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Zürich

Ecole polytechnique fédérale de Zurich
Politecnico federale di Zurigo
Swiss Federal Institute of Technology Zurich

Sparse adaptive approximation of high
dimensional parametric initial value problems∗

M. Hansen and Ch. Schwab

Research Report No. 2011-64
October 2011

Revised: May 2012

Seminar für Angewandte Mathematik
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Abstract We consider nonlinear systems of ordinary differential equations
(ODEs) on a state space S. We consider the general setting when S is a
Banach space over R or C. We assume the right hand side depends affinely
linear on a vector y = (yj)j≥1 of possibly countably many parameters, nor-
malized such that |yj | ≤ 1. Under suitable analyticity assumptions on the
ODEs, we prove that the parametric solution {X(t; y) : 0 ≤ t ≤ T} ⊂S of
the corresponding IVP depends holomorphically on the parameter vector y,
as a mapping from the infinite-dimensional parameter domain U = (−1, 1)N

into a suitable function space on [0, T ]×S. Such affine parameter dependence
of the ODE arises, among others, in mass action models in computational
biology (see, e.g. [18]) and in stochiometry with uncertain reaction rate con-
stants. Using our analytic regularity result, we prove summability theorems
for coefficient sequences of generalized polynomial chaos (gpc) expansions of
the parametric solutions {X(·; y)}y∈U with respect to tensor product orthog-
onal polynomial bases of L2(U). We give sufficient conditions on the ODEs
for N -term truncations of these expansions to converge on the entire parame-
ter space with efficiency (i.e. accuracy versus complexity) being independent
of the number of parameters viz. the dimension of the parameter space U .
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1 Introduction

Numerous phenomena in engineering and life- and in social sciences are mod-
elled by initial value ordinary differential equations (ODEs); if, in particular,
the systems of interest are complex, they are described by vectors on state
spaces S of high or even infinite dimension, with multiple time scales. Ac-
cordingly, the numerical solution of initial value problems for deterministic
and stochastic ODEs is a basic problem in engineering and in the sciences.
For a survey of the state of the art on theory and implementation of numer-
ical initial value solvers, we refer to the monographs [11, 12, 13] and to the
references therein.

In recent years, in particular in connection with applications in life-
sciences, climate-sciences but also in economics, particular attention has been
paid to initial value ODE models for systems with uncertainty. As cases in
point, we mention only stochiometric descriptions of biochemical reaction
pathways with uncertain reaction rate constants, chemical reaction cascades
with uncertain reaction rate constants, mass action models [18] with uncer-
tain reaction rates. In mathematical models of such systems, the number of
parameters subject to uncertainty is often large, and the interest in mod-
elling consists in obtaining the system characteristics on the entire parameter
space in one single numerical forward simulation. Besides the efficient for-
ward solution of parametric initial value ODEs, additional problems consist
in optimization resp. in optimal control of systems described by initial value
ODEs. Here it is again of interest to obtain a parsimonious numerical repre-
sentation of the parametric dependence of the control resp. the optimum on
the entire, possibly high-dimensional parameter space.

The analysis of approximability of solutions of a class of abstract initial
value problems on possibly infinite dimensional parameter spaces is the pur-
pose of the present paper. Due to the so-called curse of dimensionality, the
approximation of parametric solutions by standard tensor product interpo-
lation methods is not feasible even for a few dozen parameters. It is the
aim of the present paper to identify sufficient conditions for sparsity of sev-
eral types of polynomial expansions for solutions of parametric initial value
ODEs. Under the assumption of affine dependence on the parameters which
arise, for example, in Karhúnen-Loève expansions of the random input data,
the parametric solutions of the ODEs admit, in turn, unconditionally conver-
gent expansions into polynomial series with respect to the possibly infinitely
many parameters.

Throughout, we shall use the following notation. Unless stated otherwise,
the state space S is assumed to be a separable, reflexive Banach space, and
will be understood over the coefficient field R; occasionally, however, we shall
also work with the extension of S to the coefficient field C. By RN and CN, we
denote the countable cartesian products of R and C, respectively. Likewise,
U = (−1, 1)N will denote the countable product of the open interval (−1, 1)
and U = [−1, 1]N.
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1.1 The Scope of Problems

On the parameter domain U , we wish to solve the high-dimensional, para-
metric, deterministic ODE initial value problem (ODE-IVP):
Given x0(y) ∈ S and T ∈ (t0,∞), find X(t, x0; y) : [t0, T ]× S × U → S such
that in S

dX

dt
= f(t,X; y) , X(t0; y) = x0(y) , t0 ≤ t ≤ T , ∀ y ∈ U . (1)

Here, S denotes the state space of the parametric model (1). We shall mostly
be concerned with the case of initial value ordinary differential equations
(ODEs), when S = Rd, with particular attention to the case of high or even
infinite dimensional state spaces, i.e. Rd with large d, but will consider also the
infinite dimensional case, when S is a separable and reflexive Banachspace.

In practice efficient solution methods in the case where the number of
parameters is very large are of interest. In particular, it would be highly
desirable to identify methods which are dimensionally robust, i.e. whose effi-
ciency (meaning accuracy versus computational cost measured in terms of the
total number of floating point operations to achieve this accuracy) is prov-
ably robust with respect to the number of parameters. Hence our approach
consists in directly tackling the case of an infinite (but countable) number of
parameters.

It is well-known and classical (see, e.g., the text [22, Chap. 13]) that for
parametric right hand sides f(t,X; y) which are Lipschitz continuous with
respect to (t,X) and which depend analytically on the parameters y, the so-
lution X(t; y) in turn depends analytically on the parameter vector y. This
local analytic dependence of the solutions on the parameters is, in fact, a quite
generic phenomenon which appears in many systems with analytic, nonde-
generate parameter dependence as a consequence of (a suitable version of)
the implicit function theorem (see, e.g., [17, Theorem 2.1.2]). In the present
paper, we extend the proof in [22] of this (classical) result to a possibly count-
able number of parameters with quantitative bounds on the size of domains
of analyticity. This mathematical result will be used to establish best N -term
convergence rates for various parametric expansions of the solution X(t; y)
under a sparsity hypothesis on the vector field f(t,X; y) in (1). Our main
result is that dimension-independent rates of best N -term approximation are
achieveable with N -term truncated Taylor expansions of the solution X(t, y)
in the parameter space U . In the present paper, we establish for several types
of expansions the uniform and unconditional convergence for all y belong-
ing to an infinite-dimensional parameter domain U . Moreover, we establish
that sparsity in the input vector field f(t,X; y) implies, for example, spar-
sity (in a sense to be made precise below) in the parametric solutions’ formal
Taylor-expansions, i.e.
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X(t; y) =
∑

ν∈F

Tν(t)y
ν , Tν(t) :=

1

ν!
(∂ν

yX(t; y))|y=0 , t0 ≤ t ≤ T , y ∈ U .

(2)
We also prove analogous results also for other polynomial expansions of the
solution, such as Legendre or Chebyshev expansions.

Similar results have been obtained for a number of parametric partial dif-
ferential equations in [7, 8, 16]. We note, however, that the proofs in these
references do not directly generalize to problems (1), so that we give a new,
and self-contained argument here.

The theoretical result in this paper is used in [14] to design a class of
dimensionally robust practical algorithms for the efficient solution of large
systems of parametric ODE’s on possibly infinitely dimensional parameter
spaces required to address the following issues: first, under the (unrealistic)
assumption of having available exact solutions of the ODE-IVP (1) for a
single instance of the parameter vector y ∈ U at unit cost, concrete, so-called
monotone sequences of sparse index sets MN ⊂ F (to which we will also
refer as “sparsity models”) for at most N “active” Taylor coefficients Tν(t),
ν ∈ MN , can be constructed such that the corresponding, finitely truncated
parametric expansions

XMN (t; y) =
∑

ν∈MN

Tν(t)y
ν (3)

realize the best N -term asymptotic convergence rate. Second, once such trun-
cations have been selected, it will be necessary to solve the initial value
problems by ODE solvers for approximation of the expansion coefficients
Tν(t) in (2). We will furthermore prove here that N -term approximations
with sets MN constrained to be monotone sets achieve the same rates
as best N -term approximations by truncated Legendre or Chebyshev se-
ries as well. Since, for monotone sparsity models MN , the polynomial space
PMN = span{yν : ν ∈ MN} is independent of the particular choice of poly-
nomial bases, the results in the present paper (in particular, Theorem 11)
imply that the best N -term convergence rates can be realized by sparse tensor
polynomial interpolation schemes on monotone sparsity models MN inde-
pendently of the choice of the univariate polynomial basis. This allows, in
particular, to choose the univariate coordinate basis functions in tensorized
Smolyak interpolation schemes such as those analyzed in [1] and the ref-
erences there according to other criteria, e.g. such that certain condition
numbers are minimized. We refer to [14].

The application of Smolyak type interpolation schemes with respect to
the parameter vector y ∈ U in (1) amounts to the numerical solution of
(1) for many instances of the parameter vector y. In the present paper, we
assume that (1) can be solved exactly. In practice, however, only approxi-
mate, numerical solutions of (1) are available and efficient computational
algorithms will require the approximate solution of (1) via initial value ODE
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solvers such as those in [11, 12]. In [14], we develop computational aspects
of combined sparse parametric polynomial interpolation methods based on
the mathematical results in the present paper. In particular, we use in [14]
the independence of PMN of the univariate polynomial basis functions to de-
sign Smolyak type interpolation algorithms based on hierarchic sequences of
unisolvent, univariate interpolation points; in particular, Chebychev and Leja
point sequences (see, e.g. [4] and the references there) are considered. In [14],
we propose computational strategies which allow to solve the |MN | many
instances of the parametric ODE (1) in parallel. The mathematical results
in the present paper will also guide the judicious choice of the tolerances in
termination criteria of adaptive initial value ODE solvers.

We remark that the analyticity and sparsity results for the parametric
solution families of (1) form the basis of additional mathematical develop-
ments. Among them are problems of optimization and of optimal control of
high-dimensional, parametric initial value ODEs; here the controls can be
expected to depend analytically on the parameter vector. We refer to [19]
for a corresponding development in the context of parametric linear elliptic
partial differential equations.

The assumption of an exact solution of the ODE-IVP (1) for a single
instance of the parameter vector y in O(1) work and memory is not realistic.
Thus to still achieve the rate of best N -term approximation also for the
approximate partial sums

X̃MN (t; y) =
∑

ν∈MN

T̃ν(t)y
ν , (4)

where T̃ν(t) ∈ S are the mentioned approximate Taylor coefficients, the ef-
fort for computing the coefficients have to be balanced against the respective
impact for approximating X(t; y). In doing so, we obtain an adaptive ap-
proximate numerical solution of the parametric ODE-IVP (1) to a presribed
accuracy ε uniformly on the entire parameter domain U . This ultimately en-
ables us to approximately calculate all further relevant information about
the parametric solution (e.g. statistical moments), again up to an arbitrary
prescribed accuracy, by several classes of adaptive approximation algorithms
based on Galerkin projection (see, e.g. [10]) or by sparse collocation as in
[20, 3, 2, 14] or by adaptive truncation (4) of the Taylor expansions (2) as in
[6].

1.2 Notation and Function Spaces

Throughout this work, we shall use the following standard notation: by (a, b)
we denote for −∞ ≤ a < b ≤ +∞ the open interval {x ∈ R : a < x < b}, by
[a, b] = (a, b) = {x ∈ R : a ≤ x ≤ b} its closure, by (a, b)p = (a, b)× ...× (a, b)
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its p-fold Cartesian product. For two sequences a = (aj)j≥1 and b = (bj)j≥1

such that −∞ < aj < bj < ∞ for all values of j, we identify the set (a, b)N

with the countable Cartesian product

(a, b)N =
∏

j≥1

(aj , bj) .

