papers (cf. [6, 7] and the references therein) to show the optimality of nonlinear, adaptive
Galerkin approximations of elliptic operator equations on bounded domains in Rd. These tools
were extended in [19] to parabolic evolution equations, using multiresolution (wavelet) bases, again
on bounded domains in Rd. In this paper, we present a class of adaptive Galerkin discretizations
of Fokker–Planck equations on an infinite-dimensional, separable Hilbert space H, equipped with
a Gaussian measure µ. In contrast with the considerations in [6, 7, 19], we use a spectral Galerkin
method on H here, based on Hermite polynomials of a sequence of Gaussian random variables
on H, and, as in [19], a wavelet type Riesz basis with respect to the time variable. We prove
stability and optimality of the adaptive space-time Galerkin discretizations thus obtained. This is
achieved by verifying, for a particular class of second-order differential operators on H, numerical
sparsity in terms of a Wiener polynomial chaos basis and the Riesz basis property on the separable
Hilbert space L2(H,µ). Our adaptive Galerkin discretization is shown to generate, in particular,
a family of finite-dimensional discretizations of the Fokker–Planck equation with stability and, in
a certain sense, optimal finite-dimensional truncations of the infinite-dimensional problem. The
use of a spectral basis of Wiener polynomial chaos type obviates “meshing” the “domain” H of
the parabolic equation.

The structure of this paper is as follows: in the next section, we first present two space-time
variational formulations of the parabolic equation set in a domain of finite dimension d. We
then prepare the corresponding formulation of an infinite-dimensional Fokker–Planck equation by
recapitulating basic facts about Gaussian measures on separable Hilbert spaces. In Section 4, we
prove well-posedness of the second of our two space-time variational formulations in the infinite-
dimensional space L2(H,µ), where H denotes a separable Hilbert space and µ is a Gaussian
measure on H. We shall establish, in particular, that the solution operator of the variational
formulation is an isomorphism between suitable solution and data spaces. We then focus on the
formulation and the analysis of space-time-adaptive Galerkin approximations. We outline the
general principle in Section 5, where we introduce the idea of conversion of abstract, well-posed
operator equations on separable Hilbert spaces to equivalent, bi-infinite matrix-vector problems in
the sequence space !2(N). After reviewing some relevant facts concerning N -term approximations
in !2(N), we then introduce abstract adaptive Galerkin approximation algorithms that construct
sequences of N -term approximations, which, while not being best N -term approximations, are
optimal in the sense that these approximations converge asymptotically at the rate afforded by
the best N -term approximation, provided that certain conditions are met by the operators and the
Riesz bases used to discretize them. In Section 8 the abstract concepts are specialized to infinite-
dimensional Kolmogorov equations. Notably, a Wiener polynomial chaos type Riesz basis in
L2(H,µ) and a wavelet basis in time is used as the basis for the Galerkin discretization. In Section
9 we verify the abstract assumptions for the specific equations of interest, and in Section 10 we
consider the more general setting of nonsymmetric equations with drift, leading to our main result
concerning optimality of adaptive Galerkin discretizations with dimension-independent bounds, in
Section 11.

2. Space-time variational formulation of abstract parabolic problems

2.1. Abstract parabolic equations. Given T > 0 and a Gel’fand triple

V ↪→ H ∼= H∗ ↪→ V∗, (2.1)

for separable Hilbert spaces H and V over the field R of real numbers, with the continuous
and dense embeddings signified by the symbol ↪→, we consider the abstract parabolic differential
equation

∂tu+Au = f in V∗ for t ∈ (0, T ), (2.2)
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where A ∈ L(V,V∗), with ‖A‖L(V,V∗) = Ma > 0, satisfies A = A∗, and we suppose that the
following Garding inequality holds:

∃ma > 0 ∃κ ≥ 0 ∀v ∈ V : a(v, v) := V∗〈Av, v〉V ≥ ma‖v‖2V − κ‖v‖2H. (2.3)

Here V∗〈·, ·〉V denotes the duality pairing between V∗, the dual space of V, and the space V. As
our aim is to develop the numerical analysis of space-time adaptive Galerkin discretizations of
infinite-dimensional parabolic problems, we begin, following [19], by presenting weak formulations
that are amenable to adaptive Galerkin discretizations. To this end, we consider the Bochner
spaces L2(0, T ;V), L2(0, T ;H) and L2(0, T ;V∗) and we define

H1(0, T ;V) := {u ∈ L2(0, T ;V) : u′ ∈ L2(0, T ;V)}, (2.4)

as well as

H1
0,{0}(0, T ;V) := {u ∈ H1(0, T ;V) : u(0) = 0 in V}, (2.5a)

H1
0,{T}(0, T ;V) := {u ∈ H1(0, T ;V) : u(T ) = 0 in V}. (2.5b)

Here and throughout the rest of the paper u′ will signify du/dt or ∂u/∂t, depending on the
context.

In the variational formulation of the parabolic problem, an important role is played by the
space X defined by

X := L2(0, T ;V) ∩H1(0, T ;V∗), (2.6)

which we equip with the norm ‖ · ‖X defined by

‖v‖X :=
(
‖v‖2L2(0,T ;V) + ‖v′‖2L2(0,T ;V∗)

) 1
2 .

With V, H and V∗ as in the triple (2.1) the following continuous embedding holds:

X ↪→ C([0, T ];H) (2.7)

(in the sense that any v ∈ X is equal almost everywhere to a function that is uniformly continuous
as a mapping from the nonempty closed interval [0, T ] of the real line into H). Therefore, for u ∈ X
and 0 ≤ t ≤ T , the values u(t) are well-defined in H and there exists a constant C = C(T ) > 0
such that

∀u ∈ X ∀t ∈ [0, T ] : ‖u(t)‖H ≤ C‖u‖X .

In particular, for u ∈ X the values u(0) and u(T ) are well-defined in H and

X0,{0} := {u ∈ X : u(0) = 0 in H}, X0,{T} := {u ∈ X : u(T ) = 0 in H}

are closed linear subspaces of X . Henceforth we shall write Y = L2(0, T ;V) and we denote by Y∗

the dual space of Y, which is isomorphic to L2(0, T ;V∗) identifying L2(0, T ;H) with its own dual.

2.2. First space-time variational formulation. We consider (2.2) in the special case when

Lu := ∂tu+Au = f ∈ Y∗ in (0, T ), u(0) = u0 ∈ H, (2.8)

in conjunction with a suitable homogenous boundary condition incorporated in the (domain of)
definition of the linear operator A. We begin by considering the case when the initial condition is
also homogeneous, i.e., u0 = 0 ∈ H.

The first space-time variational formulation of the parabolic problem (2.8) is based on the
bilinear form

(u, v) ∈ X × Y .→ B(u, v) :=

∫ T

0

(
V∗〈u′, v〉V + a(u, v)

)
dt ∈ R. (2.9)

Then, the space-time weak formulation of the parabolic problem (2.8) with homogeneous initial
condition u0 = 0 in H reads as follows: given f ∈ Y∗, find u ∈ X0,{0} such that

B(u, v) = f(v) ∀v ∈ Y. (2.10)
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2.3. Second space-time variational formulation. In (2.10), the initial condition u(0) = 0 was
incorporated in the definition of the function space X0,{0} in which the solution to the problem
was sought. To accommodate a nonhomogeneous initial condition, one may proceed in (at least)
two different ways. If

u(0) = u0 /= 0 in H, (2.11)

then one can for example first subtract from u a function up ∈ X such that up|t=0 = u0; we may,
in particular, choose for this purpose

up = e−tu0, for u0 ∈ V ⊂ H. (2.12)

The disadvantage of this approach is that u0 ∈ V is needed (instead of u0 ∈ H), which can be
viewed as an unnecessarily restrictive demand on the regularity of the initial datum u0.

Alternatively, in order to relax the regularity requirement u0 ∈ V to u0 ∈ H, one may impose
(2.11) weakly, either by enforcing it via a multiplier as in [19] or by a space-time variational
formulation, which incorporates it as a natural boundary condition as follows: in (2.10) we integrate
the time derivative by parts using that

∫ T

0
V∗〈u′, v〉V dt = −

∫ T

0
V∗〈v′, u〉V dt+ (u, v)|T0 , u, v ∈ L2(0, T ;V) ∩H1(0, T ;V∗). (2.13)

If u(0) = u0 /= 0 in H, we require that

v(T ) = 0. (2.14)

Thus, (2.13) and (2.14) lead to the weak formulation (2.17) below. To state it, we recall the spaces
Y = L2(0, T ;V) and

X = L2(0, T ;V) ∩H1(0, T ;V∗) (2.15)

and the subspaces (cf. also (2.5))

X0,{0} := {u ∈ X : u(0) = 0 in H}, X0,{T} := {u ∈ X : u(T ) = 0 in H}, (2.16)

equipped with the norm of X ; we shall write ‖ · ‖X0,{0} and ‖ · ‖X0,{T} to indicate that the norm
of X is applied to an element of X0,{0} and X0,{T}, respectively. Thanks to the continuous em-
bedding (2.7), X0,{0} and X0,{T} are closed, linear subspaces of X ; in particular the expression
(2.13) is meaningful for u, v ∈ X . The variational form of the parabolic problem (2.8) with weak
enforcement of the initial condition, which we shall also refer to as the space-time adjoint weak
formulation, then reads: given u0 ∈ H and f ∈ X ∗

0,{T}, find

u ∈ Y : B∗(u, v) = !∗(v) ∀v ∈ X0,{T}. (2.17)

Here the bilinear form B∗(·, ·) is given by

B∗(u, v) :=

∫ T

0

(
− V∗〈v′, u〉V + a(u, v)

)
dt (2.18)

and the linear functional !∗ is defined by

!∗(v) := X∗〈f, v〉X + (u0, v(0))H. (2.19)

For future reference we collect some simple properties of the functional !∗ in a proposition.

Proposition 2.1. For f ∈ X ∗
0,{T} 1 L2(I;V∗) + (H1

0,{T})
∗(I;V) 1 L2(I)⊗ V∗ + (H1

0,{T}(I))
∗ ⊗ V

and, for any u0 ∈ H, the functional !∗ in (2.19) is linear and continuous on X0,{T}, i.e., there
exists a constant C > 0 such that

∀v ∈ X0,{T} : |!∗(v)| ≤ C
(
‖f‖X∗

0,{T}
+ ‖u0‖H

)
‖v‖X0,{T} . (2.20)

With all preparatory considerations in place, we are now ready to discuss the question of well-
posedness of the variational formulations (2.10) and (2.17).
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2.4. Well-Posedness. By proceeding analogously as in the proof of [19, Theorem 5.1], we arrive
at the following result.

