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Zürich

Ecole polytechnique fédérale de Zurich

Politecnico federale di Zurigo
Swiss Federal Institute of Technology Zurich

Space-time variational saddle point

formulations of Stokes and

Navier-Stokes equations∗

R. Guberovic†, Ch. Schwab and R. Stevenson†

Research Report No. 2011-66

October 2011

Revised: August 2013

Seminar für Angewandte Mathematik
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SPACE-TIME VARIATIONAL SADDLE POINT FORMULATIONS
OF

STOKES AND NAVIER–STOKES EQUATIONS

RAFAELA GUBEROVIC, CHRISTOPH SCHWAB, AND ROB STEVENSON

Abstract. The instationary Stokes and Navier-Stokes equations are consid-
ered in a simultaneously space-time variational saddle point formulation, so
involving both velocities u and pressure p. For the instationary Stokes prob-
lem, it is shown that the corresponding operator is a boundedly invertible linear
mapping between H1 and H′

2, both Hilbert spaces H1 and H2 being Cartesian
products of (intersections of) Bochner spaces, or duals of those. Based on
these results, the operator that corresponds to the Navier-Stokes equations is
shown to map H1 into H′

2, with a Fréchet derivative that, at any (u, p) ∈ H1,
is boundedly invertible.

These results are essential for the numerical solution of the combined pair
of velocities and pressure as function of simultaneously space and time. Such
a numerical approach allows for the application of (adaptive) approximation
from tensor products of spatial and temporal trial spaces, with which the
instationary problem can be solved at a computational complexity that is of
the order as for a corresponding stationary problem.

1. Introduction

1.1. Background and motivation. The classical approach to the existence of
weak solutions of the instationary, incompressible Navier-Stokes Equations views
these equations as an infinite-dimensional dynamical system (see, e.g., [Tem79, Ch.
III] and the references there). In line with this view, most methods for the numerical
solution of the instationary (Navier–) Stokes equations are time marching methods:
assuming that some approximate solution on time t is available, for a sufficiently
small time increment ∆t > 0, an approximate solution on time t + ∆t is computed
by solving a corresponding stationary problem.

Because of the generally lacking global smoothness of the solution, efficient nu-
merical schemes have to be adaptive. With suitable time-marching schemes, it is
possible to adapt both the spatial ‘mesh’, and the time step ∆t depending on t.
We refer to [BV04] for an a posteriori error analysis of such an approach.

Combined space-time adaptivity, where ∆t is adapted also depending on the
spatial location, are not easily accommodated by classical time stepping schemes,
although some studies on local time stepping have appeared, see e.g. [EL94,
FNWW09, Sav08].
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Key words and phrases. Instationary Stokes and Navier-Stokes equations, space-time varia-
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2 RAFAELA GUBEROVIC, CHRISTOPH SCHWAB, AND ROB STEVENSON

In any case, due to the character of time marching, it seems hard to guarantee a
kind of quasi-optimal distribution of the ‘grid-points’ over space and time, and no
mathematical results in this direction are presently known to us.

To develop an alternative for time marching schemes, in [SS09, CS11] we stud-
ied simultaneously space-time variational formulations of linear parabolic evolution
equations. The operators defined by such variational formulations were shown to
be boundedly invertible between a Hilbert space H1 and the dual of another Hilbert
space H2, both H1 and H2 being Cartesian products of Bochner spaces or intersec-
tions of those.

By equipping these Bochner spaces with Riesz bases, being tensor products of
temporal and spatial wavelet collections, the space-time variational problem was
written as an equivalent well-posed, bi-infinite, symmetric positive definite matrix-
vector system by forming normal equations. By running on this system an adaptive
wavelet scheme, in its original form being proposed in [CDD01], a sequence of
approximations is produced in linear computational complexity that converges with
the best possible nonlinear approximation rate from the basis, i.e., the rate of the
so-called best N -term approximations.

Because of the application of tensorized wavelet collections in space and time,
under mild (Besov) smoothness conditions the latter rate is equal (in some situ-
ations up to log-factors) to the best possible approximation rate for the solution
of a corresponding stationary problem from the spatial wavelet basis, i.e., there is
(hardly) any increase in the order of computational complexity as a consequence of
the additional time dimension. Numerical results illustrating this fact are given in
[CS11].

Besides the computational realization of the best possible nonlinear approxima-
tion rate, the latter property is a major advantage when the approximate solution
is needed as function of simultaneously space and time, as it is the case for ex-
ample in time-dependent optimal control problems, see [GK11]. Indeed, with time
marching schemes this would require the availability of the approximate solutions
simultaneously at all discrete times, requiring a huge amount of memory.

The results concerning the adaptive wavelet solution method generalize to si-
multaneously space-time variational formulations of nonlinear parabolic evolution
equations when they define a (two times continuously differentiable) mapping from
H1 into H ′

2, and the Fréchet derivative at the solution is boundedly invertible be-
tween H1 and H ′

2 (see [Ste11a]). The latter condition is satisfied for example for a
semi-linear equation with a time-independent spatial operator.

Aiming at the application of space-time variational formulations to the incom-
pressible instationary (Navier–) Stokes equations, there are two possibilities.

The first one is to reduce these equations to problems for the divergence-free
velocities only. Then the Stokes or linearized Navier-Stokes equations read as a
linear parabolic evolution problems, and the aforementioned results concerning well-
posed space-time variational formulations apply. The reduction to divergence-free
velocities is also the standard approach followed in the literature for demonstrating
existence and uniqueness of solutions (see e.g. [Tem79, Ch. III]).

In [Ste11b], we theoretically investigated the application of the adaptive wavelet
scheme to the space-time variational divergence-free velocities formulation of the in-
stationary Stokes problem. Wavelets suitable for this formulation were constructed
for rectangular domains in [Ste11b, Ste13].
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1.2. This paper. The approach to tackle the instationary (Navier–) Stokes equa-
tions by a reduction to equations for the divergence-free velocities has the obvious
disadvantage that no results for the pressure are obtained. Moreover, the numerical
solution of these equations by an adaptive wavelet scheme requires a divergence-free
wavelet basis, that seems to be realizable in restricted settings only.

Therefore, in this paper as the second possibility, we study simultaneously space-
time variational saddle point formulations of the (Navier-) Stokes equations for the
combined pair of velocities and pressure. For both free-slip and no-slip boundary
conditions, we prove that the Stokes operator defined by this variational formulation
is boundedly invertible between a Hilbert space H1 and the dual H ′

2 of another
Hilbert space H2. In order to be able to arrive at this result, we have to assume
H2-regularity of the Poisson or of the stationary Stokes operator, which imposes
certain smoothness or convexity conditions on the spatial domain.

In the space-times variational formulation of the present paper, both trial- and
test-spaces H1 and H2 are Cartesian products of (intersections of) of Bochner spaces
for velocities and pressure. Based on the results [SS09] for the space-time variational
formulations of parabolic evolution equations, the velocity components of the test-
and trial-spaces are as expected, and so are the corresponding pressure components
of either test- or trial-space. The space for the remaining pressure component,
now being fully determined by the instationary Stokes operator, is less standard
being the dual of the intersection of two Bochner spaces. In any case for polytopal
spatial domains, countable tensor product wavelet bases can be constructed for
these spaces, which are separable Hilbert spaces (although separability is not used
a-fortiori in the present paper).

To the best of our knowledge, well-posedness, i.e., bounded invertibility of the
instationary Stokes operator for the combined pair of velocities and pressure has
not been established before. Compare the discussion at the end of [Tem79, Ch.III,
§1.5], where regularity of the pair of velocities and pressure is established only under
additional smoothness conditions on the right-hand side.

With the spaces H1 and H2 as above, additionally it will be shown that the
instationary Navier–Stokes operator maps H1 into H ′

2 (for no-slip conditions on
two- and three-dimensional domains, and for free-slip conditions on two-dimensional
domains). A generalization of the results for the instationary Stokes operator to
the linearized instationary Navier–Stokes operator –the difference being a lower
order spatial differential operator– shows that the latter, at any (u, p) ∈ H1, is a
boundedly invertible operator between H1 and H ′

2. A first consequence is that any
solution (u, p) ∈ H1 of the instationary Navier-Stokes equations is locally unique.
Secondly, assuming that a sufficiently accurate initial approximation is available,
it shows that the adaptive wavelet solver can be used to approximate the solution
with the best possible nonlinear approximation rate in space-time tensorized bases.

