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Abstract

We consider diffusion in a random medium modeled as diffusion equation with lognormal Gaus-
sian diffusion coefficient. Sufficient conditions on the log permeability are provided in order for a
weak solution to exist in certain Bochner-Lebesgue spaces with respect to a Gaussian measure. The
stochastic problem is reformulated as an equivalent deterministic parametric problem on RN. It is
shown that the weak solution can be represented as Wiener-Itô Polynomial Chaos series of Hermite
Polynomials of a countable number of i.i.d standard Gaussian random variables taking values in R1.

We establish sufficient conditions on the random inputs for weighted sequence of norms of the
Wiener-Itô decomposition coefficients of the random solution to be p-summable for some 0 < p < 1.
For random inputs with additional spatial regularity, stronger norms of the weighted coefficient
sequence in the random solutions’ Wiener-Itô decomposition are shown to be p-summable for the
same value of 0 < p < 1.

We infer rates of nonlinear, best N -term Wiener Polynomial Chaos approximations of the random
field, as well as for Finite Element discretizations of these approximations from a dense, nested family
V0 ⊂ V1 ⊂ V2 ⊂ ....V of finite element spaces of continuous, piecewise linear Finite Elements.
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1 Introduction

In recent years, partial differential equations with random inputs have attracted interest due to their
relevance for quantifying uncertainty in engineering and in the sciences. Broad classes of numerical
methods to estimate statistics of random solutions include sampling techniques such as Monte-Carlo and
Quasi-Monte Carlo methods, Stochastic collocation techniques and spectral discretization techniques
consisting of Galerkin projection onto (generalized) polynomial chaos bases. Whereas the former are
rather general, the latter require careful study of the probability measure and a spectral basis adapted
to the probability space of the random inputs. A common feature of the latter class of problems is their
parametrization as a deterministic problem on a parameter space of countably infinite dimension. A key
analytical question in this context is then the approximability of the parametric, deterministic solution in
terms of tensorized polynomial systems which are orthonormal with respect to the probability measure.
This approach has gained increasing significance in recent years. We mention only the book [10] and the
papers [19, 18, 2, 1, 15, 14, 13, 3, 12] and the references there.

In particular, in the context of adaptive solution algorithms, so-called best N -term approximation
rates are of interest as a benchmark for the best possible achieveable by adaptive, deterministic ap-
proximation methods of stochastic Galerkin or also of stochastic collocation type. One principal aim
of this work is to prove that, indeed, adaptive polynomial chaos approximations can afford higher rates
of convergence in terms of the number of overall degrees of freedom than the commonly used Monte
Carlo sampling methods or even their more efficient variants, the multi-level Monte-Carlo Finite Element
Methods, whose complexity was recently analyzed in [4].

In the case of probability measures with compact support such as, e.g. the uniform distribution,
best N -term approximation results in terms of tensorized Legendre polynomials (which are the natural
orthogonal polynomials for the uniform probability measure) have been obtained in [7, 6]. In many
applications, however, countably many, independent and identically normally distributed random inputs
are assumed. In this case, the natural polynomial system for the representation of system’s random
response are well-known to be tensorized Hermite polynomials; this goes back N. Wiener (see, e.g., [17])
and is, therefore, termed Wiener polynomial chaos, or WPC, representation.

To obtain best N -term approximation rates for truncated Wiener polynomial chaos expansions, for
solutions of elliptic partial differential equations with random inputs and for probability measures with
unbounded support, such as lognormal models of permeabilities in subsurface flow models, is one purpose
of the present paper.

Its outline is a follows: in the next section, following [11, 16] we specify the lognormal diffusion problem
and present its reduction to a parametric, deterministic problem on a subset Γ of the infinite-dimensional
parameter space RN which we show, however, to be measurable with respect to a parametric family of
Gaussian measures on RN, and to be of full measure. We then establish well-posedness of the parametric,
deterministic problem and measurability of the solution of the parametric deterministic problem for all
parameter vectors in a subset Γ of RN of full (Gaussian) measure. We present a weak formulation of
this parametric, deterministic problem and prove its well-posedness. We then show that the parametric
solution can be expanded into a polynomial chaos type series with respect to a countable family i.i.d
Gaussian random variables. Moreoever, we establish conditions on the p-summability of the Hermite
coefficients of the solution, under suitable decay condition of the random coefficients of the problem.

Throughout, we shall use the following notation: N denotes the set of natural numbers, and we define
N0 = N ∪ {0}. By D ⊂ Rd, d ≥ 2, we denote a bounded domain with Lipschitz boundary ∂D.
By RN we denote the set of all sequences of real numbers and observe that RN = R× R× ... = R∞. By
F , we denote the set of “finitely supported” countable multiindices, i.e.

F =
{
ν ∈ NN

0 : |ν| < ∞
}

.

Here, by |ν| = ν1 + ν2 + ..., we denote the “length” of the multiindex ν ∈ NN
0 . Evidently, a multiindex

ν ∈ F can have only finitely many nonzero entries νj . For ν ∈ F , we denote by n ⊂ N the “support set”
of ν, i.e. the (finite) set of all j ∈ N such that νj )= 0, with j repeated νj ≥ 1 times. Hence, |n| = |ν|. We
shall always associate to ν ∈ F the support set n and to µ ∈ F the set m ⊂ N.

For y ∈ U , we denote by ∂ν
yu(·, y) the mixed partial derivative of order ν and likewise ∂µ

y u(·, y). On
occasion, we shall also write ∂n

y in place of ∂ν
y and likewise for ∂m

y .
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2 Problem Formulation

LetD ⊂ Rd denote a bounded domain with a Lipschitz boundary ∂D and denote by (Ω,F ,P) a probability
space. In the domain D, we consider stochastic isotropic elliptic problems

−∇ · (a(x,ω)∇u(x,ω)) = f(x) in D , u|∂D = 0 . (2.1)

Here, the coefficient a : D×Ω ,→ R a stochastic diffusion coefficient, and f is the deterministic source term
(a stochastic source term that is uncorrelated to a could equally well be considered; to avoid unnecessarily
involved exposition and notation, we do not elaborate on this case). By V = H1

0 (D) we denote the closed
subspace of the Sobolev space H1(D) of functions whose boundary values vanish in the sense of trace,
with norm

‖v‖V :=

(∫

D
|∇v(x)|2dx

)1/2

. (2.2)

For given random coefficient a(x,ω) and any w, v ∈ V , we define the stochastic bilinear form

b(ω;w, v) :=

∫

D
a(x,ω)∇w ·∇vdx;

and we consider the source term f as element of the dual space V ′ of V . Then, for any ω ∈ Ω, the weak
formulation of (2.1) reads: find u(ω) ∈ V such that

b(ω;u(ω), v) = 〈f, v〉 ∀v ∈ V . (2.3)

Here, and in what follows, we denote by 〈·, ·〉 the extension by continuity of the L2(D) innerproduct to
the V ′×V duality pairing. To prove well-posedness of (2.3), we use the Lax-Milgram Lemma. To invoke
it, we specify conditions which ensure that the diffusion coefficient is positive, and show that, under
additional conditions, the collection of pathwise solutions {u(ω) : ω ∈ Ω} is measurable with respect to
a suitable probablity measure.

2.1 Model elliptic PDE with lognormal Gaussian Parameters

For the coefficient a(x,ω) of the problem (2.1), we assume a Karhúnen–Loève type expansion of log(a−a∗),
where a∗ is a bounded function on D with a∗(x) ≥ 0 for all x ∈ D. Thus, we assume a stochastic diffusion
coefficient of the form

a(x,ω) = a∗(x) + a0(x) exp

( ∞∑

m=1

Ym(ω)ψm(x)

)
, x ∈ D , (2.4)

for y(ω) = (Ym(ω))m∈N : Ω → RN.
To fix the scaling in the Karhúnen–Loève expansion (2.4), we further assume that the Ym(ω), m ∈ N

are independent standard Gaussian random variables in R1. This is the case if, for example, log(a− a∗)
is Gaussian and we expand it in its Karhúnen–Loève series, or more generally if (ψm)m∈N are orthonormal
in the Cameron–Martin space of the distribution of log(a− a∗), see [16, Section 2.4].