Throughout, we assume that the time interval of evolution of the system (1)
is [0, T ]. We shall denote the state of the system by X(t) ∈ Rd for t ∈ [0, T ].
The parameter dependence of X on y ∈ U is indicated by X(t; y). We shall
also consider extensions of problem (1) to complex values of the parameter
vector y. To this end, we denote by CN the set of all sequences with values in
C. We denote N = {1, 2, ...} and N0 = N ∪ {0}. We use standard multiindex
notation: for a vector y = (yj)j≥1 of parameters and for a sequence ν ∈ NN

0

of nonnegative integers, we denote by

F = {ν ∈ NN
0 : |ν| < ∞} . (5)

As any ν ∈ F has only finitely many nonzero entries, the definitions

ν! =
∏

j∈N
νj ! , |ν| =

∑

j∈N
νj , ∂ν

y =
∂|ν|

∂yν1
1 ∂yν2

2 · · ·

for multi-factorials, the length of a multi-indices ν and for the partial deriva-
tive of order ν are well-defined for ν ∈ F. To state and prove results on
existence, regularity and numerical approximation errors of solutions, we re-
quire certain function spaces. In what follows, we let B denote a separable
Banach space with norm ‖ ·‖ B . We shall, by abuse of notation, denote by
B both the vector space over R as well as its complexification over C (i.e.
an extension of B whose restriction to real valued elements coincides with
the original space B). We shall need spaces of (differentiable) functions with
values in B. We denote by C(U ;B) ≡ C0(U ;B) the space of functions from
U into B which are, as B-valued functions, continuous on U (where U is
equipped with the product topology). Moreover, for any k ∈ N, we denote
by Ck([0, T ];B) the space of continuous functions f : [0, T ] → B whose k-

th Fréchet derivative dkf
dtk with respect to t ∈ [0, T ] belongs to C0([0, T ];B).

These spaces Ck([0, T ];B), equipped with the norms

‖f‖Ck([0,T ];B) := max
0≤j≤k

{
‖djf

dtj f‖C0([0,T ];B)

}
, k ∈ N , (6)

are themselves Banach spaces. Similar notations are used, if the interval [0, T ]
is itself replaced by another Banach space S. Then the derivatives df

dx have

to be understood as Fréchet derivatives, i.e. df
dx is a mapping from S taking

values in L(S, B), the space of bounded linear operators from S into B.
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To define r-integrable functions on U with values in B, we assume given
on U a probability measure µ(dy), which is defined on the measurable space
(U,A) = ⊗j≥1((−1, 1);B1) where B1 denotes the sigma algebra of Borel sets
on (−1, 1). For 0 < r ≤ ∞, we denote by Lr(U ;B) the space of all measurable
functions f : U → B which are r-summable in the sense that

‖f‖Lr(U ;B) :=

(∫

y∈U
‖f(y)‖rBµ(dy)

)1/r

< ∞ (7)

(with the integral replaced by the essential (w.r.to µ) supremum in the limit-
ing case r = ∞). If the measure µ is clear from the context, we write Lr(U ;B)
for brevity.

An important role in this work will be played by analytic, B-valued func-
tions. To this end, we will denote for an open, nonempty set U ⊂ S byA(U ;B)
the space of all mappings u : U → B which are analytic. The definitions for
analyticity and (weak and strong) holomorphy for the cases where the state
space is either finite-dimensional (S = Cd), S is a (separable) Banach space
or S is a locally convex vector space are provided in Section 3.1. Thus, our
setting and results include in particular also parametric, nonlinear evolution
PDEs. Further function spaces (spaces of locally Lipschitz continuous func-
tions and certain weighted spaces of continuous functions) will be defined as
they occur in the text.

1.3 Outline of the paper

The outline of the present paper is as follows. In the next section, we precise
the parametric initial value ODE problem (1), in spaces of k-times continously
differentiable functions which take values in the state space S. We state
and prove a global existence result for solutions of (1). The proof is based
on applying Banach’s fixed-point theorem to a Volterra integral equation
reformulation of (1) in exponentially weighted spaces due to [22]. The use of
weights allows to deal with the possible exponential growth of solutions and
avoids tedious continuation arguments.

Section 3 is devoted to showing analyticity of the parameter dependence of
the parametric solutions. To this end, basic notions of analyticity in Banach
spaces are recapitulated, and then analytic dependence of solutions of (1) on
the parameter sequence y is established. Particular attention is paid to the
quantative bounds on the size of the domains of analyticity of the solution.

Section 4.1 contains statements and proofs of our main results, the proof of
best N -term approximation rates of the parametric solutions X(t; y) of (1).
Three particular types of approximation are considered: tensorized Taylor-,
Tschebyscheff and Legendre expansions of X(·; y) with respect to the coordi-
nate vector y. The proof uses arguments from [7, 8], and is given in Sections
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4.2 - 4.7. We emphasize, however, that the present arguments combine results
from [7, 8] and allow to sharpen also some of the results obtained in these
references. In Section 4.8, finally, we consider the restricted N -term approx-
imations where the sparsity models MN ⊂ F are restricted to the class of
monotone index sets (as in [6], see also Definition 5.

2 Parametric Initial Value ODEs

2.1 Problem Formulation. Existence Result

For a parameter vector y = (yj)j≥1 ∈ U and a Banach state space S, we
assume given an initial state x0(y) ∈ S and a parametric family of vector
fields f(t,X; y) : [0, T ] × S × U -→ S. Then we are interested in solving (1)
numerically to a prescribed tolerance uniformly for all values y ∈ U .

As we think of applications to large mass-action models in computational
chemistry and biology, attention will be in the following on the particular
case when the dependence of the vector field f in (1) on the parameter vector
y ∈ U is affine, i.e. for every t ∈ [0, T ] and every X ∈ S,

f(t,X; y) = f0(t,X) +
∑

j≥1

yjfj(t,X) , 0 ≤ t ≤ T < ∞ . (8)

Here, we assume that each fj ∈ (fj)j≥0 is continuous with respect to t and
satisfies certain Lipschitz conditions with respect to X uniform in t ∈ [0, T ].
For the non-parametric problem

dX

dt
= g(t,X) , X(t0) = x0 , (9)

it is classical that the right-hand-side g being locally Lipschitz continuous,
i.e. for every X0 ∈ S there is a neighbourhood U = U(X0) such that

∀X,X ′ ∈ U ∀t ∈ [0, T ] : ‖g(t,X)− g(t,X ′)‖S ≤ L(X0)‖X −X ′‖S (10)

for some constants L(X0), implies existence and uniqueness of local solutions
of (9), i.e. existence of unique solutions on some maximally extended subin-
terval [0, δ) ⊂ [0, T ]. This result is classical in the scalar case S = R, and it
extends immediately to the general state space S considered here, see e.g. [9].
In the parametric case the näıve way would be to assume this condition to
hold pointwise, i.e. for every fixed y ∈ U ; i.e., to assume that condition (10)
holds for f(·, ·; y). This assumption then yields local existence of the para-
metric solution, but unfortunately the existence-interval [0, δ) might depend
on the parameter, i.e. in this argument δ cannot be chosen independent of
y ∈ U .
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For our further arguments we would rather like to have global solutions,
i.e. on the whole interval [0, T ]. To obtain these, we impose slightly more
restrictive conditions. More precisely, we suppose the condition that for every
R > 0, there exist constants L(R) > 0 such that for every X,X ′ ∈ BR =
{X ∈ S : ‖X‖S ≤ R} and for every t ∈ [0, T ] holds

‖g(t,X)− g(t,X ′)‖S ≤ L(R)‖X −X ′‖S ,

where the optimal constants L(R) are given by

L(R) := ‖g‖"Lip(S,R) = sup
t∈[0,T ],X %=X′∈BR

‖g(t,X)− g(t,X ′)‖S
‖X −X ′‖S

< ∞ .

We say a continuous function g belongs to the class %Lip(S), if L(R) < ∞
for all R > 0. The subclass %Lip0(S) consists of all functions g ∈ %Lip(S)
which additionally fulfill g(t, 0) = 0 for all t ∈ [0, T ]. Then %Lip0(S) equipped
with the increasing family of norms ‖ · ‖"Lip(S,R) becomes a complete locally
convex vector space. Our main assumption then reads as fj ∈ %Lip0(S) for
all j, i.e. for j = 0, 1, 2, . . . holds

Lj(R) = sup
t∈[0,T ],X %=X′∈BR

‖fj(t,X)− fj(t,X ′)‖S
‖X −X ′‖S

< ∞ , fj(t, 0) = 0 . (11)

In order to prove results which are independent of the number of terms in the
affine expansion (8), we shall further require summability of the coefficient
sequence (fj)j≥1. Specifically, we assume the sequence of Lipschitz constants
to be summable, i.e.

∀R > 0 :
(
Lj(R)

)
j≥1

∈ %1(N) . (12)

Under this assumption, the sum in (8) converges uniformly with respect to
y ∈ U and for all (t,X) ∈ [0, T ]× S.

Proposition 1. Let the conditions (11) and (12) be satisfied. Then the sum
in (8) converges absolutely and uniformly in U as a %Lip0(S)-valued mapping,
and it holds f ∈ C(U ; %Lip0(S)).

Proof. We fix 0 < N < M < ∞ and denote by SN [f ] the N -term partial sum
of (8). Then we estimate with |yj | ≤ 1 for all j ≥ 1 and with the assumptions
(11) and (12) and the triangle inequality

sup
t∈[0,T ]

sup
y∈U

‖(SM [f ]−SN [f ])(t, ·; y)‖"Lip(S,R) ≤
M∑

j=N+1

sup
t∈[0,T ]

‖fj(t; ·)‖"Lip(S,R) → 0

as N,M → ∞, since by assumption (12) we have
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∑

j≥1

Lj(R) =
∑

j≥1

sup
t∈[0,T ]

‖fj(t; ·)‖"Lip(S,R) < ∞ ∀R > 0 .

This shows that the expression (8) is well-defined for every y ∈ U and for
every (t,X) ∈ [0, T ]× S. Moreover, the assumption (11) for all j ≥ 0 implies
that f(t,X; y) satisfies a Lipschitz condition uniform in y ∈ U : for every
X,X ′ ∈ BR holds

sup
t∈[0,T ]

sup
y∈U

‖f(t,X; y)− f(t,X ′; y)‖S
≤ sup

t∈[0,T ]
‖f0(t,X)− f0(t

′, X ′)‖S

+ sup
t∈[0,T ]

sup
y∈U

∣∣∣∣∣∣

∑

j≥1

|yj |‖fj(t,X)− fj(t
′, X ′)‖S

∣∣∣∣∣∣

≤



 sup
t∈[0,T ]

‖f0(t; ·)‖"Lip(R) +
∑

j≥1

sup
t∈[0,T ]

‖fj(t; ·)‖"Lip(R)



 ‖X −X ′‖S

= L(R)‖X −X ′‖S

(13)

where the Lipschitz constant

L(R) :=
∑

j≥0

sup
t∈[0,T ]

‖fj(t; ·)‖"Lip(S,R) (14)

is finite by (12). This proves the asserted uniform Lipschitz condition for the
infinite sum (8) in U .

For the proof of the continuous dependence we first observe

‖f(·, ·; y)−f(·, ·; y′)‖"Lip(S,R)

≤
∑

j≥1

‖fj(·, ·)− fj(·, ·)‖"Lip(S,R)|yj − y′j | ≤
∑

j≥1

Lj(R)|yj − y′j |

for all y, y′ ∈ U . Then since by Assumption (12) for every ε > 0, we can
find some N(ε) such that

∑
j>N Lj(R) < ε, and by choice of the product

topology y′ → y if, and only if,
∑

1≤j≤J |yj − y′j | → 0 for every J ∈ N, this
estimate proves the continuous dependence of f on y ∈ U .

As we shall see below this local Lipschitz condition (13) together with
some scaling assumption on the initial data already implies existence and
uniqueness of solutions X(t, x0; y) for all y ∈ U by standard fixed point
arguments. Furthermore, it also implies additional regularity of the solution
X(t, x0; y) with respect to t ∈ [0, T ].

Before we come to this we shall further extend the parametric problem
to include complex parameters. More precisely, looking more closely at the
proof of Proposition 1 we immediately see that the arguments carry over to
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the parameter domain U = {z ∈ CN : |zj | ≤ 1 , j ∈ N}, if we define

f(t,X; z) = f0(t,X) +
∑

j≥1

zjfj(t,X) , 0 ≤ t ≤ T < ∞ . (15)

Moreover, we may also consider S to be a complex Banach space. The motiva-
tion for this extension lies in the observation that under certain conditions on
the functions fj the solution depends analytically on the parameters, which
will be discussed in the following section.

