
!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
! Eidgenössische
Technische Hochschule
Zürich

Ecole polytechnique fédérale de Zurich
Politecnico federale di Zurigo
Swiss Federal Institute of Technology Zurich

Multiple point evaluation on combined tensor
product supports

R. Hiptmair, G. Phillips∗ and G. Sinha†

Research Report No. 2011-63
October 2011

Seminar für Angewandte Mathematik
Eidgenössische Technische Hochschule

CH-8092 Zürich
Switzerland

∗Neue Kantonsschule, 5000 Aarau, Switzerland
†Department of Mathematics and Statistics, IIT Kanpur, India

Multiple Point Evaluation on Combined Tensor

Product Supports

R. Hiptmair∗ G. Phillips† G. Sinha‡

16 Nov 2009

Abstract. We consider the multiple point evaluation problem for an n-
dimensional space of functions [−1, 1[d #→ R spanned by d-variate basis func-
tions that are the restrictions of simple (say linear) functions to tensor product
domains. For arbitrary evaluation points this task is faced in the context of
(semi-)Lagrangian schemes using adaptive sparse tensor approximation spaces
for boundary value problems in moderately high dimensions.

We devise a fast algorithm for performing m ≥ n point evaluations of a
function in this space with computational cost O(m logd n). We resort to nested
segment tree data structures built in a preprocessing stage with an asymptotic
effort of O(n logd−1 n).

Keywords. (Multilevel) segment tree, adaptive sparse tensor product ap-
proximation

1 Introduction

We fix the dimension d ∈ N and denote by W a low-dimensional vector space
of real valued functions [−1, 1[d #→ R on the d-dimensional hypercube. The main
specimens are provided by spaces of multivariate polynomials. For some (large)
n ∈ N we are given arbitrary sequences of points ak, bk ∈ [−1, 1[d, k = 1, . . . , n,
with ak < bk, where “<” is understood in a componentwise sense. The charac-
teristic function of a non-degenerate tensor product box with corners a, b ∈ Rd,
a < b, is defined according to

χa,b(x) :=

{

1 , if ai ≤ xi < bi , i = 1, . . . , d ,

0 elsewhere,
x ∈ [−1, 1[d .

∗SAM, ETH Zürich, CH-8092 Zürich, hiptmair@sam.math.ethz.ch
†Neue Kantonsschule, CH-5000 Aarau, gisela.phillips@nksa.ch
‡Department of Mathematics and Statistics, IIT Kanpur, India, gauravsinha420@gmail.com

1

Based on another sequence (ϕ1, . . .ϕn) ∈ W n we introduce the linear combination
of basis functions with tensor product supports

Ψ(x) :=
n

∑

k=1

ϕk(x) · χak,bk(x) , x ∈ [−1, 1[d . (1)

The summands will be called box (supported) functions in the sequel.
The following computational task addresses the multiple evaluation of Ψ in

many points.

Task 1. Given m ≥ n points xk ∈ [−1, 1[d, k = 1 . . . , m, compute the m values
Ψ(xk).

A naive implementation that relies on the straightforward summation of (1)
requires an asymptotic computational effort of O(mn), where we tacitly assume
that a single evaluation ϕk(x) can be done with O(1) cost.

In this article we propose data structures and an algorithm that allow to per-
form the evaluations of Task 1 with computational cost O(m logd n) for m,n →
∞, which means a considerable acceleration for large n,m. This can be achieved
through a smart preprocessing step involving an effort ofO(n logd−1 n), see Propo-
sition 4.3. This reduces the cost of a single point evaluation to O(logd n), see
Proposition 5.2. We acknowledge that the constants in the estimates may de-
pend on d and will usually do so in an exponential fashion. This is acceptable,
because storing a single function ϕ ∈ W will usually take pd bits for some p > 1.
For example, if W is the space of affine linear functions, we need 2d coefficients
to characterize any ϕ ∈ W .

A special case of functions represented as sums like (1) occurs in the context of
sparse adaptive tensor discretizations also known as adaptive sparse grids. There,
W will be the d+1-dimensional space of affine linear functions Rd #→ R, and the
corner points are taken from a special set of nodes of hierarchical tensor product
meshes. More precisely, we have for some maximal “level” L ∈ N

ak, bk ∈
{(

ij2
−lj

)d

j=1
: lj = 0, . . . , L, ij ∈ {−2lj , . . . , 2lj}, ij odd

}

.

For more information about (adaptive) sparse tensor product spaces and their use
to break the so-called “curse of dimensionality” in the approximation of solutions
of moderately high-dimensional boundary value problems we refer to [1] and [8].

Usually, sparse grids functions need not be evaluated at arbitrary points. The
exception are transport problems tackled by means of so-called semi-Lagrangian
schemes, see, e.g., [6]. These methods follow the trajectories of a flow field over
a short time to determine interpolation points. These can be located anywhere,
if general flow fields are admitted. The semi-Lagrangian approach in combina-
tion with adaptive sparse grid spaces offers a promising numerical technique for
moderately high-dimensional boundary value problems arising in areas as diverse

2

as optimal control [4] and kinetic equations [2]. This has motivated the present
article.

In order to demonstrate the gist of the algorithms, we resort to pseudo-codes
with a syntax borrowed from C++ and the standard template library (STL) [7].
Yet, we emphasize, that the code snippets enclosed in this article are “pseudo-
code”. They are bare bones and for the sake of lucidity were neither intended
to be syntactically correct nor to comply with best practices of proper object
oriented implementation.

