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Abstract

This paper is concerned with a priori error estimates of a finite element method for numerical
reconstruction of some unknown distributed flux in an inverse heat conduction problem. More
precisely, some unknown distributed Neumann data are to be recovered on the interior inaccessible
boundary using Dirichlet measurement data on the outer accessible boundary. The main contribu-
tion in this work is to establish the a priori L2-norm error estimates in terms of the mesh size in
the domain and on the accessible/inaccessible boundaries, respectively, for both the temperature
u and the adjoint state p under the lowest regularity assumption besides the energy norm error
estimates. It is revealed that the lower bounds of the convergence rates depend on the geometry
of the domain. These a priori error estimates are of immense interest by themselves and pave
the way for proving the convergence analysis of adaptive techniques applied to a general classes of
inverse heat conduction problems. Numerical experiments are presented to verify our theoretical
prediction.

Key Words: Distributed flux, inverse heat problems, finite element method, error estimates
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1 Introduction

Inverse heat conduction problems are frequently encountered in engineering and industrial applica-
tions. In this paper we address a priori error estimates of a finite element method for numerical
reconstruction of some unknown distributed flux in an inverse heat conduction problem. More pre-
cisely, the unknown distributed Neumann data, called fluxes in the sequel, are to be determined on
the interior inaccessible boundary using Dirichlet measurement data on the outer accessible boundary.

The flux distribution is of paramount practical interest in heat conduction processes, e.g., the
real-time monitoring in steel industry [1], the visualization by liquid crystal thermography [7], and
estimating the freezing front velocity in the solidification process [22]. But its accurate distribution
is rather difficult to obtain on some inaccessible boundary, such as the interior boundary of nuclear
reactors and steel furnaces. Engineers seek to estimate them from accessible outer boundary measure-
ments, which naturally gives rise to the inverse problem of estimating the distribution of fluxes. The
most difficult issue in solving and analyzing the inverse heat problem of recovering the distributed
flux lies in the strong instability with respect to the errors in the measurement data, i.e., small per-
turbation in the measurement data may lead to significant amplification of error in the identified flux.

∗Shenzhen Institutes of Advanced Technology, Shenzhen, PR China (jz.li@siat.ac.cn).
†School of Information Engineering, China University of Geosciences, Beijing, 100083, PR China (limx@cugb.edu.cn)
‡SAM, Department of Mathematics, ETH Zürich, CH-8092 Zürich, Switzerland (shipeng.mao@sam.math.ethz.ch).
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It is well-known that the inverse problem under investigation here is essentially lack of continuous
dependance on data, thus ill-posed in Hadamard’s sense [10].

In order to achieve a reasonable and practically acceptable numerical reconstruction of the flux,
one may have to resort to some regularization techniques to transform the unstable ill-posed heat flux
reconstruction process into a stable mathematical one. Several numerical methods have been proposed
for the distributed flux reconstruction problem, among which the least-squares formulation [21, 22, 23]
has received intensive investigations and it has been implemented by means of the boundary integral
method [23] and finite element method [21]. Recently, adaptive techniques are introduced in this field
for efficiency consideration [14], which, guided by the a posteriori error estimates, refines automatically
the mesh to better approximate the local but potentially very important features of the distributed
flux, e.g., non-smooth boundaries, discontinuous fluxes, or singular fluxes with spikes or abrupt sign
changes. The computational cost is significantly reduced since fine resolution is only necessary in the
place that local features lie in. Subsequently, the convergence analysis of the adaptive algorithm is
established in [15], which requires an important a priori error estimates to develop an estimate for the
quasi-orthogonality of the the discretization error with respect to the energy norm, which explain the
coupling relation of errors on two successive meshes.

In this work, we will fill in the gap aforementioned by establishing some important a priori error
estimates of finite element solutions to the heat flux reconstruction problems, which are of immense
interest by themselves and pave the way for proving the convergence analysis of adaptive techniques
applied to a general class of inverse heat conduction problems. The detailed convergence analysis is
reported in a separate work [15]. Here we derive the convergence order by using the piecewise linear
continuous finite elements in terms of the mesh size by assuming the least regularity of solutions
to the PDE system associated with the inverse problem, which is of practical use for reconstructing
distributed fluxes of salient features.

The paper is organized as follows. In section 2, we briefly recall the mathematical description of our
flux reconstruction problem by an output least-squares formulation plus some Tikhonov regularization
term. Some relevant properties are shortly recalled without proof. In Section 3, the finite element
discretization is described in detail for purpose of analysis. In Sections 4 and 5, we derive the a priori
energy and L2 norm error estimates in detail, respectively, under the least assumption of regularity.
In Section 6, numerical results of two-dimensional problems on a square and an L-shaped domain are
presented to demonstrate the theoretical convergence order from analysis. We conclude the work in
Section 7 and point out some future work.