Theorem 1. Assume (11) and (12). Moreover, suppose the initial condition
x0 ∈ C(U ,S) satisfies

sup
z∈U

‖x0(z)‖S ≤ (1− κ)r , r = Re−L(R)T/κ (16)

for some R > 0 and 0 < κ < 1.
Then the IVP (1) (with t0 = 0) admits a unique solution X ∈ B1

r,R ⊂
C1([0, T ];C(U ;S)), where

B1
r,R =

{
Y ∈ C1([0, T ];C(U ;S)) : sup

(t,z)∈[0,T ]×U
e−tL(R)/κ‖Y (t, z)‖S ≤ r

}

If, in addition, for some k ∈ N

∀j ≥ 0 : fj : [0, T ]× S −→ S is k-times continuously differentiable , (17)

then for every z ∈ U the unique solution X(·, x0(z); z) of (1) belongs to
Ck+1([0, T ];S).

Moreover, the solution X(·, x0; z) on the data x0 and parameters z. More
precisely: For every x0 ∈ C(U ;S) satisfying (16) and for every z, z′ ∈ U holds

∥∥X
(
·, x0(z); z

)
−X

(
·, x0(z

′); z′
)∥∥

C([0,T ];S)

≤ eL(R)T/κ

1− κ

(
‖x0(z)− x0(z

′)‖S + κr‖z − z′‖"∞(N)
)
.

(18)

Similarly, for every x0, x′
0 ∈ C(U ,S) satisfying (16) and for every z ∈ U

holds

∥∥X
(
·, x0(z); z

)
−X

(
·, x′

0(z); z
)∥∥

C([0,T ];S)
≤ eL(R)T/κ

1− κ
‖x0(z)−x′

0(z)‖S . (19)
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2.2 Proof of the Existence result

Though, as mentioned before, this existence result is known, and the proof
of Theorem 1 is very similar to the scalar case, we include it anyway in order
to obtain explicit, quantitative bounds which will be of importance later on.

The proof of Theorem 1 will be based on a fixed point argument along the
lines of [22]. Specifically, Theorem 1 will follow from a more general result on
Volterra integral equations. To motivate it, we observe that the IVP (1) can
be recast into a Volterra Integral Equation in S, i.e.

X(t; z) = x0(z) +

∫ t

t0(z)
f
(
s,X(s; z); z

)
ds , 0 ≤ t ≤ T < ∞ (20)

or, in operator notation, into the fixed point equation

X = Θ[X] , X ∈ C([0, T ]× U ;S) (21)

where the Volterra integral operator Θ[X] for X ∈ C([0, T ]×U ;S) is defined
by

Θ[X](t; z) := x0(z) +

∫ t

t0(z)
f
(
s,X(s; z); z

)
ds . (22)

For f(·, ·; z) satisfying a uniform local Lipschitz condition (13), Θ becomes a
contraction on C([0, T ] × U ;S), if we equip this space with a suitable norm
(depending on T and L). We shall now prove this within a slightly more
general setting.

Lemma 1. Assume that the vector field k(t, s,X; z) : [0, T ]2 × S × U -→ S
is continuous on its domain of definition and it satisfies a local Lipschitz
condition uniformly for all s, t ∈ [0, T ] and for all z ∈ U , i.e. for every R > 0
there exists some L(R) > 0 such that for every X,X ′ ∈ BR and for every
0 ≤ t, s ≤ T < ∞ holds

sup
z∈U

‖k(t, s,X; z)− k(t, s,X ′; z)‖S ≤ L(R)‖X −X ′‖S . (23)

Assume moreover that for every X ∈ S, k(t, s,X; z) : [0, T ]2 × U -→ S and
t0(z) : U -→ [0, T ], x0(z) : U -→ S are continuous with respect to (t, s, z) ∈
[0, T ]2 × U and z ∈ U , respectively.
We then consider the set C([0, T ]×U ;S) equipped with the weighted uniform
norms ‖ · ‖α,T,S , where for α ≥ 0

‖X‖α,T,S := sup
(t,z)∈[0,T ]×U

{e−α|t−t0(z)|‖X(t; z)‖S} . (24)

We shall also use the notation Cα([0, T ] × U ;S) to indicate this weighted
setting. Let some 0 < κ < 1 and R > 0 be given, and put r = Re−L(R)T/κ.
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Then the parametric integral operator

Θ[X](t; z) := x0(z) +

∫ t

t0(z)
k
(
t, s,X(s; z); z

)
ds (25)

is a contraction on Br,R = {X ∈ C([0, T ]×U ;S) : ‖X‖L(R)/κ,T,S ≤ r}. More
precisely, it holds

∀X,X ′ ∈ Br,R : ‖Θ[X]−Θ[X ′]‖L(R)/κ,T,S ≤ κ‖X −X ′‖L(R)/κ,T,S . (26)

Proof. By the continuity assumptions on the kernel function k, the initial
data x0 and on t0, the operator Θ defined in (25) satisfies Θ[C([0, T ]×U ;S)] ⊂
C([0, T ]× U ;S).

Concerning the contraction property, let some R > 0 be given. We first
note that ‖X‖L(R)/κ,T,S ≤ r implies ‖X(t, z)‖S ≤ reL(R)T/κ = R by choice of
r. Hence we conclude from the local Lipschitz condition (23) for X,X ′ ∈ Br,R

∥∥(Θ[X]−Θ[X ′])(t, z)
∥∥
S ≤ L(R)

∣∣∣∣∣

∫ t

t0(z)

∥∥X(s; z)−X ′(s; z)
∥∥
S ds

∣∣∣∣∣ .

Injecting the factor 1 = exp
(
L(R)|t− t0(z)|/κ

)
exp

(
−L(R)|t− t0(z)|/κ

)
into

the integral on the right hand side we obtain for every t ∈ [0, T ] and for every
z ∈ U the bound

∥∥(Θ[X]−Θ[X ′])(t, z)
∥∥
S ≤ L(R)‖X −X ′‖L(R)/κ,T,S

∣∣∣∣∣

∫ t

t0(z)
eL(R)|s−t0(z)|/κ ds

∣∣∣∣∣

≤ L(R)

L(R)/κ
‖X −X ′‖L(R)/κ,T,Se

L(R)|t−t0(z)|/κ .

Dividing both sides by eL(R)|t−t0(z)|/κ and taking the supremum in the re-
sulting bound over all t ∈ [0, T ] and all z ∈ U , we find

∀X,X ′ ∈ Br,R :
∥∥Θ[X]−Θ[X ′]

∥∥
L(R)/κ,T,S ≤ κ‖X −X ′‖L(R)/κ,T,S .

This completes the proof. !.

Remark 1. In case of a global Lipschitz condition, i.e. for all X,X ′ ∈ S,
0 ≤ t, s ≤ T and z ∈ U we have

‖k(t, s,X, z)− k(t, s,X ′; z)‖S ≤ L‖X −X ′‖S ,

the operator Θ becomes a contraction on the whole set CL/κ([0, T ] × U ;S)
for every 0 < κ < 1.

This lemma is the basis for an existence result for integral equations with
the Volterra operator Θ in (25) which we will deduce next.
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Lemma 2. Assume that the vector field k(t, s, z; y) : [0, T ]2 × S × U -→ S
is continuous on its domain of definition and it satisfies the local Lipschitz
condition (23) uniformly for all s, t ∈ [0, T ] and for all z ∈ U . Moreover,
assume that for every X ∈ S, k(t, s,X; z) : [0, T ]2 × U -→ S and t0(z) :
U -→ [0, T ], x0(z) : U -→ S are continuous. Finally, assume the function x0

satisfies
sup
z∈U

‖x0(z)‖S =: r0 ≤ (1− κ)Re−L(R)T/κ (27)

for some R > 0 and 0 < κ< 1. Then the parametric Volterra integral
equation

find X ∈ C([0, T ]× U ;S) : X = Θ[X] (28)

with the Volterra integral operator Θ defined in (25) admits a unique solution
X ∈ Br,R.

Moreover, for every X(0) ∈ Br,R the sequence

X(k+1) := Θ[X(k)], k = 0, 1, 2, . . . , (29)

converges in C([0, T ]× U ;S) and CL(R)/κ([0, T ]× U ;S) towards X:

‖X −X(k)‖C([0,T ]×U ;S) → 0 k → ∞ .

Proof. By the assumptions and by Lemma 1, the Volterra integral operator
Θ is a contraction on Br,R ⊂ C([0, T ]× U ;S) with r = Re−L(R)T/κ.

The existence of a unique fixed point X of (28) in the (complete metric)
space Br,R equipped with the metric induced by the norm ‖ · ‖L(R)/κ,T,S
now follows from Banach’s fixed point theorem, if we can determine a closed
subset B ⊂ Br,R, such that Θ : B −→ B.

For this purpose we consider the initial data x0 as an element of C([0, T ]×
U ;S) (i.e. constant with respect to t ∈ [0, T ]), upon which we have ‖x0‖L(R)/κ,T,S =
supz∈U ‖x0(z)‖S =: r0. Now put B = Br1(x0) = {X ∈ C([0, T ] × U ;S) :
‖X−x0‖L(R)/κ,T,S ≤ r1}. Choosing r1 = κr0

1−κ , it holds B ⊂ Br0/(1−κ),R, which
in view of condition (27) implies B ⊂ Br,R. We further observe x0 = Θ[0] (due
to fj(t, 0) = 0 for all j), hence we obtain from Lemma 1

‖Θ[X]− x0‖L(R)/κ,T,S ≤ κ‖X‖L(R)/κ,T,S ≤ κ(r0 + r1) =
κr0
1− κ

= r1 .

Thus we have shown that this choice of B indeed has the required property
Θ[B] ⊂ B.

Altogether we conclude that we may apply Banach’s fixed point theorem
to obtain the unique fixed point X ∈ B. The same theorem then also yields
that this fixed point may be obtained via the iteration (29), with convergence
with respect to the norm ‖ · ‖L(R)/κ,S,T (although the fixed point theorem is
applied to the set B, the statements concerning the uniqueness of the fixed
point as well as the convergence of the iteration extend to Br,R ⊃ B, since Θ
is a contraction on this larger set). However, since it holds ‖X ′‖C([0,T ]×U ;S) ≤
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eαT ‖X ′‖α,T,S for all X ′ ∈ C([0, T ] × U ;S) and all α ≥ 0, the iteration also
converges in the unweighted uniform norm.

Remark 2. Note that in case of global Lipschitz continuity (i.e. the Lipschitz
constant L does not depend on R), condition (27) is redundant (the right
hand side may be chosen arbitrarily large). On the other hand, if k is not
globally Lipschitz continuous (i.e. if L(R) is an increasing function) then
condition (27) can be interpreted as a small-data-assumption.

We can now give the proof of Theorem 1: We rewrite the initial value
problem (1) with right hand side f as in (8) as Volterra integral equation
(20) with kernel function k given by k(t, s,X; z) = f(s,X; z) and t0(z) ≡ 0.
By assumption (12) and Proposition 1, the function f defined in (8) satisfies a
local Lipschitz condition with Lipschitz constants L(R) as in (14). Therefore
Lemmas 1 and 2 are applicable and the existence of a unique solution X ∈
Br,R ⊂ C([0, T ]× U ;S) of (20) follows.

From the continuity of f(t,X; y) with respect to t ∈ [0, T ] and z ∈
U and from (20) it immediately follows that X ∈ C1([0, T ];C(U ;S)) ∩
C(U ;C1([0, T ];S)). Under the additional assumption (17), it further follows
from (20) that X ∈ C(U ;Ck+1([0, T ];S)) by repeated differentiation.

