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REFINED CONVERGENCE THEORY FOR SEMI-LAGRANGIAN

SCHEMES FOR PURE ADVECTION

HOLGER HEUMANN AND RALF HIPTMAIR

Abstract. We consider generalized linear transient advection problems for
differential forms on a bounded domain inRn. We provide comprehensive a pri-
ori convergence estimates for their spatio-temporal discretization by means of
a semi-Lagrangian approach combined with a discontinuous Galerkin method.

We establish a new asymptotic estimate O(hr+1τ
−

1
2 ) for the L2-norm of the

error, where h is the spatial meshwidth, τ denotes the timestep, and r is the
polynomial degree of the piecewise polynomial discrete differential forms used
as trial functions. Numerical experiments hint that the estimate is sharp for
certain trial spaces and may be sub-optimal for others.

1. Introduction

A huge body of numerical analysis literature deals with numerical methods for
the transient 2nd-order advection-diffusion problem

∂tu− div εgrad u+ β · gradu = f in Ω,
u = gD on Γ0 ∪ Γin ⊂ ∂Ω,

u(·, 0) = u0.
(1)

The non-negative smooth function ε = ε(x) is called the diffusion coefficient, β :
Ω $→ Rn stands for a given Lipschitz continuous stationary velocity field, nΩ is
the outward normal and f ∈ C1

(

[0, T ];L2 (Ω)
)

is a given source function, T > 0
the final time. Dirichlet boundary conditions gD can be imposed on the inflow
boundary part Γin or where the diffusion coefficient ε is positive.

A key issue is the design of numerical methods that are robust in the singular
perturbation limit of vanishing diffusion coefficient ε → 0. This article is devoted
to the analysis of so-called semi-Lagrangian methods, which have little difficulty
coping with singularly perturbed advection-diffusion problems.

The semi-Lagrangian approach to scalar advection-diffusion problems like (1)
has been investigated in a host of research papers, see, e.g., [3–5, 9–11, 21, 23, 26].
A survey of the literature can be found in [12, Section 5]. These works exclusively
address the scalar problem (1), whereas, apart from [12–14,22], little attention has
been paid to semi-Lagrangian methods for the non-scalar case, e.g., the so-called
magnetic advection-diffusion problem for a vector field u : Ω → R3 [13], describing
the evolution of magnetic fields in conducting media:

∂tu+ curl ε curl u+ grad(β · u) + curl u× β = f in Ω,
u = gD on Γ0 ∪ Γin,

u(·, 0) = u0.
(2)

In this article we present a new convergence theory for fully discrete semi-
Lagrangian methods for the limit case ε = 0, where the velocity β has vanishing

Date: October 5, 2011.
2000 Mathematics Subject Classification. 65m25, 65m60, 65m12.
Key words and phrases. advection-diffusion problem, discrete differential forms, semi-

Lagrangian methods.
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2 HOLGER HEUMANN AND RALF HIPTMAIR

normal components everywhere on the boundary of Ω, i.e., as in [13], we focus on a
pure advection problem. We are not going to delve into a discussion of design and
implementation of the methods, but refer to the companion paper [13] instead. The
new results improve the asymptotic convergence estimates of order O(hr+1τ−1) for
h, τ → 0 obtained in [13] to O(hr+1τ−

1
2 ), where h is the mesh width of the spatial

triangulation, and τ stands for the (uniform) timestep size. The new estimates were
inspired by an argument from [19, p. 52]. They are clearly sharper than previous
results obtainted in [21] (asymptotic order O(h2τ−1)) and [7] (order O(τ + h)) for
(1) and ε = 0. They also generalize the result in [19, page 52] to a larger class of
advection problems, to non-constant velocity, and non-zero source terms.

Following a trend in the numerical analysis of PDEs (cf. [1,2,8]), in this article the
presentation relies on the calculus of differential forms, a perspective also adopted
and elaborated in [13] and [12, 15]. Beside offering concise notations, this has the
big benefit that both (1) and (2) can be treated in a unified framework.