Theorem 2.2. Suppose that V and H are separable Hilbert spaces over the field R such that
V ↪→ H 1 H∗ ↪→ V∗ with continuous and dense embeddings. Assume further that the bilinear
form a(·, ·) : V × V → R is continuous, i.e.,

∃Ma > 0 ∀w, v ∈ V : |a(w, v)| ≤ Ma‖v‖V‖w‖V , (2.21)

and coercive in the sense that it satisfies a Garding inequality, i.e., there exist ma > 0 and κ ≥ 0
such that

∀v ∈ V : a(v, v) ≥ ma‖v‖2V − κ‖v‖2H. (2.22)

Then, there exists a positive constant C = C(ma,Ma,κ, T ) such that the bilinear form B(·, ·), as
defined in (2.9), satisfies the following inequalities, referred to as the inf-sup condition:

inf
u∈X0,{0}\{0}

sup
v∈Y\{0}

B(u, v)

‖u‖X ‖v‖Y
≥ C (2.23)

and
∀v ∈ Y \ {0} : sup

u∈X0,{0}

B(u, v) > 0. (2.24)

Furthermore, there exists a positive constant C = C(ma,Ma,κ, T ), such that B∗(·, ·) in (2.18)
satisfies the following inf-sup condition:

inf
u∈Y\{0}

sup
v∈X0,{T}\{0}

B∗(u, v)

‖u‖Y‖v‖X0,{T}

≥ C (2.25)

and
∀v ∈ X0,{T} \ {0} : sup

u∈Y
B∗(u, v) > 0. (2.26)

Moreover, the bilinear forms B(·, ·) and B∗(·, ·) defined in (2.9) and in (2.17), respectively,
induce boundedly invertible, linear operators B ∈ L(X0,{0},Y∗) and B∗ ∈ L(Y, (X0,{T})

∗), where
the spaces X0,{0}, X0,{T} and Y are defined in (2.15), (2.16).

The stability conditions satisfied by B∗(·, ·) imply the following result concerning unique solv-
ability of the corresponding variational formulation (2.17). An analogous result holds for (2.10),
thanks to the stability properties of B(·, ·).

Theorem 2.3. For every u0 ∈ H and for every f ∈ X ∗
0,{T} = L2(I;V∗)+H−1

0,{T}(I;V), there exists

a unique weak solution u ∈ Y = L2(0, T ;V) of (2.8) in the sense that u satisfies (2.17). Moreover,
the operator L : Y → X ∗

0,{T} is an isomorphism.

The proof of this theorem is analogous to that of [19, Theorem 5.1], and is therefore omitted.
We are now ready to consider a concrete realization of this abstract theoretical framework, which
concerns parabolic PDEs in infinite dimensions.

3. Gaussian measures

Suppose that H is a separable Hilbert space with norm ‖ ·‖H and inner product (·, ·)H over the
field of real numbers. We denote by L(H) the space of all bounded linear operators from H into
H, equipped with the associated operator norm ‖ ·‖L(H), and we denote by L+(H) the subset of H
consisting of all nonnegative, symmetric and bounded, linear operators on H. Finally, B(H) will
signify the σ-algebra of all Borel subsets of H. We recall that a bounded linear operator R ∈ L(H)
is said to be trace-class if there exist two sequences (ak)∞k=1 and (bk)∞k=1 in H such that

Rh =
∞∑

k=1

(h, ak)Hbk, h ∈ H, (3.1)

and
∞∑

k=1

‖ak‖H ‖bk‖H < ∞.
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The set of all elements of L(H) that are trace-class will be denoted by L1(H). We note that if
R ∈ L1(H), then R is a compact linear operator on H. The set L1(H), endowed with the usual
operations of addition and scalar multiplication, is a Banach space with the norm

‖R‖L1(H) := inf

{ ∞∑

k=1

‖ak‖H ‖bk‖H : Rh =
∞∑

k=1

(h, ak)Hbk, h ∈ H, (ak)
∞
k=1, (bk)

∞
k=1 ⊂ H

}
.

Assuming that R ∈ L1(H), the trace TrR of R is defined by the formula

TrR =
∞∑

k=1

(Rek, ek)H ,

where at this stage (ek)∞k=1 is any complete orthonormal basis in H. In particular if R ∈ L1(H) is
expressed by (3.1), then

TrR =
∞∑

k=1

(ak, bk)H .

The definition of trace being independent of the choice of the basis, we have that |TrR| ≤‖ R‖L1(H).
The next proposition (cf. Pietsch [17]) sharpens these statements further.

Proposition 3.1. Suppose that R is a compact selfadjoint linear operator on a separable Hilbert
space H, and that (λk)∞k=1 are its eigenvalues (repeated according to their multiplicity).

Then, R ∈ L1(H) if, and only if,
∑∞

k=1 |λk| < +∞. Furthermore, ‖R‖L1(H) =
∑∞

k=1 |λk| and
TrR =

∑∞
k=1 λk. In particular if λk ≥ 0 for all k ∈ N, then TrR = ‖R‖L1(H).

Let RN denote linear space of all sequences x = (xk)∞k=1 of real numbers, equipped with the
metric

'(x, y) :=
∞∑

k=1

2−k |xk − yk|
1 + |xk − yk|

, x, y ∈ RN .

Let further !2(N) denote the Hilbert space of all sequences x = (xk)∞k=1 ∈ R∞ such that

‖x‖!2(N) :=
( ∞∑

k=1

|xk|2
)1/2

< +∞;

the inner product on !2(N) is defined by (x, y)!2(N) :=
∑∞

k=1 xkyk, for x, y ∈ !2(N).
Let us further consider, for a ∈ R and for λ > 0, the Gaussian measure on R with mean a and

standard deviation λ defined by

Na,λ(dx) :=
1√
2πλ

e−
(x−a)2

2λ dx.

The following result is stated as Theorem 1.2.1 in [9].

Theorem 3.2. Suppose that a ∈ H and Q ∈ L+
1 (H). Then, there exists a unique probability

measure µ on (H,B(H)) such that
∫

H
eı(h,x)Hµ(dx) = eı(a,h)H e−

1
2 (Qh,h)H , h ∈ H.

Moreover, µ is the restriction to H (identified with the Hilbert space !2(N)) of the product measure
∞⊗

k=1

µk =
∞⊗

k=1

Nak,λk ,

defined on (RN,B(RN)).

We shall write µ = Na,Q, and we call a the mean and the trace-class operator Q the covariance
operator of µ. The measure µ will be referred to as a Gaussian measure on H with mean a and
covariance operator Q. If the law of a random variable is a Gaussian measure, then the random
variable is said to be Gaussian. In particular, Theorem 3.2 implies that a random variable X with
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values in H is Gaussian if, and only if, for any h ∈ H the real-valued random variable (h,X)H is
Gaussian.

For µ = Na,Q, we denote by L2(H,µ) the Hilbert space of all square-integrable (equivalence
classes of) functions from H into R with inner product

(u, v)L2(H,µ) =

∫

H
u(x) v(x)µ(dx), u, v ∈ L2(H,µ)

and norm
‖u‖L2(H,µ) = (u, u)

1
2

L2(H,µ), u ∈ L2(H,µ).

Analogously, we shall denote by L2(H,µ;H) the Hilbert space of all square-integrable (equivalence
classes of) functions from H into H with inner product

(u, v)L2(H,µ;H) =

∫

H
(u(x), v(x))H µ(dx), u, v ∈ L2(H,µ;H)

and norm
‖u‖L2(H,µ;H) = (u, u)

1
2

L2(H,µ;H), u ∈ L2(H,µ;H).

Throughout the rest of the paper, µ = NQ := N0,Q, where Q ∈ L+
1 (H). Moreover, we shall

assume that Ker(Q) = {0}. We shall also suppose that there exists a complete orthonormal system
(ek)∞k=1 in H and a sequence (λk)∞k=1 of positive real numbers, the eigenvalues of Q, such that
Qek = λkek, k ∈ N. The eigenvalues λk are assumed to be enumerated in decreasing order (and
repeated according to their multiplicity), and accumulating only at zero. For x ∈ H, we shall then
write xk = (x, ek)H , k ∈ N.

The subspace Q1/2(H) = {Q1/2h : h ∈ H} is called the reproducing kernel of the Gaussian
measure NQ := N0,Q. If Ker(Q) = {0} as has been assumed, then Q1/2(H) is dense in H. In fact,
if x0 ∈ H is such that (Q1/2h, x0)H = 0 for all h ∈ H, then Q1/2x0 = 0, and therefore Qx0 = 0,
which implies that x0 = 0.

For Q ∈ L+
1 (H) such that Ker(Q) = {0}, we introduce the isomorphism W from H into

L2(H,NQ) as follows: for f ∈ Q1/2(H) let Wf ∈ L2(H;NQ) be defined by

Wf (x) = (Q−1/2f, x)H , x ∈ H. (3.2)

Let µ = NQ. We define Hermite polynomials in L2(H,µ). Let us consider to this end the set Γ
of all mappings γ : n ∈ N → γn ∈ {0}∪N, such that |γ| :=

∑∞
k=1 γk < +∞. Clearly γ ∈ Γ if, and

only if, γn = 0 for all, except possibly finitely many, n ∈ N. For any γ ∈ Γ we define the Hermite
polynomial

Hγ(x) :=
∏

k≥1

Hγk(Wek(x)), x ∈ H (3.3)

where the factors in the product on the right-hand side are defined by

Hn(ξ) =
(−1)n√

n!
e

ξ2

2
dn

dξn

(
e−

ξ2

2

)
, ξ ∈ R, n ∈ {0} ∪ N; (3.4)

Note that H0 ≡ 1, so that for each γ ∈ Γ, the countable product Hγ(x) contains only finitely many
nontrivial factors and is, therefore, well-defined. Moreover, with the Gaussian measure µ = NQ

being a countable product measure, we have that

∀γ, γ′ ∈ Γ : (Hγ , Hγ′)L2(H,µ) = δγ,γ′ . (3.5)

We shall denote by E(H) the linear space spanned by all exponential functions, that is all functions
ϕ : x ∈ H .→ ϕ(x) ∈ R of the form

ϕ(x) = e(h,x)H , h ∈ H.

It follows from Proposition 1.2.5 in Da Prato and Zabczyk [9] that E(H) is dense in L2(H,µ). On
account of the separability of H, L2(H,µ) is separable.