Concerning the dependence on the parameter z ∈ U , we shall use the fixed
point equation (28). Then we find (we use the shorthand notation X(t; z) =
X(t, x0(z); z))

‖X(t; z)−X(t; z′)‖S

≤ ‖x0(z)− x0(z
′)‖S +

∥∥∥∥
∫ t

0

(
f(s,X(s; z); z)− f(s,X(s; z′); z′)

)
ds

∥∥∥∥
S

≤ ‖x0(z)− x0(z
′)‖S +

∥∥∥∥
∫ t

0

(
f0(s,X(s; z))− f0(s,X(s; z′))

)
ds

∥∥∥∥
S

+

∥∥∥∥∥∥

∫ t

0

∑

j≥1

((
fj(s,X(s; z))− fj(s,X(s; z′))

)
zj + fj(s,X(s; z′))(zj − z′j)

)
ds

∥∥∥∥∥∥
S

≤ ‖x0(z)− x0(z
′)‖S + L0(R)

∫ t

0

∥∥X(s; z)−X(s; z′)
∥∥
S ds

+
∑

j≥1

∫ t

0

(
Lj(R)

∥∥X(s; z)−X(s; z′)
∥∥
S + Lj(R)‖X(s; z′)‖S |zj − z′j |

)
ds

≤ ‖x0(z)− x0(z
′)‖S +

κ

L(R)

∑

j≥0

Lj(R)etL(R)/κ sup
s∈[0,T ]

e−sL(R)/κ
∥∥X(s; z)−X(s; z′)

∥∥
S

+
κ

L(R)

∑

j≥1

Lj(R)|zj − z′j |etL(R)/κ sup
s∈[0,T ]

e−sL(R)/κ
∥∥X(s; z′)

∥∥
S .
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Multiplying by e−tL(R)/κ and taking the supremum over t ∈ [0, T ] then results
in the estimate

(1− κ) sup
t∈[0,T ]

e−tL(R)/κ‖X(t; z)−X(t; z′)‖S

≤ ‖x0(z)− x0(z
′)‖S +

κ

L(R)
sup

t∈[0,T ]
e−tL(R)/κ

∥∥X(t; z′)
∥∥
S

∑

j≥1

Lj(R)|zj − z′j | .

(30)

Now recall X ∈ Br,R, i.e. ‖X‖L(R)/κ,T,S ≤ r = Re−L(R)T/κ. The estimate
(18) then is a simplified (though slightly weaker) variant of (30).

Again by the fixed point equation (28) we find

‖X(t, x0; z)−X(t, x′
0; z)‖S

≤ ‖x0 − x′
0‖S +

∥∥∥∥
∫ t

0

(
f(s,X(s, x0; z); z)− f(s,X(s, x′

0; z); z)
)
ds

∥∥∥∥
S

≤ ‖x0 − x′
0‖S + L(R)

∫ t

0

∥∥X(s, x0; z)−X(s, x′
0, z)

∥∥
S ds

≤ ‖x0 − x0‖S + κetL(R)/κ sup
s∈[0,T ]

e−sL(R)/κ
∥∥X(s, x0; z)−X(s, x′

0; z)
∥∥
S .

Multiplying by e−tL(R)/κ and taking the supremum over t ∈ [0, T ] then proves
(19). This completes the proof. !

Remark 3. Instead of the Volterra operator Θ defined in (25) we could have
used parametric Volterra operators Θz : C([0, T ];S) −→ C([0, T ];S),

Θz[X](t) = x0(z) +

∫ t

t0(z)
kz
(
t, s,X(s)

)
dt ,

i.e. considering the situation for every fixed instance of parameters z ∈ U .
Then the existence result follows by essentially the same arguments (dropping
the supremum over z ∈ U everywhere). The estimate (30) can be derived in
exactly the same way, and then the choice of the product topology on U ,
Assumption (12) and assuming continuity of x0 proves continuity of X on
U . Together with the continuity of z -→ f(·, ·; z) and (1) we further obtain
X ∈ C(U ;C1([0, T ];S)). Finally, we obtain the following a priori estimates.

Corollary 1. The solution X(t, x0(z); z) of (1) satisfies

∥∥X
(
t, x0(z); z

)∥∥
S ≤ etL(R)/κ

1− κ
‖x0(z)‖S , ‖X‖L(R)/κ,T,S ≤ 1

1− κ
sup
z∈U

‖x0(z)‖S .

Remark 4. We shall complete this section by discussing two particular ex-
amples which show the necessity of the small-data-assumption imposed in
Theorem 1. Therein we simply consider the scalar non-parametric setting.

i) The problem Ẋ = Xn, n ≥ 2, X(0) = x0, has the solution
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X(t) = − 1

n− 1

(
1

xn−1
0

− (n− 1)t

)− 1
n−1

,

which clearly is only well-defined on the interval [0, 1
(n−1)xn−1

0

). Hence for this

interval to contain [0, T ] we need the initial datum x0 to be small enough.
iia) The problem Ẋ = eX , X(0) = x0, has the solution

X(t) = − log
(
e−x0 − t

)
,

which is well-defined on the interval [0, T ] if, and only if, x0 < − log T . This
example shows that in general we indeed need an additional assumption on
the functions fj , apart from the Lipschitz condition (11).

iib) The problem Ẋ = e−X , X(0) = x0, has the solution

X(t) = log (ex0 + t) ,

which is well-defined for all t > 0, independent of the choice of x0. Closer
inspection of our arguments reveals that the proof of Theorem 1 may be
reformulated to show existence of solutions on the symmetric interval [−T, T ],
upon which all conditions necessary in example (iia) apply here as well (note
that both functions yield the same Lipschitz constants L(R)).

3 Analytic parameter dependence

In the previous section, we showed for any instance of the parameter vector
z ∈ U the existence of a unique solution in C1([0, T ];S) of the parametric
initial value problem (1). Moreoever, the proof also showed that the mapping
U 1 z -→ X(t; z) ∈ C1([0, T ];S) is continuous.

To this end, we imposed local Lipschitz conditions (11) for the fj and
the assumption (12) of summability of the Lipschitz constants Lj(R), which
implied a local Lipschitz condition for the right hand side function f uniform
in the parameter space U . In the present section, we will sharpen this result
in proving that the parameter dependence U 1 z -→ X(t; z) ∈ C1([0, T ];S)
(with C([0, T ];S) either in the weighted or unweighted setting) is, in fact,
analytic. This will be achieved by tracking analytic dependence through the
fixed point iteration.

To prove this, we track analyticity of the iterates and use the uniformity
of the convergence in the successive approximation (29) as used in the proof
of Theorem 1 to deduce analytic dependence of the solution X(t, x0(z); z) on
the parameters z ∈ U .

It will be necessary to impose analyticity assumptions on the dependence of
the fj(t;x) on the second variable x ∈ S. Since both parameter domain U and
the domain C1([0, T ];S) are infinite-dimensional, this requires classical tools
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of Complex Analysis in infinite dimensional spaces which we will recapitulate
first; our basic reference is [15].

3.1 Preliminaries on analyticity and holomorphy in
infinite dimensional spaces

Our strategy to prove analytic dependence of the solutions is to track an-
alyticity of the iterates X(k) in (29) and use that holomorphy is preserved
under uniform convergence. It is easy to see (choose S = C), that to this end
analytic dependence of the fj(t, x) in (8) on the state variable x is necessary.
To formulate analytic dependence of the fj(t, x) in the presently considered
general state spaces S, we recapitulate notions of analyticity of mappings
f : U -→ S from [15].

Definition 1. For m ∈ N and for a set U ⊂ Cm we say that a map f : U -→ S
is

i) analytic, if for each a ∈ U exists a family {cν}ν∈Nm
0

⊂ S such that
the series (cν(z − a)ν)ν∈Nm

0
is summable and converges to f(z) for z

sufficiently close to a;
ii) holomorphic if, for any a ∈ U , each first order partial derivative

lim
ξj→0

1

ξj

[
f(a+ ξjej)− f(a)

]

exists;
iii) scalarly analytic or holomorphic if for each z′ ∈ S ′ the complex-valued

function z′ ◦ f : U -→ C is analytic or holomorphic on U .

We denote the vector space of analytic maps Cm ⊇ U -→ S by A(U ,S).

Evidently, either of i) or ii) implies iii), and i), ii) and iii) are, in fact,
equivalent if S is a Frechét space (or, even more general, a sequentially com-
plete locally convex space). We refer to [15, Thm. 2.1.3] for details. We shall
also require the notion of analyticity in the case when U ⊂ X is an open set
in an infinite dimensional Banachspace X over C. We have (see [15, Prop.
3.1.2]):

Definition 2. Let X be a Banachspace over C and let ∅ 5= U ⊆ X be an
open set. Then f : U -→ S is analytic, or f ∈ A(U ,S) if for all z′ ∈ S ′ the
function z′ ◦ f : U -→ C is analytic, i.e. f : U -→ S is analytic if

∀z′ ∈ S ′ : z′ ◦ f ∈ A(U ,C) .

Analyticity of a mapping f follows from complex differentiability (see [15,
Prop. 3.1.3, Cor. 3.1.4, Thm. 3.1.5]).
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Proposition 2. A map f : U -→ S is analytic if and only if it is (Frechét-)
differentiable at each point a ∈ U , i.e. for every a ∈ U there exists a linear
map λa : X → S, such that limh→0

(
f(a+ h)− f(a)− λa(h)

)
= 0.

For our purposes this notion of analyticity has to be further generalized.

Definition 3. Let U be an open subset of a locally convex complex vector
space X . Then f : U → S is analytic, or f ∈ A(U ,S), if it is continuous and
f
∣∣
E∩U is analytic for every finite dimensional affine subspace E ⊂ X .

Using that the linear parameter dependence in the affine expansion (8) is,
in fact, analytic (in the sense of Definition 3, where CN ⊃ U is equipped with
the usual locally convex topology), we can use analyticity of the iterates and
the uniformity of the convergence in the successive approximation (29) that
we used in the proof of Theorem 1 to deduce holomorphic dependence of the
solution X(t, x0; y) on the parameters z in a complex domain.

3.2 Analyticity Assumptions

Whereas in Theorem 1 the state space S was allowed to be an arbitrary Ba-
nachspace over either R or C, we now work under the following assumptions.

Assumption 2 1. All Banach spaces are understood as Banach spaces over
C. In particular, we assume that all real state spaces S in Theorem 1 are
replaced by their extensions to the coefficient field C (in particular S = Rd

is replaced by S = Cd). The state space S is always assumed to be reflexive
(but does not necessarily need to be separable).

2. We assume U = [−1, 1]N and U ⊂ U ⊂ CN.
3. Finally, the time parameter t is always assumed to be real.

Assumption 3 For every t ∈ [0, T ], the mappings S 1 X -→ fj(t;X) ∈ S
are analytic.

We prepare the statement and proof of our analytic dependence theorem
by the observation that Assumption (12) implies with the same argument
used in the proof of Proposition 1 that the N -term truncated partial sums of
(8), i.e.

f (N)(t, x; y) := f0(t, x) +
N∑

j=1

yjfj(t, x) , 0 ≤ t ≤ T < ∞ , y ∈ U , (31)

are, in fact, converging uniformly for parameter vectors z = (zj)j≥1 belonging
to appropriate polydiscs: for a vector ρ = (ρj)j≥1 of radii ρj > 1, we denote
by

Uρ :=
{
z = (zj)j≥1 ∈ CN : |zj | < ρj , j ∈ N

}
(32)
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the (countable) product of open discs of radii ρi ≥ 1. The product of closed
discs of radii ρi in CN will be denoted by Uρ. If ρ = (1, 1, ...), we write U for
simplicity. Note that U ⊂ U ⊂ Uρ, and that all polydiscs Uρ are open subsets
of CN. Further note that in (31) holds f (N)(t, x; y) = f(t, x; y(N)) where, for
y ∈ U , we denoted by y(N) the coordinate vector y anchored at zero in all
but the first N coordinates, i.e. y(N) := (y1, y2, ..., yN , 0, 0, ...).

3.3 Analyticity Result with local Lipschitz conditions

With these notations at hand, we can now state our first main result on
analytic dependence of the solutions X(t; y) of the parametric initial value
ODEs (1) with countably many parameters.