The outline of this article is as follows. In the next section we recall the ad-
vection problem for differential forms and restate the semi-Lagrangian methods.
Afterwards we prove the main convergence theorem Theorem 3.3. Numerous nu-
merical experiments in the final section confirm the relevance of the results also in
the preasymptotic range for h and τ .

2. Advection of differential forms and semi-Lagrangian methods

We refer to the books [6], [18] and [25] and the article [1] for a comprehensive
introduction to differential forms. Here, we merely list important concepts and
notations.

Let Ω be a smooth, oriented n-dimensional Riemannian manifold. Then, let
Λk (Ω) denote the space of smooth differential forms. A smooth differential form
ω assigns to each point x ∈ Ω and k vectors v1, . . .vk from the tangent space at x
a number. For x fixed a smooth differential form ω induces a k-linear alternating
mapping ωx on the tangent space at x (c.f. Table 1).

Based on the inner product on the tangent bundle of Ω we can define an inner
product (ω, η)Ω =

∫

ω
〈ω, η〉 vol, where 〈·, ·〉 is the inner product of alternating map-

pings. Completion of Λk (Ω) in the norm ‖ω‖2L2(Ω) := (ω,ω)Ω yields the Hilbert

space L2Λk (Ω). Analogously to the Sobolev spacesHm (Ω) andWm,p (Ω) for scalar
functions with m > 0 derivatives in L2 (Ω) and Lp (Ω) [25, Section 1.3] we define
Sobolev-spaces Wm,pΛk (Ω) and HmΛk (Ω) for differential forms by requiring that
the map

(3) x $→ ωx(v1(x), . . . ,vk(x))

is in Wm,p (Ω) and Hm (Ω), where v1(x), . . . ,vk(x) are smooth vector fields. In
the following ‖·‖Wm,pΛk(Ω) (|·|Wm,pΛk(Ω)) and ‖·‖HmΛk(Ω) (|·|HmΛk(Ω)) will denote
the corresponding (semi) -norms. We use also the standard notations Wm,p (Ω),
|β|Wm,p(Ω) and ‖β‖Wm,p(Ω) to denote Sobolev spaces, Sobolev semi-norms and
Sobolev norms of vector valued functions with m > 0 derivatives in Lp (Ω).

The stationary, Lipschitz continuous vector field β : Ω → Rn induces a flow
Xτ (x) = X(τ, x) with X : Ω× R $→ Ω, where

(4)
∂

∂τ
Xτ (x) = β(Xτ (x)), X0(x) = x .

Here and below we make the following assumption:

Assumption 2.1. We assume that β : Ω → Rn has vanishing normal components
at the boundary of Ω.
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k differential form vector proxy

0 x $→ ωx u(x) := ωx

1 x $→ {v $→ ωx(v)} u(x) · v := ωx(v)

2 x $→ {(v1,v2) $→ ωx(v1,v2)} u(x) · (v1 × v2) := ωx(v1,v2)

3 x $→ {(v1,v2,v3) $→ ωx(v1,v2,v3)} u(x) det(v1,v2,v3) := ωx(v1,v2,v3)

Table 1. In 3D Euclidian space the vector proxies of forms ω are
scalar functions u or vector fields u [16, Table 2.1].

An essential concept for a unifying treatment of linear advection problems is the
concept of the pullback map X∗

τ : Λk (Ω) → Λk (Ω), that is induced by the flow
map Xτ :

(5)

∫

Σ
X∗

τω :=

∫

Xτ (Σ)
ω, ∀k-dim. submanifolds Σ.

The natural advection operator for differential forms is the Lie derivative:

(6) Lβ ω :=
∂

∂τ
X∗

τω|τ=0.

The Lie derivative Lβ ω of a k-form measures the rate of change of ω in direction
of β, with respect to the evaluation of ω on any k-dimensional sub-manifold Σ:

(7)

∫

Σ
Lβ ω =

∫

Σ

∂

∂τ
(X∗

τω)|τ=0 =
∂

∂τ

(
∫

Σ
X∗

τω

)

|τ=0

=
∂

∂τ

(

∫

Xτ (Σ)
ω

)

|τ=0

.