2 Basic data structures

We rely on the class Interval that supports the usual operations (on one-dimensional
bounded, half-open intervals ⊂ R) like a point enclosure query method bool

contains(double), an intersection test bool intersect (const Interval &I1,const
Interval &I2) and an inclusion test bool contains(const Interval &subI). The
function Interval merge(const Interval &I1,const Interval &I2) creates a new Interval
object that combines two adjacent intervals into one.

A d-dimensional bounded tensor product domain, a “box”, can be encoded
by a sequence of d intervals, which suggests the data type

typedef vector<Interval> Box .

Thus a single term in (1) corresponds to an object of type BoxFunction, whose
definition is given in Listing 1. The operator member function operator [](int),
given an argument i ∈ {0, . . . , d − 1} serves to access [ai+1, bi+1[, when the box
data field stores [a1, b1[× · · · × [ad, bd[. An object of type WFunction stores a
function ∈ W . It is supposed to provide the usual (real) vector space operations
through overloaded arithmetic operators +,−,∗,/,+=,−=,∗=,/=. Hence, the phi
data field provides the ϕk component of a term in (1).

Listing 1: Class definition for a function with tensor product support

1 class BoxFunct ion {
2 public :
3 Box box ;
4 WFunction ph i ;
5

6 BoxFunct ion (const Box &b , const WFunction &f) ;
7 int dim (void) const { return box . s i z e () ; }
8 const I n t e r v a l &operator [] (int) const ;
9 } ;

A sum of the form (1) can be represented as an object of type

typedef list<BoxFunction> BoxFnSeq; .

3

Our algorithm expects an input of this type, but it could as well operate on
suitable read-only iterator ranges.

3 Segment trees

A one-dimensional segment tree is a balanced binary search tree that can be used
to answer the point enclosure query for a collection of intervals efficiently, see [3,
Ch. 10] and [5, Sect. 2.2]. Here, we briefly review data structures, algorithms, and
complexity issues connected with this fundamental concept from computational
geometry.

The one-dimensional point enclosure problem reads as follows: given a collec-
tion of intervals

{[ak, bk[: −1 ≤ ak < bk≤1, k = 1, . . . , n} , n ∈ N ,

and a point ξ ∈ [−1, 1[, find those intervals that contain ξ. A straightforward
implementation will take O(n) comparisons to arrive at an answer. However,
once the corresponding segment tree has been constructed with O(n logn) cost,
the point query can be answered with computational effort O(logn+K), where
K is the number of intervals reported, see [3, Ch. 10].

The nodes of a segment tree possess a so-called comparison interval as key
data field, see the class definition of SegTreeNode in Listing 2.

Listing 2: Data type for node of a segment tree

1 class SegTreeNode {
2 public :
3 SegTreeNode ∗ l e f t s o n ,∗ r i g h t s o n ; // tree structure fields
4 const I n t e r v a l compintv ; // comparison interval
5 l i s t <const BoxFunct ion &> l o c l i s t ; // list of box functions
6 // Data fields discussed in Sect. 4
7 SegTreeNode ∗ s u b t r e e r o o t ;
8 WFunction l o c f u n ;
9

10 SegTreeNode (const I n t e r v a l &I , SegTreeNode
∗ l s=NULL , SegTreeNode ∗ r s=NULL) ;

11 } ;

Another important data field of SegTreeNode is the local list loclist of box
functions. Its actual significance will be explained in the next section. For the
time being we remark that, for a fixed coordinate direction 1 ≤ i ≤ d, the i-th
interval of the tensor product support of every function stored in loclist will
contain the comparison interval of the node, cf. the discussion of the function
registerInterval from Listing 4.

4

The first pass of the construction of segment trees for Task 1 is executed by
the function buildSegTree of Listing 3, cf. [5, Algorithm 2.3].

Listing 3: Building a one-dimensional segment tree

1 SegTreeNode ∗buildSegTree (int i , const BoxFnSeq &f s e q) {
2 v ec to r<double> bd (2) ; bd [0] = −1.0; bd [1] = 1 . 0 ;
3 for (BoxFnSeq : : c o n s t i t e r a t o r

f=f s e q . beg i n () ; f != f s e q . end () ; f++) {
4 const I n t e r v a l &i n t v ((∗ f) [i −1]) ;
5 bd . push back (i n t v . a) ; bd . push back (i n t v . b) ;
6 }
7 // Sort vector bd and eliminate duplicate elements
8 s o r t (bd) ; un ique (bd) ;
9 l i s t <SegTreeNode ∗> t ;

10 for (i =0; i<bd . s i z e ()−1; i++)
11 t . push back (new

SegTreeNode (I n t e r v a l (bd [i] , bd [i +1]))) ;
12 int n son s ;
13 while ((n son s = t . s i z e ())>1) {
14 int n p a r e n t s = n son s /2 ;
15 for (int i =0; i<n pa r en t s , i++) {
16 SegTreeNode ∗ l s = t . f r o n t () ; t . p o p f r o n t () ;
17 SegTreeNode ∗ r s = t . f r o n t () ; t . p o p f r o n t () ;
18 I n t e r v a l p a r e n t i n t v =

merge (l s−>compintv , r s−>compintv) ;
19 t . push back (new SegTreeNode (p a r en t i n t v , l s , r s)) ;
20 }
21 i f (n son s > n p a r e n t s ∗2) {
22 // In case of an odd number of intervals
23 t . push back (t . f r o n t ()) ; t . p o p f r o n t () ;
24 }
25 return (t . f r o n t ()) ;
26 }

Definition 3.1. A balanced binary tree created by buildSegTree is called a
segment tree.