Finally, since also Lipschitz continuity of the instationary Navier–Stokes operator
will be shown, using a fixed-point argument we conclude existence of a space-time
variational Navier–Stokes solution in H1, albeit under a small data hypothesis.

This paper is organized as follows: In Section 2, necessary and sufficient condi-
tions are recalled for bounded invertibility of generalized linear saddle point prob-
lems. In Sections 3 and 4, these conditions are verified for space-time variational
formulations of the instationary Stokes problem with free- and no-slip boundary
conditions, respectively. In Section 5, the aforementioned mapping properties of
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the instationary Navier–Stokes operator with homogeneous initial datum are veri-
fied.

Throughout, for positive constants c1, c2, c1 . c2 we will mean that c1 can be
bounded by a multiple of c2, independently of parameters on which c1 and c2 may
depend. Obviously, c1 & c2 is defined as c2 . c1, and c1 h c2 as c1 . c2 and
c1 & c2.

2. Generalized saddle point problems

For reflexive Banach spaces U , V , P , and Q, and for bounded bilinear forms
a : U × V → R, b : P × V → R, and c : U × Q → R, we consider the problem of
finding (u, p) ∈ U × P that, for given f ∈ V ′, g ∈ Q′, satisfy

(2.1) a(u, v) + b(p, v) + c(u, q) = f(v) + g(q) (v ∈ V, q ∈ Q).

In this section, we collect sufficient and necessary conditions for the corresponding
L : (u, p) 7→ (f, g) ∈ L(U×P, V ′×Q′) to be boundedly invertible. These conditions
can already be found in [BCM88], and a Hilbert space setting, in [Nic82]. Since
some intermediate results will be used in the following sections, we have chosen to
include the short arguments.

(Bv)(p) = b(p, v) = (B′p)(v) and (Cu)(q) = c(u, q) = (C ′q)(u).

We recall that for a closed subspace Z of a Banach space X the polar set Z0 ⊂ X ′

is defined by {f ∈ X ′ : f(Z) = 0}.

Theorem 2.1. For given, bounded bilinear forms a, b and c as in (2.1), the varia-
tional problem (2.1) defines a boundedly invertible linear mapping U×P → V ′×Q′

if and only if the following three conditions are satisfied:
(i) for all f ∈ (ker B)′, there exists a unique u ∈ ker C such that a(u, v) = f(v)

(v ∈ ker B),
(ii) for all g ∈ Q′, there exists some u ∈ U such that c(u, q) = g(q) (q ∈ Q),
(iii) for all f ∈ (ker B)0, there exists a unique p ∈ P such that b(p, v) = f(v)

(v ∈ V ).

Proof. Suppose (i)–(iii) are satisfied, and let f ∈ V ′, g ∈ Q′. By Condition (ii),
there exists a ū ∈ U with c(ū, q) = g(q) (q ∈ Q). Condition (i) shows that there
exists a u0 ∈ ker C with a(u0, v) = f(v)− a(ū, v) (v ∈ ker B). So u := u0 + ū solves

a(u, v) + c(u, q) = f(v) + g(q) (v ∈ ker B, q ∈ Q).

This u is unique. Indeed, let u1, u2 ∈ U be two solutions, then

a(u1 − u2, v) = c(u2 − u2, q) (v ∈ ker B, q ∈ Q).

By taking v = 0, we find u2 − u1 ∈ ker C. Now by taking q = 0, we infer that
u1 = u2 by (i). Finally, Condition (iii) shows that there exists a unique p ∈ P that
solves

(2.2) b(p, v) = f(v)− a(u, v) (v ∈ V, q ∈ Q),

so that (2.1) has a unique solution (u, p) ∈ U × P . An application of the open
mapping theorem shows that (2.1) defines boundedly invertible linear mapping U ×
P → V ′ ×Q′.
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Conversely, let (2.1) define a boundedly invertible linear mapping. Then Con-

dition (ii) follows easily. From
[
A B′

C 0

]
: U × P → V ′ × Q′ being boundedly

invertible, we have that ranB′ × {0} =
[
A B′

C 0

]∣∣∣∣
{0}×P

is closed, and thus that

ranB′ is closed. By an application of the closed range theorem, we conclude that
(ker B)0 = ranB′, which is (iii). Now let f ∈ (ker B)′. By an application of Hahn-
Banach’s theorem extend it to f ∈ V ′, and take g = 0. Then for the solution (u, p)
of (2.1), it holds that u ∈ ker C, and a(u, v) = f(v) (v ∈ ker B). Now suppose that
the last problem has two solutions u1, u2 ∈ ker C. For i = 1, 2, define pi ∈ P as the
solution of b(p, v) = f(v)− a(ui, v) (v ∈ V ). Then both (u1, p1) and (u2, p2) solve
(2.1), and we conclude u1 = u2, which completes the proof of (i). �

Proposition 2.2. Having bounded b and c, conditions equivalent to (ii) and (iii)
are, respectively,

(ii)′ inf0 6=q∈Q sup0 6=u∈U
c(u,q)

‖q‖Q‖u‖U
> 0,

(iii)′ inf0 6=p∈P sup0 6=v∈V
b(p,v)

‖p‖P ‖v‖V
> 0.

Proof. The equivalence of (ii) and (ii)′ follows from the equivalence of (a) and (e)
in Lemma 2.3 stated below. Another application of Lemma 2.3 shows that (iii)′

implies that B′ ∈ L(P, V ′) is a homeomorphism onto (kerB)0, which implies (iii).
Conversely, since ranB′ ⊂ (ker B)0 by definition, (iii) implies that (ker B)0 = ranB′

and that B′ is injective, and so, by Lemma 2.3, that (iii)′ is valid. �

Lemma 2.3. For reflexive Banach spaces X and Y , and for T ∈ L(X, Y ′), the
following statements are equivalent:

(a) inf0 6=y∈Y sup0 6=x∈X
(Tx)(y)

‖x‖X‖y‖Y
> 0,

(b) T ′ ∈ L(Y, X ′) is a homeomorphism onto its range,
(c) T ′ injective and ranT ′ is closed,
(d) T ′ injective and ranT ′ = (kerT )0,
(e) T is surjective.

Proof. (a)⇔(b) and (b)⇒(c) follow easily.
(c)⇒(b) is a consequence of the open mapping theorem.
(c)⇔(d) follows from the closed range theorem.
(e)⇒(c): Since ranT is closed, the closed range theorem shows that ran T ′ is

closed, and that (ker T ′)0 = ranT = Y ′, so that, by an application of the Hahn-
Banach theorem, kerT ′ = ∅.

(c)⇒(e): Since ranT ′ is closed, the closed range theorem shows that ranT =
(ker T ′)0 = Y ′ because T ′ is injective. �

In the following, we shall the above existence results to verify the well-posedness
of space-time variational saddle-point formulations of the Navier-Stokes Equations.
All the ensuing developments will require the preceding results in the particular
setting of Hilbert spaces.
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3. The instationary Stokes problem with free-slip boundary
conditions, as a well-posed operator equation

Let Ω ⊂ Rn be a bounded Lipschitz domain. Given vector fields f̃ on (0, T )×Ω
and u0 on Ω, and functions g on (0, T )×Ω, and gi (1 ≤ i ≤ n−1) on (0, T )×∂Ω, we
consider the instationary inhomogeneous Stokes problem with free-slip boundary
conditions of finding for some ν > 0 a velocity field u and corresponding pressure
p that satisfy

(3.1)


∂u
∂t − ν∆xu +∇x p = f̃ on (0, T )× Ω,

divx u = g on (0, T )× Ω,
u · n = 0 on (0, T )× ∂Ω,

∂u
∂n · τi = gi on (0, T )× ∂Ω, 1 ≤ i ≤ n− 1,
u(0, ·) = u0 on Ω,

where τ1, . . . , τn−1 is an orthonormal set of tangent vectors.
Integrating the first equation against smooth vector fields v, that as function of

x have vanishing normals at ∂Ω, and that as function of t vanish at t = T , and
by applying integration by parts in space and time, and by integrating the second
equation against smooth functions q, we arrive at a variational problem of the form
(2.1), where

(3.2)



a(u,v) = −
∫ T

0

∫
Ω

u · ∂v
∂t dxdt +

∫ T

0

∫
Ω

ν∇xu : ∇xv dxdt,

b(p,v) = −
∫ T

0

∫
Ω

p div v dxdt,

c(u, q) =
∫ T

0

∫
Ω

q div u dxdt,

f(v) =
∫ T

0

∫
Ω

f̃ · v dxdt +
∫ T

0

∫
∂Ω

n−1∑
i=1

(v · τi)gidxdt +
∫

Ω

u0 · v(0, ·) dx,

g(q) =
∫ T

0

∫
Ω

g q dxdt.