Then, the linear advection problem for differential forms reads: For given ω0 ∈
Λk (Ω) and ϕ ∈ Λk (Ω) find ω(t) ∈ Λk (Ω), 0 < t < T , such that

(8) ω(0) = ω0,
∂

∂t
ω(t) + Lβ ω(t) = ϕ(t), 0 ≤ t ≤ T .

The assumption 2.1 implies that X(τ, x) ∈ Ω, for all τ and x ∈ Ω, and we have the
following representation formula for the solution:

(9) (ω(t))x =
(

X∗
−tω(0)

)

x
+

∫ t

0

(

X∗
τ−tϕ(τ)

)

x
dτ,

which will be the starting point for the construction of Semi-Lagrangian methods
for (8).

Remark 2.2. Functions and vector fields can provide models for differential forms.
The association is by no means unique. A popular identification is provided by the
so-called Euclidean vector proxies depicted in Table 1. This isomorphism establishes
a link between exterior calculus and vector analysis, see Table 2 for an overview
of vector proxy representation of pullbacks for differential forms in R3 and the
corresponding Lie derivatives. This reveals that the transport parts of (1) and (2)
are in fact incarnations of (8) for k = 0 and k = 1, respectively.

The generic semi-Lagrangian approach boils down to a finite element Galerkin
discretization of (9) plus timestepping. Let T be a triangulation of Ω and Λk

h (T ) ⊂
L2Λk (Ω) denote some piecewise polynomial approximation space for differential k-
forms in Ω on the triangulation T . The subscript h plays the dual role of labeling
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k Lβ ω φ∗ω

0 β · gradu u(φ(x))

1 grad(β · u) + curl u× β Dφ(x)Tu(φ(x))

2 curl(u× β) + β divu detDφ(x)Dφ(x)−1u(φ(x))

3 div(uβ) detDφ(x)u(φ(x))

Table 2. Correspondences of operations on forms ω with opera-
tions on scalar functions u or vectorial functions (vector proxies)
u in 3D Euclidean space. φ is a diffeomorphism, e.g. Xτ . [1, 16]

discrete entities and designating the mesh width of T . We assume that for suitable
r, s ∈ N0 there are constants K = K(r, s) independent of h such that

(10) inf
ωh∈Λk

h
(T )

‖ωh − ω‖L2Λk(Ω) ≤ Khmin(r+1,s)‖ω‖HsΛk(Ω) ∀ω ∈ HsΛk (Ω) .

Obviously, r will be related to the polynomial degree of the approximation space.
To formulate a semi-Lagrangian method, we consider a partitioning of the time

interval of the form [0, T ] =
⋃N−1

n=0 [t
n, tn+1] with tn = τn and τ = T

N
. Then

the semi-Lagrangian Galerkin timestepping scheme for the advection problem (8)
constructs sequences (ωn

h)
N
n=0, ω

n
h ∈ Λh (T ), approximating (ω(tn))Nn=0 by solving

the following discrete variational problem: Find (ωn
h)

N
n=0, ω

n
h ∈ Λk

h (T ), such that

for all ηh ∈ Λk
h (T ):

(11)

(

ω0
h, ηh

)

Ω
=(ω0, ηh)Ω ,

1

τ

(

ωn+1
h , ηh

)

Ω
−

1

τ

(

X∗
−τω

n
h , ηh

)

Ω
=

∫ tn+1

tn

(

X∗
tn+1−sϕ(s), ηh

)

Ω
ds

3. A priori error estimates

For the error analysis of the semi-Lagrangian discretization (11) we have to gauge
the effect of transport with the flow. This is done in the following two auxiliary
lemmas.

Lemma 3.1 (Proposition A.1 in [12]). Let β ∈ W 1,∞ (Ω) satisfy Assumption 2.1.
Then, for ω, η ∈ L2Λk (Ω), we have the expansion

(12)
(

X∗
−τω, X

∗
−τη

)

Xτ (Ω)
= (ω, η)Ω +R(β, τ) (ω, η)Ω ,

with |R(β, τ)| ≤ C(β)τ independent of ω and η.