The notions of root (node) and of depth(N) of a node N are borrowed from
the standard terminology for binary trees. So is the depth depth(T) of a segment
tree T and notions like “parent” and “child” of a node. All nodes with the same
depth form a level of the tree

Ll(T) = {N ∈ T : depth(N) = l} , l = 0, 1,

5

For an interval sequence of length n the function buildSegtTree displayed in
Listing 3 queries the sections of the support boxes in coordinate direction i and
constructs a segment tree T with

depth(T) ≤ +log2(2n+ 1), ≤ ∆(n) := 1 + log2(n+ 1) , (2)

and a bound on the number of nodes according to

$T ≤ 4n+ 1 . (3)

Due to the sorting step, the computational effort involved is O(n logn) for n →
∞. By construction the interval owned by each parent node is the union of the
intervals of its children (see Line 18 of Listing 3)

Nl = *N.leftson

Nr = *N.rightson
⇒ N.compintv = Nl.compintv ∪ Nr.compintv , (4)

see Figure 1 for an example.

Proposition 3.2. The comparison intervals of all nodes of a segment tree T on
a particular level 0 ≤ l ≤ depth(T) form a partition of an interval [−1, ξ[for
some −1 < ξ ≤ 1.

Proof. On the leaf level the comparison intervals give a partition of [−1, ξ[defined
by the endpoints of the box cross sections in coordinate direction i. The whole
interval [−1, 1[may not be covered, because, in case the number of intervals is
odd, the last one is moved to the next coarser level of the tree, see Line 23 of
Listing 3.

The while-loop (Lines 13–24) in buildSegTree creates the levels of the tree.
If n sons is even, pairs of comparison intervals are merged into the comparison
intervals of the next coarser level. If n sons is odd, the last interval is promoted
to the next coarser level, cf. Figure 1.

A box supported function is added to the loclist data member of a node, if
the cross section of its support box in coordinate direction i

• contains the comparison interval of that node,

• but fails to contain the comparison interval of its parent node.

This rule is implemented in the recursive function registerInterval given in List-
ing 4. See also Figure 2 for an example.

6

+1

−1
l = 1l = 2l = 3l = 4l = 5

Figure 1: Segment tree built from a collection of intervals represented by colored
vertical bars on the left: nodes are represented by their comparison intervals,
parent-child relationships are indicated by arrows

Listing 4: Registering box supported functions in local lists

1 void r e g i s t e r I n t e r v a l (int i , SegTreeNode ∗n , const
BoxFunct ion &f) {

2 const I n t e r v a l &i n t v (f [i −1]) ;
3 i f (i n t v . c o n t a i n s (n . compintv))
4 n . l o c l i s t . push back (f) ;
5 else {
6 i f (((SegTreeNode ∗ l s = n−> l e f t s o n) != NULL) &&
7 i n t e r s e c t (l s−>compintv , i n t v))
8 r e g i s t e r I n t e r v a l (i , l s , I) ;
9 i f (((SegTreeNode ∗ r s = n−>r i g h t s o n) != NULL) &&

10 i n t e r s e c t (r s−>compintv , i n t v))
11 r e g i s t e r I n t e r v a l (i , r s , I) ;
12 }}

n

Proposition 3.3. Assume that registerInterval (i , root , f) is invoked with root
a pointer to the root of a segment tree T built from a list of n box functions with

7

+1

−1
l = 1l = 2l = 3l = 4l = 5

Figure 2: Intervals added to the loclist fields of nodes of the segment tree from
Figure 1 are represented by squares in the color of the interval

f being one of them. Then

(i) at most 4 · depth(T) recursive calls to registerInterval will be made,

(ii) f will be inserted into at most 2+log2(2n+ 1), nodal lists,

Proof. Denote by N (f) the set of nodes of the segment tree, for which a recursive
function call registerInterval (i , ... , f) is made, see Lines 8, 11 in Listing 4. We
first show

$(N (f) ∩ Ll(T)) ≤ 4 ∀l = 0, . . . , depth(T) . (5)

We adapt an argument from [5, Proof of Lemma 2.4]. Assume that there was a
level l, for which (5) was not true. Note that x registerInterval (i ,n, f) is invoked,
if the cross section I in coordinate direction i of the support box of f intersects the
comparison interval of the node ∗n. Since, by Prop. 3.2 the comparison intervals
of the nodes on level l are contiguous, there would be at least five nodes on level
l with contiguous comparison intervals that have an overlap with I. Hence, the
adjacent comparison intervals of three of them must be contained in I. As a
consequence there is a parent node on level l − 1, whose comparison interval is

8

contained in I. In this case registerInterval is not invoked for any son node and
interval I. This contradiction confirms (5).

The same arguments bear out that

${N ∈ Ll(T) : N.compintv ⊂ I ∧ parent(N).compintv 2⊂ I} ≤ 2 , l ≥ 1 .

Only for these nodes the box function f is appended to loclist , cf. Lines 3, 4 of
Listing 4. In light of the bound (2) the assertion follows.

Corollary 3.4. The accumulated length of all local lists stored in the loclist
data fields of the nodes of a segment tree T built from a list of n box supported
functions by buildFullSegTree is bounded by

∑

N∈T

N.loclist.size() ≤ Φ(n) := 2n(2 + log2(n+ 1)) .