We will need the following assumption on the domain Ω concerning H2-regularity
of the Poisson problem with homogeneous Neumann boundary conditions.

Assumption 3.1. The bounded Lipschitz domain Ω ⊂ Rn is such that for any
h ∈ L2,0(Ω) := L2(Ω)/R, the solution u ∈ H1(Ω)/R of∫

Ω

∇u · ∇v dx =
∫

Ω

hv dx (v ∈ H1(Ω)/R),

is in H2(Ω), with ‖u‖H2(Ω) . ‖h‖L2(Ω).

This assumption is known to be satisfied when Ω is convex, or when it has a
C2-boundary.
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Theorem 3.2. With the spaces H̃2(Ω) := {p ∈ H2(Ω) : ∂p
∂n = 0 on ∂Ω}/R,

H1(Ω) := {w ∈ H1(Ω)n : w · n = 0 on ∂Ω} and

U := L2(0, T ;H1(Ω)),

P :=
(
L2(0, T ;L2,0(Ω)) ∩H1

0,{T}
(
0, T ; H̃2(Ω)′

))′
,

V := L2(0, T ;H1(Ω)) ∩H1
0,{T}(0, T ;H1(Ω)′),

Q := L2(0, T ;L2,0(Ω)),

and under Assumption 3.1, the mapping L : (u, p) 7→ (f , g) as in (2.1) with bilinear
forms from (3.2) defines a boundedly invertible linear mapping U× P → V′ ×Q′.

(Here and in what follows, we denote for a Banach space B and a summability index
1 ≤ p < ∞ by Lp(0, T ;B) the space of strongly measurable functions u : (0, T ) 7→ B
such that (0, T ) 3 t 7→ ‖u(t)‖B ∈ Lp(0, T ). As usual, dual spaces should be
interpreted with respect to the identifications L2(Ω)′ ' L2(Ω), L2,0(Ω)′ ' L2,0(Ω),
or L2(0, T ;L2,0(Ω))′ ' L2(0, T ;L2,0(Ω)), respectively. For Γ ⊂ {0, T}, H1

0,Γ(0, T )
denotes the closure in H1(0, T ) of the set of w ∈ C∞(0, T )∩H1(0, T ) with suppw∩
Γ = ∅.)

To prove this theorem, in the following, we will verify the conditions of the
abstract existence and uniqueness result, Theorem 2.1.

The bilinear forms a : U × V → R, b : P × V → R, and c : U × Q →
R are bounded. For b, this follows from div ∈ L(H1(Ω), L2,0(Ω)) and div ∈
L(H1(Ω)′, H̃2(Ω)′), the latter, because of the density of D(Ω) in H1(Ω)′, being
equivalent to ∇ ∈ L(H̃2(Ω),H1(Ω)). We conclude that I ⊗ divx ∈ L(V, P ′), being
equivalent to b : V × P → R is bounded.

Knowing the boundedness of a, b, and c, next we verify the Conditions (i)–
(iii) of Theorem 2.1. We start with Condition (ii). For u ∈ U, q ∈ Q, one has
c(u, q) = −

∫ T

0

∫
Ω
∇xq · u dxdt. Since Ω is a bounded Lipschitz domain,

(3.3) ∇ ∈ L(L2,0(Ω), (H1
0 (Ω)n)′) is a homeomorphism onto its range

([Neč67], cf. [Tem79, Ch.1, Remark 1.4(ii)]). By an application of Lemma 2.3, this
means that inf0 6=q∈L2,0(Ω) sup0 6=u∈H1

0 (Ω)n

R
Ω q div udx

‖q‖L2,0(Ω)‖u‖H1(Ω)n
> 0, and so also that

inf0 6=q∈L2,0(Ω) sup0 6=u∈H1(Ω)

R
Ω q div u dx

‖q‖L2,0(Ω)‖u‖H1(Ω)n
> 0. Since, additionally, (u, q) 7→∫

Ω
q div u dx is bounded on H1(Ω)×L2,0(Ω), one has that ∇ ∈ L(L2,0(Ω),H1(Ω)′),

and so I ⊗ ∇x ∈ L(Q,U′) are homeomorphisms onto their ranges by Lemma 2.3.
Knowing the boundedness of c : U×Q → R, the latter is equivalent to Condition (ii)
of Theorem 2.1.

To show Condition (i) of Theorem 2.1, we give a characterization of the kernels
of

B := I ⊗ div ∈ L(V, P ′), C := I ⊗ div ∈ L(U, Q′).
We set

H1(Ω) := {u ∈ H1(Ω) : div u = 0}, H0(Ω) := closL2(Ω)n H1(Ω), H−1(Ω) := H1(Ω)′

(to be interpreted with respect to the identification H0(Ω)′ ' H0(Ω)).
Since div H1(Ω) ⊂ L2,0(Ω), it holds that

(3.4) kerC = L2(0, T ;H1(Ω)).
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Lemma 3.3. With H̃
−1

(Ω) := closH1(Ω)′ H1(Ω), it holds that

kerB = L2(0, T ;H1(Ω)) ∩H1
0,{T}(0, T ; H̃

−1
(Ω)).

Proof. Since both L2(0, T ;L2,0(Ω)) and H1
0,{T}

(
0, T ; H̃2(Ω)′) are continuously em-

bedded in, e.g., L2(0, T ; H̃2(Ω)′), these two spaces form a so-called Banach couple,
also known as a compatible couple of Banach spaces. Since moreover their inter-
section is dense in both spaces, the dual of their intersection is isomorphic to the
sum of their duals, see e.g. [KPS82, Ch. 1, Thm. 3.1], i.e.,

P =
(
L2(0, T ;L2,0(Ω)) ∩H1

0,{T}
(
0, T ; H̃2(Ω)′

))′
' L2(0, T ;L2,0(Ω)) + H1

0,{T}
(
0, T ; H̃2(Ω)′

)′
.

So v ∈ kerB if and only if v ∈ L2(0, T ;H1(Ω))∩H1
0,{T}(0, T ;H1(Ω)′) and (Bv)(p) =

0 for all p ∈ L2(0, T ;L2,0(Ω)) + H1
0,{T}

(
0, T ; H̃2(Ω)′

)′. This is equivalent to v ∈
L2(0, T ;H1(Ω)) and ((I ⊗ div)v)(p) = 0 for all p ∈ L2(0, T ;L2,0(Ω)), i.e., v ∈
L2(0, T ;H1(Ω)) by (3.4), together with v ∈ H1

0,{T}(0, T ;H1(Ω)′) and ((I⊗div)v)(p) =

0 for all p ∈ H1
0,{T}

(
0, T ; H̃2(Ω)′

)′. The second condition means that with N :=
ker(div ∈ L(H1(Ω)′, H̃2(Ω)′)), it holds that v ∈ H1

0,{T}(0, T ;N ), so what is left to

show is that N = H̃
−1

(Ω).
By div ∈ L(H1(Ω)′, H̃2(Ω)′), N contains H̃

−1
(Ω). To prove that N ⊂ H̃

−1
(Ω),

it suffices to show the reversed inclusion for their polar sets

{u ∈ H1(Ω) : 〈u,w〉L2(Ω) = 0, w ∈ N }

⊃ {u ∈ H1(Ω) : 〈u,w〉L2(Ω) = 0, w ∈ H̃
−1

(Ω)}.
(3.5)

The set on the right is contained in {u∈H1(Ω):〈u,w〉L2(Ω) =0, w ∈ D(Ω), div w =
0}. As shown by De Rham ([dR84], cf. [Tem79, Ch. 1, Prop. 1.1]), a distribu-
tion u that vanishes on all divergence-free test functions is a gradient of another
distribution. If, additionally u ∈ H1(Ω), then necessarily u ∈ ∇H̃2(Ω).

The adjoint of div ∈ L(H1(Ω)′, H̃2(Ω)′) is −∇ ∈ L(H̃2(Ω),H1(Ω)). The latter
operator is bounded, and so closed, and it is an homeomorphism with its image, so
which in particular is closed. The closed range theorem now implies that the space
on the left in (3.5) is equal to ∇H̃2(Ω). This completes the proof. �

Next, we show that, under conditions, the space H̃
−1

(Ω) in the characterization
of kerB can be replaced by H−1(Ω).

Lemma 3.4. If the L2(Ω)n-orthogonal projector onto H0(Ω) is bounded on H1(Ω),
then H̃

−1
(Ω) = H−1(Ω).