Theorem 4. For parameter vectors z = y + iw ∈ U ⊂ CN, and with S
denoting the “complexification” of the state space S in (1), consider in [0, T ]
the parametric IVP ODE

dX

dt
(t; z) = f(t,X; z) 0 ≤ t ≤ T < ∞, X(0; z) = x0(z) ∈ S . (33)

Assume that in (33) the vector field f depends on the parameter vector z =
y + iw ∈ CN in the affine fashion

f(t, x; z) = f0(t, x) +
∑

j≥1

zjfj(t, x) , t ∈ [0, T ], x ∈ S, z ∈ U , (34)

with the coefficient functions fj(t, x) satisfying (17) for some k ≥ 1 and which
are, for every t ∈ [0, T ], analytic with respect to x ∈ S. Assume that fj(t; ·) ∈
%Lip0(S) , i.e. fj(t, 0) = 0 for all t ∈ [0, T ] and the Lipschitz constants satisfy,
for j = 0, 1, 2, ...

Lj(R) := sup
t∈[0,T ]

sup
x %=x′∈BR

‖fj(t, x)− fj(t, x′)‖S
‖x− x′‖S

< ∞ . (35)

Moreover, assume that the Lj(R) are such that there exists a (not necessarily
bounded) polyradius ρ = (ρj)j≥1 of radii ρj > 1 such that

L(ρ, R) :=
∑

j≥1

ρjLj(R) < ∞ , ∀R > 0 . (36)

Then

(i) the parametric IVP (33) admits, for every z ∈ Uρ and every x0 ∈ S,
a unique solution X(·; z) ∈ C1([0, T ];S), and there holds the a-priori
estimate
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sup
(t,z)∈[0,T ]×Uρ

e−tL(ρ,R)/κ ‖X(t, ·; z)‖S ≤ 1

1− κ
sup
z∈Uρ

‖x0(z)‖S < ∞. (37)

(ii) if, for every t ∈ [0, T ], the map S 1 x -→ fj(t, x) ∈ S is analytic, and if
Uρ 1 z -→ x0(z) ∈ S is analytic, then the solution X depends analytically
on the parameter z ∈ Uρ, i.e. X ∈ A(Uρ;C1([0, T ];S)),

(iii) if the functions fj in (34) satisfy [0, T ] 1 t -→ fj(t, x) ∈ Ck([0, T ];S)
for every j = 0, 1, ... and for every x ∈ S for some k ≥ 1, then X ∈
A(Uρ;Ck+1([0, T ];S)).

(iv) For every ν ∈ F, denote by J(ν) = {j ∈ N : νj 5= 0} the fi-
nite “support” of ν and partition y ∈ U as y = (yJ , y(J)), with
yJ ∈ [−1, 1]|J|, y(J) ∈ U (J) := [−1, 1]N\J(ν). Then the parametric so-
lution X(·; y) ∈ Ck+1([0, T ];S) is, for every fixed y(J) ∈ U (J), strongly
holomorphic as a Ck+1([0, T ];S)-valued function with respect to the pa-
rameters zJ = yJ + iwJ in the polydisc

DρJ := {z ∈ CJ
∣∣ |zj | ≤ ρj , j ∈ J(ν)}, (38)

(v) At every z ∈ Uρ ⊂ CN in (32) with the polyradius ρ as in (36), the
solution X of (33) can be represented by the Taylor expansion

X(t; z) =
∑

ν∈F

Tν(t)z
ν , (39)

where

Tν(t) =
1

ν!
∂ν
yX(t; y)|y=0 ∈ Ck+1([0, T ];S), ν ∈ F .

The convergence of (39) is unconditional and pointwise in [0, T ] × Uρ,
i.e. we have pointwise convergence in Uρ as a mapping taking values in
the space Ck+1([0, T ];S) (or in Ck+1

L(ρ,R)/κ([0, T ];S)).
(vi) For real-valued arguments, i.e. z = y ∈ RN and for x0 ∈ Rd, fj(t, x) ∈

Rd for x ∈ Rd, the solution X(t, x0; z)|z=y coincides with the solution
constructed in Theorem 1; it is the unique analytic extension of this
solution to complex parameter vectors z = y + iw.

Proof. Concerning (i) we merely note that the only modification as compared
to Theorem 1 consists in replacing everywhere U by Uρ and L(R) by L(ρ, R).

(ii). We use the analyticity assumptions and the fact that the class of
analytic maps has the composition property (e.g. [15, Theorem 3.1.10]) to
deduce that all iterates Xi(t; z) in the fixed point iteration Xi+1 = Θ[Xi]
are analytic with respect to z ∈ Uρ for every t ∈ [0, T ]. Since Uρ is, as a
countable cartesian product of (closed) discs, a compact metric space by the
theorem of Tychonoff, and the sequence {Xi}i≥0 of iterates in Banach’s fixed
point theorem converges pointwise at every z ∈ Uρ to X (as a consequence of
the convergence with respect to the norm ‖ · ‖L(ρ)/κ,T,S), it converges in fact
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uniformly on Uρ, and hence X ∈ A(Uρ;C([0, T ];S)) by [15, Theorem 3.1.5c)].
Since X solves the problem (1) we obtain, once more using the composition
property of analytic maps, that also dX

dt ∈ A(Uρ;C([0, T ];S)), which then

yields X ∈ A(Uρ;C1([0, T ];S)).
(iii). Under condition (17), we already know X ∈ Ck+1([0, T ];C(Uρ;S)),

see Theorem 1. Repeatedly differentiating the problem (1) with respect
to t as well as applying the composition property of analytic maps then
yields djX

dtj ∈ A(Uρ;C([0, T ];S)) for j = 1, . . . , k + 1 and hence also X ∈
A(Uρ;Cj([0, T ];S)), j = 1, . . . , k + 1. We only note that for an analytic map
A : U −→ L(X ,Y) (the space L(X ,Y) being the Banach space of all bounded
linear operators from the complex Banach space X into another complex Ba-
nach space Y) the map Ax : U −→ Y, z -→ A(z)x, is again analytic for every
x ∈ X .

(iv). All preceding arguments also apply if, for fixed real parameters y(J),
the solution X is only considered parametric with respect to the J < ∞ many
components zJ ∈ DρJ ⊂ CJ in the disc DρJ ⊂ CJ defined in (38).

The assertion (v) is a consequence of [15, Theorem 3.1.5a)] and the state-
ments (i), (ii) and (iii) above, and (vi) is verified directly. !

4 Sparsity

4.1 Main Result

We showed in Theorem 4 that the solution of the parametric IVP (1) de-
pends analytically on the parameter vector y ∈ U ⊂ CN provided that the
summability assumptions (12) and Assumption 3 on the analyticity of the fj
hold. We show that if in addition the sequence is sparse, in the sense that
if (‖fj‖"Lip0(S,R))j≥1 ∈ %p(N) for all R > 0 for some 0 < p < 1, then the
sequence (Tν)ν∈F of Taylor coefficients of the solution is equally sparse.

Theorem 5. Consider the parametric IVP ODE (33) for parameter vectors
y ∈ U = [−1, 1]N. We assume that there exist real numbers R > 0 and
0 < κ < 1 with the following properties:

1. In (33) the vector field f depends on the parameter vector z in the affine
fashion (8) with the coefficient functions fj satisfying for some 0 < p < 1

(
‖fj‖"Lip0(S,R)

)
j≥1

∈ %p (N) and
(
ρj‖fj‖"Lip0(S,R)

)
j≥1

∈ %1 (N) ,

(40)
where the polyradius ρ is given by ρj =

δ
4Lj(R) +2 for some arbitrary fixed

δ > 0, and where Lj(R) := ‖fj‖"Lip0(S,R).
2. The initial data x0 ∈ C([0, T ]× Uρ;S) satisfies
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sup
z∈Uρ

‖x0(z)‖ ≤ (1− κ)Re−TL(ρ,R)/κ . (41)

Then the Taylor expansion (39) of the parametric solution X(t; y) of (33)
is p-sparse in the following sense: denoting for N ∈ N by ΛN ⊂ F a set of
indices ν ∈ F corresponding to N Taylor coefficients Tν with largest norm in
CL(ρ,R)/κ([0, T ];S) it holds

sup
z∈U

∥∥∥∥∥X(·; z)−
∑

ν∈ΛN

Tν(t)y
ν

∥∥∥∥∥
L(ρ,R)/κ,T,S

≤ CN−r, r =
1

p
− 1 (42)

and where ∑

ν∈ΛN

Tν(t)z
ν ∈ PΛN (U ;C1([0, T ];S))) . (43)

In the real-parameter setting the parametric solution X(·; y), y ∈ U , admits
the expansion

X(t; y) =
∑

ν∈F

Cν(t)Ξν(y) (44)

into a series of tensorized Chebyshev polynomials Ξν with unconditional and
uniform convergence on U . Denoting by ΛN ⊂ F a set of N Chebyshev co-
efficients Cν(t) ∈ CL(ρ,R)/κ([0, T ];S) which are largest in norm, the corre-
sponding partial sums converge at the rate

sup
y∈U

∥∥∥∥∥X(·; y)−
∑

ν∈ΛN

Cν(·)Ξν(y)

∥∥∥∥∥
L(ρ,R)/κ,T,S

≤ CN−r, r =
1

p
− 1 . (45)

Likewise, the parametric solution X(·; y) admits the Legendre expansion

X(t; y) =
∑

ν∈F

Xν(t)Pν(y) (46)

with unconditional and pointwise (for y ∈ U) convergence and, denot-
ing now by ΛN ⊂ F a set of N Legendre coefficients Xν(t) with largest
CL(ρ,R)/κ([0, T ];S) norms, the partial Legendre sums converge at the rate

sup
y∈U

∥∥∥∥∥X(·; y)−
∑

ν∈ΛN

Xν(t)Pν(y)

∥∥∥∥∥
L(ρ,R)/κ,T,S

≤ CN−r, r =
1

p
− 1 . (47)

For 0 < p ≤ 1 as in (40), the sequences (Tν)ν∈F, (Cν)ν∈F, (Xν)ν∈F of Taylor,
Chebyshev and Legendre coefficients of X are p-summable, i.e. it holds

(Tν)ν∈F, (Cν)ν∈F, (Xν)ν∈F ∈ %p
(
F;C1([0, T ];S)

)
.
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Finally, let (17) be satisfied for some k ≥ 0. Denote by Λk
N ⊂ F a set of N

largest Taylor coefficients (measured in Ck+1
L(ρ,R)/κ([0, T ];S)). Then it holds

sup
z∈U

∥∥∥∥∥∥
X(·; z)−

∑

ν∈Λk
N

Tν(t)y
ν

∥∥∥∥∥∥
Ck+1

L(ρ,R)/κ
([0,T ];S)

≤ CN−r, r =
1

p
− 1 . (48)

Similar statements hold for the Legendre and Chebyshev expansions.

For definitions of the tensorized Legendre and Chebyshev systems as well
as the respective expansion coefficients we refer to Sections 4.5 and to 4.6
ahead.