Corollary 3.5. The computational effort for buildFullSegTree, see Listing 5,
when invoked for a sequence of n box supported functions amounts to O(Φ(n))
work units1 for n → ∞.

Listing 5: Building a one-dimensional segment tree complete with interval lists

1 SegTreeNode ∗buildFullSegTree (int i , BoxFnSeq &f s e q) {
2 SegTreeNode ∗ r o o t = buildSegTree (i , f s e q) ;
3 for (BoxFnSeq : : c o n s t i t e r a t o r

f=f s e q . beg i n () ; f != f s e q . end () ; f++) {
4 r e g i s t e r I n t e r v a l (i , root ,∗ f) ; }
5 return r o o t ; }

Lemma 3.6. Let the segment tree T be built by buildFullSegTree(i,fseq) and f
be a box supported function contained in the list fseq with support [a1, b1[× · · ·×
[ad, bd[. Then

[ai, bi[=
⋃

{N.compintv : N ∈ T , f ∈ N.loclist} .

provides a partition of [ai, bi[.

Proof. The assertion of the lemma is an immediate consequence of the fact
that all support intervals are the union of comparison intervals, because both
buildSegTree and registerInterval operate on the same list of functions. In addi-
tion the partition property stated in the lemma is a consequence of Prop. 3.2.

1As a work unit we regard a single comparison, branching, or arithmetic operation. This
may not be directly related to computing time.

9

4 Box function tree

Now we turn the issue of how to handle multidimensional tensor product supports
in order to facilitate the fast point evaluation sought in Task 1. This will be
done by means of nested segment trees, each of which belongs to a particular
ccoordinate direction i, 1 ≤ i ≤ d. In short, we refer to this number i ∈ {1, . . . , d}
as the direction of the tree and its nodes.

In computational geometry nested segment trees are known as multilevel seg-
ment trees, see [5, Sect.2.3]. They are used for efficient point enclosure queries for
d-dimensional boxes; more precisely, the data structure allows to access all boxes
containing a given point with effort O(K + logd2 n) after a preprocessing stage
that costs O(n logd2 n). Here, K is the number of enclosing boxes found. This is
not a useful estimate for our purpose, because all the supports of the terms in
(1) may have non-empty intersection. In case the point x lies in this intersection,
we encounter K = n and, consequently, O(n) cost for evaluating Ψ(x). On the
other hand, we do not care about which boxes contain x. This suggests that we
modify the standard algorithms and augment it by an extra accumulation step
in the preprocessing stage. This section gives the details.

In a nested segment tree, each node of direction i > 1 may hold another
segement tree of direction i−1; through the subtreeroot data field of SegTreeNode
the node can access the root of this segment tree (subtree), which may be empty.
The subtrees are built recursively as segment trees spawned by the local box
function lists (loclist field, see Line 5 of the class definition of SegTreeNode in
Listing 2) attached to the nodes of the current tree, see the routine buildSubTrees
given in Listing 6 and [5, Algorithm 2.7]. We start from the d-th coordinate
direction in the function initBoxTree, see Listing 7, and work our way down to
coordinate direction 1. Thus, the level of the recursion in buildSubTrees will
determine the direction of a subtree and its nodes.

Listing 6: Recursive construction of multidimensional segment tree (box tree)

1 void buildSubTrees (int i , SegTreeNode ∗ r o o t) {
2 i f (r o o t != NULL) {
3 l i s t <const BoxFunct ion &> &l o c l s t = root−> l o c l i s t ;
4 i f (! l o c l s t . empty ()) {
5 i f (i >1) {
6 root−>s u b t r e e r o o t =

buildFullSegTree (i −1, l o c l s t) ;
7 buildSubTrees (i −1, root−>s u b t r e e r o o t) ;
8 }
9 else {

10 sumLocFn(l o c l s t , root−> l o c f u n) ;
11 }
12 (root−> l o c l i s t) . c l e a r () ; // Clear local lists, optional

10

13 }
14 buildSubTrees (i , root−> l e f t s o n) ;
15 buildSubTrees (i , root−>r i g h t s o n) ;
16 }}

Listing 7: Initialization of a box tree

1 SegTreeNode ∗ initBoxTree (int d , BoxFnSeq f s e q) {
2 SegTreeNode ∗ r o o t = buildFullSegTree (d , f s e q) ;
3 buildSubTrees (d , r o o t) ;
4 return r o o t ; }

Definition 4.1. We dub multilevel segment trees created by initBoxTree from
Listing 7 box function trees.

Let us single out a node of direction i = 1 of a box function tree. It owns
a comparison interval I1. The corresponding subtree is attached to a node of
direction 2, which holds a comparison interval I2, and so forth. Thus we can
associate a unique d-dimensional box I1 × I2 × . . . Id to each node of direction
1. All these boxes form an overlapping tiling of [−1, 1[d and we refer to them as
comparison boxes.

Listing 8: Summation of basis functions that are uniform on a d-dimensional box

1 void sumLocFn(BoxFnSeq &fseq , WFunction &func) {
2 for (BoxFnSeq : : c o n s t i t e r a t o r

f=f s e q . beg i n () ; f != f s e q . end () ; f++)
3 f unc += f−>ph i ; }

An explanation for the invocation of the function sumLocFn, see Listing 8,
in Line 10 of buildSubTrees is postponed until Sect. 5.

The function initBoxTree performs the preprocessing step of our algorithm.
Now we analyze its complexity, starting with auxiliary identities.