We end this section with some notations and conventions. Throughout the paper we adopt the
standard notation Wm,p(D) for Sobolev spaces on an open bounded domain D in Rd, and write
Hm(D) = Wm,2(D) for p = 2. The norm and semi-norm of Hm(D) are denoted respectively by
‖ · ‖m,D and | · |m,D. We use (·, ·)D to denote the inner product in L2(D). When no confusion is
caused, we may simply drop D in the notation ‖ · ‖m,D and (·, ·)D. In addition, we will often use c or
C to denote generic positive constants which are independent of mesh size h and functions involved.

2 Mathematical formulation

Let Ω be an open and bounded domain in Rd (d = 2, 3) with some smooth boundary Γ consisting
of two disjointed parts, namely Γ = Γa ∪ Γi. The boundaries Γi and Γa refer, respectively, to the
part of the boundary Γ that is inaccessible or accessible to experimental measurement devices. The
steady-state heat conduction problem could be described by the elliptic PDE:



















−∇ · (α(x)∇u(x)) = f(x), x ∈ Ω,

α(x)
∂u

∂n
+ k(u(x) − ua(x)) = 0, x ∈ Γa,

α(x)
∂u

∂n
+ q(x) = 0, x ∈ Γi,

(2.1)
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where the given data include the heat source f , the ambient temperature ua, the heat transfer (Robin)
coefficient k and the heat conductivity α. The distribution of the Neumann data, or flux, q(x) on Γi

is the quantity of interest in this work.

The inverse problem that we are concerned with is to recover the distributed flux q(x) on the

interior inaccessible part Γi, given the partial measurement data z(x) of temperature u(x) on the outer

accessible part Γa.

Due to the severe ill-posedness (see, e.g., [21, Theorem 2.2]), the reconstruction is carried out
through the output least-squares formulation combined with an Tikhonov regularization term to de-
termine q(x) by minimizing the stabilized cost functional

J(q) =
1

2
‖u(q)− z‖20,Γa

+
β

2
‖q‖20,Γi

(2.2)

over q ∈ L2(Γi), where β is the regularization parameter. Here u(q) : L2(Γi) → H1(Ω) represent the
solution operator of the direct problem (2.1), which maps the parameter q to the solution u to the
PDE (2.1).

Following [21, Theorem 2.2], one can see that the reconstruction process of the distributed flux
q is stabilized in the sense that the solution to (2.2) is stable with respect to the perturbation of
noisy data. By the linear dependence of u on q, (2.2) can be viewed as a convex quadratic functional
over the infinite linear space L2(Γi), which immediately implies the existence and uniqueness of the
stabilized solution q∗ ∈ L2(Γi).

The necessary and sufficient optimality conditions of the regularized formulation (2.2) are charac-
terized by the following theorem (see [14, Theorem 2.1] and its associated proof).

Lemma 2.1. The optimization problem (2.2) admits a unique solution q. Moreover, q is the minimizer

if and only if there is a costate p ∈ H1(Ω) such that the triplet (u, p, q) satisfies the following optimality

conditions:






(α∇u,∇φ) + (ku,φ)Γa = (f,φ) + (kua,φ)Γa − (q,φ)Γi , ∀φ ∈ H1(Ω),
(α∇p,∇v) + (kp, v)Γa = (u− z, v)Γa , ∀v ∈ H1(Ω),
J ′(q)(w) = (βq − p,w)Γi = 0, ∀w ∈ L2(Γi).

(2.3)

For later analysis, we define the energy norm by

‖| · |‖21 = (α∇·,∇·) + (k·, ·)Γa ,

which is obviously equivalent to H1-norm ‖ · ‖1 due to the Poincaré inequality.

3 Finite element discretization

In the next few sections we will investigate the finite element approximations of the Tikhonov regu-
larization system (2.1)–(2.2) formulated in Section 2 and their a priori error estimates in terms of the
mesh size. For purpose of preparation, we introduce in this section a triangulation of the domain and
some finite element spaces associated with the triangulation. We triangulate the polyhedral domain
using a quasi-uniform mesh T h consisting of simplicial elements of mesh size h (see [5]) such that
Ω = ∪τ∈Th τ̄ . Associated with T h is the continuous piecewise linear finite element subspace V h of
C(Ω̄):

V h = { vh ∈ H1(Ω) | vh|τ ∈ P1(τ), ∀ τ ∈ T h }.

which is used for the spacial discretization in the next few sections, where P1(τ) is the space of
polynomials of degree one in an element τ .