Proof. As shown in, e.g., [Tem79, Ch.1, Th. 1.4], the closure of the set of divergence-
free test functions in L2(Ω)n is {u ∈ L2(Ω)n : div u = 0, u · n = 0 on ∂Ω}, and
so this space is contained in H0(Ω). On the other hand, if for (uk)k ⊂ H1(Ω),
uk → u in L2(Ω)n, and so in D(Ω)′, then div u = 0, and so uk → u in H(div; Ω),
in particular meaning that u · n = limk→∞ uk · n = 0 on ∂Ω. We conclude that

H0(Ω) = {u ∈ L2(Ω)n : div u = 0, u · n = 0 on ∂Ω}.
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Let Π denote the L2(Ω)n-orthogonal projector onto H0(Ω). From H1(Ω) ⊂
H0(Ω)∩H1(Ω), we have H1(Ω) ⊂ im Π|H1(Ω). On the other hand, if Π is bounded
on H1(Ω), then im Π|H1(Ω) ⊂ H0(Ω)∩H1(Ω) = {u ∈ H1(Ω) : div u = 0} = H1(Ω),
i.e.,

(3.6) H1(Ω) = im Π|H1(Ω) .

If, for some (fn)n ⊂ H1(Ω), fn → f in H1(Ω)′, then, viewed as functionals on
H1(Ω), fn → f in H−1(Ω), i.e., H̃

−1
(Ω) ⊂ H−1(Ω).

Conversely, let f ∈ H−1(Ω). Then there exists a (fn)n ⊂ H1(Ω) with fn → f
in H−1(Ω). For any u ∈ H1(Ω), fn((I − Π)u) = 〈fn, (I − Π)u〉L2(Ω)n = 〈(I −
Π)fn,u〉L2(Ω)n = 0. So, after trivially extending f to a functional on H1(Ω) by
means of f(im(I − Π)) = 0, by the boundedness of Π on H1(Ω) and (3.6) we
have ‖f − fn‖H1(Ω)′ = sup0 6=u∈H1(Ω)

|(f−fn)(Πu)|
‖u‖H1(Ω)n

. sup0 6=u∈H1(Ω)
|(f−fn)(Πu)|
‖Πu‖H1(Ω)n

=

‖f − fn‖H−1(Ω), or H−1(Ω) ⊂ H̃
−1

(Ω). �

Theorem 3.5. Under Assumption 3.1, we have H̃
−1

(Ω) = H−1(Ω).

Proof. As shown in, e.g., [Tem79, Ch.1, Th. 1.4], one has the following Helmholtz
decomposition

(3.7) L2(Ω)n = H0(Ω)⊕⊥ ∇(H1(Ω)/R).

The L2(Ω)n-orthogonal projector Π onto H0(Ω) is known as the Leray projector.
Given u ∈ L2(Ω)n, ∇z = (I − Π)u is the solution of 〈u − ∇z,∇w〉L2(Ω)n = 0
(w ∈ H1(Ω)/R).

When u ∈ H1(Ω), this z solves the Poisson problem with Neumann boundary
conditions 

−∆z =div u on Ω,
∂z
∂n =0 on ∂Ω,∫

Ω
zdx=0.

Under Assumption 3.1, this Poisson problem is H2(Ω)-regular, and so

‖∇z‖H1(Ω)n . ‖z‖H2(Ω) . ‖div u‖L2(Ω)n . ‖u‖H1(Ω)n ,

i.e., I−Π and thus Π is bounded on H1(Ω). Now the result follows from Lemma 3.4.
�

Using that on H1(Ω)×H1(Ω), (w,v) 7→
∫
Ω

ν∇w : ∇v dx is bounded and satis-
fies a G̊arding inequality, we have the following result about the well-posedness of
the variational formulation of the parabolic problem that results from the reduction
of the instationary Stokes problem, with the homogeneous constraint divxu = 0,
to a system of equations for the divergence-free velocities only:

Theorem 3.6. With

X := L2(0, T ;H1(Ω)), Y := L2(0, T ;H1(Ω)) ∩H1
0,{T}(0, T ;H−1(Ω)),

A := u 7→ (v 7→ a(u,v)) is a boundedly invertible linear mapping from X to Y ′.
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Proof. The statement is equivalent to A′ being boundedly invertible from Y to X ′,
which in turn, by making the change of variable T − t to t, is equivalent to the
statement that

u 7→ (v 7→
∫ T

0

∫
Ω

∂u
∂t · v dxdt +

∫ T

0

∫
Ω

ν∇xu : ∇xv dxdt),

from L2(0, T ;H1(Ω))∩H1
0,{0}(0, T ;H−1(Ω)) to L2(0, T ;H−1(Ω)) is boundedly in-

vertible. The boundedness of this mapping follows easily. The mapping corresponds
to a variational formulation of a parabolic problem with homogeneous initial da-
tum in the space of divergence-free velocities. The boundedness of the inverse
is a consequence of (u,v) 7→

∫
Ω

ν∇xu : ∇xv dx being bounded and coercive on
H1(Ω)×H1(Ω), and it is shown, e.g., as a special case of [SS09, Thm. 4.1], where
a possible inhomogeneous initial condition is imposed weakly. �

The characterizations of the kernels given by (3.4), Lemma 3.3, and Theorem 3.5,
together with Theorem 3.6 imply Condition (i) of Theorem 2.1.

Condition (iii) of Theorem 2.1 is equivalent to (iii)′ which, by Lemma 2.3, is
equivalent to

B = I ⊗ divx : L
(
L2(0, T ;H1(Ω)) ∩H1

0,{T}(0, T ;H1(Ω)′),

L2(0, T ;L2,0(Ω)) ∩H1
0,{T}(0, T ; H̃2(Ω)′)

)
is surjective.

(3.8)

Note that since I⊗divx is not injective, to prove (3.8) it is generally not sufficient to
show that I⊗divx is surjective both as mapping in L(L2(0, T ;H1(Ω)), L2(0, T ;L2,0(Ω)))
and as mapping in L(H1

0,{T}(0, T ;H1(Ω)′),H1
0,{T}(0, T ; H̃2(Ω)′)).

Below, we will construct a mapping div+ with div ◦ div+ = I, such that

(3.9) div+ ∈ L(L2,0(Ω),H1(Ω)), div+ ∈ L(H̃2(Ω)′,H1(Ω)′).

Since, consequently, I⊗div+
x is a right-inverse for the mapping from (3.8), this will

imply the surjectivity of the latter mapping.
We define div+ : g 7→ u by u +∇p = f on Ω,

div u = g on Ω,
u · n = 0 on ∂Ω,

where f = 0, or, more precisely, by its variational formulation to find (u, p) ∈
L2(Ω)n ×H1(Ω)/R such that

(3.10)
∫

Ω

u ·v+
∫

Ω

∇p ·v+
∫

Ω

∇q ·u = f(v)+g(q) ((v, q) ∈ L2(Ω)n×H1(Ω)/R).

From the fact that ∇ ∈ L(H1(Ω)/R, L2(Ω)n) is a homeomorphism onto its range,
applications of Lemma 2.3, Proposition 2.2, and Theorem 2.1 confirm the well-
known fact that this variational problem, for general f ∈ L2(Ω)n, defines a bound-
edly invertible operator from L2(Ω)n ×H1(Ω)/R to its dual.

Under Assumption 3.1, for f ∈ H1(Ω) and g ∈ L2,0(Ω), the solution p of{
−∆p = g − div f on Ω,

∂p
∂n = 0 on ∂Ω,
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is in H̃2(Ω), and u := f −∇p ∈ H1(Ω). We infer that the mapping (f , g) 7→ (u, p)
defined by (3.10) is in L(H1(Ω)×L2,0(Ω),H1(Ω)× H̃2(Ω)), and so, by considering
the adjoint and using the symmetry of the left-hand side of (3.10) in (u, p) and
(v, q), it is in L(H1(Ω)′ × H̃2(Ω)′,H1(Ω)′ × L2,0(Ω)). We conclude that (3.9) and
thus Condition (iii) of Theorem 2.1 are valid.

Having verified all conditions of Theorem 2.1, the proof of Theo-
rem 3.2 is now completed.