For any k ∈ N we consider the partial derivative in the direction ek (with ek as above), defined
by

Dkϕ(x) = lim
ε→0

1

ε
(ϕ(x+ εek)− ϕ(x)) , x ∈ H, ϕ ∈ E(H).
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Thus, if ϕ(x) = e(h,x)H with h ∈ H, then clearly

Dkϕ(x) = e(h,x)H hk, where hk = (h, ek)H .

Let Λ0 denote the linear span of {Hγ ⊗ ek : γ ∈ Γ, k ∈ N}, with Hγ and with ek as above and
µ = NQ, and define the linear operator

D : E(H) ⊂ L2(H,µ) → L2(H,µ;H) by Dϕ(x) :=
∞∑

k=1

Dkϕ(x) ek, x ∈ H .

Thanks to Proposition 9.2.2 in Da Prato and Zabczyk [9], Dk is a closable linear operator for all
k ∈ N. If ϕ belongs to the domain of the closure of Dk, which we shall still denote by Dk, we shall
say that Dkϕ belongs to L2(H,µ).

Analogously, by Proposition 9.2.4 in Da Prato and Zabczyk [9], D is a closable linear operator.
If ϕ belongs to the domain of the closure of D, which we shall still denote by D, we shall say that
Dϕ belongs to L2(H,µ;H).

For µ = NQ, let us denote by W1,2(H,µ) the linear space of all functions ϕ ∈ L2(H,µ) such
that Dϕ ∈ L2(H,µ;H), equipped with the inner product

(ϕ,ψ)W1,2(H,µ) := (ϕ,ψ)L2(H,µ) +

∫

H
(Dϕ(x),Dψ(x))H µ(dx)

and norm ‖ϕ‖W1,2(H,µ) = (ϕ,ϕ)
1
2

W1,2(H,µ). Then, the Sobolev space W1,2(H,µ) is complete, and is
therefore a separable Hilbert space.

For any ϕ ∈ L2(H,µ), we have that

ϕ =
∑

γ∈Γ

ϕγHγ , where ϕγ := (ϕ, Hγ)L2(H,µ).

The next theorem, proved independently by Da Prato, Malliavin and Nualart [8] and Peszat
[16] provides an analogous characterization of functions belonging to W1,2(H,µ) in terms of the
complete orthonormal basis (Hγ)γ∈Γ.

Theorem 3.3. A function ϕ ∈ L2(H,µ) belongs to W1,2(H,µ) if, and only if,
∑

γ∈Γ\{0}

〈γ,λ−1〉|ϕγ |2 < +∞, (3.6)

where ϕγ := (ϕ, Hγ)L2(H,µ), 〈γ,λ−1〉 :=
∑∞

k=1 γkλ
−1
k , and (λk)∞k=1 is the sequence of (positive)

eigenvalues (repeated according to their multiplicity) of the covariance operator Q ∈ L+
1 (H),

Ker(Q) = {0}. Moreover, if (3.6) holds, then

‖ϕ‖2W1,2(H,µ) = ‖ϕ‖2L2(H,µ) +
∑

γ∈Γ\{0}

〈γ,λ−1〉|ϕγ |2.

Identifying L2(H,µ) with its own dual L2(H,µ)∗, we obtain

ϕ ∈ (W1,2(H,µ))∗ ⇐⇒
∑

γ∈Γ\{0}

(〈γ,λ−1〉)−1|ϕγ |2 < +∞. (3.7)

Finally, the embedding of W1,2(H,µ) into L2(H,µ) is compact.

For a proof of these statements we refer, for example, to [9, Theorem 9.2.12]. As E(H) is dense
in both L2(H,µ) and W1,2(H,µ), the embedding of W1,2(H,µ) into L2(H,µ) is also dense.

4. Fokker–Planck equation in countably many dimensions

For k ∈ N, let us denote by Dk the set Rd equipped with the Gaussian measure

µk(dqk) = Nak,Σk(dqk) =
1

(2π)d/2[det(Σk)]1/2
exp

(
− 1

2 (qk − ak)
(Σ−1

k (qk − ak)
)
dqk
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withmean ak ∈ Rd and positive definite covariance matrix Σk ∈ Rd×d. We shall assume henceforth
that ak = 0 for all k ∈ N and that the covariance operator Q, represented by the infinite block-
diagonal matrix Σ = diag(Σ1,Σ2, . . . ), with d× d diagonal blocks Σk, k = 1, 2, . . . , is trace-class.
We define

D :=
∞
×
k=1

Dk

so that
q := (q(1 , q

(
2 , . . . )

( ∈ D, qk ∈ Dk, k = 1, 2, . . . .

We equip the domain D with the product measure

µ :=
∞⊗

k=1

µk =
∞⊗

k=1

N0,Σk .

Let A = (Aij)∞i,j=1 ∈ R∞×∞ be a symmetric bi-infinite matrix, i.e., Aij = Aji for all i, j ∈ N.
Suppose further that there exists a real number γ0 > 0 such that

∞∑

i,j=1

Aij ξiξj ≥ γ0‖ξ‖2!2 for all ξ = (ξi)
∞
i=1 ∈ !2(N) (4.1)

and a real number γ1 > 0 such that
∣∣∣∣∣∣

∞∑

i,j=1

Aij ξiηj

∣∣∣∣∣∣
≤ γ1‖ξ‖!2 ‖η‖!2 for all ξ = (ξi)

∞
i=1 ∈ !2(N) and η = (ηi)

∞
i=1 ∈ !2(N). (4.2)

Example 4.1. As an example of an bi-infinite matrix A that satisfies (4.1) and (4.2), we mention

A[ε] = tridiag{(εj , 1, εj) : j = 1, 2, . . . }, (4.3)

where the sequence ε = {εj}j≥1 is assumed to satisfy ‖ε‖∞ < 1/2. Then, the matrix A[ε] in (4.3)
satisfies (4.1) with γ0 = 1− 2‖ε‖∞ and (4.2) with γ1 = 1 + 2‖ε‖∞.

Example 4.2. An important application of our methods are Fokker–Planck equations with state
spaces of high, but finite dimension. Such equations arise, among others, in connection with
meso-scale descriptions of polymeric fluids. We refer to [1, 2] and the references therein. Here,
our results apply if we consider A of block-diagonal from A = diag{A11,A22}, where A11 ∈ Rd×d

is symmetric, positive definite, and A22 is as in Example 4.1. Then, (4.1) and (4.2) hold with
constants 0 < γ0 ≤ γ1 < ∞ depending on the spectrum of A11 and on d, however.

We now define H := L2(D;µ) and V := W1,2(D,µ). Thanks to Theorem 3.3 and the subse-
quent discussion, V ↪→ H, with continuous, dense and compact embedding. In order to state the
space-time variational formulation of the infinite-dimensional Fokker–Planck equation under con-
sideration here, we again write Y = L2(0, T ;V) and, guided by the abstract framework in Sections
2.2, 2.3, we consider the function space

X = L2(0, T ;V) ∩H1(0, T ;V∗) (4.4)

and its subspaces X0,{0}, X0,{T} as in (2.16), equipped with the norm of X , which are closed due
to (2.7).

With these spaces, the space-time adjoint weak formulation of the infinite-dimensional Fokker–
Planck equation reads as follows: given ψ̂0 ∈ H and g ∈ X ∗

0,{T}, find

ψ̂ ∈ Y : B∗(ψ̂, ϕ̂) = !∗(ϕ̂) ∀ϕ̂ ∈ X0,{T}, (4.5)

where the bilinear form B∗(·, ·) : Y × X0,{T} → R is defined by

B∗(ψ̂, ϕ̂) :=

∫ T

0

(
− V∗〈ϕ̂ ′, ψ̂〉V + a(ψ̂, ϕ̂)

)
dt, (4.6)

with

a(ψ̂, ϕ̂) =
∞∑

i,j=1

Aij(∇qi ψ̂,∇qj ϕ̂)[L2(D,µ)]d , (4.7)
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and the linear functional !∗ is defined by

!∗(ϕ̂) := (ψ̂0, ϕ̂(0))L2(D,µ) +

∫ T

0
V∗〈g(t), ϕ̂〉V dt. (4.8)

The well-posedness of the infinite-dimensional Fokker–Planck equation is now an immediate con-
sequence of Theorem 2.25 and Theorem 2.3.

Theorem 4.3. For the bilinear form B∗(·, ·) in (4.6) there exists a positive constant C such that

inf
ψ̂∈Y\{0}

sup
ϕ̂∈X0,{T}\{0}

B∗(ψ̂, ϕ̂)

‖ψ̂‖Y‖ϕ̂‖X0,{T}

≥ C (4.9)

and

∀ϕ̂ ∈ X0,{T} \ {0} : sup
ψ̂∈Y

B∗(ψ̂, ϕ̂) > 0. (4.10)

Furthermore, for each ψ̂0 ∈ H and each g ∈ X ∗
0,{T}, there exists a unique ψ̂ ∈ Y = L2(0, T ;V) that

satisfies (4.5); and the linear operator B∗ ∈ L(Y,X ∗
0,{T}) induced by B∗(·, ·) is an isomorphism.

Following [19], we shall next develop a class of adaptive Galerkin discretization algorithms for
(4.5), along the lines of adaptive wavelet discretizations of boundedly invertible operator equations
considered in [6, 7]. These algorithms exhibit, in particular, “stability by adaptivity”, i.e., their
stability follows directly from the stability (4.9), (4.10) of the continuous, infinite-dimensional
problem through suitable Riesz bases of the spaces Y and X0,{T}, which we shall construct. No-
tably, in the present context, these algorithms are dimensionally robust by design: as we shall
prove, they deliver a sequence of approximate solutions with finitely supported coefficient vectors,
i.e., with only finitely many variables qk being ‘active’ in each iteration. We will establish certain
optimality properties for these finitely supported Galerkin solutions, with all constants in the error
and complexity bounds being absolute, i.e., independent of the number of active variables. We first
develop the necessary concepts in an abstract setting, before applying them to the Fokker–Planck
equation (4.5) in space-time variational form.

5. Well-posed operator equations as bi-infinite matrix problems

Let us denote for a moment by X ,Y generic separable Hilbert spaces over R, and let us assume
that we have available a Riesz basis ΨX = {ψX

λ : λ ∈ ∇X } for X , meaning that the synthesis
operator

sΨX : !2(∇X ) → X : c .→ c(ΨX :=
∑

λ∈∇X

cλψ
X
λ

is boundedly invertible. By identifying !2(∇X ) with its dual, the adjoint of sΨX , known as the
analysis operator, is

s∗ΨX : X ∗ → !2(∇X ) : g .→ [g(ψX
λ )]λ∈∇X .