Proof. (provided for the sake of completeness) By density of Λk (Ω) in L2Λk (Ω) it
is enough to prove the assertions for smooth η,ω ∈ Λk (Ω). In what follows S(k, n)
is the set of permutations σ of numbers {1, 2, . . . n}, such that σ(1) < · · · < σ(k)
and σ(k+1) < · · · < σ(n). By multi-linearity we have for orthonormal vector fields
e1, . . . en and σ ∈ S(j, n), γ ∈ Λj (Ω) and x ∈ Ω [24, Page 610]:

(13) (X∗
τ γ)x(eσ(1), . . . , eσ(j))

=
∑

σ′∈S(j,n)

det
(

(DXτ (x))σ′,σ

)

γXτ (x) (eσ′(1), . . . , eσ′(j)),

where the quantities det
(

(DXτ (x))σ′,σ

)

are known as the j-minors of the differen-

tial DXτ (x) with respect to e1, . . . , en, i.e. the determinants of those submatrices
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of DXτ (x), that contain the rows σ′ and columns σ. By the definition of the inner
product of differential forms we have

(

X∗
−τω, X

∗
−τη

)

Xτ (Ω)
=

∫

Xτ (Ω)
〈X∗

−τω, X
∗
−τη〉 vol,

where 〈·, ·〉 : Λk (Ω) × Λk (Ω) → Λ0 (Ω) = C∞(Ω) [25, Definition 1.2.2 b)] is the
scalar product of alternating linear forms, which reads

〈ω, η〉 :=
∑

σ∈S(k,n)

ω(eσ(1), . . . , eσ(n))η(eσ(1), . . . , eσ(n)) .

Hence, (13) and the change of variable formula yield

(14)
(

X∗
−τω, X

∗
−τη

)

Xτ (Ω)
= (det(DXτ )Mk(DXτ )ω,Mk(DXτ )η)Ω ,

with

(15) (Mj(DXτ )γ)x(eσ(1), . . . , eσ(j)) :=
∑

σ′∈S(j,n)

det
(

(DXτ (x))σ′,σ

)

γx(eσ′(1), . . . , eσ′(j)).

Now, Taylor expansion of
(

X∗
−τω, X

∗
−τη

)

Xτ (Ω)
in τ around τ = 0 boils down to

Taylor expansion of the multiplication coefficients det
(

(DXτ (x))σ′,σ

)

. From the

Taylor expansion of DXτ (x), DXτ (x) = In +
∫ τ

0 Dβ(Xs(x))DXs(x)ds and the

Taylor expansion of det(), det(A(τ)) = det(A(0)) +
∫ τ

0 tr(Adj(A(s))dAds )ds and
(15) we infer

(16)

(Mj(DXτ )γ)x(eσ(1), . . . , eσ(j)) =
∑

σ′∈S(j,n)

det((In)σ′,σ)γx(eσ′(1), . . . , eσ′(j)),

+
∑

σ′∈S(j,n)

Rσ′,σ(Dβ, τ)γx(eσ′(1), . . . , eσ′(j)) ,

with Adj and tr the adjugate and trace operator for matrices, the unit matrix
In ∈ Rn×n, and |Rσ′,σ(Dβ, τ)| ≤ τCσ′ ,σ(Dβ), Cσ′,σ independent of τ . Combining
(14) and (16) yields the assertion. !

Lemma 3.2. If β ∈ W 1,∞ (Ω) satisfies Assumption 2.1, we can bound
∥

∥X∗
−τω

∥

∥

2

L2Λk(Ω)
≤ (1 + cτ) ‖ω‖2L2Λk(Ω) ∀ω ∈ L2Λk (Ω) ,(17)

with c = c(‖β‖W 1,∞(Ω)) > 0 independent of τ .

Proof. This lemma is a special case of Lemma 3.1. !