Remark 5. We emphasize that the optimal index sets Λk
N in general de-

pend on k; they even need not be monotonic in k. However, quasi-optimal
(monotonic in k) index sets can be obtained iteratively as follows: denote for

j = 0, 1, . . . , k + 1 by Λj,N the N largest Taylor coefficients of djX
dtj (in the

norm of CL(ρ,R)/κ([0, T ];S)). Note that the Taylor coefficients for djX
dtj are

exactly the t-derivatives of the Taylor coefficients for X.
Then the index set Λ =

⋃k+1
j=0 Λj,N yields a quasi-optimal (k + 2)N -term

approximation. For k = 0 this follows from |Λ| ≤| Λ0,N |+ |Λ1,N | ≤ 2N and

sup
z∈Uρ

∥∥∥∥∥X(·; z)−
∑

ν∈Λ

Tν(·)zν
∥∥∥∥∥
C1

L(ρ,R)/κ
([0,T ];S)

≤ sup
z∈Uρ

∥∥∥∥∥X(·; z)−
∑

ν∈Λ

Tν(·)zν
∥∥∥∥∥
L(ρ,R)/κ,T,S

+ sup
z∈Uρ

∥∥∥∥∥
dX

dt
(·; z)− d

dt

∑

ν∈Λ

Tν(·)zν
∥∥∥∥∥
L(ρ,R)/κ,T,S

≤
∑

ν %∈Λ

‖Tν(·)‖L(ρ,R)/κ,T,S +
∑

ν %∈Λ

∥∥∥∥
d

dt
Tν(·)

∥∥∥∥
L(ρ,R)/κ,T,S

≤
∑

ν %∈Λ0,N

‖Tν(·)‖L(ρ,R)/κ,T,S +
∑

ν %∈Λ1,N

∥∥∥∥
d

dt
Tν(·)

∥∥∥∥
L(ρ,R)/κ,T,S

≤ N−1/p+1

(
∑

ν∈F

‖Tν(·)‖pL(ρ,R)/κ,T,S

)1/p

+ N−1/p+1

(
∑

ν∈F

∥∥∥∥
d

dt
Tν(·)

∥∥∥∥
p

L(ρ,R)/κ,T,S

)1/p

≤ cpN
−1/p+1

(
∑

ν∈F

‖Tν(·)‖pC1
L(ρ,R)/κ

([0,T ];S)

)1/p

≡ cpN
−1/p+1 ‖(Tν)ν∈F‖"p(F;C1

L(ρ,R)/κ
([0,T ];S)) .
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For k > 0 one uses analogous arguments. !

4.2 Admissible poly-radii and a preliminary estimate
for Taylor coefficients

We shall establish Theorem 5 in a more general setting which is also appli-
cable to the parametric solutions considered in [7, 8, 16].

Assumption 6 1. S is some Banach space over C.
2. We are given a holomorphic function u : Uρ −→ S, which satisfies an a

priori estimate
sup
z∈Uρ

‖u(z)‖S ≤ B(ρ) , (49)

where the ρ-dependent bound satisfies for every J ∈ N

B(ρ1, . . . , ρJ , 1, . . .) ≤ B0

J∏

j=1

eαjρj (50)

for some constant B0 independent of ρ and of J for some sequence of
positive real numbers αj.

3. The poly-radii ρ in the previous assumption shall satisfy the conditions

ρj ≥ 1 , j ∈ N , and
∑

j≥1

ρjLj < ∞

for some fixed sequence (Lj)j≥1 of positive real numbers. Such a sequence
ρ will be called admissible poly-radius.

4. The given fixed sequence (Lj)j≥1 shall be summable, i.e.

∑

j≥1

Lj < ∞ (51)

We note that (51) is trivially satisfied in the case when the number of param-
eters is finite. We are now interested in estimates for the Taylor-, Legendre
and Chebyshev-coefficients of u.

Proposition 3. Let an admissible poly-radius ρ = (ρj)j≥1 and an analytic
function u as in Assumption 6 be given. Then for every ν ∈ F holds

‖∂νu(z)‖S ≤ ν!B(ρ)ρ−ν = ν!B(ρ)
∏

j∈supp ν

ρ
−νj

j , z ∈ Uρ .

Proof. The proof is based on the argument in [8, Lemma 2.4].
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Put E = supp ν = {j ∈ N : νj 5= 0} and set J = |E|. Writing z = (zE , zEc),
i.e. zE ∈ CJ contains the components corresponding to indices j ∈ E, the
admissibility of ρ then implies the estimate

‖u(zE , 0)‖S ≤ B(ρ) (52)

for every zE ∈ Uρ,E . W.l.o.g. we assume E = {1, . . . , J} (this may always be
achieved by re-numerating the variables). If we further define the sequence ρ̃
by

ρ̃j = ρj + ε , j ∈ E , ε =
δ∑

j∈E Lj
, ρ̃j = ρj , j 5∈ E ,

for some arbitrary real number δ > 0, it is easily verified that also ρ̃ is an
admissible poly-radius. In particular, uE is analytic in an open neighbourhood
of Uρ,E , where we are writing uE(z1, . . . , zJ) = uE(zE) ≡ u(zE , 0).

We may thus apply Cauchy’s integral formula (see, e.g., [15]) in each vari-
able zj , j ∈ E, to obtain

uE(z1, . . . , zJ) = (2πi)−J

∮

Γ1(z1)
· · ·

∮

ΓJ (zJ )

u(z′E , 0)

(z′1 − z1) · · · (z′J − zJ)
dz′1 · · · dz′J

= (2πi)−J

∮

Γ1

· · ·
∮

ΓJ

u(z′1 + z1, . . . , z′J + zJ)

z′1 · · · z′J
dz′1 · · · dz′J .

where Γj(zj) denotes the circle with radius ρj and center zj , and Γj ≡ ΓJ(0).
Differentiation (or directly applying the formula for derivatives) then yields

∂νu(0) =
∂|ν|u

∂zν1
1 · · · ∂zνJ

J

(0) = ν!(2πi)−J

∮

Γ1

· · ·
∮

ΓJ

u(z1, . . . , zJ)

zν1+1
1 · · · zνJ+1

J

dz1 · · · dzJ .

Eventually, together with (52) we conclude

‖∂νu(0)‖S ≤ ν!B(ρ)ρ−ν = ν!B(ρ)
∏

j∈E

ρ
−νj

j .

This proves the claim. !

Note that the proposition holds for arbitrary admissible poly-radii. Hence
the estimate can be improved by taking the infimum over all sequences ρ on
the right hand side. Further note, that the optimal sequence ρ for such an
estimate (if a minimizer exists) might depend on ν. For our purpose of proving
the p-summability of the Taylor-coefficients this means that for every given
ν ∈ F we can construct suitable admissible poly-radii ρ(ν), apply Proposition
3 and afterwards sum up the resulting estimates.

Within these considerations it will be necessary to have sharper bounds
on the constants B(ρ) which leads to the following distinction of admissible
poly-radii.
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Definition 4. An admissible poly-radius ρ = (ρj)j≥1 will be called (b, δ)-
admissible, if ∑

j≥1

ρjαj ≤ b− δ .

As a particular consequence, if we fix some (sufficiently large) constant b, then
for every δ > 0 every (b, δ)-admissible sequence ρ will satisfy the (uniform!)
estimate b(ρ) ≤ b0eb.

4.3 A construction of (b, δ/2)-admissible poly-radii

The basis for all the ensuing considerations is the following assumption.

Assumption 7 The constants αj, j ≥ 1, shall be summable,
∑

j≥1 αj < ∞;
in other words, there exist a (sufficiently large) constant b and some δ > 0
such that the sequence ρ = (1, 1, . . .) is a (b, δ)-admissible poly-radius.

Our construction is essentially based on analogous arguments in [8]. To
begin with, we fix a multiindex ν ∈ F and choose M ∈ N such that

∑

j>M

max(αj , Lj) ≤
δ

12
.

This is feasible due to the Assumption (51), Assumption 7 and max(αj , Lj) ≤
αj + Lj . We shall use the abbreviation γj = max(αj , Lj) Without loss of
generality, we assume that the indexing of the parameters zj is chosen such
that the sequence

(
γj
)
j≥1

is non-increasing. Then we partition N into two

sets E = {1, . . . ,M} and F = N \ E. We further choose κ > 1 such that

(κ− 1)
∑

j≤M

γj ≤
δ

4
.

Finally, we define our sequence ρ by

ρj = κ , j ∈ E ; ρj = max
(
1,

δνj
4|νF |γj

)
, j ∈ F ,

where νE denotes the restriction of ν to the index set E, and |νF | denotes
the %1-norm of the multiindex restricted to F , i.e. |νF | =

∑
j>M νj (with the

convention νj

|νF | = 0 if |νF | = 0).

Now we first verify that this sequence ρ is indeed (b, δ/2)-admissible. To
do so, we estimate
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∑

j≥1

ρjαj = κ
∑

j≤J

αj +
∑

j>J

max
(
1,

δνj
4|νF |γj

)
αj

≤ (κ− 1)
∑

j≤J

γj +
∑

j≤J

αj +
∑

j>J

(
1 +

δνj
4|νF |γj

)
αj

≤ δ

4
+
∑

j≥1

αj +
δ

4
≤ b− δ

2
.

Similarly, it follows from assumption (51) that

∑

j≥1

ρjLj ≤
δ

2
+

∑

j≥1

Lj < ∞ .

By Proposition 3 we bound tν := (ν!)−1(∂ν
yu)(0) by

‖tν‖S ≤ B(ρ)ρ−ν ≤ b0e
b

(∏

j∈E

ηνj

)(∏

j∈F

( |νF |dj
νj

)νj
)
, (53)

where η = 1
κ < 1 and dj = 4γj

δ . Moreover, factors with exponent νj = 0 are
understood to be 1. Finally, we note that the choice of M implies

‖d‖"1(F ) =
∑

j>M

dj ≤
1

3
. (54)

!

4.4 Summability of Taylor coefficients

The constructions in the previous section are the basis for the following the-
orem. We shall follow closely the argument given in [8, Section 4.4]. Before
stating the main theorem, we mention the following basic result of [7].

Proposition 4. Given 0 < p < 1, it holds
( |ν|!

ν! b
ν
)
ν∈F

∈ %p(F) if, and only

if,
∑

j∈N bj < 1 and (bj)j∈N ∈ %p(N).

With the help of this proposition we are finally able to prove the desired
summability result.

Theorem 8. Let the Assumptions 6 and 7 be satisfied. Moreover, suppose

(
αj

)
j∈N ,

(
Lj

)
j∈N ∈ %p(N) , i.e.

(
γj
)
j∈N ∈ %p(N) . (55)
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Then, for the same value of p, the sequence {tν}ν∈F of Taylor coefficients
tν = 1

ν!∂
νu(0) ∈ S of the given function u is p-summable in the sense that(

‖tν‖S
)
ν∈F

∈ %p(F).

Proof. We conclude from (53)

∑

ν∈F

(
‖tν‖S

)p ≤ bp0e
bp

∑

ν∈F

(∏

j∈E

ηνj

)p(∏

j∈F

( |νF |dj
νj

)νj
)p

≡ bp0e
bp

( ∑

ν∈FE

β(ν)p
)( ∑

ν∈FF

β̃(ν)p
)

≡ bp0e
bpAEAF ,

where FE = {ν ∈ F : supp ν ⊂ E} and FF = {ν ∈ F : supp ν ⊂ F}. Then it
further follows

AE =

( ∑

ν∈FE

β(ν)p
)

=
∑

ν∈FE

∏

j∈E

ηνjp =
∏

j∈E

∞∑

n=0

ηnp =

(
1

1− ηp

)M

,

recall η < 1 (since E is finite and |E| = M the index set FE may be identified
with NM

0 ). Now we turn to showing AF < ∞. Using as before the convention
00 = 1 and dνF =

∏
j∈F d

νj

j we find

β̃(ν) =
∏

j∈F

( |νF |dj
νj

)νj

=
|νF ||νF |
∏

j∈F ν
νj

j

dνF , ν ∈ FF . (56)

Applying the Stirling inequalities

n!en

e
√
n
≤ nn ≤ n!en√

2πn
, n ≥ 1 ,

we can further estimate the numerator and denominator in (56),

|νF ||νF | ≤ |νF |!e|νF | and
∏

j∈F

ν
νj

j ≥ νF !e|νF |
∏

j∈F max(1, e
√
νj)

≥ νF !e|νF |
∏

j∈F eνj
,

where at the end we used the bound max(1, e
√
n) ≤ en. Altogether we then

obtain from (56)

β̃(ν) ≤ |νF |!
νF !

e|νF |dνF =
|νF |!
νF !

∏

j∈F

(edj)
νj .

We next apply Proposition 4 to the sequence (edj)j∈N. The assumptions
of Proposition 4 are satisfied due to (54), e < 3, and due to condition (55).

Eventually, this yields
∑

ν∈FF
β̃(ν)p < ∞, and thus the asserted summability

of the Taylor coefficients. !
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4.5 Legendre Approximation

In this section we shall consider expansions of the mapping z -→ u(z) into
series of tensorized Legendre polynomials. We show that N -term truncated
Legendre expansions yield optimal L2 convergence rates. Their orthogonal-
ity with respect to the uniform Lebesgue measure on (−1, 1) renders them
particularly suitable as bases in so-called stochastic Galerkin Methods (see,
e.g., [10] and the references there). To fix notations, and to facilitate the
(countable) tensor product construction, normalization is crucial. In the
univariate case, we define the system (Pn)n≥0 to be Legendre polynomials
with the L∞-normalization ‖Pn‖L∞([−1,1]) = Pn(1) = 1 and we denote by
Ln =

√
2n+ 1Pn their L2-normalized version, i.e.