The natural restriction of T h on the boundary of Ω forms the triangulations of Γi and Γa, denoted
by Γh

i and Γh
a, respectively. Let F h be the set of all faces of the triangulation T h and F h

0 be the set
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of all faces which are not on the boundary of Ω, namely, F h = F h
0

⋃

(Γh
i ∪ Γh

a). Let hτ denote the
diameter of the element τ in T h, and hl the diameter of the edge l in ∂T h. Then we take the feasible
approximation space for fluxes q to be the natural restriction of V h on the boundary Γi, denoted by
V h
Γi
.
Then the discrete counterpart of the continuous problem (2.2) can be formulated as:

min
qh∈V h

Γi

Jh(qh) =
1

2
‖uh(qh)− z‖20,Γa

+
β

2
‖qh‖

2
0,Γi

, (3.1)

where uh(qh) ∈ V h is the finite element discretization of (2.1), whose variational form reads as: Seek
uh ∈ V h such that

(α∇uh,∇φh) + (kuh,φh)Γa = (f,φh) + (kua,φh)Γa − (qh,φh)Γi , ∀φh ∈ V h. (3.2)

As in Theorem 2.1, the discrete optimality conditions can be obtained by simply replacing (u, p, q)
with (uh, ph, qh) and continuous spaces with finite element spaces, respectively (cf. [14, Eq. (2.6)]).







(α∇uh,∇φh) + (kuh,φh)Γa = (f,φh) + (kua,φh)Γa − (qh,φh)Γi , ∀φh ∈ V h,
(α∇ph,∇φh) + (kph,φh)Γa = (uh − z,φh)Γa , ∀φh ∈ V h,
J ′
h(qh)(wh) = (βqh − ph, wh) = 0, ∀wh ∈ V h

Γi
.

(3.3)

Before ending this section, let us recall the classical interpolation error estimates, which will be
frequently used in the analysis. Let Ih be the standard interpolation operator associated with the
finite element space V h, then it has the following classical interpolation error estimates for s ∈ (1, 2]
(see, e.g., [5]):

‖v − Ihv‖L2(Ω) + h‖v − Ihv‖H1(Ω) ≤ Chs‖v‖Hs(Ω), ∀ v ∈ Hs(Ω) . (3.4)

4 A priori energy norm error estimate

In this section, we first derive the a priori energy norm error estimate of the finite element approxi-
mation of the inverse problem. The key issue lies in the L2-norm error estimates of both u and p on
the boundary.

The following lemma concerning the relationship between the L2 error estimate on the boundary
and the energy norm error estimate of both u and p, which will play a key role in the subsequent
analysis.

Lemma 4.1. Let (u, p, q) and (uh, ph, qh) be the solutions of (2.3) and (3.3), respectively. Then there

exists a constant C > 0 depending only on the minimum angle of the mesh such that

‖u− uh‖
2
0,Γa

+ ‖p− ph‖
2
0,Γi

≤ Chγ(‖|u− uh|‖
2
1 + ‖|p − ph|‖

2
1) (4.1)

with the constant γ ∈ (0, 1] depending on the geometry of the domain.

Proof. Let (u(qh), p(qh)) be the solution pair of two auxiliary PDEs
(

α∇u(qh),∇v
)

+
(

ku(qh), v
)

Γa
= (f, v) + (kua, v)Γa − (qh, v)Γi , ∀v ∈ H1(Ω) (4.2)

and
(

α∇p(qh),∇v
)

+
(

kp(qh), v
)

Γa
=

(

u(qh)− z, v
)

Γa
, ∀v ∈ H1(Ω). (4.3)

First of all, since uh can be regarded as a Galerkin solution of the elliptic problem (4.2), it follows
from [5] the standard L2 error estimate

‖u(qh)− uh‖0 ≤ Chγ1‖|u(qh)− uh|‖1 (4.4)
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with a constant γ1 ∈ (0, 1] depending on the geometry of the domain.
Next, we have by the trace inequality

‖u(qh)− uh‖20,Γa
≤ ‖u(qh)− uh‖20,Γ
≤ c1‖u(qh)− uh‖0‖u(qh)− uh‖1
≤ Chγ1‖|u(qh)− uh|‖21,

(4.5)

from which we infer that

‖u− uh‖20,Γa
≤ 2‖u− u(qh)‖20,Γa

+ 2‖u(qh)− uh‖20,Γa

≤ 2‖u− u(qh)‖20,Γa
+ Chγ1‖|u(qh)− uh|‖21

≤ 2(1 + Chγ1)‖u− u(qh)‖20,Γa
+ Chγ1‖|u− uh|‖21.

(4.6)

It remains to estimate the term ‖u− u(qh)‖20,Γa
.