The following main theorem generalizes the result of [19, page 52] to advection
problems for differential forms with non-constant velocity and non-homogeneous
right hand side.

Theorem 3.3. Let ω, (ωn
h)

N
n=0 be the solutions of (8) and (11), respectively. If β ∈

W 1,∞ (Ω), ω ∈ L∞([0, T ], HsΛk (Ω)), Assumption (2.1) holds, and, additionally,
Λk
h (T ) furnishes the approximation property (10), then we get

(18) max
0≤n≤N

‖ω(tn)− ωn
h‖L2Λk(Ω) ≤ Chmin(r+1,s)τ−

1
2 max
0≤n≤N

‖ω(tm)‖HsΛk(Ω),

where C > 0 depends only on K from (10) and β.
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Proof. Let Ph denote the L2-projection onto Λk
h (T ). Then the solution formula

(9), the definition (11) of ωn+1
h and the Pythagorean theorem yield the following

recursive estimate for the norm of the error en+1 := ω(tn+1)− ωn+1
h :

∥

∥en+1
∥

∥

2

L2Λk(Ω)
=

∥

∥ω(tn+1)− Phω(t
n+1) + Phω(t

n+1)− ωn+1
h

∥

∥

2

L2Λk(Ω)

=
∥

∥ω(tn+1)− Phω(t
n+1) + PhX

∗
−τ (ω(t

n)− ωn
h)
∥

∥

2

L2Λk(Ω)

=
∥

∥ω(tn+1)− Phω(t
n+1)

∥

∥

2

L2Λk(Ω)
+
∥

∥PhX
∗
−τ (ω(t

n)− ωn
h)
∥

∥

2

L2Λk(Ω)
.

Since we assume vanishing normal component of β on the boundary of Ω (Assump-
tion 2.1), we can use Lemma 3.2 together with the L2-stability of the orthogonal
projection Ph to obtain

∥

∥en+1
∥

∥

2

L2Λk(Ω)
≤ ξn+1 + (1 + cτ) ‖en‖2L2Λk(Ω) ,

with the spatial projection errors ξk+1 :=
∥

∥ω(tn+1)− Phω(tn+1)
∥

∥

2

L2Λk(Ω)
. Summa-

tion, combined with 1 + x ≤ exp(x) gives

‖en‖2L2Λk(Ω) ≤
n
∑

i=0

(1 + cτ)n−iξi ≤
exp(cτ(n + 1))− 1

exp(cτ) − 1
max
0≤i≤n

ξi

≤
exp(cT )− 1

exp(cτ) − 1
max
0≤i≤n

ξi ≤
exp(cT )

cτ
max
0≤i≤n

ξi.

Finally we use the approximation property (10) of Λk
h (T ) to control the ξi and

obtain the assertion. !

The scheme (11) is impractical for most applications, since it assumes that the
bilinear form

(

X∗
−τuh, vh

)

Ω
can be computed exactly. Fully discrete schemes use

approximate pullbacks.

Remark 3.4. As in [14] we can introduce fully discrete schemes by means of ap-
proximated pullbacks and quadrature formulas for the right hand sides. A similar
convergence analysis as the one in [14, Theorem 2] gives estimates that are explicit
in the additional approximation parameters. To keep this article focused, we merely
refer to [14, Section 5] for a detailed explanation of the various approximation steps
towards fully discrete semi-Lagrangian schemes.

4. Numerical experiments

Now we study the behaviour of the semi-Lagrangian scheme for the rotating
hump problem, c.f. [5, 11, 17]. We consider an advection problem (8) for 0-forms
on the unit disc Ω := {(x1, x2) : x2

1 + x2
2 ≤ 1} with vanishing source term and the

velocity field

β(x) =

(

x2

−x1

)

, x = (x1, x2) ∈ Ω .