∫ 1

−1
|Ln(s)|2

ds

2
= 1 , n ≥ 0 .

Note that in particular P0 ≡ L0 ≡ 1. For ν ∈ F, we define two families of
tensorized Legendre polynomials,

Pν(z) =
∏

j≥1

Pνj (zj) and Lν(z) =
∏

j≥1

Lνj (zj) .

The property P0 ≡ L0 ≡ 1 renders Pν(z) and Lν(z) well-defined for all ν ∈ F.

As a direct consequence we further note that (Lν)ν∈F is an orthonormal
basis in L2(U,dµ), where dµ is the countable product of the probability mea-

sures dyj

2 on [−1, 1]. The vector-valued spaces L2(U,dµ;S) as well as the
Bochner spaces Lp(U,dµ;S), 0 < p ≤ ∞ are to be understood similarly.

From conditions (49) and (50) we immediately conclude u ∈ L∞(U,dµ;S) ↪→
L2(U,dµ;S), thus we obtain the unique expansions

u(y) =
∑

ν∈F

uνPν(y) =
∑

ν∈F

vνLν(y) (57)

with convergence in L2(U,dµ;S), where the S-valued coefficients uν and vν
are given by

vν =

∫

U
u(y)Lν(y) dµ(y) and uν =

(∏

j≥1

(1 + 2νj)

)1/2

vν .

We then find the following analog of Theorem 8 for tensorized Legendre
expansions.

Theorem 9. Let the Assumptions 6 and 7 and condition (55) be satisfied.
Then the Legendre coefficients uν and vν of the given function u are p-
summable, i.e.

(
‖uν‖S

)
ν∈F

,
(
‖vν‖S

)
ν∈F

∈ %p(F).
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A proof may be obtained following along the lines of the one given in [8],
but we prefer to give an alternative argument leading to sharper estimates for
the Legendre coefficients. This second proof is an adaption of (real variable)
estimates presented in Sec. 6 of [7].

We start by recalling Rodrigues’ formula,

Ln(s) =
(−1)n

√
2n+ 1

2nn!

dn

dsn
(1− t2)n , n ∈ N .

If g : [−1, 1] −→ S is some given C∞-function of one variable, we then can
use partial integration to estimate the corresponding Legendre-coefficients:

gn =
(−1)n

√
2n+ 1

2nn!

∫ 1

−1
g(s)Pn(s) ds =

√
2n+ 1

2nn!

∫ 1

−1
g(n)(s)(1− s2)n ds ,

and it follows

‖gn‖S ≤
√
2n+ 1

2nn!
In‖g(n)‖L∞([−1,1];S) ,

where In =
∫ 1
−1(1 − s2)n ds. Partial integration and the obvious relation

In = In−1 −
∫ 1
−1 s

2(1 − s2)n−1ds reveal the recursion In = 2n
2n+1In−1. Thus

we have

In =
n∏

k=1

2k

2k + 1
=

2nn!

(2n+ 1)(2n− 1)!!
for n ≥ 1 , I0 = 1 .

Combining these formulas gives

‖gn‖S ≤ 1√
2n+ 1(2n− 1)!!

‖g(n)‖L∞([−1,1];S) ≤
1√

2n+ 1n!
‖g(n)‖L∞([−1,1];S) .

This one-variable estimate may now be applied to our analytic function u
with respect to every parameter yj . In this way we can estimate the Legendre
coefficients uν by the L∞-norm of the partial derivative ∂νu:

‖uν‖S ≤ ‖∂νu‖L∞(U ;S)

∏

j∈supp ν

√
2νj + 1 · 1√

2νj + 1νj !
=

1

ν!
‖∂νu‖L∞(U ;S) .

Combining this with Proposition 3 and recalling U ⊂ Uρ we have shown

Proposition 5. Let the Assumption 6 be satisfied. Further let ρ be an arbi-
trary admissible sequence. Then we have the estimate

‖uν‖S ≤ B(ρ)
∏

j∈supp ν

ρ
−νj

j ≡ B(ρ)ρ−ν .

In other words, the Legendre coefficients uν may be estimated in exactly the
same way as the Taylor coefficients tν , thus exactly the same arguments as for
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the proof of Theorem 8 prove also Theorem 9. We only note that obviously
‖vν‖S ≤ ‖uν‖S , hence the summability of (‖uν‖S)ν∈F immediately implies
the result for (‖vν‖S)ν∈F.

4.6 Chebyshev Approximation

As a further example of orthogonal polynomials defined on the interval [−1, 1]
we consider the Chebyshev polynomials Ξn(t) = cos(n arccos(t)), n ∈ N, and
Ξ0(t) ≡ 1. Whereas Legendre polynomials are, due to their orthogonality
properties with respect to the uniform probability measure, well suited for
stochastic Galerkin discretizations, the Chebyshev family is particularly well-
suited for collocation; this has been exploited for several decades in connection
with spectral methods [5]. Chebyshev polynomials satisfy

‖Ξn‖L∞([−1,1]) = 1 , n ≥ 0 , and

∫

[−1,1]
|Ξn(t)|2

dt√
1− t2

=
π

2
, n ∈ N .

As before we consider the set U equipped with the Borel σ-algebra B(U) and
the product measure

dη =
⊗

j∈N

dt

π
√
1− t2

.

As in the Legendre-case conditions (49) and (50) imply u ∈ L∞(U,dη;S) ↪→
L2(U,dη;S). Moreover, the system of tensorized polynomials (Ξν)ν∈F, where
for ν ∈ F we put Ξν(y) =

∏
j∈N Ξνj (yj), constitutes an orthogonal basis.

Note that they are not orthonormal with respect to the measure η, but there
holds ∫

U
|Ξν(y)|2 dη(y) =

∏

j∈supp ν

1

2
= 2−| supp ν| .

Nevertheless, this yields the unique Chebyshev expansions

u(y) =
∑

ν∈F

wνΞν(y) , y ∈ U , wν = 2| supp ν|
∫

U
u(y)Ξν(y)dη(y) , (58)

with convergence in L2(U,dη;S).
We again aim at a summability result as in Theorems 8 and 9, and once

more we start with an estimate in terms of arbitrary admissible sequences.

Proposition 6. Under the assumptions of Proposition 5 it holds

‖wν‖S ≤ B(ρ)
∏

j∈supp ν

2ρ
−νj

j ≡ B(ρ)2| supp ν|ρ−ν .
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Proof. W.l.o.g we discuss the case ν = ne1, n ∈ N, the general case being
a straightforward modification by applying the single-variable case to every
variable zj with j ∈ supp ν.

Similar to the proof of Proposition 3 we write z = (z1, z′) ∈ Uρ and put
u1(z1) = u(z1, z′) for some arbitrary z′ ∈ U ′ =

∏
j≥2{ζ ∈ C : |ζ| ≤ 1}

(note that due to the assumption on ρ we have U ⊂ Uρ). Then we have
‖u1(z1)‖S ≤ B(ρ), and we further find

∫

U
Ξν(y)u(y) dη(y) =

∫

U ′

∫

[−1,1]
Ξn(t)u(t, y

′)
dt

π
√
1− t2

dη(y′) ≡
∫

U ′
In(y′) dη(y′) .

It clearly suffices to bound ‖In(y′)‖S independently of y′. At first we find

πIn(y′) =
∫ π

0
cos(nθ)u1(cos θ) dθ =

1

2

∫ π

−π
u1(cos θ) cos(nθ) dθ

=
1

2i

∫

|ζ|=1
u1

(
ζ + ζ−1

2

)(
ζn + ζ−n

2

)
dζ

ζ
≡ 1

2i

∫

|ζ|=1
u1

(
J (ζ)

)(
J (ζn)

)dζ
ζ

.

The last step is verified by substituting the standard parametrization ζ(θ) =
eiθ and by the Joukowsky-transform J (ζ) = (ζ + ζ−1)/2. Vice versa, it is
well-known that J maps the unit circle onto the interval [−1, 1] (traversed
twice), since with |ζ| = 1 it follows J (ζ) = 8(ζ). Therefore we can estimate

4π‖In(y′)‖S ≤
∥∥∥∥
∫

|ζ|=1
u1

(
J (ζ)

)
ζn

dζ

ζ

∥∥∥∥
S
+

∥∥∥∥
∫

|ζ|=1
u1

(
J (ζ)

)
ζ−n dζ

ζ

∥∥∥∥
S

=

∥∥∥∥
∫

|ζ|=ρ1

u1

(
J (ζ)

)
ζn−1dζ

∥∥∥∥
S
+

∥∥∥∥
∫

|ζ|=ρ−1
1

u1

(
J (ζ)

)
ζ−n−1dζ

∥∥∥∥
S

≤ B(ρ)ρn−1
1 · 2πρ1 +B(ρ)ρ−n−1

1 · 2πρ−1
1 = 4πB(ρ)ρ−n

1 .

Here we used Cauchy’s Theorem, since |J (ζ)| ≤ ρ1 on |ζ| = ρ1 or |ζ| = ρ−1
1

and the fact that u1 is analytic in an open neighbourhood of the disc {ζ ∈
C : |ζ| ≤ ρ1}, see the proof of Proposition 3. !

The above, classical argument can essentially be found in Section 3 of [21].
By a modification of the construction and summation argument from the

proof of Theorem 8 similar to the Legendre-case in [8], we then obtain an
analogous summability result for coefficients in the Chebyshev expansion.

Theorem 10. Theorem 9 remains valid upon replacing the Legendre polyno-
mials Lν and the the Legendre coefficients vν in the expansion (57) by the
Chebyshev polynomials Ξν and the Chebyshev coefficients wν in (58).

For later reference we present the corresponding construction of (b, δ/2)-
admissible sequences. As in Sec. 4.3 we start by choosing some parameter
κ > 1 such that
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(κ− 1)
∑

j≥1

γj ≤
δ

8
.

Further we fix an integer M such that

∑

j>M

γj ≤
δ

24
,

and we put once more E = {1, . . . ,M} and F = N\E. Finally, we define our
sequence ρ by

ρj = κ , j ∈ E ; ρj =
δνj

4|νF |γj
+ 2 , j ∈ F .

Again we have to check first that this sequence ρ is indeed (b, δ/2)-admissible.
To do so, we estimate

∑

j≥1

ρjαj = κ
∑

j≤M

αj +
∑

j>M

(
2 +

δνj
4|νF |γj

)
αj

≤ (κ− 1)
∑

j≤M

γj +
∑

j≤M

αj +
δ

4
+ 2

∑

j>M

αj

≤ 3δ

8
+
∑

j≥1

αj +
∑

j>M

γj ≤
δ

2
+

∑

j≥1

αj ≤ b− δ

2
.

Similarly, it follows from assumption (51) that

∑

j≥1

ρjLj ≤
δ

2
+

∑

j≥1

Lj < ∞ .

Ultimately, by applying Proposition 6 we obtain the estimate

‖tν‖S ≤ 2| supp ν|B(ρ)ρ−ν

≤ b0e
b2M

(∏

j∈E

ηνj

)
2|(supp ν)∩F |

(∏

j∈F

( |νF |dj
νj

)νj
)

≤ b0e
b2M

(∏

j∈E

ηνj

)(∏

j∈F

( |νF |d̃j
νj

)νj
)
, (59)

where η = 1
κ < 1 and d̃j =

8γj

δ , and the choice of M implies

‖d̃‖"1(F ) =
∑

j>M

d̃j ≤
1

3
.
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We shall point out two particular aspects of this construction, as they become
important in Sec. 4.8:

• The first part of the sequence ρ with indices in E is independent of ν
(particularly, also the partition N = E ∪ F does not depend on ν).

• For the second part of all these sequences ρ we have ρj ≥ 2 for all j ∈ F .