By subtracting (4.2) and (4.3) from (2.3), respectively, we have

(α∇
(

u(qh)− u
)

,∇v) + (k
(

u(qh)− u
)

, v)Γa = (q − qh, v)Γi , ∀v ∈ H1(Ω) (4.7)

and
(α∇

(

p(qh)− p
)

,∇w) + (k
(

p(qh)− p
)

, w)Γa = (u(qh)− u,w)Γa , ∀v ∈ H1(Ω). (4.8)

Then by taking v = p(qh)− p in (4.7) and w = u(qh)− u in (4.8), we obtain

‖u(qh)− u‖20,Γa
= (q − qh, p(qh)− p)Γi

= β−1(p − ph, p(qh)− p)Γi

= −β−1‖p(qh)− p‖20,Γi
+ β−1(p(qh)− ph, p(qh)− p)Γi ,

(4.9)

which implies directly that

‖u(qh)− u‖20,Γa
+

1

2β
‖p(qh)− p‖20,Γi

≤
1

2β
‖p(qh)− ph‖

2
0,Γi

. (4.10)

To bound ‖p(qh)− ph‖0,Γi , let us introduce another auxiliary PDE:


















−∇ · (α∇φ) = 0, in Ω,

α
∂φ

∂n
+ kφ = 0, on Γa,

α
∂φ

∂n
= p(qh)− ph, on Γi.

(4.11)

It follows from [5] that there exists a constant γ2 ∈ (0, 12 ] depending on the geometry of the domain
such that the above problem has the following regularity result

‖φ‖1+γ2 ≤ C‖|p(qh)− ph|‖0,Γi (4.12)

with its variational problem reads as: Seek φ ∈ H1(Ω)

(α∇φ,∇v) + (kφ, v)Γa = (p(qh)− ph, v)Γi , ∀v ∈ H1(Ω). (4.13)

We put v = p(qh)− ph in (4.13) then by (4.3) and the second equation in (3.3),

‖p(qh)− ph‖20,Γi
=

(

α∇φ,∇p(qh)
)

+
(

kφ, p(qh)
)

Γa
− (α∇φ,∇ph)− (kφ, ph)Γa

=
(

u(qh)− z,φ
)

Γa
− (uh − z, Ihφ)Γa

−
(

α∇(φ− Ihφ),∇ph
)

−
(

k(φ− Ihφ), ph
)

Γa

=
(

u(qh)− uh,φ
)

Γa
+

(

uh − z,φ− Ihφ
)

Γa

−
(

α∇(φ− Ihφ),∇ph
)

−
(

k(φ− Ihφ), ph
)

Γa

=
(

u(qh)− uh,φ
)

Γa
+

(

uh − z,φ− Ihφ
)

Γa
+
(

α∇(φ− Ihφ),∇(p − ph)
)

+
(

k(φ− Ihφ), p − ph
)

Γa
−

(

α∇(φ− Ihφ),∇p
)

−
(

k(φ− Ihφ), p
)

Γa

=
(

u(qh)− uh,φ
)

Γa
+

(

uh − u,φ− Ihφ
)

Γa

+
(

α∇(φ− Ihφ),∇(p − ph)
)

+
(

k(φ− Ihφ), p − ph
)

Γa

= A1 +A2 +A3 +A4.

(4.14)
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In the following, we estimate the Ai’s (i = 1, 2, 3, 4) term by term. Firstly, by the Cauchy-Schwarz
inequality, the trace inequality, the estimates (4.5) and (4.12), we derive

|A1| =
∣

∣

∣

(

u(qh)− uh,φ
)

Γa

∣

∣

∣

≤ ‖u(qh)− uh‖0,Γa‖φ‖0,Γ
≤ Ch

γ1
2 ‖|u(qh)− uh|‖1‖φ‖1+γ2

≤ Ch
γ1
2 ‖|u(qh)− uh|‖1‖p(qh)− ph‖0,Γi

≤ Ch
γ1
2

(

‖|u(qh)− u|‖1 + ‖|u− uh|‖1
)

‖p(qh)− ph‖0,Γi .

(4.15)

The bound of the term ‖|u(qh)− u|‖1 can be obtained by setting v = u(qh)− u in (4.7),

‖|u(qh)− u|‖21 =
(

q − qh, u(qh)− u
)

Γi

≤ C‖q − qh‖0,Γi‖u(qh)− u‖0,Γi

≤ C‖q − qh‖0,Γi‖|u(qh)− u|‖1,
(4.16)

then we can infer from the above two inequalities (4.16) and (4.15) that

|A1| ≤ Ch
γ1
2

(

‖q − qh‖0,Γi + ‖|u− uh|‖1
)

‖p(qh)− ph‖0,Γi . (4.17)

By the Cauchy-Schwarz inequality, the trace inequality, the interpolation error estimate of the
linear operator (3.4) and (4.12), A2 can be bounded as follows:

|A2| =
∣

∣

∣

(

uh − u,φ− Ihφ
)

Γa

∣

∣

∣

≤ ‖u− uh‖0,Γa‖φ− Ihφ‖0,Γ

≤ C‖u− uh‖0,Γa‖φ− Ihφ‖
1

2

0 ‖φ− Ihφ‖
1

2

1

≤ Ch
1

2
+γ2‖u− uh‖0,Γa‖φ‖1+γ2

≤ Ch
1

2
+γ2‖|u− uh|‖1‖p(qh)− ph‖0,Γi .