Lemma 4.2. Let f : R+
0 #→ R

+
0 satisfy f(0) = 0. Then, for any n ∈ N, x > 0,

max{
n

∑

k=1

f(ξk),
n

∑

k=1

ξk = x, ξk ≥ 0} =

{

f(x) , if f is convex,

nf(x
n
) , if f is concave.

Proof. A convex f with the stated properties satisfies f(ξ) + f(η) ≤ f(ξ + η) for
all ξ, η ≥ 0, and, therefore, the sum becomes maximal, when only one of the ξk
does not vanish. As f is non-decreasing, that ξk should attain the maximal value
x.

For a concave f we find f(ξ) + f(η) ≥ f(ξ + η) for all ξ, η ≥ 0, which means
that the sum becomes maximal in the case ξ1 = ξ2 = · · · = ξn = x

n
.

11

Proposition 4.3. (cf. [5, Thm. 2.7]) The computational effort involved in execut-
ing initBoxTree for a list of n ∈ N functions with d-dimensional tensor product
supports is O(n logd n) for n → ∞.

Proof. To begin with, note that for i > 1 buildsubTrees (i , root) involves the
following two passes

(I) For each node of the tree invoke buildFullSegTree for direction i − 1 and
on the local list loclist of box functions.

(II) For each node of the tree do a recursive call to buildsubTrees passing direc-
tion i− 1 and the local list.

Write ω(i, n) for a bound for the computational effort (in work units) it takes
to execute buildSubTrees for direction i ∈ {1, . . . , d−1} and on a subtree created
from a box function list of length n ∈ N0. According to (3) this tree comprises
at most 4n + 1 nodes, which we number consecutively. We denote by mk the
length of the local box function list of node k, k ∈ {1, . . . , 4n+ 1}. In case there
are fewer nodes, the excess mk are simply set to zero. Corollary 3.4 gives us the
bound

4n+1
∑

k=1

mk ≤ Φ(n) := 2n(2 + log2(n+ 1)) . (6)

If i = 1, we merely invoke sumLocFn, see Listing 8, on all the local lists, with
cost proportional to

∑

k mk, which leads to the estimate

ω(1, n) ≤ CsΦ(n) , (7)

with Cs > 0 independent of n reflecting the cost of adding two objects of type
WFunction.

If i > 1 we add the effort required by the two passes in buildSubTrees to
obtain the recursion formula

ω(i, n) ≤ max







4n+1
∑

k=1

CfΦ(mk)
︸ ︷︷ ︸

Pass (I)

+ω(i− 1, mk)
︸ ︷︷ ︸

Pass (II)

,

4n+1
∑

l=1

ml ≤ Φ(n)






, (8)

where, according to Corollary 3.5, the cost of a call to buildFullSegTree from
the k-th node (Pass (I) above) has been bounded by CfΦ(mk).

We continue by induction with respect to i, where, according to the assertion
of the theorem, the induction hypothesis is

ω(i, n) ≤ CiΦ(n) log
i−1
2 (n+ 1) , (9)

12

which, by (7), is clearly satisfied for i = 1 with C1 = Cs. Both t #→ ω(i − 1, t)
and t #→ Φ(t) are convex, non-negative, and vanish for t = 0. Hence, plugging
(9) for ω(i− 1, n) into (8), Lemma 4.2 yields

ω(i, n) ≤ CfΦ(Φ(n)) + Ci−1Φ(Φ(n)) log
i−2
2 (Φ(n)) , i ≥ 2 . (10)

Tedious, but elementary computations establish that for large n

log2(Φ(n)) ≤ 2 log2(n+ 1) , (11)

Φ(Φ(n)) ≤ 4Φ(n) log2(n+ 1) . (12)

Combining these estimates with (10) we conclude that for sufficiently large n

ω(i, n) ≤ 4CfΦ(n) log2(n+ 1) + 4 · 2i−1Ci−1Φ(n) log2(n + 1) logi−2
2 (n + 1) .

(13)

This amounts to the induction hypothesis for i with Ci = 4Cf + 2i+1Ci−1.

5 Point evaluation

After the discussion of the preprocessing stage, we now turn to the actual eval-
uation requested in Task 1. This is tackled by the function eval, see Listing 9,
invoked for root=initBoxTree(d,fseq) and i=d, where the sequence fseq encodes
the sum (1) as explained in Section 2. The argument x must pass a vector with
d floating point coefficients: typedef vector<double> Point. The main differ-
ence to the usual point query task discussed in [5, Sect. 2.3] is that the boxes
containing x are not of interest.

Listing 9: Point evaluation function for box function tree

1 double eval (const SegTreeNode ∗node , int i , const Po int
&x) {

2 double v a l = 0 . 0 ;
3 i f (node != NULL) {
4 i f ((node−>compintv) . c o n t a i n s (x [i −1])) {
5 i f (i == 1)
6 v a l = node−>l o c f u n (x) ;
7 else

8 v a l = eval (node−>s ub t r e e r o o t , i −1,x) ;
9 v a l += eval (node−> l e f t s o n , i , x) +

eval (node−>r i g h t s o n , i , x) ;
10 }}
11 return v a l ; }

13

Listing 10: Building box function tree combined with point evaluation

1 const SegTreeNode ∗ r o o t = initBoxTree (d , f s e q) ;
2 double p s i = eval (root , d , x) ;

Proposition 5.1. If fseq is an object of type BoxFnSeq encoding the sum (1),
and x ∈ Rd is stored in x, then the code given in Listing 10 stores the value ψ(x)
in psi .