For the proof of Theorem 10 we finally note that the estimate (59) is of
exactly the same form as the estimate (53), hence the arguments from the
proof of Theorem 8 apply here as well.

4.7 Proof of Theorem 5

In the concrete situation of the parametric problem (1) we know from The-
orem 4 that under the given assumptions we have X ∈ A(Uρ;C1([0, T ];S)),
and if additionally condition (17) holds it follows X ∈ A(Uρ;Ck+1([0, T ];S)).
Together with the a priori estimates (37) we are almost in the situation of
the previous summability theorems. Since we always have to fulfill the small-
data-assumption (27), fulfilling the conditions (49) and (50) would imply x0

to be bounded with respect to every component zj , j ∈ N, and thus (by
Liouville’s Theorem) to be constant. Eventually, this would yield the rather
trivial result of affine dependence of the solution X(·; z) on the parameters.

However, to derive the above theorems we only need to consider the various
constructed sequences ρ(ν), see Section 4.3. Then it becomes clear that we
have ρj(ν) ≤ ρj = max(1, δ

4γj
), where δ > 0 can be chosen arbitrarily (which

in turn of course affects all the other constants involved). Hence we only
need to satisfy the estimates (49) and (50) for the sequence ρ, which in turn
is ensured by the small-data-assumption (41) as well as the a priori estimate
(37). !

Remark 6. As before in case of global Lipschitz-continuity of f the small-data-
assumption (41) can be dropped, and we can even allow for an exponential
growth of x0 as described by the conditions (49) and (50).

Remark 7. Estimates for the initial data, as long as these satisfy the small-
data-assumption, enter the summability result via the a-priori-estimates (37).
In turn the small-data-assumptions are influenced via the Lipschitz-constants
L(ρ, R), i.e. the second part of assumption (40).

The constant in (42) is exactly the %p(F)-quasi-norm of the sequence of
Taylor coefficients (Tν)ν∈F, which depends on the a-priori-estimate for X
(as a common factor in all the estimates in Proposition 3, the same factor
appears in this quasi-norm) and on the %p(N)-quasi-norm in the left part of
(40).

Finally, higher regularity for the functions fj does not affect the small-
data-assumption or the domain of analyticity (i.e. the polydisc Uρ), but only
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the a-priori-estimate. Moreover, such higher regularity of course affects the
norm, in which the Taylor-coefficients are measured and hence their %p-quasi-
norm as well as the index set of largest coefficients.

The same considerations apply to the Legendre and Chebyshev series of
the parametric solution.

4.8 Monotone N-term approximations

The sparsity result Theorem 5 yields the existence of a family of sparse, N -
term truncated Taylor series of the parametric solutions X(t; y). Its proof,
however, does not shed light on the structure resp. on the construction of
concrete sets ΛN ⊂ F which would yield the proven convergence rate with,
possibly, a suboptimal constant. In [14], we test algorithms towards the end
of efficient constructions of concrete sequences {ΛN}N≥0.

Due to the strongly nonlinear nature of the problem (1), these methods
will be based on collocation approximations of (1). In order to exploit sparsity
in polynomial expansions of the parametric solutions, as provided by Theo-
rem 5, with collocation schemes, it is important that for optimal sets Λ ⊂ F
of “active” polynomial coefficients we have available unisolvent polynomial
interpolants. For arbitrary sets Λ ⊂ F, it is in general difficult (if not impos-
sibe) to design unisolvent polynomial interpolation based on N points where
N is equal to the cardinality of Λ.

One particular class of index sets Λ ⊂ F for which this is possible are
the so-called monotone index sets. This class of index sets was introduced in
[6] in the context of adaptive Taylor approximations of parametric elliptic
partial differential equations. we now strenghten the N -term approximation
properties of the Taylor series by introducing the notion of monotonicity of
index sets Λ ⊂ F.

This notion is based on the following ordering of F: for any two indices
µ, ν ∈ F, we say that µ ≤ ν if and only if µj ≤ νj for all j ≥ 1. We will also
say that µ < ν if and only if µ ≤ ν for all j ∈ N and if µj < νj for at least
one value of j.

Definition 5. A sequence (aν)ν∈F of nonnegative real numbers is said to be
monotone decreasing if and only if for all µ, ν ∈ F

µ ≤ ν ⇒ aν ≤ aµ .

A non empty set Λ ⊂ F is called monotone if and only if ν ∈ Λ and µ ≤
ν ⇒ µ ∈ Λ. For a monotone set Λ ⊂ F, we define its margin M = M(Λ) as
follows:

M(Λ) := {ν /∈ Λ ; ∃j > 0 : ν − ej ∈ Λ} , (60)

where ej ∈ F is the Kronecker sequence: (ej)i = δij for i, j ∈ N.
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Notice that the margin M(Λ) is an infinite set even when Λ is finite since
there are infinitely many variables. In the finite dimensional setting d < ∞,
the margin is a finite set. Any nonempty monotone set contains the null index
(0, 0, · · · ), which we will denote in what follows with slight abuse of notation
by 0. Intersections and unions of monotone sets are also monotone. Also, note
that Λ ∪M(Λ) is a monotone set.

Recall |ν| :=
∑

i≥1 νi for ν ∈ F. We say that ν is maximal in a set Λ ⊂ F
if and only if there exists no µ > ν in Λ. If Λ ⊂ F satisfies N := N(Λ) :=
maxν∈Λ |ν| < ∞, then any ν ∈ Λ for which |ν| = N is a maximal element. In
particular, any finite set Λ has at least one maximal element. If Λ is monotone
and if ν is maximal in Λ, then Λ− {ν} is monotone.

The monotone majorant of a bounded sequence (aν)ν∈F is the sequence

aν := max
µ≥ν

|aµ|, ν ∈ F .

We define %pm(F) as the set of all sequences which have their monotone ma-
jorant in %p(F). Clearly, %pm(F) is a linear space with respect to addition of
sequences and scalar multiplication. We equip this space with the norm

‖(aν)‖"pm(F) := ‖(aν)‖"p(F),

Now, if (aν)ν∈F ∈ %pm(F), 0 < p < 1, and Λk is any monotone realization of
Λ∗
k((aν)ν∈F), then these sets Λk satisfy

∑

ν /∈Λk

|aν | ≤
∑

ν /∈Λk

aν ≤ ‖(aν)‖"pm(F)(k + 1)−s, s :=
1

p
− 1. (61)

Theorem 11. Under the assumptions of Theorem 5, each of the sequences

(
‖Tν‖C1

L(ρ,R)/κ
([0,T ];S)

)
ν∈F

,
(
‖Cν‖C1

L(ρ,R)/κ
([0,T ];S)

)
ν∈F

,
(
‖Xν‖C1

L(ρ,R)/κ
([0,T ];S)

)
ν∈F

belongs to %pm(F).

Proof: The result will follow from the coefficient estimates obtained in Propo-
sition 3 that we used in the proof of Theorem 5, and on arguments in [6]. We
denote by Ab,δ the set of all (b, δ)-admissible sequences ρ for which ρj ≥ 1,
for all j. It was shown in Proposition 3 that for any δ > 0

‖Tν‖C1
L(ρ,R)/κ

([0,T ];S) ≤ inf
ρ∈Ab,δ

B(ρ)ρ−ν ≤ b0e
b inf
ρ∈Ab,δ

ρ−ν . (62)

Now fix δ > 0 arbitrary. Then we have

‖Tν‖C1
L(ρ,R)/κ

([0,T ];S) ≤ b0e
b inf
ρ∈Ab,δ/2

ρ−ν =: bν . (63)

In the proof of Theorem 5 it was shown that (bν)ν∈F ∈ %p(F). We now observe
that the sequence bν defined in (63) is monotone because for any ρ ∈ Ab, δ2
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µ ≤ ν ⇒ ρ−ν ≤ ρ−µ,

and thus
µ ≤ ν ⇒ bν ≤ bµ.

Therefore, if (aν) denotes the monotone majorant of the coefficient sequence
(‖Tν‖C1

L(ρ,R)/κ
([0,T ];S))ν∈F, we also find that

aν ≤ bν .

It follows that
∥∥∥‖Tν‖C1

L(ρ,R)/κ
([0,T ];S)

∥∥∥
"pm(F)

≤ ‖(bν)‖"p(F) < ∞. In view of

Proposition 5 exactly the same arguments apply to the sequence Xν of Leg-
endre coefficients. To prove that

(
‖Cν‖C1

L(ρ,R)/κ
([0,T ];S)

)
ν∈F

∈ %pm(F)

we shall make use of Proposition 6 and the special construction of (b, δ/2)-
admissible sequences in Sec. 4.6. We find

‖Cν‖C1
L(ρ,R)/κ

([0,T ];S) ≤ inf
δ>0

inf
ρ∈Ab,δ

b0e
b2| supp ν|ρ−ν

≤ b0e
b inf
ρ∈Ab,δ/2,ρj=κ, j∈E,

ρj≥2, j∈F

2| supp ν|ρ−ν =: b̃ν

with κ, E and F as in Sec. 4.6. Unfortunately, the sequence (̃bν)ν∈F itself is
not monotone. However, it holds

µ ≤ ν ⇒ b̃ν ≤ 2|E∩supp(ν−µ)|b̃µ ≤ 2Msµ ,

since due to ρj ≥ 2 for j ∈ F we have

∏

j∈supp ν∩F

2ρ
−νj

j ≤
∏

j∈suppµ∩F

2ρ
−µj

j .

Thus it follows
‖wν‖S ≤ b̃ν ≤ sup

µ≥ν
b̃ν ≤ 2M b̃ν .

In other words, (̃bν)ν∈F is quasi-monotone, and it belonging to %p(F) was

already proven in Theorem 10. We conclude (̃bν)ν∈F ∈ %pm(F), and hence we
finally find

(
‖wν‖S

)
ν∈F

to belong to %pm(F). !



Contents 41

5 Conclusions

We have presented a general theory of parametric initial value ODEs on high-
and possibly infinite dimensional parameter and state spaces.

Under the uniform validity of a Lipschitz condition for the parametric
vector fields and under the assumption of affine parameter dependence on
the parameters, which typically occurs in applications from stochiometry and
from Karhunen-Loeve type representations in PCAs, we showed existence,
uniqueness of analytic contiuations of the parametric solutions to certain
polydiscs in CN, with precise bounds on their size. This, in turn, was used to
establish a-priori bounds on the Taylor-, Legendre- and Chebysev coefficients
in the corresponding expansions of the parametric solutions, and to establish
p-summability of the corresponding coefficient sequences measured in the
norm ‖ ◦ ‖S of the corresponding state spaces S. This p-summability allowed
to deduce, via a classical argument due to Stechkin, the rate of convergence of
nonlinear, bestN -term approximations of partial sums of such sequences. The
convergence rates of best N -term approximations of the parametric solutions
were found to depend only on the summability of the parametric inputs and
to be in particular independent of the dimension of the parameter space U .
We showed, in particular, that these rates were attained even by best N -term
approximations on index sets ΛN ⊂ F which were monotone.

Spans of tensor product polynomials with degree combinations that be-
long to monotone sets are independent of the choice polynomial basis in the
coordinate direction. This observation allows the design and optimization of
sparse, adaptive collocation approximations of Smolyak type for monotone
polynomial degree combinations and rather general choices of interpolation
points in the coordinate directions.
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2012), 2011.

7. A. Cohen, R. DeVore, and Ch. Schwab. Convergence rates of best n-term approx-
imations for a class of elliptic spdes. Journ. Found. Comp. Math., 10(6):615–646,
2010.

8. A. Cohen, R. A. DeVore, and Christoph Schwab. Analytic regularity and polynomial
approximation of parametric and stochastic elliptic pdes. Analysis and Applications,
9(1):11–47, 2011.

9. Klaus Deimling. Nonlinear Ordinary Differential Equations in Banach Spaces, volume
596 of Springer Lecture Notes in Mathematics. Springer Verlag, New York, 1977.

10. C.J. Gittelson. Adaptive stochastic Galerkin methods: Beyond the elliptic case. Tech-
nical report, Report 2011-12, Seminar for Applied Mathematics, ETH Zürich, 2011.
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