(4.18)

Likewise, A3 can be estimated by

|A3| =
∣

∣

∣

(

α∇(φ− Ihφ),∇(p − ph)
)

∣

∣

∣
≤ Ch

1

2
+γ2‖p− ph‖1‖p(qh)− ph‖0,Γi . (4.19)

Concerning A4, from the Cauchy-Schwarz inequality and the interpolation error estimates of the linear
operator (3.4), it can be estimated as

|A4| =
∣

∣

∣

(

k(φ− Ihφ), p− ph
)

Γa

∣

∣

∣
≤ Chγ2‖p− ph‖1‖p(qh)− ph‖0,Γi . (4.20)

A combination of (4.14), and (4.17)-(4.20), we arrive at the desired error bound for p(qh)− ph on
the inaccessible boundary Γi:

‖p(qh)− ph‖0,Γi ≤ Ch
γ
2

(

‖|u− uh|‖1 + ‖|p− ph|‖1 +
1
β‖p − ph‖0,Γi

)

(4.21)

with γ = min{2γ2, γ1}.
Finally, by the triangle inequality, (4.6), (4.10), (4.21) and a proper Young’s inequality, we can

derive

1
2(1+hγ1 )‖u− uh‖20,Γa

≤ ‖u(qh)− u‖20,Γa
+ 1

2β‖p(qh)− p‖20,Γi
+ Chγ1‖|u− uh|‖21

+ 1
2β ‖p(qh)− ph‖20,Γi

− 1
4β‖p− ph‖20,Γi

≤ 1
β‖p(qh)− ph‖20,Γi

+Chγ1‖|u− uh|‖21 −
1
4β ‖p− ph‖20,Γi

≤ Chγ
(

‖|u− uh|‖21 + ‖|p − ph|‖21

)

.

(4.22)
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and

1
4‖p− ph‖20,Γi

≤ ‖p − p(qh)‖20,Γi
+ ‖p(qh)− ph‖20,Γi

− 1
4‖p− ph‖20,Γi

≤ 2‖p(qh)− p‖20,Γi
− 1

4‖p − ph‖20,Γi

≤ Chγ
(

‖|u− uh|‖21 + ‖|p− ph|‖21

)

,
(4.23)

which imply the desired results of this lemma. Thus the proof is completed.

Theorem 4.2. Let (u, p, q) and (uh, ph, qh) be the solutions of (2.3) and (3.3), respectively. Then

there exists a constant C > 0 depending only on the minimum angle of the mesh such that

‖|u− uh|‖
2
1 + ‖|p − ph|‖

2
1 ≤ C

(

inf
vh∈Vh

‖|u− vh|‖
2
1 + inf

wh∈Vh

‖|p −wh|‖
2
1

)

. (4.24)

with the constant γ ∈ (0, 1] depending on the geometry of the domain.

Proof. Firstly, by the triangle inequality,

‖|u− uh|‖
2
1 ≤ 2‖|u− u(qh)|‖

2
1 + 2‖|u(qh)− uh|‖

2
1 (4.25)

with u(qh) defined by the variational equation (4.2).
In order to bound the term ‖|u − u(qh)|‖21, subtracting (4.2) from the first equation of (3.3) and

setting v = u− u(qh), we get

‖|u− u(qh)|‖21 = −(q − qh, u− u(qh))Γi

≤ ‖q − qh‖0,Γi‖u− u(qh)‖0,Γi

≤ C‖q − qh‖0,Γi‖|u− u(qh)|‖1,
(4.26)

which, together with Lemma 4.1, implies that

‖|u− u(qh)|‖21 ≤ C‖q − qh‖20,Γi

≤ Chγ(‖|u− uh|‖21 + ‖|p − ph|‖21).
(4.27)

Since uh can be viewed as the direct finite element solution of the single elliptic equation (4.2), it
follows from the well known error estimate

‖|u(qh)− uh|‖21 ≤ C inf
vh∈Vh

‖|u(qh)− vh|‖21

≤ C

(

inf
vh∈Vh

‖|u− vh|‖21 + ‖|u(qh)− u|‖21

)

≤ C inf
vh∈Vh

‖|u− vh|‖21 + Chγ(‖|u− uh|‖21 + ‖|p − ph|‖21).