Similarly, let ΨY = {ψY
λ : λ ∈ ∇Y} be a Riesz basis for Y, with synthesis operator sΨY and its

adjoint s∗ΨY .
Now let B ∈ L(X ,Y∗) be boundedly invertible. Then also its adjoint B∗ ∈ L(Y,X ∗) is

boundedly invertible and, for every f ∈ Y∗, f∗ ∈ X ∗ the operator equations

Bu = f, B∗u∗ = f∗

admit unique solutions u ∈ X , u∗ ∈ Y. Writing u = sΨXu and u∗ = sΨYu∗, these operator
equations are equivalent to bi-infinite matrix-vector problems

Bu = f , B∗u∗ = f∗, (5.1)

where the “load vectors” f = s∗ΨYf = [f(ψY
λ )]λ∈∇Y ∈ !2(∇Y), f∗ = s∗ΨX f = [f(ψX

λ )]λ∈∇X ∈
!2(∇X ); and the “stiffness” or system matrices B and B∗ given by

B = s∗ΨYBsΨX = [(BψX
µ )(ψY

λ )]λ∈∇Y ,µ∈∇X ∈ L(!2(∇X ), !2(∇Y)),
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and with B∗ defined analogously, are boundedly invertible. We consider the associated bilinear
forms

B(·, ·) : X × Y → R : (w, v) .→ (Bw)(v), B∗(·, ·) : Y × X → R : (v, w) .→ (B∗v)(w),

and introduce the notations

B = B(ΨX ,ΨY), f = f(ΨY), B∗ = B∗(ΨY ,ΨX ), f∗ = f∗(ΨX ).

With the Riesz constants

ΛX
ΨX := ‖sΨX ‖!2(∇X )→X = sup

0 +=c∈!2(∇X )

‖c(ΨX ‖X
‖c‖!2(∇X )

,

λX
ΨX := ‖s−1

ΨX ‖−1
X→!2(∇X ) = inf

0 +=c∈!2(∇X )

‖c(ΨX ‖X
‖c‖!2(∇X )

,

and ΛY
ΨY and λY

ΨY defined analogously, we obviously have that

‖B‖!2(∇X )→!2(∇Y) ≤ ‖B‖X→Y∗ΛX
ΨXΛY

ΨY , (5.2)

‖B−1‖!2(∇Y)→!2(∇X ) ≤
‖B−1‖Y∗→X

λX
ΨXλ

Y
ΨY

. (5.3)

6. Best N-term approximations and approximation classes

We say that uN ∈ !2(∇X ) is a best N -term approximation of u ∈ !2(∇X ), if it is the best possible
approximation to u in the norm of !2(∇X ), given a budget of N coefficients. Determining the best
N -term approximation uN of u requires searching the infinite vector u, which is not feasible, i.e.,
actually locating uN may not be practically feasible. Nevertheless, rates of convergence afforded
by best N -term approximations serve as a benchmark for concrete numerical schemes. To this end,
we collect all u ∈ !2(∇X ) admitting a best N -term approximation converging with rate s > 0 in
the approximation class As

∞(!2(∇X )) :=
{
v ∈ !2(∇X ) : ‖v‖As

∞(!2(∇X )) < ∞
}
, where

‖v‖As
∞(!2(∇X )) := sup

ε>0
ε× [min{N ∈ N0 : ‖v − vN‖!2(∇X ) ≤ ε}]s,

which consists of all v ∈ !2(∇X ) whose best N -term approximations converge to v with rate s.
Generally, best N -term approximations cannot be realized in practice, in particular not in

situations where the vector u to be approximated is only defined implicitly as the solution of
an bi-infinite matrix-vector problem, such as (5.1). We will now design, following [19], a space-
time adaptive Galerkin discretization method for the infinite-dimensional Fokker–Planck equation
(4.5) that produces a sequence of approximations to u, which, whenever u ∈ As

∞(!2(∇X )) for
some s > 0, converge to u with this rate s > 0 in computational complexity that is linear with
respect to N , the cardinality of the support of the “active” coefficients in the computed, finitely
supported approximation to u.

7. Adaptive Galerkin methods

Let s > 0 be such that u ∈ As
∞(!2(∇X )). In [6] and [7], adaptive wavelet Galerkin methods for

solving elliptic operator equations (5.1) were introduced; the methods considered in both papers
are iterative methods. To be able to bound their complexity, one needs a suitable bound on the
complexity of an approximate matrix-vector product in terms of the prescribed tolerance. We
formalize this idea through the notion of s∗-admissibility.

Definition 7.1. The bi-infinite matrices B ∈ L(!2(∇X ), !2(∇Y)), B∗ ∈ L(!2(∇Y), !2(∇X )) are
s∗-admissible if there exist routines

APPLYB[w, ε] → z, APPLYB∗ [w̃, ε] → z̃

that yield, for any prescribed tolerance ε > 0 and any finitely supported w ∈ !2(∇X ) and w̃ ∈
!2(∇Y), finitely supported vectors z ∈ !2(∇Y) and z̃ ∈ !2(∇X ) such that

‖Bw − z‖!2(∇Y) + ‖B∗w̃ − z̃‖!2(∇X ) ≤ ε
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and for which, for any s̄ ∈ (0, s∗), there exists an admissibility constant aB,s̄ such that

#supp z ≤ aB,s̄ ε
−1/s̄‖w‖1/s̄As̄

∞(!2(∇X )),

and likewise for z̃, w̃. The number of arithmetic operations and storage locations used by the call
APPLYB[w, ε] is bounded by some absolute multiple of

aB,s̄ ε
−1/s̄‖w‖1/s̄As̄

∞(!2(∇X )) +#suppw + 1.

The design of APPLYB[w, ε] and APPLYB∗ [w̃, ε] for the system matrices B and B∗ arising
from the infinite-dimensional Fokker–Planck equation (4.5) is the major technical building block
in the adaptive Galerkin discretization of (4.5).

In order to approximate u one should be able to approximate f∗. Throughout this paper we
shall assume the availability of the following routine.

RHSf∗ [ε] → f∗ε : For given ε > 0, the routine yields a finitely supported f∗ε ∈ !2(∇X ) with

‖f∗ − f∗ε ‖!2(∇X ) ≤ ε and #supp f∗ε ! min{N : ‖f∗ − f∗N‖ ≤ ε},
with the number of arithmetic operations and storage locations used by the call RHSf∗ [ε] being
bounded by some absolute multiple of #supp f∗ε + 1.

The availability of the routines APPLYB and RHSf has the following implications.

Proposition 7.2. Let B in (5.1) be s∗-admissible. Then, for any s̄ ∈ (0, s∗), we have that

‖B‖As̄
∞(!2(∇X ))→As̄

∞(!2(∇Y)) ≤ as̄B,s̄.

For zε := APPLYB[w, ε], we have that

‖zε‖As̄
∞(!2(∇Y)) ≤ as̄B,s̄‖w‖As̄

∞(!2(∇X )).

Analogous statements hold for B∗ in (5.1).

A proof of Proposition 7.2 can be given along the lines of the arguments presented in [6, 7].
Using the definition of As

∞(!2(∇Y)) and the properties of RHSf , we have the following corollary.

Corollary 7.3. Suppose that, in (5.1), B∗ is s∗-admissible and u ∈ As
∞(!2(∇Y)) for s < s∗;

then, for f∗ε = RHSf∗ [ε],

#supp f∗ε ! aB∗,s ε
−1/s‖u‖1/sAs

∞(!2(∇Y)),

with the number of arithmetic operations and storage locations used by the call RHSf∗ [ε] being
bounded by some absolute multiple of

aB∗,s ε
−1/s‖u‖1/sAs

∞(!2(∇Y)) + 1.

Remark 7.4. Besides ‖f∗ − f∗ε ‖!2(∇Y) ≤ ε, the complexity bounds in Corollary 7.3, with aB∗,s

signifying a constant that depends only on B∗ and s, are essential for the use of RHSf∗ in the
adaptive Galerkin methods.

The following corollary of Proposition 7.2 from [19] can be used for example for the construction
of valid APPLY and RHS routines in case the adaptive Galerkin algorithms are applied to a
preconditioned system.

Corollary 7.5. Suppose that B∗ ∈ L(!2(∇Y), !2(∇X )), C ∈ L(!2(∇X ), !2(∇Z)) are both s∗-
admissible; then, so is CB∗ ∈ L(!2(∇Y), !2(∇Z)). A valid routine APPLYCB∗ is

[w, ε] .→ APPLYC

[
APPLYB∗ [w, ε/(2‖C‖)], ε/2

]
, (7.1)

with admissibility constant aCB∗,s̄ ! aB∗,s̄(‖C‖1/s̄ + aC,s̄) for s̄ ∈ (0, s∗).
For some s∗ > s, let C ∈ L(!2(∇Y), !2(∇Z)) be s∗-admissible. Then, for

RHSCf∗ [ε] := APPLYC[RHSf∗ [ε/(2‖C‖)], ε/2], (7.2)

we have that
#suppRHSCf∗ [ε] ! aB∗,s(‖C‖1/s + aC,s) ε

−1/s‖u‖1/sAs
∞(!2(∇Y))
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and ‖Cf∗−RHSCf∗ [ε]‖!2(∇Z) ≤ ε, with the number of arithmetic operations and storage locations
used by the call RHSCf∗ [ε] being bounded by some absolute multiple of

aB∗,s(‖C‖1/s + aC,s) ε
−1/s‖u‖1/sAs

∞(!2(∇X )) + 1.

Remark 7.6. The properties of RHSCf∗ stated in Corollary 7.5 show that RHSCf∗ is a valid
routine for approximating Cf∗ in the sense of Remark 7.4.

In the particular case when B is symmetric positive definite, i.e., ∇X = ∇Y and B = B∗ > 0,
the two Galerkin methods considered in the papers [6, 7] were shown to be quasi-optimal in the
following sense.

Theorem 7.7. Suppose that, in (5.1), B∗ is s∗-admissible; then, for any ε > 0 the two adaptive
Galerkin methods from [6, 7] produce an approximation uε to u with ‖u−uε‖!2(∇Y) ≤ ε. Suppose

that, in (5.1), for some s > 0 we have that u ∈ As
∞(!2(∇Y)); then #suppuε! ε−1/s‖u‖1/sAs

∞(!2(∇Y))

and if, moreover, s < s∗, then the number of arithmetic operations and storage locations required
by a call of either of these adaptive solvers with tolerance ε > 0 is bounded by some multiple of

ε−1/s(1 + aB,s)‖u‖1/sAs
∞(!2(∇Y)) + 1.