Finally in this section, we derive well-posedness of an alternative variational
formulation. The variational formulation (3.2) of our Stokes problem (3.1) was
derived by applying integration by parts over time. This has the advantage that
the initial condition u(0, ·) = u0 enters the variational formulation as a natural
boundary condition, i.e., in the right-hand side. In any case for a homogeneous
initial condition, i.e., u(0, ·) = 0, an alternative variational formulation is obtained
by not applying integration by parts over time. It reads as a variational formulation
of the form (2.1), where

(3.11)



a(u,v) =
∫ T

0

∫
Ω

∂u
∂t · v dxdt +

∫ T

0

∫
Ω

ν∇xu : ∇xv dxdt,

b(p,v) = −
∫ T

0

∫
Ω

p div v dxdt,

c(u, q) =
∫ T

0

∫
Ω

q div u dxdt,

f(v) =
∫ T

0

∫
Ω

f̃ · v dxdt +
∫ T

0

∫
∂Ω

n−1∑
i=1

(v · τi)gidxdt

g(q) =
∫ T

0

∫
Ω

g q dxdt.

Theorem 3.7. With

U := L2(0, T ;H1(Ω)) ∩H1
0,{0}(0, T ;H1(Ω)′),

P := L2(0, T ;L2,0(Ω)),

V := L2(0, T ;H1(Ω)),

Q :=
(
L2(0, T ;L2,0(Ω)) ∩H1

0,{0}
(
0, T ; H̃2(Ω)′

))′
,

and under Assumption 3.1, the mapping L : (u, p) 7→ (f , g) as in (2.1) with bilinear
forms from (3.11) defines a boundedly invertible linear mapping U×P → V′×Q′.

Proof. Denoting the spaces U, V, P , and Q, and operator L from Theorem 3.2
here as Ū, V̄, P̄ , Q̄, and L̄, and defining (Rw)(t, x) = w(T − t, x), we have

(L(u, p))(v, q) = (L̄(Rv,−Rq))(Ru,−Rp) = (L̄′(Ru,−Rp))(Rv,−Rq).

From L̄′ ∈ L(V̄×Q̄, Ū′× P̄ ′) being a boundedly invertible, and RU = V̄, RP = Q̄,
RV = Ū, and RQ = P̄ , the proof is completed. �
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4. The instationary Stokes problem, with no-slip boundary
conditions, as a well-posed operator equation

Let Ω ⊂ Rn be a bounded Lipschitz domain. Given vector fields f̃ on (0, T )×Ω
and u0 on Ω, and a function g on (0, T )×Ω, we consider the instationary inhomo-
geneous Stokes problem with no-slip boundary conditions to find the velocities u
and pressure p that satisfy

∂u
∂t − ν∆xu +∇x p = f̃ on (0, T )× Ω,

divx u = g on (0, T )× Ω,
u = 0 on (0, T )× ∂Ω,

u(0, ·) = u0 on Ω.

By integrating the first equation against smooth vector fields v, that as function
of x vanish at ∂Ω, and that as function of t vanish at t = T , and by applying
integration by parts in space and time, and by integrating the second equation
against smooth functions q, and by applying integration by parts, we arrive at a
variational problem of the form (2.1), where

(4.1)



a(u,v) = −
∫ T

0

∫
Ω

u · ∂v
∂t dxdt +

∫ T

0

∫
Ω

ν∇xu : ∇xv dxdt,

b(p,v) =
∫ T

0

∫
Ω

v · ∇p dxdt,

c(u, q) = −
∫ T

0

∫
Ω

u · ∇q dxdt,

f(v) =
∫ T

0

∫
Ω

f̃ · v dxdt +
∫

Ω

u0 · v(0, ·) dx,

g(q) =
∫ T

0

∫
Ω

g q dxdt.

Remark 4.1. With Ĥ2(Ω) := {p ∈ H2(Ω) : ∇p = 0 on ∂Ω}/R, following the expo-
sition in Sect. 3, an obvious choice for the spaces U, P and V, Q for the variables
u, p and v, q, would be

L2(0, T ;H1
0 (Ω)n),

(
L2(0, T ;L2,0(Ω)) ∩H1

0,{T}
(
0, T ; Ĥ2(Ω)′

))′
,

L2(0, T ;H1
0 (Ω)n) ∩H1

0,{T}(0, T ;H−1(Ω)n), L2(0, T ;L2,0(Ω)),

where H−1(Ω) = H1
0 (Ω)′ with respect to the identification L2(Ω)′ ' L2(Ω). With

this choice, the resulting space H1(Ω) of divergence free spatial functions would
read as {u ∈ H1

0 (Ω)n : div u = 0}, with, as in Sect. 3, its closure H0(Ω) in L2(Ω)n

being {u ∈ L2(Ω)n : div u = 0, u · n = 0 on ∂Ω}. Now when following the analysis
from Sect. 3, the problem is that the L2(Ω)n-orthogonal projector onto H0(Ω), i.e.,
the Leray projector, does not preserve no-slip boundary conditions, and therefore
is not bounded on H1

0 (Ω)n.

In view of Remark 4.1, later, in Theorem 4.3, we will select trial- and test-spaces
by making a shift in smoothness indices for the spatial variables.

Before that, first we study the stationary Stokes problem with homogeneous
Dirichlet boundary conditions of finding u ∈ H1

0 (Ω)n, p ∈ L2,0(Ω) such that, for
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given f ∈ H−1(Ω)n, g ∈ L2,0(Ω),∫
Ω

ν∇u : ∇v dx−
∫

Ω

p div v dx +
∫

Ω

q div u dx

= f(v) + g(q) ((v, q) ∈ H1
0 (Ω)n × L2,0(Ω)).

(4.2)

Since, using that Ω is a bounded Lipschitz domain, ∇ ∈ L(L2,0(Ω),H−1(Ω)n)
is homeomorphism onto its range, see (3.3), applications of Lemma 2.3, Proposi-
tion 2.2, and Theorem 2.1 confirm the well-known fact that this variational problem
defines a boundedly invertible mapping between H1

0 (Ω)n × L2,0(Ω) and its dual.
We will need the following assumption on the domain Ω about H2(Ω)n×H1(Ω)-

regularity of this stationary Stokes problem.

Assumption 4.2. The bounded Lipschitz domain Ω ⊂ Rn is such that for any
f ∈ L2(Ω)n, g ∈ H1(Ω)/R, the solution (u, p) of (4.2) belongs to H2(Ω)n ×H1(Ω)
and ‖u‖H2(Ω)n + ‖p‖H1(Ω) . ‖f‖L2(Ω)n + ‖g‖H1(Ω).

This assumption is known to be satisfied for domains Ω in R2 or R3 that either
have a C2-boundary, or that are convex with a piecewise smooth boundary. See
[KO76, Dau89] for the two- or three-dimensional case, respectively.

Theorem 4.3. With

U := L2(0, T ;L2(Ω)n),

P :=
(
L2(0, T ;H1(Ω)/R) ∩H1

0,{T}
(
0, T ; (H1(Ω)/R)′

))′
,

V := L2(0, T ; (H1
0 (Ω) ∩H2(Ω))n) ∩H1

0,{T}(0, T ;L2(Ω)n),

Q := L2(0, T ;H1(Ω)/R),

and under Assumption 4.2, the mapping L : (u, p) 7→ (f , g) as in (2.1) with bilinear
forms from (4.1) defines a boundedly invertible linear mapping U× P → V′ ×Q′.

(Here, dual spaces should be interpreted with respect to the identifications L2,0(Ω)′ '
L2,0(Ω), or L2(0, T ;L2,0(Ω))′ ' L2(0, T ;L2,0(Ω)), respectively.)

Before proving this theorem, we give some more auxiliary results dealing with
the stationary problem.

Lemma 4.4. It holds that

ker(∇′ ∈ L(L2(Ω)n, (H1(Ω)/R)′))

= {u ∈ L2(Ω)n : div u = 0, u · n = 0 on ∂Ω} := H̆
0
(Ω),

ker(∇′ ∈ L(H1
0 (Ω), L2,0(Ω))) = {u ∈ H1

0 (Ω)n : div u = 0} := H̆
1
(Ω),

ker(∇′ ∈ L((H2(Ω) ∩H1
0 (Ω)1)n,H1(Ω)/R))

= {u ∈ (H2(Ω) ∩H1
0 (Ω))n : div u = 0} := H̆

2
(Ω).

Proof. Since in the last two cases ∇ = −div′ by definition, we only have to verify
the first statement, i.e., that

N := ker(∇′ ∈ L(L2(Ω)n, (H1(Ω)/R)′)) = H̆
0
(Ω).
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For u ∈ H̆
0
(Ω), p ∈ H1(Ω)/R, one has

∫
Ω
∇p · u dx = 0, i.e., H̆

0
(Ω) ⊂ N . To

prove the reversed inclusion, we have to show that

{u ∈L2(Ω)n : 〈u,w〉L2(Ω) = 0, w ∈ N }

⊃
{
u ∈ L2(Ω)n : 〈u,w〉L2(Ω) = 0, w ∈ H̆

0
(Ω)
}
.