(4.28)

We next consider ‖|p − ph|‖21. For this purpose, we define p(uh) ∈ H1(Ω) as the solution of

(

α∇p(uh),∇v
)

+
(

kp(uh), v
)

Γa
=

(

uh − z, v
)

Γa
, ∀v ∈ H1(Ω). (4.29)

The triangle inequality still gives

‖|p− ph|‖
2
1 ≤ 2‖|p − p(qh)|‖

2
1 + 4‖|p(qh)− p(uh)|‖

2
1 + 4‖|p(uh)− ph|‖

2
1. (4.30)

Substituting v with p− p(qh) in (4.8), we obtain

‖|p− p(qh)|‖21 = (u− u(qh), p − p(qh))Γa

≤ ‖u− u(qh)‖0,Γa‖p− p(qh)‖0,Γa

≤ C‖|u− u(qh)|‖1‖|p − p(qh)|‖1,
(4.31)
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which, together with (4.27), yields

‖|p − p(qh)|‖21 ≤ C‖|u− u(qh)|‖21
≤ Chγ(‖|u− uh|‖21 + ‖|p − ph|‖21).

(4.32)

Subtracting (4.29) from (4.3) with v = p(qh)− p(uh), we have

‖|p(qh)− p(uh)|‖21 = (u(qh)− uh, p(qh)− p(uh))Γa

≤ ‖u(qh)− uh‖0,Γa‖p(qh)− p(uh)‖0,Γa

≤ C‖|u(qh)− uh|‖1‖|p(qh)− p(uh)|‖1

(4.33)

which, combined with (4.28), yields

‖|p(qh)− p(uh)|‖21 ≤ C‖|u(qh)− uh|‖21
≤ C inf

vh∈Vh

‖|u− vh|‖21 +Chγ(‖|u− uh|‖21 + ‖|p − ph|‖21).
(4.34)

Concerned the last term ‖|p(uh) − ph|‖21, noticing that ph can be regarded as the finite element
approximation of the single equation of (4.29), then there holds

‖|p(uh)− ph|‖21 ≤ C inf
wh∈Vh

‖||p(uh)− wh|‖21

≤ C

(

inf
wh∈Vh

‖|p− wh|‖21 + ‖|p(uh)− p|‖21

)

≤ C inf
wh∈Vh

‖|p− wh|‖21 +C(‖|p − p(qh)|‖21 + ‖|p(qh)− p(uh)|‖21)

≤ C

(

inf
wh∈Vh

‖|p− wh|‖21 + inf
vh∈Vh

‖|u− vh|‖21

)

+ Chγ(‖|u− uh|‖21 + ‖|p − ph|‖21),

(4.35)
where we have used (4.32) and (4.34) in the last step.

Lastly, a collection of (4.25), (4.27), (4.28), (4.30), (4.32), (4.34) and (4.35) can yield the desired
result (4.24). Hence the proof is completed.

A straightforward consequence of Theorem 4.2 is the following a priori energy error estimate.

Theorem 4.3. Let (u, p, q) and (uh, ph, qh) be the solutions of (2.3) and (3.3), respectively. Suppose

that u ∈ H1+δ(Ω) and p ∈ H1+δ(Ω) with the constant δ ∈ (0, 1]. Then there exists a constant C > 0
depending only on the minimum angle of the mesh such that

‖|u− uh|‖
2
1 + ‖|p − ph|‖

2
1 ≤ Ch2δ(|u|21+δ + |p|21+δ). (4.36)

Proof. The proof is trivial and we only need to use the well-known approximation error estimate of
the linear finite element space, see e.g., [5].

5 A priori L2 norm error estimates

In this section, we derive the L2 error estimates of the quantity q− qh on the boundary Γi and on the
domain Ω, respectively, which are of more interest from the viewpoint of practice.

The following theorem concerning the L2 error estimate of the quantity q− qh on the boundary Γi

is a straightforward corollary of Lemma 4.1 and Theorem 4.3.

Theorem 5.1. Let (u, p, q) and (uh, ph, qh) be the solutions of (2.3) and (3.3), respectively. Suppose

that u ∈ H1+δ(Ω) and p ∈ H1+δ(Ω) with the constant δ ∈ (0, 1]. Then there exists a constant C > 0
depending only on the minimum angle of the mesh such that

‖u− uh‖
2
0,Γa

+ ‖p − ph‖
2
0,Γi

+ ‖q − qh‖
2
0,Γi

≤ Chγ+2δ(|u|21+δ + |p|21+δ). (5.1)

with the constant γ ∈ (0, 1] depending on the geometry of the domain.
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Proof. A combination of (4.1) in Lemma 4.1 and (4.36) in Theorem 4.3 gives us

‖u− uh‖
2
0,Γa

+ ‖p − ph‖
2
0,Γi

≤ Chγ+2δ(|u|21+δ + |p|21+δ), (5.2)

and this implies (5.1) by noticing that q|Γi = p|Γi/β and qh|Γi = ph|Γi/β.

The following theorem concerning on the L2-norm error estimate in the entire domain.