The multiples depend on s only when s tends to 0 or ∞, and on ‖B‖ and ‖B−1‖ when they tend
to infinity.

The method from [7] is based on a damped Richardson iteration for the approximate solution
of Bu = f , where the required residual computations are approximated using calls of APPLYB

and RHSf within tolerances that decrease linearly with the iteration counter.
The method from [6] produces a sequence Ξ0 ⊂ Ξ1 ⊂ · · · ⊂ ∇X , together with a corresponding

sequence of (approximate) finitely supported Galerkin solutions ui ∈ !2(Ξi). The coefficients of
approximate residuals f −Bui are used to steer the expansion of the sets {Ξi}i≥0.

Both methods rely on a recurrent coarsening of the approximation vectors, where small coeffi-
cients are removed in order to keep an optimal balance between accuracy and support length; in
[12], a modification of the algorithm introduced in [6] was proposed, which does not require the
coarsening step.

The s∗-admissibility of B can be expected, since the structure of B in the multiresolution Riesz-
bases in [0, T ] and in Wiener–Hermite polynomial chaos bases of L2(H;µ) is, as we will show in
what follows, close to that of a computable sparse matrix.

Definition 7.8. B ∈ L(!2(∇X ), !2(∇Y)) is s∗-computable if, for each N ∈ N, there exists a
B[N ] ∈ L(!2(∇X ), !2(∇Y)) having in each column at most N nonzero entries whose joint compu-
tation takes an absolute multiple of N operations, such that the computability constants

cB,s̄ := sup
N∈N

N‖B−B[N ]‖1/s̄!2(∇X )→!2(∇Y) (7.3)

are finite for any s̄ ∈ (0, s∗). The notion of s∗-computability of B∗ is defined analogously.

Proposition 7.9. An s∗-computable B is s∗-admissible. Moreover, for s̄ < s∗, aB,s̄ ! cB,s̄ where
the constant in this bound depends only on s̄ ↓ 0, s̄ ↑ s∗, and on ‖B‖ → ∞.

This is proved by constructing a suitable APPLYB routine as in [6, §6.4] (a log factor in the
complexity bound there due to sorting was removed later by application of an approximate sorting,
see [11] and the references there).

Remark 7.10. Theorem 7.7 requires that B is s∗-admissible for an s∗ > s when u ∈ As
∞(!2(∇X )).

Generally this value of s is unknown, and so the condition on s∗ should be interpreted in the sense
that s∗ has to be larger than any s for which membership of the solution u in As

∞(!2(∇X )) can be
expected.

The approach from [7] applies also to the saddle point variational principle (4.5) whenever
one has a linearly convergent stationary iterative scheme available for the matrix-vector problem
B∗u = f∗. There is, unfortunately, no such scheme available for a general boundedly invertibleB∗.
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In particular, for the stiffness matrices B∗ resulting from the space-time saddle-point formulation
(4.5) of the infinite-dimensional Fokker–Planck equation no directly applicable scheme is available.
In [7], adaptive Galerkin discretizations for such problems are proposed for the normal equation

BB∗u = Bf∗. (7.4)

By Theorem 4.3, the operator BB∗ ∈ L(!2(∇Y), !2(∇Y)) is boundedly invertible, symmetric
positive definite, with

‖BB∗‖!2(∇Y)→!2(∇Y) ≤ ‖B∗‖2!2(∇Y)→!2(∇X ), ‖(BB∗)−1‖!2(∇Y)→!2(∇Y) ≤ ‖(B∗)−1‖2!2(∇X )→!2(∇Y).

Now let u ∈ As
∞(!2(∇X )), and for some s∗ > s, let B and B∗ be s∗-admissible. By Corollary

7.5, withB∗ in place ofC, a validRHSBf∗ routine is given by (7.2), andBB∗ is s∗-admissible with
a valid APPLYBB∗ routine given by (7.1). In the context of (4.5), one execution of APPLYBB∗

corresponds to one (approximate) sweep over the “primal” problem, followed by one (approximate)
sweep over the dual problem, respectively. A combination of Theorem 7.7 and Corollary 7.5 yields
the following result, obtained in [19], which will be the basis for our Wiener–Hermite polynomial
chaos discretization.

Theorem 7.11. For any ε > 0, the adaptive wavelet methods from [7] or from [6] and [12] applied
to the normal equations (7.4) using the above APPLYBB∗ and RHSBf∗ routines produce an
approximation uε to u with ‖u− uε‖!2(∇Y) ≤ ε.

Suppose that for some s > 0, u ∈ As
∞(!2(∇Y)); then #suppuε ! ε−1/s‖u‖1/sAs

∞(!2(∇Y)), with

the constant in this bound only being dependent on s when it tends to 0 or ∞, and on ‖B∗‖ and
‖(B∗)−1‖ when they tend to infinity.

Suppose that s < s∗; then, the number of arithmetic operations and storage locations required
by a call of either of these adaptive wavelet methods with tolerance ε is bounded by some multiple
of

1 + ε−1/s(1 + aB∗,s(1 + aB,s))‖u‖1/sAs
∞(!2(∇Y))

where this multiple only depends on s when it tends to 0 or ∞, and on ‖B∗‖ and ‖(B∗)−1‖ when
they tend to infinity.

8. Infinite-dimensional Fokker–Planck equation as bi-infinite matrix vector
equation

We apply the foregoing abstract concepts to the space-time variational formulation (4.5) of the
infinite-dimensional Fokker–Planck equation. To construct Riesz bases for X0,{T} and Y, we use
that

X0,{T} = (L2(I)⊗ V) ∩ (H1
0,{T}(I)⊗ V∗) and Y = L2(I)⊗ V

with the spaces X0,{T} as defined in (4.4), and Y = L2(0, T ;V); recall that H = L2(D,µ) and
V = W1,2(D,µ), with V continuously, densely and compactly embedded into H. Let

Υ = {Hγ : γ ∈ Γ} ⊂V , with Hγ(q) =
∏

k≥1

Hγk

(
qk√
λk

)
,

denote the Wiener–Hermite polynomial chaos basis (3.3). By Theorem 3.3, Υ is a normalized
Riesz basis for [L2(H,µ)]d, which, when rescaled by the scaling sequence {(〈γ,λ−1〉∗)−1/2 : γ ∈ Γ}
in V and by the scaling sequence {(〈γ,λ−1〉∗)1/2 : γ ∈ Γ} in V∗, is a Riesz basis for V and V∗,
respectively; here the scaling factors are defined by

〈γ,λ−1〉∗ :=

{
〈γ,λ−1〉 if γ ∈ Γ \ {0},

1 if γ = 0;
(8.1)

see (3.6), (3.7) and also (9.1), (9.2) ahead. In the time interval I = (0, T ), we denote by

Θ = {θλ : λ ∈ ∇t} ⊂ H1
0,{T}(I)
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a collection of functions indexed by the countable set ∇t that is a normalized Riesz basis for L2(I),
which, when rescaled in H1(I), is a Riesz basis for H1

0,{T}(I). It then follows from [13, Prop. 1

and 2] that the collection Θ⊗Υ, normalized in X , i.e., the collection



(t, q) .→ θλ(t)Hγ(q)√
〈γ,λ−1〉∗ + ‖θλ‖2H1(I)/〈γ,λ−1〉∗

: (λ, γ) ∈ ∇X := ∇t × Γ




 ,

is a Riesz basis for X0,{T}, and that Θ⊗Υ normalized in Y, i.e., the collection
{
(t, q) .→ θλ(t)Hγ(q)

‖Hγ‖V
: (λ, γ) ∈ ∇Y := ∇t × Γ

}
,

is a Riesz basis for Y. Moreover, denoting the Riesz basis for V∗ consisting of the collection Υ
normalized in V∗ by [Υ]V∗ , and similarly for the other collections and spaces, with the notations
introduced in Sect. 5, we have that

ΛX
[Θ⊗Υ]X

≤ max(ΛL2(I)
Θ ΛV

[Υ]V
,ΛH1(I)

[Θ]H1(I)
ΛV∗

[Υ]V∗ ), (8.2)

λX
[Θ⊗Υ]X

≥ min(λL2(I)
Θ λV

[Υ]V
,λH1(I)

[Θ]H1(I)
λV∗

[Υ]V∗ ), (8.3)

ΛY
[Θ⊗Υ]Y

≤ ΛL2(I)
Θ ΛV

[Υ]V
, (8.4)

λY
[Θ⊗Υ]Y

≥ λL2(I)
Θ λV

[Υ]V
. (8.5)

Denoting by ‖Υ‖V the infinite diagonal matrix with diagonal entries ‖Hγ‖V where γ ∈ Γ, and
similarly for the other collections and spaces, the stiffness or system matrix B∗ corresponding to
the variational form (4.5) and the Riesz bases [Θ ⊗ Υ]Y , [Θ ⊗ Υ]X for Y and X0,{T} is given by
the bi-infinite matrix

B∗ = B∗([Θ⊗Υ]Y , [Θ⊗Υ]X )

=
[
Idt ⊗ ‖Υ‖−1

V
]
◦
[
−(Θ,Θ′)L2(I) ⊗ (Υ,Υ)H +

∫

I
a(Θ⊗Υ,Θ⊗Υ) dt

]
◦
[
‖Θ⊗Υ‖−1

X
]
,

where Idt denotes the identity operator with respect to the t variable and the symbol ◦ signifies
composition of operators.

Writing the solution u of (4.5) as u = u([Θ ⊗ Σ]X , we deduce that u is the solution of the
bi-infinite matrix-vector equation B∗u = f∗ with

f∗ :=
[
(ψ̂0, [Υ]H)H

]
. (8.6)

Introducing the infinite diagonal matrices

D1 := (‖Θ‖H1(I) ⊗ ‖Υ‖V∗)‖Θ⊗Υ‖−1
X and D2 := (Idt ⊗ ‖Υ‖V)‖Θ⊗Υ‖−1

X ,

both being diagonal matrices with entries in modulus less than 1, the bi-infinite matrix operator
B∗ can be written as

B∗ =

[
(−[Θ]H1

0,{T}(I)
∗ ,Θ′)L2(I) ⊗ ([Υ]V∗ , [Υ]V)H D1 +

∫

I
a(Θ⊗ [Υ]V ,Θ⊗ [Υ]V) dtD2

]
. (8.7)

9. s∗-admissibility of B and B∗ from (8.7) and of its adjoint

By Theorem 7.9, the s∗-admissibility of B and B∗ follows from their s∗-computability. To verify
the s∗-computability of tensor products of possibly bi-infinite matrices, it suffices to analyze the
s∗-computability of the factors, according to the following result from [19, 15].