(4.3)

The set on the right is part of {u∈L2(Ω)n: 〈u,w〉L2(Ω) =0, w ∈ D(Ω), div w=0}.
As shown by De Rham ([dR84], cf. [Tem79, Ch. 1, Prop. 1.1]), a distribution u that
vanishes on all divergence-free test functions is a gradient of another distribution.
If, additionally u ∈ L2(Ω)n, then necessarily u ∈ ∇(H1(Ω)/R).

Since ∇ : H1(Ω)/R → L2(Ω)n) is bounded, and so is closed, and moreover
since this mapping is an homeomorphism with its image, which is therefore closed,
the closed range theorem tells us that the space on the left in (4.3) is equal to
∇(H1(Ω)/R), which completes the proof. �

It holds that H̆
2
(Ω) ↪→ H̆

1
(Ω) ↪→ H̆

0
(Ω) with dense embeddings. For i ∈ {1, 2},

we set H̆
−i

(Ω) := (H̆
i
(Ω))′, where this dual space should be interpreted with

respect to the identification (H̆
0
(Ω))′ ' H̆

0
(Ω).

The stationary Stokes problem (4.2) with g = 0 can be reduced to a problem
involving divergence-free velocities only. It reads as finding u ∈ H̆

1
(Ω) that solves

(4.4)
∫

Ω

ν∇u : ∇v dx = f(v) (v ∈ H̆
1
(Ω)).

Under Assumption 4.2, for f ∈ L2(Ω)n we have u ∈ H̆
2
(Ω) with

(4.5) ‖u‖H2(Ω)n . ‖f‖L2(Ω)n .

After these preparations dealing with the stationary Stokes problem, we are
ready to prove Theorem 4.3 by verifying the conditions of Theorem 2.1.

Recalling the definitions of the spaces U, P , V, and Q given in Theorem 4.3,
similarly as in Sect. 3 one shows that the bilinear forms a : U×V → R, b : P×V →
R, and c : U×Q → R are bounded.

With
B := I ⊗∇′ ∈ L(V, P ′), C := I ⊗∇′ ∈ L(U, Q′),

the operator C′ ∈ L(Q,U′) is a homeomorphism onto its range, which by Lemma 2.3
shows Condition (ii) of Theorem 2.1.

As a second step, we verify Condition (i). As an easy consequence of Lemma 4.4,
we have

(4.6) kerC = L2(0, T ; H̆
0
(Ω)).

Similarly as in the proof of Lemma 3.3, we have

P ' L2(0, T ;H1(Ω)/R)′ + H1
0,{T}

(
0, T ; (H1(Ω)/R)′

)′
,

and consequently that

kerB = ker(I ⊗∇′ ∈ L(L2(0, T ; (H1
0 (Ω) ∩H2(Ω))n), L2(0, T ;H1(Ω)/R))

∩ ker(I ⊗∇′ ∈ L(H1
0,{T}(0, T ;L2(Ω)n),H1

0,{T}
(
0, T ; (H1(Ω)/R)′

)
= L2(0, T ; H̆

2
(Ω)) ∩H1

0,{T}(0, T ; H̆
0
(Ω))

(4.7)

by an application of Lemma 4.4.
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Theorem 4.5. With

X 1 := L2(0, T ; H̆
0
(Ω)), Y1 := L2(0, T ; H̆

2
(Ω)) ∩H1

0,{T}(0, T ; H̆
0
(Ω)),

under Assumption 4.2, A : u 7→ (v 7→ a(u,v)) defines a boundedly invertible linear
mapping from X 1 to Y ′

1.

Proof. We follow [Ste11b, proof of Thm. 4.2]. The boundedness of A follows easily.
The boundedness of A−1 is equivalent to (A′)−1 ∈ L(X ′

1,Y1). To demonstrate
the latter, we have to show that for any f ∈ X 1 ' X ′

1, the variational problem of
finding z such that

(4.8)
∫ T

0

∫
Ω

−w · ∂z
∂t

dxdt+
∫ T

0

∫
Ω

ν∇w : ∇z dxdt =
∫ T

0

∫
Ω

f ·w dxdt (w ∈ X 1),

has a unique solution z ∈ Y1 with ‖z‖Y1 . ‖f‖X 1 .
Although this result may follow from the theory of analytic semigroups, we give

a more elementary derivation. With

X 0 := L2(0, T ; H̆
1
(Ω)), Y0 := L2(0, T ; H̆

1
(Ω)) ∩H1

0,{T}(0, T ; H̆
−1

),

similar to Theorem 3.6, we have that for f ∈ X ′
0 ⊃ X ′

1, (4.8), with test space X 0,
has a unique solution z ∈ Y0. Below, we will show that for a subspace of sufficiently
smooth f , this solution is in Y1, and thus that (4.8) holds for all w ∈ X 1, and
moreover that ‖z‖Y1 . ‖f‖X 1 . Since the subspace of these smooth f will be dense
in X 1, this will complete the proof.

Equation (4.8) is the variational formulation of the problem of finding, for t ∈
(0, T ), z(t, ·) ∈ H̆

1
(Ω) that satisfies

(4.9){∫
Ω
−∂z

∂t (t, ·) ·w dx +
∫
Ω

ν∇w : ∇z(t, ·) dx =
∫
Ω

f(t, ·) ·w dx (w ∈ H̆
1
(Ω)),

z(T, ·) = 0.

Note that as function of t̃ = T − t, z satisfies a standard parabolic initial value
problem. As shown in [Wlo82, Ch.IV,§27], if f ∈ H2(0, T ; H̆

−1
(Ω)) with f(T, ·) ∈

H̆
2
(Ω) and ∂f

∂t (T, ·) ∈ H̆
0
(Ω), then its solution z ∈ H2(0, T ; H̆

1
(Ω)).

By substituting w = −∂z
∂t (t, ·) ∈ H̆

1
(Ω) in (4.9), we obtain

‖∂z
∂t

(t, ·)‖2L2(Ω)n −
1
2

∂

∂t

∫
Ω

ν∇z(t, ·) : ∇z(t, ·) dx = −
∫

Ω

f(t, ·) · ∂z
∂t

(t, ·) dx.

By integrating this equality over time, applying z(T, ·) = 0 and Cauchy-Schwarz’
inequality, and by additionally assuming that f ∈ L2(0, T ; H̆

0
(Ω)), we arrive at∫ T

0

‖∂z
∂t

(t, ·)‖2L2(Ω)ndt ≤ 1
2

∫ T

0

‖f(t, ·)‖2L2(Ω)ndt +
1
2

∫ T

0

‖∂z
∂t

(t, ·)‖2L2(Ω)ndt,

or

(4.10)
∫ T

0

‖∂z
∂t

(t, ·)‖2L2(Ω)ndt ≤
∫ T

0

‖f(t, ·)‖2L2(Ω)ndt.

By additionally assuming that f(t, ·) ∈ H̆
0
(Ω), from ∂z

∂t (t, ·) ∈ H̆
1
(Ω) ⊂ H̆

0
(Ω)

and (4.5), the first equation in (4.9) shows that z(t, ·) ∈ H̆
2
(Ω) and ‖z(t, ·)‖H2(Ω)n .
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‖f(t, ·)‖L2(Ω)n + ‖∂z
∂t (t, ·)‖L2(Ω)n . By integrating this inequality over time and ap-

plying (4.10), we obtain that

(4.11) ‖z‖
L2(0,T ;H̆2

(Ω))
. ‖f‖L2(0,T ;L2(Ω)n)

By combining (4.10) and (4.11), we have ‖z‖Y1 . ‖f‖X 1 and the proof is completed.
�

The characterizations of the kernels (4.6) and (4.7) together with Theorem 4.5
imply Condition (i) of Theorem 2.1.

Condition (iii) of Theorem 2.1 is equivalent to (iii)′, which by Lemma 2.3, is
equivalent to

B = I ⊗ div ∈ L
(
L2(0, T ; (H1

0 (Ω) ∩H2(Ω))n) ∩H1
0,{T}(0, T ;L2(Ω)n),

L2(0, T ;H1(Ω)/R) ∩H1
0,{T}

(
0, T ; (H1(Ω)/R)′

))
is surjective.

