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Eidgenössische Technische Hochschule

CH-8092 Zürich
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Abstract

Since matrix compression has paved the way for discretizing the boundary integral
equation formulations of electromagnetics scattering on very fine meshes, precondition-
ers for the resulting linear systems have become key to efficient simulations. Operator
preconditioning based on Calderón identities has proved to be a powerful device for de-
vising preconditioners. However, this is not possible for the usual first-kind boundary
formulations for electromagnetic scattering at general penetrable composite obstacles.

We propose a new first-kind boundary integral equation formulation following the
reasoning employed in [X. Claeys and R. Hiptmair, Boundary integral formulation of
the first kind for acoustic scattering by composite structures Technical Report no. 2011-
45, SAM, ETH Zürich, 2011] for acoustic scattering. We call it multi-trace formulation,
because its unknowns are two pairs of traces on interfaces in the interior of the scatterer.

We give a comprehensive analysis culminating in a proof of coercivity, and uniqueness
and existence of solution. We establish a Calderón identity for the multi-trace formula-
tion, which forms the foundation for operator preconditioning in the case of conforming
Galerkin boundary element discretization.

1 Introduction

The scattering of electromagnetic waves by penetrable obstacles is of practical interest in
many applications. If the obstacle is composed of a few linear homogeneous dielectric media,
boundary integral equation methods are an attractive option for solving the scattering prob-
lem numerically. Thus, in this article we consider the transmission problems for the linear
Maxwell equations in frequency domain of the form

curl curl(u)− κ2ju = 0 in Ωj , j = 0 . . . n,

+ radiation condition at infinity,

+ transmission conditions at interfaces.

(1)

Here, κj refers to the wave number in subdomain Ωj , and no particular assumption is imposed
on the geometry (except for some minimal regularity of ∂Ωj , j = 0 . . . n to allow the definition
of traces). In such a problem, that we call multi-subdomain scattering problem, there may
be edges where three or more subdomains Ωj abut, see Fig. 1 below.

∗Université de Toulouse, ISAE. email: xavier.claeys@isae.fr
†Seminar of Applied Mathematics, ETH Zürich, Switzerland.
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This very general setting goes beyond what is usually discussed in the literature on bound-
ary integral equation methods for electromagnetics with many works only dealing with homo-
geneous or impenetrable scatterers. A few approaches address the general situation (1), most
notably the Poggio-Miller-Chew-Harrington-Wu-Tsai formulation (PMCHWT, [31, 14, 40]),
whose rigorous mathematical analysis was first accomplished in [6]. The unknowns in this
formulation are only one pair of traces at each point of each interface; we can classify it as
single-trace formulation. Further, it is not affected by spurious resonances.

However, as boundary integral equations of the first kind after Galerkin boundary ele-
ment discretization based on the usual surface edge elements (RWG basis functions, [33, 3])
the PMCHWT equations spawn ill-conditioned matrices on fine meshes. This cripples the
convergence of iterative solution methods like GMRES, which is serious challenge, because
there is no alternative to iterative solvers when matrix compression techniques like multipole
are applied to the discrete boundary integral operators.

Thus, preconditioning of the discrete boundary integral equations becomes indispensable
and has attracted considerable attention. In particular, a variant of operator preconditioning
[24], the so-called Calderón preconditioners introduced in [36, 16, 17], have briskly been
adopted in computational electromagnetism [2, 2, 21, 41, 38].

Unfortunately, no satisfactory Calderón preconditioner for the PMCHWT has been found.
This missing preconditioner motivated the present article. The main ideas have first been
elaborated for acoustic scattering in [19] and now we adapt them to Maxwell’s equations.
Again, we start with the observation that the single-trace formulation admits straightforward
Calderón preconditioning in the case of scattering at a single homogeneous object (n = 1 in
(1)). The general situation can be converted to this special setting by introducing a narrow
”virtual air gap” separating the subdomains Ωj . We find that all integral operators remain
well defined when we let the width of the air gap tend to zero. This formal procedure yields
the new formulation and its associated Calderón preconditioner. We retain the traces on both
sides of the air gap as unknowns. Therefore we end up with two pairs of unknown traces on
each interior subdomain interface, and we dub the new set of equations ”multi-trace”.