Theorem 5.2. Let (u, p, q) and (uh, ph, qh) be the solutions of (2.3) and (3.3), respectively. Suppose

that u ∈ H1+δ(Ω) and p ∈ H1+δ(Ω) with the constant δ ∈ (0, 1]. Then there exists a constant C > 0
depending only on the minimum angle of the mesh such that

‖u− uh‖
2
0 + ‖p− ph‖

2
0 ≤ Chmin{γ,2γ3}+2δ(|u|21+δ + |p|21+δ) (5.3)

with the constants γ, γ3 ∈ (0, 1] depending on the geometry of the domain.

Proof. We consider the following auxiliary problem: Seek ψ ∈ H1(Ω) such that


















−∇ · (α∇ψ) = u− uh, in Ω,

α
∂ψ

∂n
+ kψ = 0, on Γa,

∂ψ

∂n
= 0, on Γi.

(5.4)

From [5] we know that there exists a constant γ3 ∈ (0, 1] depends on the geometry of the domain such
that the above problem have the following regularity result

‖ψ‖1+γ3 ≤ C‖|u− uh‖0 . (5.5)

The variational problem of (5.4) reads as

(α∇ψ,∇v) + (kψ, v)Γa = (u− uh, v), ∀v ∈ H1(Ω). (5.6)

Putting v = u− uh in (5.6), we have from the first equation in (2.3) and (3.3),

‖u− uh‖20 =
(

α∇ψ,∇(u− uh)
)

+
(

kψ, u− uh
)

Γa

=
(

α∇(ψ − Ihψ),∇(u− uh)
)

+
(

k(ψ − Ihψ), u− uh
)

Γa

+
(

α∇Ihψ,∇(u− uh)
)

+
(

kIhψ, u− uh
)

Γa

=
(

α∇(ψ − Ihψ),∇(u− uh)
)

+
(

k(ψ − Ihψ), u− uh
)

Γa
− (q − qh, Ihψ)Γi

=
(

α∇(ψ − Ihψ),∇(u− uh)
)

+
(

k(ψ − Ihψ), u− uh
)

Γa

−(q − qh, Ihψ − ψ)Γi − (q − qh,ψ)Γi

≤ C‖ψ‖1+γ3 (h
γ3‖|u− uh|‖1 + ‖q − qh‖0,Γi)

≤ C‖u− uh‖0 (hγ3‖|u− uh|‖1 + ‖q − qh‖0,Γi) ,

(5.7)

which, together with (4.36) and (5.1), yields

‖u− uh‖20 ≤ C
(

h2γ3‖|u− uh|‖21 + ‖q − qh‖20,Γi

)

≤ Chmin{γ,2γ3}+2δ(|u|21+δ + |p|21+δ).
(5.8)

Then we only need to estimate the term ‖p− ph‖20 in the left. Similarly, we consider the auxiliary
problem: Seek ϕ ∈ H1(Ω) such that



















−∇ · (α∇ϕ) = p− ph, in Ω,

α
∂ϕ

∂n
+ kϕ = 0, on Γa,

∂ϕ

∂n
= 0, on Γi

(5.9)
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with its variational form

(α∇ϕ,∇v) + (kϕ, v)Γa = (p − ph, v), ∀v ∈ H1(Ω) (5.10)

and a priori regularity result
‖ϕ‖1+γ3 ≤ C‖|p− ph‖0, (5.11)

with a constants γ3 ∈ (0, 1] depending only on the geometry of the domain.
Setting v = p− ph in (5.10), by the second equation in (2.3) and (3.3), we have

‖p− ph‖20 =
(

α∇ϕ,∇(p − ph)
)

+
(

kϕ, p− ph
)

Γa

=
(

α∇(ϕ− Ihϕ),∇(p − ph)
)

+
(

k(ϕ− Ihϕ), p − ph
)

Γa

+
(

α∇Ihϕ,∇(p − ph)
)

+
(

kIhϕ, p− ph
)

Γa

=
(

α∇(ϕ− Ihϕ),∇(p − ph)
)

+
(

k(ϕ− Ihϕ), p − ph
)

Γa

+ (u− uh, Ihϕ− ϕ)Γa + (u− uh,ϕ)Γa

≤ C‖ϕ‖1+γ3 (h
γ3‖|p − ph|‖1 + ‖u− uh‖0,Γa)

≤ C‖p− ph‖0 (hγ3‖|p − ph|‖1 + ‖u− uh‖0,Γa) ,

(5.12)

which, together with Lemma 4.1 and Theorem 4.3, implies that

‖p− ph‖
2
0 ≤ Chmin{γ,2γ3}+2δ(|u|21+δ + |p|21+δ). (5.13)

Therefore the proof is completed.

Remark 5.3. It is remarked that all the theoretical error decay rates derived in the current and
previous sections are the lower bounds under the least regularity assumption of the PDE solutions,
which could be improved along with higher regularities of the true solutions of the PDE system 2.3
under concerned. It is therefore not a surprise that one can obtain significantly better convergence
rates than predicted on convex domains and smooth data, which is still consistent with our theory.