(4.12)

Below, we will construct a mapping div+ with div ◦ div+ = I, such that

(4.13) div+ ∈ L(H1(Ω)/R, (H1
0 (Ω) ∩H2(Ω))n), div+ ∈ L((H1(Ω)/R)′, L2(Ω)n).

Since, consequently, I⊗div+
x is a right-inverse for the mapping B defined in (4.12),

this will imply the surjectivity of the latter mapping.
We define div+ : g 7→ u by the solution map of the stationary Stokes problem −∆u +∇p = 0 on Ω

div u = g on Ω
u = 0 on ∂Ω

or, more precisely, by its variational formulation which reads: Find (u, p) ∈ H1
0 (Ω)n×

L2,0(Ω) such that

(4.14)
∫

Ω

∇u : ∇v−
∫

Ω

p div v +
∫

Ω

q div u = g(q) ((v, q) ∈ H1
0 (Ω)n × L2,0(Ω)).

Since the bilinear form on the left hand side of (4.2) is symmetric in (u, p) and (v, q),
under Assumption 4.2 the mapping (f , g) 7→ (u, p) defined by (4.14) is not only in
L(L2(Ω)n×H1(Ω)/R, (H1

0 (Ω)∩H2(Ω))n×H1(Ω)/R), but, by taking the adjoint, it
is also in L((H−1(Ω)∩H2(Ω)′)n×(H1(Ω)/R)′, L2(Ω)n×(H1(Ω)/R)′). We conclude
(4.12) has been established, and thus that Condition (iii) of Theorem 2.1 is valid.

Having verified all conditions of Theorem 2.1, the proof of Theo-
rem 4.3 is now completed.

Similar to Theorem 3.7 for the free-slip boundary conditions case, for the in-
stationary Stokes problem with no-slip boundary conditions and a homogeneous
initial condition, a variational formulation of the form (2.1) can be derived without
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applying integration by parts. The bilinear forms and right-hand side read as

(4.15)



a(u,v) =
∫ T

0

∫
Ω

∂u
∂t · v dxdt +

∫ T

0

∫
Ω

ν∇xu : ∇xv dxdt,

b(p,v) =
∫ T

0

∫
Ω

v · ∇p dxdt,

c(u, q) = −
∫ T

0

∫
Ω

u · ∇q dxdt,

f(v) =
∫ T

0

∫
Ω

f̃ · v dxdt,

g(q) =
∫ T

0

∫
Ω

g q dxdt.

and we have the following result:

Theorem 4.6. With

U := L2(0, T ; (H1
0 (Ω) ∩H2(Ω))n) ∩H1

0,{0}(0, T ;L2(Ω)n),

P := L2(0, T ;H1(Ω)/R),

V := L2(0, T ;L2(Ω)n),

Q :=
(
L2(0, T ;H1(Ω)/R) ∩H1

0,{0}
(
0, T ; (H1(Ω)/R)′

))′
,

the mapping L : (u, p) 7→ (f , g) as in (2.1) with bilinear forms from (4.15) defines
a boundedly invertible linear mapping U× P → V′ ×Q′.

5. The instationary Navier-Stokes problem with homogeneous initial
condition

With the spaces U, P , V, Q from either Theorem 4.6 (no slip boundary condi-
tions) and n ∈ {2, 3}, or those from Theorem 3.7 (free-slip boundary conditions)
and n = 2, we will show that any solution of the Navier-Stokes problem is locally
unique in U×P , and that for sufficiently small data (f , g) ∈ V′×Q′, such a solution
exists.

Lemma 5.1. For Banach spaces X and Y , let B = L + N : X → Y ′ where
L ∈ L(X, Y ′) is boundedly invertible, and N(0) = 0.

For some R > 0 and α < ‖L−1‖−1
L(Y ′,X), let

‖N(x1)−N(x2)‖Y ′ ≤ α‖x1 − x2‖X (x1, x2 ∈ B(0;R) := {x ∈ X : ‖x‖X ≤ R}).

Then for any h ∈ Y ′ with ‖h‖Y ′ ≤ R(‖L−1‖−1
L(Y ′,X) − α), there exists a unique

x ∈ B(0;R) with B(x) = h.

Proof. B(x) = h is equivalent to x = T (x) := L−1(h − N(x)). For ‖h‖Y ′ ≤
R(‖L−1‖−1

L(Y ′,X)−α) and x ∈ B(0;R), ‖T (x)‖X ≤ ‖L−1‖L(Y ′,X)(‖h‖Y +α‖x‖X) ≤
R, and, for x1, x2 ∈ B(0;R), ‖T (x1) − T (x2)‖X ≤ ‖L−1‖L(Y ′,X)α‖x1 − x2‖. The
proof is completed by an application of Banach’s fixed point theorem. �



18 RAFAELA GUBEROVIC, CHRISTOPH SCHWAB, AND ROB STEVENSON

5.1. No-slip boundary conditions. For a domain Ω ⊂ Rn, a vector field f̃ on
(0, T )×Ω, and a function g on (0, T )×Ω, we consider the instationary Navier–Stokes
problem to find the velocities u and pressure p that satisfy

(5.1)


∂u
∂t − ν∆xu + u · ∇x u +∇x p = f̃ on (0, T )× Ω,

divx u = g on (0, T )× Ω,
u = 0 on (0, T )× ∂Ω,

u(0, ·) = 0 on Ω.

It gives rise to a variational problem of the form (2.1) with an extra trilinear term
n(·, ·, ·), that reads as finding u ∈ U, p ∈ P such that

(5.2) a(u,v) + b(p,v) + c(u, q) = f(v) + g(q)− n(u,u,v) (v ∈ V, q ∈ Q),

where the Hilbert spaces U, P , V, Q, right-hand side functionals f and g, and
bilinear forms a, b, c are as in Theorem 4.6 or (4.15), and

(5.3) n(y, z,v) :=
∫ T

0

∫
Ω

y · ∇x z · v dxdt.

Theorem 5.2. For n = 2, 3, let Ω ⊂ Rn be a bounded Lipschitz domain that
satisfies Assumption 4.2. Then for sufficiently small f ∈ V′ and g ∈ Q′, (5.2) has
a unique solution (u, p) in some ball in U× P around the origin.

Proof. By Theorem 4.6 and Lemma 5.1, it suffices to show that with N(u)(v) :=
n(u,u,v), it holds that N : U → V′ with

‖N(u)−N(w)‖V′ ≤ ζ(‖u‖U, ‖w‖U)‖u−w‖U
for some ζ : [0,∞)2 → [0,∞) with ζ(α) → 0 if α → 0.

Recall that U = L2(0, T ; (H1
0 (Ω) ∩ H2(Ω))n) ∩ H1

0,{0}(0, T ;L2(Ω)n) and V =
L2(0, T ;L2(Ω)n). Using twice a Hölder inequality, twice that H1(Ω) ↪→ L6(Ω)
when n ≤ 3, see e.g. [Tem79, Ch. II, §1.1] (here the existence of an extension
in L(H1(Ω),H1(Rn)) is used, which holds true because Ω is a Lipschitz domain),
and also twice that U ↪→ C([0, T ];H1

0 (Ω)n) ([DL92, Ch. XVIII,§1.3]), being a
consequence of [L2(Ω),H1

0 (Ω) ∩ H2(Ω)]1/2 = H1
0 (Ω) ([LM72, pp. 43, 64]), for

y, z ∈ U we find(
sup

0 6=v∈V

|n(y, z,v)|
‖v‖V

)2

=
∫ T

0

‖y(t, ·) · ∇xz(t, ·)‖2L2(Ω)n dt

=
∫ T

0

n∑
i=1

∫
Ω

|y · ∇xzi|2 dx dt ≤
n∑

i=1

∫ T

0

∫
Ω

|y|2|∇xzi|2 dx dt

≤
n∑

i=1

∫ T

0

‖y(t, ·)‖2L6(Ω)n‖∇zi(t, ·)‖2L3(Ω)n dt

≤ sup
t∈(0,T )

‖y(t, ·)‖2L6(Ω)n

n∑
i=1

∫ T

0

(∫
Ω

|∇xzi|
3
2 |∇xzi|

3
2

) 2
3
dt

≤ sup
t∈(0,T )

‖y(t, ·)‖2L6(Ω)n

n∑
i=1

∫ T

0

‖∇xzi(t, ·)‖L2(Ω)n‖∇xzi(t, ·)‖L6(Ω)ndt

. sup
t∈(0,T )

‖y(t, ·)‖2H1(Ω)n sup
t∈(0,T )

‖z(t, ·)‖H1(Ω)n

√
T‖z‖L2(0,T ;H2(Ω)n) . ‖y‖2U‖z‖2U.
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As a first consequence, we have ‖N(u)‖2V′ . ‖u‖4U, and so in particular, N :
U → V′.