Proof of Prop. 5.1. (i) We first establish that a specific box supported func-
tion will be taken into account at most once in eval. Examining the function
registerInterval we note that due to the partition property stated in Lemma 3.6
the nodes to whose loclist data field a fixed box function is added must have
disjoint comparison intervals.

Thus, the comparison boxes associated with the nodes of direction 1 of a box
function tree that hold a particular box supported function in their loclist fields
have to be disjoint, too. Since at most one of a set of disjoint comparison boxes is
visited during the execution of eval, the same box function will never be summed
twice.

(ii) Secondly, we show that each box supported function, whose support con-
tains x = (x1, . . . , xd)T actually contributes to the sum. Pick such a function f
and denote by B = [a1, b1[× · · · × [ad, bd[its tensor product support, satisfying
x ∈ B.

At direction d, since xd ∈ [ad, bd[, thanks to Lemma 3.6, there is a node Nd

of direction d such that

xd ∈ (Nd).compintv ∧ f ∈ (Nd).loclist .

From Listing 9 we see that eval will be called for the sub-tree attached to Nd,
which has been built from a function list containing f . Hence, there is a node
Nd−1 of direction d− 1 such that

xd−1 ∈ (Nd−1).compintv ∧ f ∈ (Nd−1).loclist .

Applying this argument recursively verifies the existence of a nodeN1 of direction
1, whose comparison box contains x and whose loclist includes f . Thus, the
locfun field of N1 has been initialized in sumLocFn, see Listing 8, from a sum
comprising the W -component of f . Consequently, (N1).locfun(x) involves a
term f(x).

Now we study the computational cost of eval. We make the natural assump-
tion that the evaluation of a function ∈ W stored in an object of type WFunction
at a single point takes a constant amount of work, that may depend on the
dimension d, however.

14

Proposition 5.2. If, in Listing 9, the box function tree has been created from a
function list of length n, then the evaluation in Line 2 of Listing 10 requires an
asymptotic computational effort O(logd n) for large n.

Proof. At a particular direction i, 1 < i ≤ d, the recursive execution of eval for
a point x = (x1, . . . , xd)T ∈ [−1, 1[d boils down to

(I) visiting all nodes of direction i, whose comparison interval contains xi, and

(II) executing eval for the sub-trees of direction i− 1 of those nodes.

Denote by ζ(i, n) a bound for the cost of executing eval for a box function
tree of dimension i built from a box function list of length n. For i = 1 exactly
one WFunction object is evaluated at x on each level of the tree, which, by (2),
permits us to set

ζ(1, n) ≤ Ce∆(n) , ∆(n) := log2(n+ 1) . (14)

The cost of evaluating a single WFunction is incorporated through the constant
Ce, which may strongly depend on d, however.

For direction i > 1, a recursive call to eval is made for exactly one node on
each level. The local function lists of these nodes do not contain shared box
functions, as explained in the proof of Prop. 5.1. Hence, based on (2), we find
the recursive estimate

ζ(i, n) ≤ max







∆(n)
∑

!=1

1 + ζ(i− 1, nk),
∆(n)
∑

!=1

n! ≤ n






,

where nk is the length of the local box function list attached to the k-th node (of
direction i) for which eval is called. Since t #→ ζ(i, t) is concave with ζ(i, 0) = 0,
from Lemma 4.2 we infer

ζ(i, n) ≤ ∆(n)(1 + ζ
(

i− 1,
n

∆(n)

)

) . (15)

Then a simple induction confirms that the choice ζ(i, n) := logi2(n + 1) complies
with (15) for large n.

6 Empirical complexity

The theoretical complexity bounds of Prop. 4.3 and Prop. 5.2 hold for worst case
scenarios concerning the arrangement of support boxes. In this section, we study
the actual effort for the preprocessing and evaluation stages for concrete examples
of functions Ψ and sets of evaluation points.

To gauge the cost, we measure certain operation counts for the setup phase
and evaluation stage of our algorithm in different typical situations. In partiular,
for setup we tracked

15

• the execution countNadd for the operation += for objects of typeWFunction,
which is needed in the function sumLocFn, see Listing 8.

• the number Ncontains of enclosure tests for two intervals, as needed in
Line 3 of registerInterval , see Listing 4.

• the number Nintscts of intersection queries for two invervals, as used in
Lines 7, 10 of registerInterval , see Listing 4.

• a counter Ntotinsrt for appending box function objects to local lists, as
done in Line 4 of registerInterval , see Listing 4.

• the total number Nnodes of nodes of segment trees of various directions
created during setup by the new statements in Lines 11, 19 of buildSegTree,
see Listing 3.

For the point evaluation as implemented in the eval function of Listing 9 we
monitored the average number

• Neval of point evaluations of WFunction-objects as done in Line 6 of the
eval function.

• NPcont of queries issued in Line 4 whether an interval contains a point.

6.1 Experiment 1

We pick n ∈ N basis functions ϕ1, . . . ,ϕn with nested supports

supp(ϕi) = [−1 +
i

n+ 1
, 1−

i

n + 1
]d (16)

centered around zero. Their linear combination was evaluated for

1. the central point 0 contained in the intersection of all supports,

2. and 104 randomly chosen in [−1, 1]d.