6 Numerics tests and discussions

In this section, we present some numerical examples to verify the decay rates of our theoretical
prediction of the error estimates. We will consider two typical domains, namely a square (−1, 1)2 and
a L-shaped region (−1, 1)2 \ (−1, 0)2, which are triangulated using an unstructured meshes as shown
in Figure 1. Five uniform refinements are done to investigate the decay rates of the finite element
approximation error.

In the following, we fix the paramters as follows: the heat conductivity α = 1, the heat source
f = 0, the robin coefficient k = 1, the ambient temperature ua = 0, the regularization parameter
β = 10−2 and the noise level δ = 10−2. It is remarked that once the parameters are fixed, the error
decay rates depend only on the geometry of domain and given fluxes. For any given flux on Γi, specified
data aforementioned and the computational domain, it is in general impossible to obtain the explicit
formulae for the true solutions u and p. Therefore, we refine the mesh up to 3,400,000 DOF’s to yield
the approximate true solutions, which are compared with those finite element solutions on coarser
meshes to investigate the error decay rates. Since the energy norm is equivalent to the H1-norm. The
latter is used instead for convergence tests in the sequel.

In the tests, the numerical decay rates are obtained by linear regression of the last four groups of
data, which are shown right below the convergence history plots and the red lines with specified decay
rates are plotted for purpose of reference.

Example 1. Square domain.

In this example, the observation part is chosen to be the bottom boundary (−1, 1) × {−1}, and
the unknown flux lies on the top boundary (−1, 1)×{1}, while the left and right boundaries {−1, 1}×
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Figure 1: Example 1. Unstructured meshes on computuational domains. Left: square; Right: L-
shaped region.

(−1, 1) are set to be heat isulated, namely homogeneous Neumann boundary conditions are used there.
We choose a smooth flux data given by the explicit formula qe = sin(πx). It is pointed out that the
true flux identified from the system (2.3) is different from qe due to the regularization effect. The
convergence tests are compared with a sufficiently fine finite element solution instead of this exact
one.

Since this domain is a convex polygonal, together with smooth flux data, full regularity of the true
solutions u and p to the system (2.3) are obtained. We observe in Figure 2 that the decay rates of
finite element approximation errors for both u and p are, respectively, close to 1 and 2 in H1- and
L2-norms. Moreover, we show the decay rates of finite element approximation errors for u and p,
respectively, on the measurement boundary Γa and interior inaccessible boundary Γi in the last row
of Figure 2, from which we see clearly second order convergence rates.

On the other hand, we observe that second order of the L2−norm error decay rates on the inac-
cessible boundary Γi and in the domain, respectively, are optimistic and better than our theoretical
prediction in Theorems 5.1 and 5.2. More precisely, the numerical rates outperform the theoretical
lower bounds of the convergence order, which is mainly due to the fine property of the geometry of
domain and smooth data.

Example 2. L-shaped domain.

The computational domain is non-convex. We choose the observation part to be the top and right
outer boundaries {1}× (−1, 1)∪ (−1, 1)× {1}, and the unknown flux is to be determined on the inner
boundaries {0}×(−1, 0)∪(−1, 0)×{0}, while the other two boundaries {−1}×(0, 1)∪(0, 1)×{−1} are
set to be heat isulated, namely homogeneous Neumann boundary conditions are used there. Since this
domain is a non-convex region. The exact flux data is given by the explicit formula qe = (1−x)3+ y2.
We observe in Figure 3 that the decay rates of finite element approximation errors for both u and
p in H1- and L2-norms, respectively, are significantly reduced from the best case and diverges from
the reference red lines. Moreover, we show the decay rates of finite element approximation errors for
u and p, respectively, on the measurement boundary Γa and interior boundary Γi in the last row of
Figure 3, from which we see clearly second order convergence rates are no longer obtained for the
system on such a L-shaped region.

The decay rate for the L2-norm error of the adjoint state p demonstrates clearly around order of
about 1.2, which is mainly due to the non-convexity of the computational domain. While the L2-norm
error decay rate of u on Γi is is also affected due to the geometrical issue and thus reduced to about
1.45.
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Figure 2: Example 1. Convergence tests for u and p.
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Figure 3: Example 2. Convergence tests for u and p.
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7 Conclusion

In this work, we established some a priori error estimates for the heat flux reconstruction problem
using the continuous linear finite element discretization. These a priori estimates play a key role in
proving the convergence analysis of adaptive finite element methods for a general class of inverse heat
conduction problems, see, e.g. [15] for the heat flux reconstruction problem. The lower bounds of the
convergence order in the L2-norm are obtained for both u and p in the domain, which is sufficient for
an elegant convergence proof of AFEM. Numerical examples are presented to verify our theoretical
prediction. Further work on the convergence analysis of adaptive techniques applied to other inverse
heat conduction problems will be reported elsewhere.
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