Secondly, from n(u,u, ·)− n(w,w, ·) = n(u−w,u, ·) + n(w,u−w, ·), we find

‖N(u)−N(w)‖2V′ . (‖u‖2U + ‖w‖2U)‖u−w‖2U,

which completes the proof. �

Besides existence and local uniqueness for sufficiently small data, we also have
local uniqueness of any solution:

Theorem 5.3. For n = 2, 3, let Ω ⊂ Rn be a bounded Lipschitz domain that
satisfies Assumption 4.2. Let (u, p) be a solution of (5.2), then for sufficiently
small δf ∈ V′, δg ∈ Q′, (5.2) with (f , g) reading as (f + δf , g + δg) has a unique
solution in some ball in U× P around (u, p).

Proof. Writing the solution with perturbed data as (u + δu, p + δp), we find that
(δu, δp) ∈ U× V solves

au(δu,v) + b(δp,v) + c(δu, q) = δf(v) + δg(q)− n(δu, δu,v) (v ∈ V, q ∈ Q),

where
au(δu,v) := a(δu,v) + n(u, δu,v) + n(δu,u,v).

The bilinear form au corresponds to the partial differential operator w 7→ −ν∆xw+
u · ∇xw + w · ∇xu. Since the perturbations are of lower order, any result that we
have proven for the Stokes equations is also valid for the modified Stokes equations
with −ν∆xw reading as −ν∆xw+u ·∇xw+w ·∇xu (not uniformly in u though).
We conclude that the statement is proven similarly to Theorem 5.2. �

Remark 5.4. The point of the above proof is that with

B : U× P → V′ ×Q′ : (u, p) 7→
(
(v, q) 7→ a(u,v) + b(p,v) + c(u, q) + n(u,u,v)

)
,

the Fréchet derivative

DB(u, p) : (δu, δp) 7→
(
(v, q) 7→ au(δu,v)+b(δp,v)+c(δu, q)

)
∈ L(U×P,V′×Q′)

is boundedly invertible, which is a crucial property for any method for solving the
Navier-Stokes equations.

5.2. Free-slip boundary conditions. For a domain Ω ⊂ Rn, a vector field f̃ on
(0, T )×Ω, we consider the instationary Navier–Stokes problem to find the velocities
u and pressure p that satisfy

(5.4)


∂u
∂t − ν∆xu + u · ∇x u +∇x p = f̃ on (0, T )× Ω,

divx u = 0 on (0, T )× Ω,
u · n = 0 on (0, T )× ∂Ω,

∂u
∂n · τi = gi on (0, T )× ∂Ω, 1 ≤ i ≤ n− 1,
u(0, ·) = u0 on Ω,

where τ1, . . . , τn−1 is an orthonormal set of tangent vectors.
It gives rise to a variational problem of the form (2.1) with an extra nonlinear

term, that reads as finding u ∈ U, p ∈ P such that

(5.5) a(u,v) + b(p,v) + c(u, q) = f(v) + n(u,v,u) (v ∈ V, q ∈ Q),

where the spaces U, P , V, Q, right-hand side functional f , and bilinear forms a,
b, c are as in Theorem 3.7 or (3.11), and the form n is as in (5.3).
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We arrived at this variational formulation with n(u,v,u), instead of the expected
term −n(u,u,v), by using that for smooth vector fields u on Ω that have vanishing
normals at ∂Ω and that are divergence-free, and for smooth vector fields v on Ω,

n(u,v,v) =
2∑

i,j=1

∫
Ω

ui(∂ivj)vj dx = 1
2

2∑
i,j=1

∫
Ω

ui∂iv
2
j dx

= 1
2

[∑
j

∫
Ω

−div u v2
j dx +

∫
∂Ω

v2
j u · n ds

]
= 0

Expanding n(u,v + w,v + w) for smooth vector fields v,w on Ω, we arrive at
n(u,v,w) = −n(u,w,v). Note that it is essential that in (5.4) we have imposed
u · n = 0 on (0, T ) × ∂Ω, instead of u · n = g on (0, T ) × ∂Ω for some general
function.

Theorem 5.5. Let Ω ⊂ R2 be a bounded Lipschitz domain that satisfies Assump-
tion 3.1. Then for sufficiently small f ∈ V′, (5.5) has a unique solution (u, p) in
some ball in U× P around the origin.

Proof. As shown in [Tem79, Ch.III, §3, Lemma 3.3], for v ∈ H1(R2) it holds that

‖v‖L4(R2) ≤ 21/4‖v‖
1
2
L2(R2)|v|

1
2
H1(R2).

Since Ω ⊂ R2 is a bounded Lipschitz domain, there exists an operator E that
extends functions on Ω to functions on R2 with E ∈ L(L2(Ω), L2(R2)), E ∈
L(H1(Ω),H1(R2)) ([Ste70, Ch.VI,§3, Thm.5]). We conclude that for v ∈ H1(Ω),

‖v‖L4(Ω) ≤ ‖Ev‖L4(R2) ≤ 21/4‖Ev‖
1
2
L2(R2)|Ev|

1
2
H1(R2) . ‖v‖

1
2
L2(Ω)‖v‖

1
2
H1(Ω).

Using this result, and by a few applications of Cauchy-Schwarz inequality, for
y,v, z ∈ H1(Ω) we have

|
∫

Ω

y · ∇xv · z dx| = |
∫

Ω

2∑
i,j=1

yi(∂ivj)zj dx|

≤
∑
i,j

‖∂ivj‖L2(Ω)‖yi‖L4(Ω)‖zj‖L4(Ω)

≤
√∑

i,j

‖∂ivj‖2L2(Ω)

√∑
i

‖yi‖2L4(Ω)

∑
j

‖zj‖2L4(Ω)

. ‖v‖H1(Ω)2‖y‖
1
2
L2(Ω)2‖y‖

1
2
H1(Ω)2‖z‖

1
2
L2(Ω)2‖z‖

1
2
H1(Ω)2 .
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Recalling that U = L2(0, T ;H1(Ω))∩H1
0,{0}(0, T ;H1(Ω)′) and V = L2(0, T ;H1(Ω)),

for y, z ∈ U, v ∈ V, from U ↪→ C([0, T ];L2(Ω)2) we obtain

|n(y,v, z)| .∫ T

0

‖v(t, ·)‖H1(Ω)2‖y(t, ·)‖
1
2
L2(Ω)2‖y(t, ·)‖

1
2
H1(Ω)2‖z(t, ·)‖

1
2
L2(Ω)2‖z(t, ·)‖

1
2
H1(Ω)2 dt

≤ sup
t∈[0,t]

‖y(t, ·)‖
1
2
L2(Ω)2 sup

t∈[0,t]

‖z(t, ·)‖
1
2
L2(Ω)2

×
∫ T

0

‖v(t, ·)‖H1(Ω)2‖y(t, ·)‖
1
2
H1(Ω)2‖z(t, ·)‖

1
2
H1(Ω)2 dt

. ‖y‖
1
2
U‖z‖

1
2
U‖v‖V

(∫ T

0

‖y(t, ·)‖2H1(Ω)2 dt
) 1

4
(∫ T

0

‖z(t, ·)‖2H1(Ω)2 dt
) 1

4

. ‖y‖U‖z‖U‖v‖V,

or sup0 6=v∈V
|n(y,v,z)|
‖v‖V . ‖y‖U‖z‖U. Similar to the proof of Theorem 5.2, the latter

result together with Theorem 3.7 and Lemma 5.1 completes the proof. �

Remark 5.6. Compared to §5.1, the smoothness indices of the spatial Sobolev spaces
incorporated in U or V has been lowered or raised by one, respectively. Because
of the double or single occurrence of u ∈ U or v ∈ V as arguments in the trilinear
form n, the task of bounding n(u,u,v) is more difficult here, giving an explanation
why the arguments in the present subsection only apply to space dimension n = 2.

Similar to the no-slip case, besides existence and local uniqueness for sufficiently
small data, we also have local uniqueness of any solution:

Theorem 5.7. Let Ω ⊂ R2 be a bounded Lipschitz domain that satisfies Assump-
tion 3.1. Let (u, p) be a solution of (5.5), then for sufficiently small δf ∈ V′, (5.2)
with f reading as f + δf has a unique solution in some ball in U×P around (u, p).
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