In vector proxy notation, cf. Sect 2 and Table 1, the analytical solution reads

u(t,x) = u0(R(t)x), R(t) :=

(

cos(t) − sin(t)
sin(t) cos(t)

)

, t ∈ R ,

where u0 = u0(x) is the initial data.
For this problem, we can compute the inner products

(

X∗
−τωh, ηh

)

Ω
up to very

high accuracy. Hence, we avoid the difficulties connected to the approximation of
Xτ , e.g. instabilities [20] or inconsistencies [14]: First, we can use exact tracking of
the characteristics and second, the functions X∗

−τωh, ωh ∈ Λk
h (T ), are again finite

element functions on a mesh T ′ with straight edges. To compute
(

X∗
−τωh, ηh

)

Ω
we

split the integral over Ω into a sum of integrals over all intersections of elements of
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T and T ′. Both X∗
−τωh and ηh are smooth on these intersections, hence we can

employ high order quadrature rules. Since in general the intersections are convex
polygons we obtain these quadrature rules via auxiliary triangulations.

In the sequel we monitor the error ‖u(T )− un
h‖L2(Ω), T = π for the following

initial data, c.f. [17]:
(19)

u0,i =







cos
(

3
2π

√

x2
1 + (x2 − 0.5)2

)i

x2
1 + (x2 − 0.5)2 ≤ 1

9

0 else
, i = 1, 2, 3, 4, 5.

The larger the index i the smoother is u0,i. We consider triangulations with straight
edges and boundary vertices that lie on the boundary of the original domain Ω,
i.e. in each refinement step the boundary nodes of the mesh are placed onto the
boundary of the domain, c.f. Figure 1. Note that the support of u(t,x) never comes
close to ∂Ω. Therefore, we do not expect the polygonal approximation of ∂Ω to
affect the results.

Figure 1. Two triangulations of the domain Ω.

Galerkin discretization is based on continuous linear Lagrangian elements (Experiment

1), continuous quadratic Lagrangian elements (Experiment 2), continuous hier-
archic elements of polynomial order 1, 2, 3 and 4 (Experiment 3) and spaces of
discontinuous piecewise polynomials of degree 0, 1, 2, 3 and 4 (Experiment 4),
respectively.

If we link the timestep size τ to the mesh size h by τ = δ√
2
h, we get higher

rates of convergence (see Figures 2, 5, 8, 9), than those predicted by Theorem
3.3. Interestingly, in the case of continuous approximation spaces, we observe a
remarkable difference between odd and even polynomial degree r. While in the
former case we see clearly convergence of order O(hr+1) (Figures 2 and 8), in the
latter case the convergence seem to be between O(hr+ 1

2 ) and O(hr+1) (Figures
5 and 8). For discontinuous elements we observe convergence of order O(hr+1)
throughout.

If we keep the timestep size τ fixed we observe exactly the rates O(hr+1), that
follow by Theorem 3.3 (see Figures 3 and 6). Also the impact of the smoothness of
the solution on the rate of convergence, is reflected by the results of the numerical
experiments (see Figures 4 and 7).
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Figure 2. Experiment 1 a): linear elements, locally supported
bump u0,3 ∈ H3 (Ω) as initial data, τ = δ√

2
h.
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Figure 3. Experiment 1 b): linear elements, locally supported
bump u0,3 ∈ H3 (Ω) as initial data, τ fixed.
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Figure 4. Experiment 1 c): linear elements, locally supported
bumps of different global regularity as initial data, τ = 0.8√
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Figure 5. Experiment 2 a): quadratic Lagrangian elements, lo-
cally supported bump u0,3 ∈ H3 (Ω) as initial data, τ = δ√
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Figure 6. Experiment 2 b): quadratic Lagrangian elements, lo-
cally supported bump u0,3 ∈ H3 (Ω) as initial data, τ fixed. Ex-
perimental result agrees with Theorem 3.3.
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Figure 7. Experiment 2 c): quadratic elements, locally supported
bumps of different global regularity as initial data, τ = 0.8√
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Figure 8. Experiment 3: H1 (Ω) conforming hierarchic elements
of different order, locally supported bump u0,5 ∈ H5 (Ω) as initial
data, τ = 0.8√
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der, locally supported bump u0,5 ∈ H5 (Ω) as initial data, τ =
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