By the above assumptions, the law of the sequence of random variables y = (Y1(ω), Y2(ω), . . .) is
defined on the probability space (RN,B(RN), γ), with the Gaussian measure γ given by

γ =
∞⊗

m=1

N1 (2.5)

(see, e.g., [5]). In (2.4), we assume that ψm ∈ L∞(D) for all m ∈ N0, a0(x) ≥ ǎ0 > 0 for all x ∈ D,
a∗(x) ≥ 0 and

∞∑

m=1

‖ψm‖L∞(D) < ∞ , (2.6)

i.e. we require that the sequence

b = (bm)m≥1 = (‖ψm‖L∞(D))m≥1 ∈ &1(N) . (2.7)
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Given a sequence b ∈ &1(N) we define the set

Γb :=

{
y ∈ RN ;

∞∑

m=1

bm|ym| < ∞
}

. (2.8)

For each y ∈ Γb, we define the deterministic, parametric coefficient as

a(x, y) = a∗(x) + a0(x) exp

( ∞∑

m=1

ymψm(x)

)
, x ∈ D. (2.9)

The series in (2.9) converges in L∞(D) for all y ∈ Γb ⊂ RN. We observe from (2.9) that as a∗(x) ≥ 0 for
all x, for every y ∈ Γb holds

∀ν ∈ F :

∥∥∥∥
∂ν
ya(·, y)
a(·, y)

∥∥∥∥
L∞(D)

≤ bν . (2.10)

Moreover, the set Γb of admissible parameter vectors is γ-measurable and of full measure: there holds
(see [16, Lemma 2.28])

Lemma 2.1 For any sequence b ∈ &1(N),

Γb ∈ B(RN) and γ(Γb) = 1 .

In the following, if the dependence of the set Γb on the sequence b is clear from the context, we omit it
in the notation.

Lemma 2.2 For all y ∈ Γ, the diffusion coefficient (2.9) is well-defined and satisfies

0 < ǎ(y) := ess inf
x∈D

a(x, y) ≤ ess sup
x∈D

a(x, y) =: â(y) < ∞ (2.11)

with

â(y) ≤ ‖a∗‖L∞(D) + ‖a0‖L∞(D) exp

( ∞∑

m=1

bm|ym|
)

,

ǎ(y) ≥ ess inf
x∈D

a∗(x) + ǎ0 exp

(
−

∞∑

m=1

bm|ym|
)

.

Proof: Let y ∈ Γ and x ∈ D with |ψm(x)| ≤ bm for all m ∈ N. Then
∞∑

m=1

|ψm(x)||ym| ≤
∞∑

m=1

bm|ym| < ∞ .

By continuity and positivity of exp(·), for y ∈ Γb,

exp

( ∞∑

m=1

ψm(x)ym

)
=

∞∏

m=1

exp(ψm(x)ym) ∈ (0,∞) . (2.12)

Then the claim follows from Kakutani’s Theorem (see, e.g. [5]). !

Due to Lemmas 2.1 and 2.2, we consider Γ as the parameter space instead of RN. Even though Γ is
not a product domain, we can define product measures such as γ on Γ by restriction.

Lemma 2.2 shows that the stochastic diffusion coefficient a(x,ω) in (2.4) is well defined, bounded
from above and to admit a positive lower bound for almost all ω ∈ Ω. Thus the stochastic diffusion
equation (2.1) and, equivalently, the stochastic variational form (2.3) admits a unique solution u(ω) ∈ V
for almost all ω ∈ Ω.

For each y ∈ Γ, we consider the parametric deterministic elliptic problem

−∇ · (a(x, y)∇u(x, y)) = f(x) , x ∈ D ,

u(x, y) = 0 , x ∈ ∂D
(2.13)

3



with the solution u(y) ∈ V . For y ∈ Γ, we define the parametric, deterministic bilinear form

b(y;w, v) :=

∫

D
a(x, y)∇w(x) ·∇v(x)dx , w, v ∈ V , (2.14)

and reinterpret the forcing term f as a map into the dual space V ′ by

f(v) :=

∫

D
f(x)v(x)dx , v ∈ V , (2.15)

with the integral understood as extension of the L2(D)-innerproduct to the V ′ × V -duality pairing by
continuity.

The parametric, deterministic variational formulation of the lognormal diffusion equation (2.13) is
given by the linear variational problem of determining, for y ∈ Γ, an element u(y) ∈ V such that

b(y;u(y), v) = f(v) ∀v ∈ V . (2.16)

Theorem 2.3 For all y ∈ Γ, (2.16) has a unique solution u(y) ∈ V . It satisfies

‖u(y)‖V ≤ 1

ǎ(y)
‖f(·)‖V ′ ∀y ∈ Γ . (2.17)

Proof: By Lemma 2.2 and (2.2), the bilinear form b(y; ·, ·) is continuous and coercive on V with coercivity
constant ǎ(y) for all y ∈ Γ. The claim follows by the Lax–Milgram lemma. !

Next, we review solvability of elliptic problems with log-normal coefficients as discussed in [11] and
[16] to the extent that we require later.

2.2 Auxiliary Gaussian Measures

For any sequence σ = (σm)m∈N ∈ exp(&1(N)), i.e. σm = exp(sm) with (sm)m ∈ &1(N), we define the
product measure

γσ :=
∞⊗

m=1

Nσ2
m

(2.18)

on (RN,B(RN)), where Nσ2
m

denotes the centered Gaussian measure on R1 with standard deviation
σm > 0. We denote the standard Gaussian measure on RN by γ = γ1.

Proposition 2.4 ([11]) For all σ = (σm)m∈N ∈ exp(&1(N)), the measure γσ is equivalent to γ. The
density of γσ with respect to γ is given explicitly by

ζσ(y) =

( ∞∏

m=1

1

σm

)
exp

(
−1

2

∞∑

m=1

(σ−2
m − 1)y2m

)
. (2.19)

Proposition 2.4 implies in particular that γσ(Γ) = 1 for any σ ∈ exp(&1(N)). Therefore, the restriction
of γσ to Γ is a probability measure.

We consider sequences σ that depend exponentially on b = (bm)m∈N, whose terms are given by

σm(χ) := exp(χbm) , m ∈ N , χ ∈ R . (2.20)

We abbreviate γχ := γσ(χ) and ζχ := ζσ(χ). In particular, γ = γ1 = γ0. Then we have

Lemma 2.5 ([16, Lemma 2.32]) Let η < χ and k ≥ 0. Then

∀y ∈ Γ :
ζη(y)

ζχ(y)
exp

(
k

∞∑

m=1

bm|ym|
)

≤ exp

((
k2e2χ‖b‖!∞(N)

4(χ− η)
+ χ− η

)
‖b‖&1(N)

)
. (2.21)

If, in particular, k = 0 then (2.21) reads

∀y ∈ Γ :
ζη(y)

ζχ(y)
≤ exp

(
(χ− η)‖b‖&1(N)

)
. (2.22)

We also have

4



Proposition 2.6 ([16, Proposition 2.33]) Let 0 < p < ∞ and η < χ. Then

Lp(Γ, γχ) ⊂ Lp(Γ, γη) (2.23)

and

‖v‖Lp(Γ,γη) ≤ exp

(
χ− η

p
‖b‖&1(N)

)
‖v‖Lp(Γ,γχ) ∀v ∈ Lp(Γ, γχ) . (2.24)

Proposition 2.6 also applies to Lebesgue–Bochner spaces of functions taking values in, for example,
V or V ′. We will use it with η = 0, such that γη = γ.

2.3 Integrability of the Solution

We now briefly discuss integrability properties of the solution u of (2.16). Borel measurability of the map
RN ⊃ Γ 3 y ,→ u(y) ∈ V is shown in [11, Lemma 3.4] under the assumption that f is Borel measurable
as a map from RN to V ′. Under stronger assumptions, measurability of u also follows from Theorem 2.17
below.

Proposition 2.7 Let 0 < p < ∞ and + > 0. The solution u of (2.16) is in Lp(Γ, γ;V ) and satisfies

‖u‖Lp(Γ,γ;V ) ≤ c̄(,p‖f‖V ′

with

c̄(,p = min





exp

(
(
p‖b‖&1(N)

)

ess infx∈D a∗(x)
,

1

ǎ0
exp

(
‖b‖&1(N)

(
p exp(2+‖b‖&∞(N))

4+
+

+

p

))

 .

The propsition is a special case of Proposition 2.34 of [16] where this assertion is shown in the more
general case that when f ∈ Lp(Γ, γ(;V ′), it holds

‖u‖Lp(Γ,γ;V ) ≤ c̄(,p‖f‖Lp(Γ,γ$;V ′) .