Proposition 9.1. Let, for some s∗ > 0, D and E be s∗-computable. Then,

(a) D ⊗ E is s∗-computable with computability constant satisfying, for 0 < s̄ < s̃ < s∗,
cD⊗E,s̄ ! (cD,s̃ cE,s̃)s̃/s̄; and

(b) for any ε ∈ (0, s∗), D ⊗ E is (s∗ − ε)–computable, with computability constant cD⊗E,s̄

satisfying, for 0 < s̄ < s∗ − ε < s̃ < s∗, cD⊗E,s̄ ! max(cD,s̃, 1)max(cE,s̃, 1).
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The constants absorbed in the ! symbol in the bounds on the computability constants in (a) and
(b) are only dependent on s̃ ↓ 0, s̃ → ∞ and s̃− s̄ ↓ 0.

In view of the representation (8.7) of B∗, using Corollary 7.5 and Proposition 9.1, part (a), for
proving s∗-admissibility ofB andB∗ it suffices to show that (Υ,Υ)H and

∫
I a(Θ⊗[Υ]V ,Θ⊗[Υ]V) dt

and its adjoint are s∗-admissible. To prove this, by Theorem 7.9 we need to verify that these
objects are s∗-computable. This will follow from the fact that ([Θ]′H1(I),Θ)L2(I), (Θ, [Θ]′H1(I))L2(I),

([Υ]V∗ , [Υ]V)H and ([Υ]V , [Υ]V∗)H are s∗-computable and, in view of the definition of a(·, ·) in (4.6),
from a sparsity assumption on the coefficient matrix A.

9.1. Choice of Riesz bases Θ and Υ. We have already assumed that Θ = {θλ : λ ∈ ∇t} is a
normalized Riesz basis of L2(I) that, when rescaled in H1(I) is a Riesz basis for H1

0,{T}(I). We
will now select the basis Θ to be a wavelet basis that satisfies certain additional assumptions.
Specifically, we shall assume that the basis functions θλ of Θ are:

(t1) local, i.e., supx∈[0,1],!∈N0
#{|λ| = ! : x ∈ supp θλ} < ∞ and supp θλ ! 2−|λ|;

(t2) piecewise polynomial of degree dt, where by “piecewise” we mean that the singular support
consists of a set of points whose cardinality is uniformly bounded;

(t3) globally continuous, specifically ‖θλ‖Wk
∞(0,1) ! 2|λ|(

1
2+k) for k ∈ {0, 1};

(t4) for |λ| > 0, have d̃t ≥ dt vanishing moments.

The assumptions (t1)–(t4) can be met by wavelet constructions (see, e.g. [5] and the references
therein).

As a Riesz basis in D we choose the (countable) “polynomial chaos” basis Υ = {Hγ : γ ∈ Γ}.
According to Theorem 3.3, Υ is an orthonormal Riesz basis of L2(D,µ) that, rescaled in V =
W1,2(D,µ) or its dual V∗, is a Riesz basis for these spaces, respectively. Indeed, on denoting by
Dλ the diagonal matrix

Dλ = diag{(〈γ,λ−1〉∗)1/2 : γ ∈ Γ}, (9.1)

we observe that the diagonal entries of Dλ relate to the V and V∗ norms of [Υ]H as follows:

Dλ 1 ‖[Υ]H‖V , (Dλ)−1 1 ‖[Υ]H‖V∗ . (9.2)

Therefore, the collection [Υ]V := (Dλ)−1[Υ]H = {(Dλ
γ )

−1Hγ : γ ∈ Γ} is a Riesz basis of V =
W1,2(D,µ). This follows readily from the L2(D,µ) orthonormality of Υ and from the identity (cf.
[9, (9.2.11)])

DkHγ = γ1/2
k λ−1/2

k Hγk−1(Wek)H
(k)
γ , for k = 1, 2, . . . and γ ∈ Γ, (9.3)

with the notational conventions H−1(Wek) := 0 and H(k)
γ :=

∏
j +=k Hγj for γ ∈ Γ. By duality, the

collection [Υ]V∗ := Dλ[Υ]H is a Riesz basis of V∗.

9.2. s∗-computability of ([Θ]′H1(I),Θ)L2(I) and of its adjoint. By (t1), (t2) and (t4), for each

λ ∈ ∇t and ! ∈ N0, the number of µ ∈ ∇t with |µ| = ! and
∫
I θ

′
λθµ dt /= 0 or

∫
I θ

′
µθλ dt /= 0 is

bounded, uniformly in λ and !. Indeed,
∫
I θ

′
λθµ dt can only be nonzero when θµ does not vanish

on the singular support of θλ, and using integration by parts,
∫
I θ

′
µθλ dt can only be nonzero when

θµ does not vanish on the singular support of θλ or at ∂I.
As a consequence of Θ being of degree dt ≥ 1 we have that

2|λ| = 2|λ|‖θλ‖L2(I) = 2|λ|‖(Id−Q|λ|−1)θλ‖L2(I) ! ‖θλ‖H1(I).

Here, for m ∈ N0, Qm denotes the (Θ,Θ′) biorthogonal projector onto span{θλ : |λ| ≤ m}. Using
(t1) and (t3), we infer that

‖θλ‖−1
H1(I)

∣∣
∫

I
θ′λθµ dt

∣∣ ! 2−|λ|2−max(|λ|,|µ|)2|λ|(
1
2+1)2

1
2 |µ| = 2−

1
2

∣∣|λ|−|µ|
∣∣
. (9.4)

Finally, we note that any entry of ([Θ]′H1(I),Θ)L2(I) can be evaluated in closed form in O(1)

work and memory. Schur’s Lemma (cf. [18], p. 6, Par. 2) now implies that ([Θ]′H1(I),Θ)L2(I) and

(Θ, [Θ]′H1(I))L2(I) are ∞-computable.
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Note that from diam(supp θλ) ! 2−|λ| (cf. (t1)) and from and (t3) we deduce that ‖θλ‖H1(I) !
2|λ|, and thus that

‖θλ‖H1(I) ! 2|λ|.

Remark 9.2. Suppose that, instead of (t3), the θλ belong also to Crt(I) for some rt ∈ N (neces-
sarily with rt ≤ dt−2), i.e., that ‖θλ‖Ws,∞(0,1) ! 2|λ|(

1
2+s) for s ∈ {0, rt+1}. Then, by subtracting

a suitable polynomial of degree rt from θ′λ in (9.4), and using that θµ has d̃t ≥ dt ≥ rt vanishing
moments one deduces that, for |λ| ≤| µ|,

‖θλ‖−1
H1(I)

∣∣∣∣
∫

I
θ′λθµ dt

∣∣∣∣ ! 2−
∣∣ |λ|−|µ|

∣∣( 1
2+rt).

Similarly, for |λ| ≥| µ|, using integration by parts one obtains that

‖θλ‖−1
H1(I)

∣∣∣∣
∫

I
θ′λθµ dt

∣∣∣∣ ! 2−
∣∣||λ|−|µ|

∣∣( 3
2+rt)

if t .→ θλ(t) θµ(t) vanishes on ∂I. Since the wavelets in time do not satisfy a homogeneous Dirichlet
boundary condition, there are λ, µ ∈ ∇t with |λ| ≥ |µ| for which t .→ θλ(t)θµ(t) does not vanish at
the boundary. For such entries (9.4) cannot be improved.

Remark 9.3. In reference [5], multiresolutions Θ = (θλ)λ∈∇t were constructed for which the ma-
trices ([Θ]′H1(I),Θ)L2(I) are sparse without compression and which satisfy a homogeneous Dirichlet
boundary condition at t = T .

9.3. s∗-computability of (Υ,Υ)H and ([Υ]V∗ , [Υ]V)H and of its adjoint. In view of the
L2(H,µ)-orthonormality (3.5) of the collection Υ of Hermite polynomials, both (Υ,Υ)H and
([Υ]V∗ , [Υ]V)H and their adjoints are diagonal bi-infinite matrices that are therefore∞-computable.

9.4. s∗-computability of
∫
I a(Θ⊗ [Υ]V ,Θ⊗ [Υ]V) dt and of its adjoint. We have that

∫

I
a(Θ⊗ [Υ]V ,Θ⊗ [Υ]V) dt = (Θ,Θ)L2(I) ⊗ a([Υ]V , [Υ]V). (9.5)

Since the form a(·, ·) defined in (4.7) is symmetric, by Proposition 9.1 it suffices to investigate
s∗-computability of each of the two factors on the right-hand side of (9.5) in order to deduce
s∗-computability of B and of B∗.

As was noted in [19, Sec. 8.5], under the assumptions (t1)–(t4) above, (Θ,Θ)L2(I) is ∞-
computable, so it remains to address the s∗-computability of a([Υ]V , [Υ]V).

In view of the definition (4.7) of a(·, ·) in (4.6) and of Definition 7.8, s∗-computability of the bi-
infinite matrix G = a([Υ]V , [Υ]V) depends on the structure of the bi-infinite matrix A = (Aij)∞i,j=1

in (4.6). Thanks to (9.5),

a([Υ]V , [Υ]V) = (Gγ,γ′)γ,γ∈Γ,

where the entries Gγγ′ are, for γ, γ′ ∈ Γ, evaluated (assuming d = 1 for ease of notation and using
(9.3)) as follows:

Gγγ′ =
∑

i,j≥1

Aij(D
λ
γ )

−1(DqiHγ ,DqjHγ′)L2(D,µ)(D
λ
γ′)−1

=
∑

i,j≥1

Aij(D
λ
γ )

−1
(√

γi/λi Hγi−1H
(i)
γ ,

√
γ′
j/λj Hγ′

j−1H
(j)
γ′

)

L2(D,µ)
(Dλ

γ′)−1

= (Dλ
γ )

−1(Dλ
γ′)−1

∑

i,j≥1

Aij

√
γiγ′

j

λiλj

(
Hγi−1H

(i)
γ , Hγ′

j−1H
(j)
γ′

)

L2(D,µ)
.

(9.6)

To verify s∗-admissibility of the matrix G, we impose additional hypotheses on the matrix A. We
consider two cases: A diagonal and A tridiagonal. First, consider the case Aij = δij . Inserting
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this into (9.6), we obtain from the L2(D,µ) orthonormality (3.5) of the collection {Hγ : γ ∈ Γ}
that

Gγγ′ = (Dλ
γ )

−1(Dλ
γ′)−1

∑

i,j≥1

δij

√
γiγ′

j

λiλj

(
Hγi−1H

(i)
γ , Hγ′

j−1H
(j)
γ′

)

L2(D,µ)

= (Dλ
γ )

−1(Dλ
γ′)−1

∑

i≥1

√
γiγ′

i

λ2
i

(
Hγi−1H

(i)
γ , Hγ′

i−1H
(i)
γ′

)

L2(D,µ)

= δγ,γ′(Dλ
γ )

−1(Dλ
γ′)−1

∑

i≥1

√
γiγ′

i

λ2
i

= δγ,γ′ .