The various operation counts for d = 2, 3 are depicted in the graphs of Fig-
ures 3, 4, and 5. They very well match the theoretical predictions of asymptotic
complexity given in Proposition 4.3 and Proposition 5.2. Small wonder, since
the situation that the evaluation point belongs to all support boxes should really
represent the worst possible arrangement for our algorithm.

16

0 50 100 150 200 250 300 350 400 450 500
0

1

2

3

4

5

6

7

8

9
x 10

4

 No. n of basis functions

 o
p

e
ra

ti
o

n
 c

o
u

n
ts

Building of trees, dimension = 2

Nadd

Ncontains

Nintscts

Ntotinsrt

Nnodes

O(n log(n)
1
)

0 50 100 150 200 250 300 350 400 450 500
0

0.5

1

1.5

2

2.5
x 10

5

 No. n of basis functions

 o
p

e
ra

ti
o

n
 c

o
u

n
ts

Building of trees, dimension = 3

Nadd

Ncontains

Nintscts

Ntotinsrt

Nnodes

O(n log(n)
2
)

Figure 3: Experiment 1: invocation counts during initialization of the multidi-
mensional segment tree for d = 2 (left), d = 3 (right).

0 50 100 150 200 250 300 350 400 450 500
0

20

40

60

80

100

120

 No. n of basis functions

 o
p

e
ra

ti
o

n
 c

o
u

n
ts

 p
e

r
p

o
in

t

Point evaluation, dimension = 2

Neval

Npcont

O(log(n)
2
)

0 50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

60

70

 No. n of basis functions

 o
p

e
ra

ti
o

n
 c

o
u

n
ts

 p
e
r

p
o

in
t

Point evaluation, dimension = 2

Neval

Npcont

O(log(n)
2
)

Figure 4: Experiment 1: (average) invocation counts during point evaluation for
d = 2: single point x = 0 (left), randomly chosen points (right).

6.2 Experiment 2

We pick n = dk basis functions, k ∈ N, ϕ1, . . . ,ϕdm with anisotropic supports

supp(ϕi) = [−1 +
i

k + 1
, 1−

i

k + 1
]× [−1, 1]d−1 , i = 1, . . . , k ,

supp(ϕi) = [−1, 1]× [−1 +
i− k

k + 1
, 1−

i− k

k + 1
]× [−1, 1]d−2 ,

i = k + 1, . . . , 2k ,

...

supp(ϕi) = [−1, 1]d−1 × [−1 +
i− (d− 1)k

k + 1
, 1−

i− (d− 1)k

k + 1
] ,

i = (d− 1)k + 1, . . . , dk .

17

0 50 100 150 200 250 300 350 400 450 500
0

50

100

150

200

250

300

350

400

 No. n of basis functions

 o
p

e
ra

ti
o

n
 c

o
u

n
ts

 p
e

r
p

o
in

t

Point evaluation, dimension = 3

Neval

Npcont

O(log(n)
3
)

0 50 100 150 200 250 300 350 400 450 500
0

20

40

60

80

100

120

140

160

 No. n of basis functions

 o
p

e
ra

ti
o

n
 c

o
u

n
ts

 p
e

r
p

o
in

t

Point evaluation, dimension = 3

Neval

Npcont

O(log(n)
3
)

Figure 5: Experiment 1: (average) invocation counts during point evaluation for
d = 3: single point x = 0 (left), randomly chosen points (right).

Again their linear combination was evaluated for

1. the central point 0 contained in the intersection of all supports,

2. and 104 randomly chosen in [−1, 1]d.

Refer to Figures 6, 7, and 8 for the measured number of operations for d =
2, 3. Apparently eval runs faster than predicted by Proposition 5.2, which is not
surprising, because each evaluation points is contained in only a small number of
support boxes.

0 100 200 300 400 500 600 700 800 900 1000
0

0.5

1

1.5

2

2.5
x 10

5

 No. n of basis functions

 o
p

e
ra

ti
o

n
 c

o
u

n
ts

Building of trees, dimension = 2

Nadd

Ncontains

Nintscts

Ntotinsrt

Nnodes

O(n log(n)
1
)

0 500 1000 1500
0

0.5

1

1.5

2

2.5
x 10

6

 No. n of basis functions

 o
p

e
ra

ti
o

n
 c

o
u

n
ts

Building of trees, dimension = 3

Nadd

Ncontains

Nintscts

Ntotinsrt

Nnodes

O(n log(n)
2
)

Figure 6: Experiment 2: invocation counts during initialization of the multidi-
mensional segment tree for d = 2 (left), d = 3 (right).

18

0 100 200 300 400 500 600 700 800 900 1000
0

10

20

30

40

50

60

70

 No. n of basis functions

 o
p

e
ra

ti
o

n
 c

o
u

n
ts

 p
e

r
p

o
in

t

Point evaluation, dimension = 2

Neval

Npcont

O(log(n)
2
)

0 100 200 300 400 500 600 700 800 900 1000
0

10

20

30

40

50

60

 No. n of basis functions

 o
p

e
ra

ti
o

n
 c

o
u

n
ts

 p
e

r
p

o
in

t

Point evaluation, dimension = 2

Neval

Npcont

O(log(n)
2
)

Figure 7: Experiment 2: (average) invocation counts during point evaluation for
d = 2: single point x = 0 (left), randomly chosen points (right).