We also need integrability of u with respect to the measure γ(. There holds (see [11, Lemma 3.10]):

Lemma 2.8 For all + ≥ 0 and all 0 < r < ∞,

exp

( ∞∑

m=1

bm|ym|
)

∈ Lr(Γ, γ()

with
∥∥∥∥∥exp

( ∞∑

m=1

bm|ym|
)∥∥∥∥∥

Lr(Γ,γ$)

≤ exp

(
r

2
‖b‖2&2(N) exp(2+‖b‖&∞(N)) +

√
2

π
‖b‖&1(N) exp(+‖b‖&∞(N))

)

Theorem 2.9 Let 0 < q < p < ∞ and + ≥ 0. The solution u of (2.16) is in Lq(Γ, γ(;V ) and satisfies

‖u‖Lq(Γ,γ$;V ) ≤ c̃(,q,p‖f‖V ′

with

c̃(,q,p =
1

ǎ0
exp

(
qp

2(p− q)
‖b‖2&2(N) exp(2+‖b‖&∞(N)) +

√
2

π
‖b‖&1(N) exp(+‖b‖&∞(N))

)
,

or, if ess infy∈Γ a∗(y) > 0 and q ≤ p, also with

c̃(,q,p =
1

ess infx∈D a∗(x)
.
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This theorem is a special case of Theorem 2.36 in [16]. Indeed, in [16] it is shown that when f depends
on y and is in Lp(Γ, γ(;V ′), there holds

‖u‖Lq(Γ,γ$;V ) ≤ c̃(,q,p‖f‖Lp(Γ,γ$;V ′)

In particular, if f ∈ Lp(Γ, γ(;V ′) with p > 2, then u ∈ L2(Γ, γ(;V ) and

‖u‖L2(Γ,γ$;V ) ≤ c̃(,p‖f‖Lp(Γ,γ$;V ′) (2.25)

with

c̃(,p =
1

ǎ0
exp

(
p

p− 2
exp(2+‖b‖&∞(N))‖b‖2&2(N) +

√
2

π
exp(+‖b‖&∞(N))‖b‖&1(N)

)
. (2.26)

In our case, f is independent of y so the assertion u ∈ L2(Γ, γ(;V ) holds. As p → ∞, we find that

c̃(,∞ =
1

ǎ0
exp

(
exp(2+‖b‖&∞(N))‖b‖2&2(N) +

√
2

π
exp(+‖b‖&∞(N))‖b‖&1(N)

)
< ∞ .

The space of Gaussian random fields with finite second moments admits a Wiener-Itô decomposition
corresponding to expansions of such random fields in terms of Hermite polynomials of Gaussians. The
main result of the present paper is to show regularity for the Wiener-Itô decomposition of the solution
of the diffusion problem. Specifically, we show that the terms of its Wiener-Itô decomposition are p
summable for some power 0 < p < 2. To this end, we denote by Hn(t) the Hermite polynomial of degree
n ∈ N, normalized so that

‖Hn(t)‖L2(R,N1) = 1 . (2.27)

Note that H0 ≡ 1. For y ∈ Γ and for ν ∈ F , we define

Hν(y) :=
∏

m≥1

Hνm(ym) = Hν1(y1)Hν2(y2) . . . . (2.28)

Since ν ∈ F , the formally infinite product in (2.28) contains only finitely many nontrivial factors.
The univariate Hermite polynomials form an orthonormal basis of L2(R1, γ1) (see, e.g. [8, Proposition

9.4] or [5, Lemma 1.3.2 i)]). By [16, Proposition 2.38], for (2.28) the tensorized Hermite polynomials
(Hν)ν∈F , form an orthonormal basis of L2(Γ, γ). We transform these to an orthonormal basis of L2(Γ, γ()
using the map

τ( : RN → RN , (ym)m∈N ,→ (e−(bmym)m∈N . (2.29)

Note that τ( maps Γ bijectively onto Γ.

Lemma 2.10 For all + ∈ R, the map

L2(Γ, γ) → L2(Γ, γ() , v ,→ v ◦ τ( (2.30)

is a unitary isomorphism of Hilbert spaces. Furthermore,
∫

Γ
v(y)γ(dy) =

∫

Γ
v(τ((y))γ((dy) ∀v ∈ L2(Γ, γ) . (2.31)

Proof: The standard Gaussian measure γ is the image of γ( under the map τ(. i.e. γ(E) = γ((τ−1
( (E))

for all E ∈ B(Γ). This is easily checked for sets E = {y ∈ Γ ; ym ≤ λ} with λ ∈ R and m ∈ N. Then
(2.31) is the transformation theorem. The remaining part of the assertion is a direct consequence. !

The next assertion is closely related to the Wiener-Itô decomposition of L2(RN, γ).

Proposition 2.11 For all + ∈ R, (Hν ◦ τ()ν∈F is an orthonormal basis of L2(Γ, γ().

Proof: The claim follows from Lemma 2.10 since (Hν)ν∈F from (2.28) is an orthonormal basis of L2(Γ, γ),
[8, Theorem 9.7]. !
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Corollary 2.12 Let + ≥ 0. Then the solution u of (2.16) can be represented in the form

u(y) =
∑

ν∈F
uνHν(τ((y)) , y ∈ Γ , (2.32)

with convergence in L2(Γ, γ(;V ), for the coefficients

uν =

∫

Γ
u(τ−1

( (y))Hν(y)γ(dy) ∈ V , ν ∈ F . (2.33)

Furthermore, the coefficient vector u := (uν)ν∈F ∈ &2(F ;V ) and there holds the isometry

‖u‖&2(F ;V ) = ‖u‖L2(Γ,γ$;V ) (2.34)

and the a-priori bound
‖u‖&2(F ;V ) ≤ c̃(,p‖f‖V ′ (2.35)

with the constant c̃(,p from (2.26).

Proof: By Theorem 2.9 with q = 2, the solution u of (2.16) is in L2(Γ, γ(;V ). Then (2.32) is the expansion
of u in the orthonormal basis from Proposition 2.11, and (2.33) follows from (2.31) since

uν =

∫

Γ
u(y)Hν(τ((y))γ((dy) =

∫

Γ
u(τ−1

( (y))Hν(y)γ(dy) .

Equation 2.35 is a consequence of (2.25) and of Parseval’s identity. !

2.4 Weak Formulation on a Problem-Dependent Space

Since the diffusion coefficient a(x, y) is not uniformly bounded in y ∈ Γ, simply integrating (2.16) over
Γ with respect to γ does not lead to a well-posed linear variational problem on L2(Γ, γ;V ). As shown
below, this difficulty can be overcome by considering a variational from with respect to a “stronger”
Gaussian measure.

If a∗(x) is not bounded away from zero we integrate (2.16) with respect to a measure that is stronger
than γ in the sense of Proposition 2.6, but not by as much as γ(. For parameters 0 ≤ ϑ < 1 and + > 0,
define

Bϑ((w, v) :=

∫

Γ
b(y;w(y), v(y))γϑ((dy) =

∫

Γ

∫

D
a(x, y)∇w(x, y) ·∇v(x, y)dxγϑ((dy) (2.36)

and

Fϑ((v) :=

∫

Γ
f(v(y))γϑ((dy) =

∫

Γ

∫

D
f(x)v(x, y)dxγϑ((dy) (2.37)

for suitable w and v. For the variational formulation, we define the space

Vϑ( := {v : Γ → V : B(Γ)-measurable ; Bϑ((v, v) < ∞} . (2.38)

We consider elements of Vϑ( as equivalence classes of γ-almost everywhere identical functions.

Proposition 2.13 The space Vϑ( endowed with the inner product Bϑ((·, ·) is a Hilbert space.

We refer to [11, Proposition 3.6] for the proof of Proposition 2.13. The argument is analogous to a
standard proof that L2(R) is a Hilbert space.

Lemma 2.14 For all w, v ∈ L2(Γ, γ(;V ),

|Bϑ((w, v)| ≤ ĉϑ(‖w‖L2(Γ,γ$;V )‖v‖L2(Γ,γ$;V )

with

ĉϑ( =

(
‖a∗‖L∞(D) + ‖a0‖L∞(D) exp

(
exp(2+‖b‖&∞(N))

4(1− ϑ)+
‖b‖&1(N)

))
exp

(
(1− ϑ)+‖b‖&1(N)

)
.
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Proof: By continuity of b(y; ·, ·) for y ∈ Γ,

|Bϑ((w, v)| ≤
∫

Γ

ζϑ((y)

ζ((y)
â(y)‖w(y)‖V ‖v(y)‖V γ((dy)

≤
∥∥∥∥
ζϑ(
ζ(

â

∥∥∥∥
L∞(Γ,γ)

‖w‖L2(Γ,γ$;V )‖v‖L2(Γ,γ$;V )

and the claim follows from Lemmas 2.2 and 2.5 with η = ϑ+, χ = + and k = 1. !

Lemma 2.15 For all v ∈ L2(Γ, γ;V ) with Bϑ((v, v) < ∞, the bilinear form Bϑ((·, ·) is coercive, i.e.

∀v ∈ L2(Γ, γ;V ) : Bϑ((v, v) ≥ čϑ(‖v‖2L2(Γ,γ;V )

with coercivity constant čϑ( given by

čϑ( =

(
ess inf
x∈D

a∗(x) + ǎ0 exp

(
−e2ϑ(‖b‖!∞(N)

4ϑ+
‖b‖&1(N)

))
exp

(
−ϑ+‖b‖&1(N)

)
.