For Aij = δij the bi-infinite matrix G is diagonal and, therefore, ∞-computable.
We next turn to the tridiagonal matrices A presented in Example 4.1. Here,

Aij = δij + εiδi,j−1 + εiδi,j+1, i, j = 1, 2, . . . .

The diagonal term having been already discussed, by superposition we may confine ourselves to
investigating the computability of G for Aij = εiδi,j±1, i, j = 1, 2, . . . . Given γ, γ′ ∈ Γ, we
calculate, as before, that

Gγγ′ = (Dλ
γ )

−1(Dλ
γ′)−1

∑

i,j≥1

εiδi,j±1

√
γiγ′

j

λiλj

(
Hγi−1H

(i)
γ , Hγ′

j−1H
(j)
γ′

)

L2(D,µ)

= (Dλ
γ )

−1(Dλ
γ′)−1

∑

i≥1

εi

√
γiγ′

i∓1

λiλi∓1

(
Hγi−1H

(i)
γ , Hγ′

i∓1−1H
(i∓1)
γ′

)

L2(D,µ)
.

(9.7)

We evaluate
(
Hγi−1H

(i)
γ , Hγ′

i∓1−1H
(i∓1)
γ′

)

L2(D,µ)
=

{
1 if γ′

i = γi − 1 ∧ γ′
i∓1 = γi∓1 + 1 ∧ γ′

j = γj , j ∈ {i, i∓ 1}c,
0 otherwise.

For γ ∈ Γ let us define the support of γ by supp(γ) := {i ∈ N : γi /= 0}. Then, Gγγ′ = 0
if supp(γ) ∩ supp(γ′) = ∅. Therefore G is sparse. If, on the other hand, supp(γ) ∩ supp(γ′) is
nonempty, then, for each γ ∈ Γ and each i ∈ N, the expression

(
Hγi−1H

(i)
γ , Hγ′

i∓1−1H
(i∓1)
γ′

)

L2(D,µ)

is equal to 1 for exactly one γ′(γ, i) ∈ Γ. From the above calculations we observe that for this
column index γ′(γ, i), we have that Gγ,γ′(γ,i) = εi; we thus deduce that for the Fokker–Planck
equation (2.17) with tridiagonal coefficient matrices A as in Example 4.1, the bi-infinite matrix
G is still highly sparse: it contains in each row with index γ ∈ Γ, for each εi with i ∈ supp(γ),
exactly one off-diagonal entry εi in the column with index γ′(γ, i).

We now refer to Definition 7.8 and verify condition (7.3): for s̄ > 0, we have

cG,s̄ := sup
N∈N

N‖G−G[N ]‖1/s̄!2(Γ)→!2(Γ) < ∞.

Since

‖G−G[N ]‖2!2(Γ)→!2(Γ) ≤ sup
γ∈Γ

∑

γ′∈Γ

|Gγγ′ −G[N ]
γγ′ |2,

we define G[N ] “row”-wise for N ∈ N as follows: if N = 1, we select G[N ] to be the diagonal
part of G. If N > 1, we define G[N ] to contain, in the off-diagonal of the “row” associated with
index γ ∈ Γ, at most N nonzero elements Gγγ′ where γ′ = γ′(γ, i) with the index i such that

i ∈ {j : γj /= 0} ∩{ j : ε[N−1]
j /= 0}. Here, for a given sequence ε ∈ !2(N) in the definition (4.3) of

the infinite, tridiagonal matrix A appearing in the bilinear form a(·, ·), we denote by ε[N ] its best
(N − 1)-term approximation in !2(N). Then, for all N ∈ N and for every 0 < p ≤ 2,

‖ε− ε[N ]‖!2(N) ≤ N−(1/p−1/2)‖ε‖!p(N)
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by Stechkin’s Lemma1. It therefore follows from the definition (9.7) of the entries Gγγ′ of G and
from the above calculations that

∀N ∈ N : ‖G−G[N ]‖!2(Γ)→!2(Γ) ≤ ‖ε− ε[N−1]‖!2(N) ≤ 21/p−1/2N−(1/p−1/2)‖ε‖!p(N),

from which we deduce, with Cp := 2(1/p−1/2)/s̄, that

cG,s̄ = sup
N∈N

N‖G−G[N ]‖1/s̄!2(Γ) ≤ Cp

(
sup
N∈N

N1−(1/p−1/2)/s̄

)
‖ε‖1/s̄!p(N) = 2 ‖ε‖1/s̄!p(N) < ∞, (9.8)

provided that: ε ∈ !p(N) with 0 < p < 2 and s̄ = s̄(p) is chosen as

0 < s̄(p) := 1/p− 1/2. (9.9)

Referring to the definition of s∗-computability (cf. Definition 7.8), we infer thatG is s∗-computable
with any 0 < s∗ ≤ s̄(p) if the sequence ε in Example 4.1 belongs to !p(N) with some 0 < p < 2,
resp. with s∗ = 1/p− 1/2 (this encompasses the previous case, if p = 0 is understood to indicate
that ε is the zero sequence).

10. Equations with drift

10.1. Bounded invertibility of B and B∗ for nonsymmetric a(·, ·). So far, we have assumed
that the “spatial” differential operator is defined by the symmetric bilinear form a(·, ·). This
is always possible when the vector function appearing in the coefficient of the drift term in the
Fokker–Planck equation is the gradient of a spring potential, by introducing Maxwellian weighted
spaces L2

M (D) and H1
M (D) and by rescaling the probability density function by the Maxwellian;

see, for example, the formulation in reference [1]. In cases when the drift term cannot be removed
by transformation to Maxwellian-weighted operators, however, nonsymmetric bilinear forms a(·, ·)
must be considered. The bounded invertibility of the operator B corresponding to the bilinear
form B∗(·, ·) in (4.6) must then be considered separately.

We now address the s∗-computability of the drift term. Let µ be the countable product of
Gaussian measures µk, k ≥ 1, on Rd with trace-class covariance operator Q. The new contribution
added to the symmetric bilinear form a(·, ·) that was under consideration in previous sections is
assumed, for a sequence σ = (σk)k≥1 ∈ [!∞(N)]d×d, to be the bilinear form d(·, ·) defined by

d(ψ̂, ϕ̂) = −
∑

k≥1

(
σkqkψ̂,Dkϕ̂

)

L2(H,µ)
. (10.1)

Proposition 10.1. Assume that σ ∈ [!∞(N)]d×d and that the covariance operator Q of the Gauss-
ian measure µ on H is trace-class. Then, d(·, ·) : W1,2(H,µ)×W1,2(H,µ) → R is continuous and

|d(ψ̂, ϕ̂)| ≤ ‖σ‖[!∞(N)]d×d

(
2TrQ

∫

H
|ψ̂(q)|2µ( dq) + 4‖Q‖2

∫

H
|Dψ̂(q)|2µ( dq)

)1/2

‖Dϕ̂‖L2(H,µ) .

(10.2)

Proof. We write

|d(ψ̂, ϕ̂)| ≤‖ σ‖[!∞(N)]d×d




∑

k≥1

∥∥∥|qk| ψ̂
∥∥∥
2

L2(H,µ)




1/2 


∑

k′≥1

‖Dk′ ϕ̂‖2L2(H,µ)




1/2

= ‖σ‖[!∞(N)]d×d




∑

k≥1

∥∥∥|qk| ψ̂
∥∥∥
2

L2(H,µ)




1/2

‖Dϕ̂‖L2(H,µ) .

1Stechkin’s Lemma. Let 0 < p ≤ q ≤ ∞ and assume that α = (αγ)γ∈Γ ∈ "p(Γ). For N ≥ 1, let ΓN ⊂ Γ
denote the set of indices corresponding to the N largest values of |αγ |. Then,

( ∑

γ "∈ΓN

|αγ |q
)1/q ≤ N−r ‖α‖"p(Γ), where r := 1

p − 1
q ≥ 0.

The proof is elementary; see, for example, [10].



20 CHRISTOPH SCHWAB AND ENDRE SÜLI

Using [9, Prop. 9.2.10] and the assumption that ψ̂ ∈ W1,2(H,µ), we deduce that, for a Gaussian
measure µ with trace-class covariance Q,

∫

H
‖q‖2|ψ̂(q)|2µ(dq) ≤ 2TrQ

∫

H
|ψ̂(q)|2µ(dq) + 4‖Q‖2

∫

H
|Dψ̂(q)|2µ(dq).

This then yields the desired inequality (10.2). "

The bound (10.2) implies a Garding inequality for the Fokker–Planck operator with drift.

Proposition 10.2. Assume that the covariance operator Q of the Gaussian measure µ is trace-
class, and that the infinite coefficient matrix A satisfies (4.1), (4.2). Then, the bilinear form

a(·, ·) + d(·, ·) : V × V → R
is continuous and satisfies the Garding inequality (2.22) in the triple V ⊂ H 1 H∗ ⊂ V∗. In
particular, the space-time variational formulation (4.5) with the spatial bilinear form a(·, ·)+d(·, ·)
in place of a(·, ·) in (4.6) is well-posed and its bilinear form B∗(·, ·) induces a boundedly invertible
operator B∗ ∈ L(Y, (X0,{T})

∗).

Proof. The continuity of the form is evident from the previous proposition and the continuity
of a(·, ·). The Garding inequality follows from the coercivity of a(·, ·) on V × V and from the
inequality (10.2) using a Cauchy inequality with ε > 0 sufficiently small. The bounded invertibility
of B∗ ∈ L(Y, (X0,{T})

∗) follows from (2.22) and from Theorem 2.2. "

10.2. s∗-computability of
∫
I d(Θ ⊗ [Υ]V ,Θ ⊗ [Υ]V) dt and of its adjoint. As in Section 9.4,

thanks to the independence of the sequence σ ∈ [!∞(N)]d×d of t, we have that
∫

I
d(Θ⊗ [Υ]V ,Θ⊗ [Υ]V) dt = (Θ,Θ)L2(I) ⊗ d([Υ]V , [Υ]V).