0 500 1000 1500
0

20

40

60

80

100

120

140

 No. n of basis functions

 o
p

e
ra

ti
o

n
 c

o
u

n
ts

 p
e

r
p

o
in

t

Point evaluation, dimension = 3

Neval

Npcont

O(log(n)
3
)

0 500 1000 1500
0

10

20

30

40

50

60

70

80

90

100

 No. n of basis functions

 o
p

e
ra

ti
o

n
 c

o
u

n
ts

 p
e

r
p

o
in

t

Point evaluation, dimension = 3

Neval

Npcont

O(log(n)
3
)

Figure 8: Experiment 2: (average) invocation counts during point evaluation for
d = 3: single point x = 0 (left), randomly chosen points (right).

6.3 Experiment 3

We choose n basis functions with random supports, that is, the endpoints of the
intervals forming their support boxes were randomly sampled from a uniform
distribution in [−1, 1] and swapped, if necessary. For d = 2, 3 the operations
counts are plotted against n in Figures 9 and 10. It seems that the random
placement of support boxes realizes the worst case setting for our algorithm (as
in Experiment 1).

19

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

2

4

6

8

10

12
x 10

5

 No. n of basis functions

 o
p

e
ra

ti
o

n
 c

o
u

n
ts

Building of trees, dimension = 2

Nadd

Ncontains

Nintscts

Ntotinsrt

Nnodes

O(n log(n)
1
)

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.5

1

1.5

2

2.5

3
x 10

6

 No. n of basis functions

 o
p

e
ra

ti
o

n
 c

o
u

n
ts

Building of trees, dimension = 3

Nadd

Ncontains

Nintscts

Ntotinsrt

Nnodes

O(n log(n)
2
)

Figure 9: Experiment 3: invocation counts during initialization of the multidi-
mensional segment tree for d = 2 (left), d = 3 (right).

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

20

40

60

80

100

120

140

160

180

 No. n of basis functions

 o
p

e
ra

ti
o

n
 c

o
u

n
ts

 p
e

r
p

o
in

t

Point evaluation, dimension = 2

Neval

Npcont

O(log(n)
2
)

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

50

100

150

200

250

300

350

400

450

 No. n of basis functions

 o
p

e
ra

ti
o

n
 c

o
u

n
ts

 p
e

r
p

o
in

t

Point evaluation, dimension = 3

Neval

Npcont

O(log(n)
3
)

Figure 10: Experiment 3: average invocation counts during point evaluation at
randomly chosen points, d = 2 (left), d = 3 (right).

20

References

[1] H.-J. Bungartz and M. Griebel, Sparse grids, Acta Numerica, 13 (2004),
pp. 147–269.

[2] M. Campos Pinto, A direct and accurate adaptive semi-Lagrangian scheme
for the Vlasov-Poisson equation, Int. J. Appl. Math. Comput. Sci., 17 (2007),
pp. 351–359.

[3] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf,
Computational geometry. Algorithms and applications, Springer, Berlin,
2nd ed., 2000.

[4] I. Klompmaker, A semi-lagrangian scheme using adaptive sparse grids
for front propagation. Slides for Workshop on Advancing numerical meth-
ods for viscosity solutions and applications, Banff, Feb 13-18, 2011, 2011.
http://temple.birs.ca/˜11w5086/Klompmaker.pdf.

[5] E. Langetepe and G. Zachmann, Geometric data structures for computer
graphics, A K Peters, Wellesley, MA, 2006.

[6] A. Staniforth and J. Cote, Semi-Lagrangian integration scheme for at-
mospheric models: A review, Monthly Weather Review, 119 (1991), pp. 2206–
2223.

[7] B. Stroustrup, The C++ Programming Language, Addison Wesley Long-
man, Reading, MA, 3rd ed., 1997.

[8] G. Widmer, R. Hiptmair, and C. Schwab, Sparse adaptive finite ele-
ments for radiative transfer, J. Comp. Phys., 227 (2008), pp. 6071–6105.

21

Research Reports

No. Authors/Title

11-63 R. Hiptmair, G. Phillips and G. Sinha
Multiple point evaluation on combined tensor product supports

11-62 J. Li, M. Li and S. Mao
Convergence analysis of an adaptive finite element method for distributed
flux reconstruction

11-61 J. Li, M. Li and S. Mao
A priori error estimates of a finite element method for distributed flux
reconstruction

11-60 H. Heumann and R. Hiptmair
Refined convergence theory for semi-Lagrangian schemes for pure
advection

11-59 V.A. Hoang and Ch. Schwab
N -term Galerkin Wiener chaos approximations of elliptic PDEs with
lognormal Gaussian random inputs

11-58 X. Claeys and R. Hiptmair
Electromagnetic scattering at composite objects: A novel multi-trace
boundary integral formulation

11-57 S. Mishra and L.V. Spinolo
Accurate numerical schemes for approximating intitial-boundary value
problems for systems of conservation law

11-56 P. Grohs
Finite elements of arbitrary order and quasiinterpolation for data in Rie-
mannian manifolds

11-55 P. Grohs
Bandlimited shearlet-type frames with nice duals

11-54 A. Kunoth and Ch. Schwab
Analytic regularity and GPC approximation for control problems con-
strained by linear parametric elliptic and parabolic PDEs

11-53 Ch. Schwab and S.A. Tokareva
High order approximation of probabilistic shock profiles in hyperbolic
conservation laws with uncertain initial data

11-52 F.Y. Kuo, Ch. Schwab and I.H. Sloan
Quasi-Monte Carlo finite element methods for a class of elliptic partial
differential equations with random coefficients

11-51 A. Chernov and Ch. Schwab
First order k-th moment finite element analysis of nonlinear operator
equations with stochastic data