Proof: Using coercivity of b(y; ·, ·) for y ∈ Γ, we obtain

Bϑ((v, v) ≥
∫

Γ
ζϑ((y)ǎ(y)‖v(y)‖2V γ(dy) ≥ ess inf

y∈Γ
{ζϑ((y)ǎ(y)}‖v‖2L2(Γ,γ;V )

and the claim follows from Lemmas 2.2 and from 2.5 with η = 0, χ = ϑ+ and k = 1. !

Proposition 2.16 If ϑ > 0, the Hilbert space Vϑ( is related to Lebesgue–Bochner spaces by the continuous
embeddings

L2(Γ, γ;V ) ⊃ Vϑ( ⊃ L2(Γ, γ(;V ) .

For ϑ = 0, this still holds if ess infx∈D a∗(x) > 0.

Proof: Lemmas 2.14 and 2.15 imply

čϑ(‖v‖2L2(Γ,γ;V ) ≤ Bϑ((v, v) ≤ ĉϑ(‖v‖2L2(Γ,γ$;V )

for all v ∈ L2(Γ, γ(;V ). !

Also, using (2.22) with η = ϑ+ and χ = +, it follows that if f ∈ L2(Γ, γ(;V ′), then Fϑ( is in the dual
of Vϑ(. There holds the following result from [11, Corollary 3.8].

Theorem 2.17 The solution u of (2.16) is the unique solution in Vϑ( of the linear variational problem

Bϑ((u, v) = Fϑ((v) ∀v ∈ Vϑ( . (2.39)

2.5 Stochastic Galerkin Approximation

Using the variational formulation (2.39) of (2.16), we can define Galerkin projections of u onto suitable
spaces. Let VN ⊂ L2(Γ, γ(;V ) ⊂ Vϑ( be finite dimensional. Then the Galerkin projection of u onto VN

is the unique element uN ∈ VN satisfying

Bϑ((uN , vN ) = Fϑ((vN ) ∀vN ∈ VN . (2.40)

This uN is well-defined since, being finite dimensional, VN is a closed subspace of Vϑ(, and thus also a
Hilbert space when endowed with the inner product Bϑ((·, ·).

Theorem 2.18 The Galerkin projection uN satisfies

‖u− uN‖L2(Γ,γ;V ) ≤

√
ĉϑ(
čϑ(

inf
vN∈VN

‖u− vN‖L2(Γ,γ$;V ) . (2.41)
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Proof: Theorem 2.9 implies that u ∈ L2(Γ, γ(;V ). By definition, uN is the orthogonal projection of u
onto VN with respect to the inner product Bϑ((·, ·). Therefore, it minimizes the projection error in the
norm induced by Bϑ((·, ·). Using Lemmas 2.14 and 2.15, we have

čϑ(‖u− uN‖2L2(Γ,γ;V ) ≤ Bϑ((u− uN , u− uN )

= inf
vN∈VN

Bϑ((u− vN , u− vN )

≤ ĉϑ( inf
vN∈VN

‖u− vN‖2L2(Γ,γ$;V ) ,

and the claim follows. !

Remark 2.19 The errors on the two sides of the estimate (2.41) are measured in different norms.
Therefore, Theorem 2.18 states that the Galerkin projection is almost quasi-optimal. Inserting the values
of ĉϑ( and čϑ( from Lemmas 2.14 and 2.15, we see that the constant in (2.41) is

√
ĉϑ(
čϑ(

=

√√√√√
‖a∗‖L∞(D) + ‖a0‖L∞(D) exp

(
e2$‖b‖!∞

4(1−ϑ)( ‖b‖&1
)

ess infx∈D a∗(x) + ǎ0 exp
(
− e2ϑ$‖b‖!∞

4ϑ( ‖b‖&1
) exp

(+
2
‖b‖&1

)
.

In particular, it tends to ∞ as + approaches 0 or ∞, or if ϑ approaches 1. If a∗ is not bounded away
from 0, then the constant also tends to ∞ as ϑ approaches 0.

Motivated by Corollary 2.12, we consider in particular spaces VN of the form

VN :=
{
v ∈ L2(Γ, γ(;V ) ; vν ∈ VN,ν ∀ν ∈ F

}
, (2.42)

where VN,ν ⊂ V is a finite dimensional subspace for all ν ∈ F , and VN,ν = {0} for all but finitely many
ν ∈ F . In (2.42), (vν)ν∈F are the Hermite coefficients of v ∈ L2(Γ, γ(;V ) with respect to the scaled
Hermite polynomials (Hν ◦ τ()ν∈F from Proposition 2.11, i.e.

vν =

∫

Γ
v(τ−1

( (y))Hν(y)γ(dy) , ν ∈ F . (2.43)

Then VN is a finite dimensional subspace of L2(Γ, γ(;V ), and its dimension is the sum of the dimensions
of VN,ν over ν ∈ F .

Corollary 2.20 For VN be of the form (2.42) the Galerkin projection uN satisfies

‖u− uN‖L2(Γ,γ;V ) ≤

√
ĉϑ(
čϑ(

(
∑

ν∈F
inf

vν∈VN,ν

‖uν − vν‖2V

)1/2

. (2.44)

Proof: The claim follows from Theorem 2.18 and from Parseval’s identity since (Hν ◦ τ()ν∈F is an
orthonormal basis of L2(Γ, γ(;V ). !

3 Regularity of the parametric solution

For a given parameter vector y ∈ Γ, we consider the parametric, deterministic problem (2.13) with the
parametric variational formulation (2.16). We are interested in bounding partial derivatives ∂ν

yu(·, y) for
any ν ∈ F . To this end, we assume

∃F (·) ∈ L2(D)d s.t. f(·) = −∇ · F (·) in V ′ . (3.1)

We use the positivity of a(·, y) for y ∈ Γ and (3.1) to rewrite the parametric deterministic problem (2.16)
as follows: find u(·, y) ∈ V such that

u(·, y) ∈ V b(y;u(·, y), v) = −
∫

D
a−1/2(x, y)F (x) · a1/2(x, y)∇vdx ∀v ∈ V . (3.2)
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Inserting into (3.2) the test function v = u(·, y), we find
∫

D
a(x, y)|∇u(x, y)|2dx = −

∫

D
F (x) ·∇u(x, y)dx ≤ ‖a−1/2F (·)‖L2(D)‖a1/2∇u(·, y)‖L2(D) .

For y ∈ Γ we define the a-dependent norms

‖v‖a :=

(∫

D
a(x, y)|∇v|2dx

)1/2

and, for f ∈ V ′ with F ∈ L2(D)d as in (3.1),

‖f‖a−1 :=

(∫

D
a−1(x, y)|F (x)|2dx

)1/2

.

With these notations in hand, applying the Cauchy-Schwarz inequality to (3.2), we find for every y ∈ Γ
that

‖u(·, y)‖2a = |b(y;u(·, y), u(·, y))| ≤‖ f(·)‖a−1‖u(·, y)‖a
so that we obtain the a-priori estimate

∀y ∈ Γ : ‖u(·, y)‖a ≤ ‖f(·)‖a−1 . (3.3)

Next, we prove estimates for ∂ν
yu(·, y) for ν ∈ F .

Theorem 3.1 Under the assumption (2.7), for f ∈ V ′ which is independent of y, for every y ∈ Γ such
that there holds

‖∂ν
yu(·, y)‖a ≤ |ν|!b̄ν‖f(·)‖a−1 , (3.4)

where the sequence b̄ is defined by b̄ := b/ loge 2 with the sequence b as defined in (2.7).

Proof: For ν = 0 ∈ F , (3.4) reduces to the a-priori estimate (3.3). For |ν| > 0, we proceed (3.4) by
induction with respect to |ν|.

The induction will be accomplished by differentiation of the parametric weak formulation (2.16) with
respect to y. We shall require the Leibnitz rule: given any two smooth functions f , g of y ∈ U , for any
ν ∈ F with associated support set n ⊂ N holds

∂n
y (fg) =

∑

m∈P(n)

(∂m
y f)(∂n\m

y g) . (3.5)

Here, for a finite subset m of N, P(m) denotes the power set of m.
Applying for ν ∈ F with support set n the partial derivative ∂ν

y to (2.13), the y-independence of f
implies

∀v ∈ V :

∫

D
a(x, y)∇(∂ν

yu) ·∇vdx = −
∑

m∈P(n)\{n}

∫

D
(∂n\m

y a)(x, y)∇(∂m
y u) ·∇vdx

= −
∑

0≺µ)ν

ν!

µ!(ν − µ)!