As in the discussion of (9.5), the sparsity of the factor (Θ,Θ)L2(I) is considered in [19, Sec. 8.5].
Sparsity and s∗-computability of d(·, ·) are therefore determined by that of the infinite drift matrix
D = D[σ] defined via d([Υ]V , [Υ]V) = (Dγ,γ′)γ,γ∈Γ. With the Hermite polynomial Riesz basis [Υ]V
of L2(H,µ), the matrix entries Dγγ′ = Dγγ′ [σ] are (assuming, once again, for the sake of simplicity
of the exposition that d = 1; abbreviating Dqk as Dk to simplify the notation; and recalling the
definition (9.1) of Dλ

γ ):

Dγγ′ [σ] =
∑

k≥1

σk(D
λ
γ )

−1(Dλ
γ′)−1 (Dk(qkHγ), Hγ′)L2(H,µ) . (10.3)

For the ensuing calculations, we define

θγγ′(k) := (Dk(qkHγ), Hγ′)L2(H,µ)

and observe that

θγγ′(k) = (Hγ , Hγ′)L2(H,µ) + (qkDkHγ , Hγ′)L2(H,µ) = δγγ′ + (qkDkHγ , Hγ′)L2(H,µ) . (10.4)

In order to calculate the second term on the right-hand side of (10.4), we note that, by (9.3),

DkHγ(q) =

{ √
γk

λk
Hγ−ek(q) if γk ≥ 1,

0 otherwise,

where ek ∈ Γ denotes the multi-index with entry 1 in position k and with zero entries in all other
positions. Also, thanks to the three-term recurrence relation

qkHγk(qk) =
√
γk + 1Hγk+1(qk) +

√
γk Hγk−1(qk), γk ∈ N0,

for the univariate polynomials (3.4) (see, (9.1.3) in [9]), with the notational convention that
Hm(qk) ≡ 0 when m < 0, we have that

qkDk

[
Hγk

(
qk√
λk

)]
= qk

√
γk
λk

Hγk−1

(
qk√
λk

)
=

γk√
λk

Hγk

(
qk√
λk

)
+

√
γk(γk − 1)

λk
Hγk−2

(
qk√
λk

)
.
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Consequently, upon multiplying both sides of the last identity with H(k)
γ , we deduce that

qkDkHγ =
γk√
λk

Hγ +

√
γk(γk − 1)

λk
Hγ−2ek ,

which, upon substitution into (10.4) and then inserting the resulting expression into (10.3) yields,
for γ, γ′ ∈ Γ, that

Dγγ′ [σ] =
∑

k≥1

σk




(
1 +

γk√
λk

)
δγγ′ +

√
γk(γk − 1)

λk
δγ−2ek,γ′



 〈γ,λ−1〉−1/2
∗ 〈γ′,λ−1〉−1/2

∗ ,

with the notational convention that δγ−2ek,γ′ = 0 for all γ, γ′ ∈ Γ such that γ − 2ek /∈ Γ. We
observe that D[σ] depends linearly on the sequence σ. The verification of the s∗-computability
now proceeds analogously as in the case of A[ε].

We denote by σ[N ] an N -term approximation of the sequence σ and observe that D[N ][σ] :=
D[σ[N ]] has at most 2N + 1 nonzero entries in each row with index γ ∈ Γ. To verify s∗-
computability, by Definition 7.8 we must bound

cD,s̄ = sup
N∈N

N
∥∥∥D[σ]−D[N ][σ]

∥∥∥
1/s̄

!2(Γ)→!2(Γ)
≤ sup

N∈N
(2N + 1)

∥∥∥D[σ − σ[N ]]
∥∥∥
1/s̄

!2(Γ)→!2(Γ)
. (10.5)

For a given fixed γ ∈ Γ and for any γ′ ∈ Γ and any k ∈ N, we have that

θγγ′(k) =

(
1 +

γk√
λk

)
δγγ′ +

√
γk(γk − 1)

λk
δγ−2ek,γ′ =






1 + γk√
λk

if γ′ = γ,
√

γk(γk−1)
λk

if γ′ = γ − 2ek ∈ Γ,

0 otherwise.

We note that since γ′ ∈ Γ, and therefore all of its components are nonnegative, the second of these
instances can only occur when γk ≥ 2. Therefore, we can bound

‖D[σ]−D[N ][σ]‖2!2(Γ)→!2(Γ) ≤ sup
γ∈Γ

∑

γ′∈Γ

∣∣∣Dγγ′ [σ − σ[N ]]
∣∣∣
2

= sup
γ∈Γ

1

〈γ,λ−1〉∗

∑

γ′∈Γ

1

〈γ′,λ−1〉∗

∣∣∣∣∣∣

∑

k≥1

(σk − σ[N ]
k ) θγγ′(k)

∣∣∣∣∣∣

2

.

Fixing γ ∈ Γ for now, we deduce that

Sγ :=
∑

γ′∈Γ

1

〈γ′,λ−1〉∗

∣∣∣∣∣∣

∑

k≥1

(σk − σ[N ]
k ) θγγ′(k)

∣∣∣∣∣∣

2

≤ ‖σ − σ[N ]‖2!1(N)





sup
k≥1

(
1 + γk√

λk

)2

〈γ,λ−1〉∗
+ sup

k≥1 : γk≥2

γk(γk−1)
λk

〈γ − 2ek,λ−1〉∗





.

This implies that

‖D−D[N ]‖2!2(Γ)→!2(Γ) ≤ supγ∈Γ
Sγ

〈γ,λ−1〉∗

≤ supγ∈Γ




supk≥1

(
1+

γk√
λk

)2

〈γ,λ−1〉2∗
+ supk≥1 : γk≥2

γk(γk−1)
λk

〈γ,λ−1〉∗〈γ−2ek,λ−1〉∗




 ‖σ − σ[N ]‖2!1(N).

We bound the suprema in the curly brackets as follows. For γ = 0, the first supremum is equal
to 1, while the second supremum is 0 by definition, as it is taken over an empty set. Let us now
consider the nontrivial case, when γ ∈ Γ \ {0}. Since |γ| < ∞, the “support-set” of this index
sequence γ, S(γ) := {j ∈ N : γj /= 0}, is finite. To bound the first term, we note that the finiteness
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of S(γ) implies that there exists k∗ ∈ N such that supk γk/
√
λk = maxk γk/

√
λk = γk∗/

√
λk∗ =:

|γ/
√
λ|∞, and we may bound

sup
k

(
1 + γk√

λk

)2

〈γ,λ−1〉2∗
≤ 2

(
1 +

∣∣∣∣
γ√
λ

∣∣∣∣
2

∞

)


∑

j≥1

γj
λj




−2

= 2

(
1 +

∣∣∣∣
γ√
λ

∣∣∣∣
2

∞

)


∑

j∈S(γ)

γj
λj




−2

≤ 2

(
1 +

∣∣∣∣
γ√
λ

∣∣∣∣
2

∞

)(
1√
λk∗

γk∗
√
λk∗

)−2

= 2λk∗
1 + |γ/

√
λ|2∞

|γ/
√
λ|2∞

= 2λk∗

(
1

|γ/
√
λ|2∞

+ 1
)
≤ 2λk∗

(
1

|1/
√
λ|2∞

+ 1
)
≤ 2λ1(λ1 + 1)

≤ 4 [max(1,λ1)]
2 = [2 max(1, ‖Q‖)]2 < ∞.

The second term in the curly brackets is bounded analogously. Indeed, assuming that γ− 2ek ∈ Γ
(for, else, the supremum in the second term is taken over an empty set and is therefore equal to
0 by definition), we have that

sup
k≥1 : γk≥2

γk(γk−1)
λk

〈γ,λ−1〉∗〈γ − 2ek,λ−1〉∗
≤

|γ/λ|∞
〈γ,λ−1〉∗

sup
k≥1 : γk≥2

(γk − 2) + 1

〈γ − 2ek,λ−1〉∗

≤ sup
k≥1 : γk≥2

(γk − 2) + 1

〈γ − 2ek,λ−1〉∗
≤ sup

k≥1 : γk≥2

λk
γk−2
λk

〈γ − 2ek,λ−1〉∗
+ sup

k≥1 : γk≥2

1

〈γ − 2ek,λ−1〉∗
≤ λ1 +max(1,λ1) ≤ 2max(1, ‖Q‖) < ∞.

Inserting these bounds into (10.5), we infer that for σ ∈ !p(N) with some 0 < p < 1 the
bi-infinite drift matrix D[σ] is s∗-computable for any 0 < s∗ ≤ 1/p− 1.

11. Optimality

Based on Proposition 9.1 and on the definition (8.7) of the bi-infinite matrix B∗, we deduce
from these observations our main result.

Theorem 11.1. Consider the space-time variational formulation (4.5) of the infinite-dimensional
Fokker–Planck equation with bilinear form a(·, ·) defined in (4.7) corresponding to the tridiagonal
matrix A as in Example 4.1 based on the sequences ε,σ ∈ !p(N) of elements εi, σi with 0 < p < 1.

Consider its representation B∗u = f∗ using a temporal wavelet basis Θ as in Sect. 9.1 and a
spatial Hermite polynomial chaos basis Υ = {Hγ(q) : γ ∈ Γ, q ∈ D}. Then, for any ε > 0, the
adaptive wavelet methods from [7] or [6] (and [12]) applied to the normal equation (7.4) with f∗ and
B∗ as in (8.6) and (8.7), respectively, of the bi-infinite matrix representation of the Fokker–Planck
equation (2.17) in countably many dimensions produce a Galerkin approximation uε with

‖u− u(
ε [Θ⊗Υ]‖Y ! ‖u− uε‖ ≤ ε.

Suppose that for some 0 < s < min{dt − 1, s̄(p)} we have that u ∈ As
∞(!2(∇Y)); then,

suppuε ! ε−1/s‖u‖1/sAs
∞(!2(∇Y)).

The number of arithmetic operations and storage locations required by one call of the space-time

adaptive solver with tolerance ε is bounded by some multiple of ε−1/s‖u‖1/sAs
∞(!2(∇Y)) + 1.

The above assertions remain valid when in (2.17) the dimension is a finite number Kd (where
K denotes the chain-length in mesoscopic models of dilute polymers in spatial dimension d = 2, 3
(see, [2] for further details), with the computability and admissibility constants cB∗,s and aB∗,s

independent of the dimension K.

We remark in closing that for matrices A as in Example 4.2 this result remains valid, however
now with admissibility constants depending on the block A11 in an unspecific way. We also
remark that the assumptions on the sequence σ could be slightly weakened, as the limit 1/p − 1
of s∗-computability of D[σ] is larger than the value s̄(p) found in (9.9).
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