∫

D
∂µ
y a∇∂ν−µu ·∇vdx ,

(3.6)

where µ ≺ ν means that µi ≤ νi ∀ i with µi < νi for at least one index i, and µ 8 ν means that ∀ i,
µi ≤ νi; 0 denotes the member of F whose all components are zero. We refer to the Appendix for a more
detailed derivation of this identity.

Choosing in identity (3.6) the test function v = ∂n
yu = ∂ν

yu, we find for every y ∈ Γ

‖(∂n
yu(·, y)‖2a = −

∑

m∈P(n)\{n}

∫

D
(∂n\m

y a)(x, y)∇(∂m
y u) ·∇(∂n

yu)dx

≤
∑

m∈P(n)\{n}

∥∥∥∥∥
∂n\m
y a(·, y)
a(·, y)

∥∥∥∥∥
L∞(D)

‖∂m
y u(·, y)‖a‖∂n

yu(·, y)‖a

10



which implies with (2.10) that

‖∂n
yu(·, y)‖a ≤

|n|−1∑

i=0

∑

m∈P(n):|m|=i

∥∥∥∥∥
∂n\m
y a(·, y)
a(·, y)

∥∥∥∥∥
L∞(D)

‖∂m
y u(·, y)‖a

≤
|n|−1∑

i=0

∑

m∈P(n):|m|=i

bn\m‖∂m
y u(·, y)‖a .

(3.7)

We next note that

# {m ∈ P(n) : |m| = i} =

(
|n|
i

)
.

We define the sequence d = (dn)n≥0 by the recursion

d0 := 1, ∀j ≥ 1 : dj :=
j−1∑

i=0

(
j
i

)
di . (3.8)

We now claim that for all ν ∈ F with support set n ⊂ N, we have

‖∂n
yu(·, y)‖a ≤ d|n|b

n‖f‖a−1 . (3.9)

For |ν| = 0, (3.9) is just the bound (3.3). For |ν| > 0, we assume that (3.9) is already proved for all
µ ∈ F such that |µ| ≤ n− 1 for some n ≥ 1. Next, for ν ∈ F such that |ν| = n with associated support
set n, we find from (3.7) that

‖∂n
yu(·, y)‖a ≤

|n|−1∑

i=0

∑

m∈P(n):|m|=i

bn\m‖∂m
y u(·, y)‖a

≤
|n|−1∑

i=0

∑

m∈P(n):|m|=i

bn\md|m|b
m‖f‖a−1

=




|n|−1∑

i=0

(
|n|
i

)
di



 bn‖f‖a−1

= d|n|b
n‖f‖a−1 .

This completes the induction step and hence the proof of (3.9). The assertion (3.4) now follows from the
bound

dn ≤ n!

(loge 2)
n

∀n ∈ N0

which is proved, by referring to generating functions, for example in [3]. !

4 Best N term approximation

For best N -term approximation rates, we study the summability of the sequence of coefficients (uν)ν∈F
in (2.33). In particular, we will show that the sequence (‖uν‖V )ν belongs to a space &p(F) under certain
summability conditions for the coefficients ψm of the expansion (2.9).

4.1 p-Summability of ‖uν‖V
The summability property of (‖uν‖V )ν depends on the summability of the coefficients of the expansion
(2.9). We will work under the following assumption on the summability of the input’s coefficients ψk.

Assumption 4.1 There exists 0 < p ≤ 1 such that the sequence (bk)k defined in (2.7) satisfies

(kbk)k ∈ &p(N) .
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We will first provide an elementary estimate on Gaussians which will be used repeatedly.

Lemma 4.2 For all t > 0,
∫ ∞

−∞
exp(−z2/(2σ2) + |z|t) dt

σ
√
2π

≤ exp(σ2t2/2 + σt
√
2/π).

Proof We calculate
∫ ∞

−∞
exp(−z2/(2σ2) + |z|t) dz

σ
√
2π

= exp(σ2t2/2)

∫ ∞

−∞
exp(−(|z|− σ2t)2/(2σ2))

dz

σ
√
2π

= exp(σ2t2/2)

(∫ 0

−∞
exp(−(z + σ2t)2/(2σ2))

dz

σ
√
2π

+

∫ ∞

0
exp(−(z − σ2t)2/2σ2)

dz

σ
√
2π

)

= exp(σ2t2/2)

(∫ σ2t

−∞
exp(−z2/(2σ2))

dz

σ
√
2π

+

∫ ∞

−σ2t
exp(−z2/(2σ2)

dz

σ
√
2π

)

= exp(σ2t2/2)

(∫ ∞

−∞
exp(−z2/(2σ2))

dz

σ
√
2π

+

∫ σ2t

−σ2t
exp(−z2/(2σ))

dz

σ
√
2π

)

= exp(σ2t2/2)

(
1 +

∫ σ2t

−σ2t
exp(−z2/(2σ2))

dz

σ
√
2π

)

≤ exp(σ2t2/2)(1 + σt
√
2/π)

≤ exp(σ2t2/2) exp(σt
√
2/π) .

!

To estimate the norm ‖uν‖V , we use the following result.

Lemma 4.3 For sj ∈ {1, 2, . . . , t} ( j = 1, . . . ,m),

(s1 + . . .+ sm)! ≤ ttm1s12s2 . . .msm .

Proof We prove by induction. When m = 1 there holds s1! ≤ t! < tt. Assume that the assertion holds
for all orders up to some value m > 1. We have

(s1+. . .+sm+1) . . . (s1+. . .+sm+sm+1) ≤ (tm+1) . . . (tm+sm+1)) ≤ tsm+1(m+1)sm+1 ≤ tt(m+1)sm+1 .

Therefore

(s1 + . . .+ sm+1)! ≤ ttm1s12s2 . . .msmtt(m+ 1)sm+1 = tt(m+1)1s12s2 . . . (m+ 1)sm+1 .

!

Based on this estimate, we can show the following summability property for the coefficients uν ∈ V
of the expansion (2.32).

Proposition 4.4 Under Assumption 4.1, the coefficients (uν)ν of the expansion (2.32) satisfy (‖uν‖V )ν ∈
&p(F).

Proof Let S = (i1, . . . , im) ⊂ N be any subset of N, and denote by S̄ := N\S its complement. With the
index set S, we associate the product Hermite differential operator

LS = (−1)m
m∏

j=1

(
d2

dy2ij
− 1

σ2
ij

yij
d

dyij

)
.
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We note that 


m∏

j=1

e
−y2

ij
/(2σ2

ij
)



LS =
m∏

j=1

d

dyij

(
e
−y2

ij
/(2σ2

ij
) d

dyij

)

is self-adjoint over the space of m-variate, continuously differentiable functions g where g and the first
derivatives of g grow at most exponentially at infinity. Next, we observe that the Hermite polynomials
Hn(t/σ) satisfy the eigenproblems

−
(

d2

dt2
− t

σ2

d

dt

)
Hn

(
t

σ

)
= nσ−2Hn

(
t

σ

)
.

For j ∈ N, let Γj be a copy of R and yj ∈ Γj . We denote by ΓS = ⊗m
j=1Γij and by yS = (yi1 , . . . , yim) a

point in ΓS . For such S and for any ν ∈ F , we define

λS(ν) =
m∏

j=1

νijσ
−2
ij

.

Let ΓS̄ = {ȳ = (yj)j /∈S :
∑

j /∈S yjbj < ∞}. Then Γ = ΓS̄ × ΓS . Fixing yj for j /∈ S, we have




m∏

j=1

1

σij

√
2π




∫

ΓS

u exp



−
m∑

j=1

y2ij/(2σ
2
ij )



λS(ν)Hν(τ((y))dyS

=




m∏

j=1

1

σij

√
2π




∫

ΓS

u exp



−
m∑

j=1

y2ij/(2σ
2
ij )



LS(Hν(τ((y))dyS

=




m∏

j=1

1

σij

√
2π




∫

ΓS

exp



−
m∑

j=1

y2ij/(2σ
2
ij )



LS(u)Hν(τ((y))dyS .

Therefore ∫

Γ
uλS(ν)Hν(τ((y))dγ((y) =

∫

Γ
LS(u)Hν(τ((y))dγ((y) .

This shows that ∑

ν∈F
uνλS(ν)Hν(τ((y)) = LS(u) .

Applying the operator LS r times, we find
∑

ν∈F
uνλ

r
S(ν)Hν(τ((y)) = Lr

S(u).

From this, we obtain
∑

ν∈F
‖uν‖2V λ2r

S (ν) =

∫

Γ
‖Lr

S(u)‖2V dγ((y) . (4.1)

We note that there are polynomials qj(t) (j = 1, . . . , 2r) of degrees at most r such that

( d2

dt2
− t

σ2

d

dt

)r
=

2r∑

j=1

qj(t)
dj

dtj
,

The polynomials qj(t) are of the form

qj(t) =
r∑

k=1

(
r∑

l=1

1

σ2l
qjkl

)
tk,

where qjkl only depends on j, k, l and r. As σ ≥ 1, there is a constant C1(r) so that for all j and t

|qj(t)| ≤ C1(r)(1 + |t|)r .
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Thus

‖Lr
S(u)(·, y)‖V =

∥∥∥∥∥∥

m∏

j=1

( d2

dy2ij
−

yij
σ2
ij

d

dyij

)r
u

∥∥∥∥∥∥
V

≤ C1(r)
m

m∏

j=1

(1 + |yij |)r
( ∑

sj=1,...,2r

j=1,...,m

∥∥∥∥
ds1

dys1i1
. . .

dsm

dysmim
u

∥∥∥∥
V

)

we deduce

‖Lr
S(u)(·, y)‖2V ≤ C1(r)

2m(2r)m
m∏

j=1

(1 + |yij |)2r
( ∑

sj=1,...,2r

j=1,...,m

∥∥∥∥
ds1

dys1i1
. . .

dsm

dysmim
u

∥∥∥∥
2

V

)
.

Using estimate (3.4), we find

‖Lr
S(u)(·, y)‖2V ≤ C1(r)

2m(2r)m
m∏

j=1

(1 + |yij |)2r




∑

sj=1,...,2r

j=1,...,m

((s1 + . . .+ sm)!)2b̄2s1i1
. . . b̄2smim





. sup
x
(a(x, y)−1)‖f(·)‖2a−1

≤ C1(r)
2m(2r)m

m∏

j=1

(1 + |yij |)2r(2r)4rm




∑

sj=1,...,2r

j=1,...,m

(1b̄i1)
2s1 . . . (mb̄im)2sm





· 1

(infx a0(x))2
exp

(
2
∑

j≥1

|yj |‖ψj‖L∞(D)

)
‖F (x)‖2L2(D) . (4.2)

Let κ be a positive constant such that

0 < κ ≤ 1

4
exp(−2+max

j
‖ψj‖L∞(D)) ≤

1

4σ2
j

(4.3)

for all j with the choice of σj in (2.20) where χ = +. Let further C2(r) denote a positive constant so that

∀t > 0 : (1 + t)2r ≤ C2(r)e
t2κ .

With the constants chosen in this way, we estimate

∫

Γ

m∏

j=1

(1 + |yij |)2r exp
(
2
∑

j≥1

|yj |‖ψj‖L∞(D)

)
dγ((y)

≤ (C2(r))
m

∏

j∈S

∫ ∞

−∞
exp

(
−y2j (1/(2σ

2
j )− κ) + 2|yj |‖ψj‖L∞(D)

) dyj
σj

√
2π

(4.4)

×
∏

j /∈S

∫ ∞

−∞
exp

(
−y2j /(2σ

2
j ) + 2|yj |‖ψj‖L∞(D)

) dyj
σj

√
2π

.

From Lemma 4.2, for t > 0 we obtain
∫ ∞

−∞
exp

(
−z2(1/(2σ2

j )− κ) + |z|t
) dz

σj

√
2π

≤
∫ ∞

−∞
exp

(
−z2/(4σ2

j ) + |z|t
) dz

σj

√
2π

≤
√
2 exp

(
σ2
j t

2 + σjt2/
√
π
)
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where we have used inequality (4.3). Therefore

∫

Γ

m∏

j=1

(1 + |yij |)2r exp




∑

j≥1

2|yj |‖ψj‖L∞(D)



 dγ((y)

≤ (C2(r))
m2m/2 exp




∑

j∈S

4σ2
j ‖ψj‖2L∞(D) + 4σj‖ψj‖L∞(D)/

√
π





× exp




∑

j /∈S

2σ2
j ‖ψj‖2L∞(D) + 2σj‖ψj‖L∞(D)

√
2/π





≤ c(C2(r))
m2m/2,

where the last inequality is deduced from the fact that 1 ≤ σj ≤ exp(+maxj ‖ψj‖L∞(D)). From (4.2), we
then obtain the bound

∫

Γ
‖Lr

Su(·, y)‖2V dγ((y) ≤ K2m
∑

sj=1,...,2r

j=1,...,m

(i1b̄i1)
2s1 . . . (imb̄im)2sm ,

for a sufficiently large constant K which depends on r ∈ N.
We deduce from (4.1) that for ν ∈ F with supp(ν) = S ⊂ N,

‖uν‖V ≤ Km
∑

sj=1,...,2r

j=1,...,m

(i1b̄i1)
s1 . . . (imb̄im)sm

1

νri1 . . . ν
r
im

σ2r
i1 . . .σ2r

im .

When r > 1/p, let M =
∑

k≥1 k
−rp. We have,

∑

supp(ν)=S

‖uν‖pV ≤ exp(2prm+max
j

‖ψj‖L∞(D))K
mpMm




∑

sj=1,...,2r

j=1,...,m

(i1b̄i1)
s1 . . . (imb̄im)sm





p

= Lm
m∏

j=1

(
2r∑

s=1

(ij b̄ij )
s

)p

,

where L := exp(2rp+maxj ‖ψj‖L∞(D))K
pM . Thus

∑

ν∈F
‖uν‖pV =

∞∑

i1,...,im=1

m∏

j=1

L

(
2r∑

s=1

(ij b̄ij )
s

)p

≤
∞∏

k=1

(
1 + L

( 2r∑

s=1

(kb̄k)
s
)p

)
≤ exp

(
L

∞∑

k=1

( 2r∑

s=1

(kb̄k)
s
)p

)
,

which is finite when (kbk)k ∈ &p(N). !

4.2 Best N-term convergence rate

For a subset Λ ⊂ F of finite cardinality N , we define by

V(,Λ = {v =
∑

ν∈Λ

vνHν(τ((y)) : vν ∈ V } ⊂ L2(U, γ(;V ) ⊂ Vϑ(

the set of N -term truncated Hermite expansions with “active” coefficients indexed by ν ∈ Λ. We consider
the stochastic Galerkin approximation (2.40) for VN = V(,Λ:
Find uΛ ∈ V(,Λ such that

Bϑ((uΛ, vΛ) = Fϑ((vΛ) ∀ vΛ ∈ V(,Λ. (4.5)

By Lemma 2.15, for any set Λ ⊂ F this problem admits a unique solution uΛ, the Galerkin projection of
the solution u onto VN = V(,Λ. The following result shows that Assumption 4.1 implies convergence rates
of these Galerkin approximations, provide the sets ΛN ⊂ F of “active” components in the Wiener-Ito
decomposition of the random field u are judiciously chosen.
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Proposition 4.5 Under Assumption 4.1, for every N ∈ N there exists an index set ΛN ⊂ F of cardinality
not exceeding N such that the parametric, weak solution u of equation (2.13) and the stochastic Galerkin
approximation uΛN of (4.5) satisfies

‖u− uΛN ‖L2(U,γ;V ) ≤ c(ϑ, +)N−(1/p−1/2) .

Proof Let Λ ⊂ F be a subset of finite cardinality, and define the partial sum of the Wiener-Itô decom-
position of u in (2.32) over Λ by

v(x, y) =
∑

ν∈Λ

uν(x)Hν(τ((y)) .

From (2.35), it follows that

‖u− uΛ‖L2(U,γ;V ) ≤ c(ϑ, +)‖u− v‖L2(U,γ$;V ) ≤ c(ϑ, +)

(
∑

ν /∈Λ

‖uν‖2V

)1/2

.

Assumption 4.1 implies, by Proposition 4.4, that (‖uν‖V )ν∈F ∈ &p(F). Choosing Λ = ΛN as the set
corresponding to the set of N coefficients uν which are largest in norm ‖uν‖V , we deduce from Stechkin’s
lemma (see, e.g. [7]) that

‖u− uΛ‖L2(U,γ;V ) ≤ c(ϑ, +)N−(1/p−1/2) .

!

5 Spatial Regularity and Finite Element Approximation

So far, we considered the semidiscrete stochastic Galerkin approximation of the parametric, deterministic
solution. In practice, however, the Wiener-Itô coefficients of the stochastic Galerkin approximation uΛ

are not explicitly available and must be approximated from a suitable Finite Element subspace of V ,
introducing an additional discretization error. In order to obtain convergence rates for this Finite Element
approximation, we require additional regularity of the Wiener-Itô coefficients. In principle, regularity for
diffusion problems is a standard matter; in the present setting, however, we require regularity of the
parametric diffusion problem with uniform control of the constants’ dependence on the parameter vector
y ∈ Γ.

As in [7, 6], in the analysis of the spatial regularity we only aim at bounds for the second weak deriva-
tives of the parametric solution u(x, y) which are required for convergence rate estimates of continuous,
piecewise linear Finite Element Methods, and exploit moreover that the stochastic coefficient a(x, y) is
isotropic.

5.1 Spatial Regularity

To quantify the spatial regularity of the Hermite coefficients as well as for the ensuing Finite Element
convergence analysis, it will be convenient to define the space

W = {u ∈ V : ∆u ∈ L2(D)}, (5.1)

equipped with the norm
‖u‖W = ‖u‖V + ‖∆u‖L2(D) .

The space W is a closed subspace of V , which is known to coincide for convex domains D with H2(D)∩
H1

0 (D). We denote by
vm = ∇(a∇∂m

y u) = a∆∂m
y u+∇a ·∇∂m

y u . (5.2)

We then have
a1/2∆∂m

y u = a−1/2vm − a−1/2∇a ·∇∂m
y u . (5.3)

The gradient ∇a in equations (5.2) and (5.3) is only formal, as it is not well defined for all y ∈ Γb. We
thus consider the parametric, deterministic problem (2.13) for parameter vectors y from a subset Γb̂ ⊂ RN

of full measure, for which ∇a(·, y) is well defined. To define this set, denote by b̂ = (b̂k)k≥1 the sequence

b̂k := ‖ψk‖L∞(D) + ‖∇ψk‖L∞(D) k = 1, 2, ... (5.4)
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We now impose the additional assumption

Assumption 5.1 The coefficients a∗, a0 ∈ W 1,∞(D) and

b̂ = (‖ψk‖L∞(D) + ‖∇ψk‖L∞(D))k ∈ &1(N) .

Under Assumption 5.1, we may define the set Γb̂ ⊂ RN as the set Γb in (2.8), with b̂m in place of bm.
Then Γb̂ ⊂ Γb and, by Lemma 2.1, the set Γb̂ has full (Gaussian) measure in RN. Then for all y ∈ Γb̂,

∇a(x, y) = ∇a∗(x) +∇a0(x) exp

( ∞∑

k=1

ykψm(x)

)
+ a0(x) exp

( ∞∑

k=1

ykψm(x)

) ∞∑

k=1

yk∇ψk(x) .

We observe that due to b̂k ≥ bk, it holds that Γb ⊃ Γb̂. Therefore we have, under Assumption 5.1, for
every y ∈ Γb̂

‖a1/2∆∂m
y u‖L2(D) ≤ ‖a−1/2vm‖L2(D)

+

(
‖a−1∇a∗‖L∞(D) +

∥∥∥∥
∇a0
a0

∥∥∥∥
L∞(D)

+
∞∑

k=1

|yk|‖∇ψk‖L∞(D)

)
‖a1/2∇∂m

y u‖L2(D) . (5.5)

From (3.6), we get

vn = −
∑

m∈P(n)\{n}

∇(∂n\m
y a(x, y)) ·∇∂m

y u+ ∂n\m
y a(x, y)∆∂m

y u .

We have

∇(∂n\m
y a(x, y)) =

[
∇a0(x) exp

( ∞∑

k=1

ykψk(x)

)

+a0(x) exp

( ∞∑

k=1

ykψk(x)

)( ∞∑

k=1

yk∇ψk(x)

)]
ψ1(x)

ν1−µ1ψ2(x)
ν2−µ2 . . .

+a0(x) exp

( ∞∑

k=1

ykψk(x)

)
∇
(
ψ1(x)

ν1−µ1ψ2(x)
ν2−µ2 . . .

)
.

From this we obtain

‖a−1∇(∂n\m
y a(·, y))‖L2(D)

≤
∑

m∈P(n)\{n}

[∥∥∥∥
∇a0
a0

∥∥∥∥
L∞(D)

+
∞∑

k=1

yk‖∇ψk‖L∞(D)

]
‖ψ1‖ν1−µ1

L∞(D)‖ψ2‖ν2−µ2

L∞(D) . . .

+‖ψ1‖ν1−µ1

L∞(D)‖ψ2‖ν2−µ2

L∞(D) . . .
∞∑

k=1

(νk − µk)‖∇ψk‖L∞(D)

‖ψk‖L∞(D)
.

Under Assumption 5.1, we have the estimate

‖ψk‖νk−µk

L∞(D) + (νk − µk)‖ψk‖νk−µk−1
L∞(D) ‖∇ψk‖L∞(D) ≤ b̂νk−µk

k ,

and we deduce that

‖a−1∇(∂n\m
y a(·, y))‖L2(D) ≤

∑

m∈P(n)\{n}

(∥∥∥∥
∇a0
a0

∥∥∥∥
L∞(D)

+
∞∑

k=1

yk‖∇ψk‖L∞(D) + 1

)
b̂n\m .

Therefore

‖a−1/2(·, y)vn‖L2(D) ≤
∑

m∈P(n)\{n}

(∥∥∥∥
∇a0
a0

∥∥∥∥
L∞(D)

+
∞∑

k=1

yk‖∇ψk‖L∞(D) + 1

)
b̂n\m‖a1/2∇∂m

y u‖L2(D)

+b̂n\m‖a1/2∆∂m
y u‖L2(D) .
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From this and (5.5), we have for all y ∈ Γb̂

‖a−1/2vn‖L2(D) ≤
∑

m∈P(n)\{n}

A(y)b̂n\m‖a1/2∇∂m
y u‖L2(D) + b̂n\m‖a−1/2vm‖L2(D)

where the constant A(y) is, for y ∈ Γb̂, defined by

A(y) = ‖a−1(·, y)∇a∗(·)‖L∞(D) + 2‖a0(·)−1∇a0(·)‖L∞(D) + 2
∞∑

k=1

|yk|‖∇ψk‖L∞(D) + 1 . (5.6)

From (3.7), we have for y ∈ Γb̂ that

A(y)−1‖a−1/2vn‖L2(D) + ‖∂n
yu(·, y)‖a ≤

∑

m∈P(n)\{n}

2b̂n\m(A(y)−1‖a−1/2vm‖L2(D) + ‖∂m
y u‖a) .

We therefore have

Theorem 5.2 Under Assumption 5.1 and for f ∈ L2(D), we have for y ∈ Γb̂, with A(y) as in (5.6),

A(y)−1‖a−1/2vν‖L2(D) + ‖∂ν
yu(·, y)‖a ≤ (A(y)−1‖a−1/2f‖L2(D) + ‖f‖a−1)|ν|!¯̂bν ,

where the sequence ¯̂b is defined by ¯̂bk := 2b̂k/ log 2 with b̂k as in Assumption 5.1.

Proof: The proof is essentially the same as that for Theorem 3.1. When ν = 0, ‖u(·, y)‖a ≤ ‖f‖a−1 and
v0 = f . !

It then follows that

‖a−1/2vν‖L2(D) ≤ (‖a−1/2f‖L2(D) +A(y)‖f‖a−1)|ν|!¯̂bν .

From (5.5) and Theorem 3.1 we have

∀y ∈ Γb̂ : ‖a1/2∆∂ν
yu‖L2(D) ≤ (‖a−1/2f‖L2(D) + 2A(y)‖f‖a−1)|ν|!¯̂bν .

To study the regularity of the coefficients uν of the expansion (2.33), we will work under the following
assumption.

Assumption 5.3 The coefficients a∗, a0 ∈ W 1,∞(D) and there exists 0 < p < 1 such that

(k‖∇ψk‖L∞(D))k ∈ &p(N) .

Note that Assumption 5.3 implies Assumption 5.1. We then have the following result.

Proposition 5.4 Under Assumptions 4.1 and 5.3, the coefficient sequence (uν)ν∈F of the Wiener-Itô
chaos expansion (2.32) satisfies ∑

ν∈F
‖uν‖pW < ∞ .

Proof: The proof of this theorem is analogous to that for Proposition 4.4. We have

‖∆Lr
S(u)(·, y)‖2L2(D) ≤ C1(r)

2m(2r)m
m∏

j=1

(1 + |yij |)2r




∑

sj=1,...,2r

j=1,...,m

((s1 + . . .+ sm)!)2¯̂b
2s1

i1 . . . ¯̂b
2sm

im





. sup
x
(a(x, y)−1)(‖a−1/2f‖L2(D) + 2A(y)‖f‖a−1)2

≤ C1(r)
2m(2r)m

m∏

j=1

(1 + |yij |)2r




∑

sj=1,...,2r

j=1,...,m

((s1 + . . .+ sm)!)2¯̂b
2s1

i1 . . . ¯̂b
2sm

im





. sup
x
(a(x, y)−2)(‖f‖L2(D) + 2A(y)‖F‖L2(D))

2.
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We note that for all y ∈ Γb̂ (the value of the constant c > 0 in the estimates which follow may depend
on f , F and may change from one line to the next)

|A(y)| ≤ ‖∇a∗‖L∞(D) sup
x
(a(x, y))−1 + 2‖a−1

0 ∇a0‖L∞(D) + 2
∞∑

k=1

|yk|‖∇ψk‖L∞(D) + 1

≤ c

(
1 + sup

x
(a(x, y))−1 +

∞∑

k=1

|yk|‖∇ψk‖L∞(D)

)
.

Therefore

(‖f‖L2(D) + 2|A(y)|‖F‖L2(D))
2

≤ c

(
1 + sup

x
(a(x, y))−1 +

∞∑

k=1

|yk|‖∇ψk‖L∞(D)

)2

≤ c

(
exp

( ∞∑

k=1

|yk|‖ψk‖L∞(D)

)
+ exp

( ∞∑

k=1

|yk|‖∇ψk‖L∞(D)

))2

≤ c exp
(
2

∞∑

k=1

|yk|(‖ψk‖L∞(D) + ‖∇ψk‖L∞(D))
)
.

Thus

‖∆Lr
S(u)(·, y)‖2L2(D) ≤ C1(r)

2m(2r)m
m∏

j=1

(1 + |yij |)2r




∑

sj=1,...,2r

j=1,...,m

((s1 + . . .+ sm)!)2¯̂b
2s1

i1 . . . ¯̂b
2sm

im





× exp
(
4

∞∑

k=1

|yk|(‖ψk‖L∞(D) + ‖∇ψk‖L∞(D))
)
.

The remaining part of the proof then follows the lines of the argument in the proof of Proposition 4.4. !

5.2 Finite Element Approximation

Let Vh ⊂ V be a one-parameter family of finite-dimensional spaces of continuous, piecewise linear func-
tions associated to a family of shape regular, quasi uniform partitions of the domain D into simplices
with meshwidth O(h). We also denote Vh by VM where M(h) denotes the finite dimension of the finite
element space Vh. The quasiuniformity of the partitions of D implies that M(h) = O(h−1/d). We recall
the definition (5.1) of the space W , and assume the following approximation property of the family Vh.

Assumption 5.5 For all functions v ∈ W ,

inf
vh∈Vh

‖v − vh‖V ≤ cM−s‖v‖W ,

for some positive constants c, s > 0 which are independent of h.

For Λ ⊂ F , let M = (Mν)ν∈Λ be a sequence of positive integers. We denote by

V(,Λ,M = {vΛ,M ∈ L2(U, γ(;V ) : vΛ,M =
∑

ν∈Λ

vΛ,M,ν(·)Hν(τ((·)), vΛ,M,ν ∈ VMν} .

We then consider the approximating problem for (2.39):
Find uΛ,M =

∑
ν∈Λ uΛ,M,νHν(τ((·)) ∈ V(,Λ,M such that

Bϑ((uΛ,M, vΛ,M) = Fϑ,((vΛ,M), ∀ vΛ,M ∈ V(,Λ,M . (5.7)

From Theorem 2.18, we have

‖u− uΛ,M‖L2(Γ,γ;V ) ≤ c(ϑ, +) inf
vΛ,M∈V$,Λ,M

‖u− vΛ,M‖L2(Γ,γ$;V ).
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Denoting by Λ ⊂ F the set of indices corresponding to the coefficients uν with the largest V norm, we
have for all vΛ,M,ν ∈ V

‖u− uΛ,M‖L2(Γ,γ;V ) ≤ c(ϑ, +)

(
∑

ν /∈Λ

‖uν‖2V +
∑

ν∈Λ

‖uν − vΛ,M,ν‖2V

)1/2

≤ c(ϑ, +)

(
N−2r +

∑

ν∈Λ

‖uν − vΛ,M,ν‖2V

)1/2

where we defined r = 1/p− 1/2 and where we have used Proposition 4.5. Thus

‖u− uΛ,M‖L2(Γ,γ;V ) ≤ c(ϑ, +)

(
N−2r +

∑

ν∈Λ

M−2s
ν ‖uν‖2W

)1/2

. (5.8)

We then choose Mν with the total number of degrees of freedom

Ndof =
∑

ν∈Λ

Mν ,

such that both contributions in the estimate (5.8) are of equal order. This yields the following result.

Theorem 5.6 Assume that the constant p in Assumption 5.3 satisfies p ≤ 2/(1+ 2s). There is a choice
for the dimensions Mν of the finite element approximating spaces Vν such that

‖u− uΛ,M‖L2(Γ,γ;V ) ≤ c(ϑ, +)N−s
dof .

Proof This theorem is proved as the corresponding result for the Legendre chaos expansion in Cohen et
al. [6], using Proposition 5.4, where Mν are chosen as the solution of the minimizing problem:

min

{
∑

ν∈Λ

Mν :
∑

ν∈Λ

M−2s
ν ‖uν‖2W ≤ N−2r

}
.

!
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Appendix

We now justify the equation (3.6). We proceed by induction. For |ν| = 1, we let y′ ∈ Γb be such that
y′m = ym when m )= k and y′k = yk + δ. We then have

∫

D
a(y)∇(u(y′)− u(y)) ·∇vdx = −

∫

D
(a(y′)− a(y))∇u(y′) ·∇v.

From this, we deduce that

‖u(y′)− u(y)‖V ≤ 1

ǎ(y)
‖a(y′)− a(y)‖L∞(D)∇u(y′),

which converges to 0 when δ → 0. Let w ∈ V be the solution of the problem
∫

D
a(y)∇w ·∇vdx = −

∫

D
∂yka(y)∇u(y) ·∇vdx, ∀ v ∈ V.
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We then have
∫

D
a(y)∇

(
u(y′)− u(y)

δ
− w

)
·∇vdx = −

∫

D

(
a(y′)− a(y)

δ
− ∂yka(y)

)
∇u(y′) ·∇v

−
∫

D
∂yka(y)∇(u(y′)− u(y)) ·∇v, ∀ v ∈ V.

We then deduce that

∥∥∥∥
u(y′)− u(y)

δ
− w

∥∥∥∥ ≤ 1

ǎ(y)

(∥∥∥∥
a(y′)− a(y)

δ
− ∂yka(y)

∥∥∥∥
L∞(D)

‖∇u(y′)‖L2(D)

+‖∂ya(y)‖L∞(D)‖∇(u(y′)− u(y))‖L2(D)

)
.

which converges to 0 when δ → 0. This shows that

∂yku = w.

Assume that (3.6) holds for ν − ek, i.e.

∫

D
a(x, y)∇(∂ν−ek

y u) ·∇vdx = −
∑

0≺µ)ν−ek

(ν − ek)!

µ!(ν − ek − µ)!

∫

D
∂µ
y a∇∂ν−ek−µ

y u ·∇vdx, ∀ v ∈ V.

By the same argument, we show that for all v ∈ V

∫

D
a(x, y)∇(∂ν

yu) ·∇vdx = −
∑

0≺µ)ν−ek

(ν − ek)!

µ!(ν − ek − µ)!

(∫

D
∂µ+ek
y a∇∂ν−ek−µ

y u ·∇vdx

+

∫

D
∂µ
y a∇∂ν−µ

y u ·∇vdx

)
−
∫

D
∂yka∇(∂ν−ek

y u) ·∇vdx

= −
∑

ek≺µ)ν−ek

(
(ν − ek)!

(µ− ek)!(ν − µ)!
+

(ν − ek)!

µ!(ν − ek − µ)!

)∫

D
∂µ
y a∇∂ν−µ

y u ·∇vdx

−
∑

0≺µ&ν−ek
µk=0

(ν − ek)!

µ!(ν − ek − µ)!

∫

D
∂µ
y a∇∂ν−µ

y u ·∇vdx−
∑

0≺µ&ν−ek
µk=νk−1

(ν − ek)!

µ!(ν − ek − µ)!

∫

D
∂µ+ek
y a∇∂ν−ek−µ

y u ·∇vdx

−(νk − 1)

∫

D
∂yka∇∂ν−ek

y u ·∇vdx−
∫

D
∂yka∇∂ν−ek

y u ·∇vdx.

We note that

(ν − ek)!

(µ− ek)!(ν − µ)!
+

(ν − ek)!

µ!(ν − ek − µ)!
=

(ν − ek)!(µk + νk − µk)

µ!(ν − µ)!
=

ν!

µ!(ν − µ)!
;

and when µk = 0,
(ν − ek)!

µ!(ν − ek − µ)!
=

ν!

µ!(ν − µ)!
;

in the case µk = νk − 1 ≥ 0, it holds

(ν − ek)!

µ!(ν − ek − µ)!
=

ν!

(µ+ ek)!(ν − (µ+ ek))!
.

Therefore
∫

D
a(x, y)∇(∂ν

yu) ·∇vdx = −
∑

0≺µ)ν

ν!

µ!(ν − µ)!

∫

D
∂µ
y a∇∂ν−µ

y u ·∇vdx, ∀ v ∈ V.
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