Ours is not the only multi-trace formulation designed with preconditioning in mind. A
similar approach has been proposed in [25], but only for the acoustic case. A related technique,
the Boundary Element Tearing and Interconnecting (BETI) method (a boundary element
counterpart of the FETI method) has been developped by Steinbach and his co-workers for
strongly elliptic problems [27, 29, 37]. Its extension to Maxwell’s equations was pursued by M.
Windisch in his PhD thesis [39, Chap. 8], but effective preconditioning for this formulation
remains open. An indirect ”single-trace” boundary integral formulation for (1) was proposed
in [28] along with the claim that it was amenable to Calderón preconditioning. Some numerical
evidence is given, but no rigorous analysis of this formulation is available.

This article is devoted to the rigorous mathematical analysis of the new multi-trace bound-
ary integral formulation and its Galerkin discretization by means of surface edge elements.
Big parts of it run parallel to the developments in the companion paper [19]. However, extra
difficulties arise due to the use of electromagnetic trace spaces and the lack of coercivity of the
electric field integral operator. Only fairly recently mathematical tools for dealing with these
difficulties were devised, see [15, 26, 13], and, most relevant for our investigations, [6]. We
successfully apply them to the new multi-trace formulation and establish asymptotic quasi-
optimality of Galerkin solutions along with efficacy of our Calderón preconditioner. Thus, we
hope to convince the reader that the techniques presented in [19] are relevant beyond acoustic
scattering. We shall also tackle the case where the domain of propagation contains metallic
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Figure 1: Cross-section of an admissible arrangement of three subdomains

parts or screens in a forthcoming article.
The mathematical analysis we are aiming for rests on rather technical foundations pre-

sented in the next three sections. In the second section, we introduce a proper functional
setting for the study of Maxwell’s equations, both for fields in the domain of propagation and
their traces at boundaries, and we state precisely the Maxwell transmission problem that we
wish to consider. In Section 3, we introduce and describe trace spaces well adapted to the
multi-subdomain geometry of the problem under consideration. In Section 4 we recall some
well established results concerning the representation of solutions to homogeneous Maxwell’s
equations by means of potential operators.

In Section 5 we provide a brief review of the single-trace (PMCHWT) formulation and
then explain the crucial gap idea. In Section 6 we continue with technical investigations of the
spaces of Cauchy data i.e. the traces of solutions to the homogeneous Maxwell’s equations. In
Section 7 and 8, we introduce new trace spaces, and use them to derive our new formulation.
This step of the analysis is nearly identical to its counterpart given in [19, Section 7,8,9],
hence we will not give too much details. In Section 9, we prove that our new formulation
satisfies a generalized Garding identity, which is the main challenge of the present document.
In Section 10, we conclude by showing that our formulation fits the framework introduced
in [6] which allows to prove quasi-optimal convergence of Galerkin discretizations that would
satisfy certain properties. Finally, in Section 11, we point out how Calderón preconditioning
can be done for the discrete multi-trace equations.

2 Setting of the problem

We consider a partition R3 = ∪n
i=0Ωi where ∪n

i=1Ωi is bounded and each Ωi is a connected
Lipschitz domain i.e. ∂Ωi is locally the graph of a Lipschitz function (see Definition 3.28
in [30]). We also set Γ := ∪n

i=1∂Ωi. Note that there may exist points where three or more
subdomains are adjacent, which is precisely the situation that we wish to tackle. For each
j the vector nj refers to the normal vector on ∂Ωj directed toward the exterior of Ωj , see
Fig. 1.
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2.1 Function spaces

We first introduce natural functional spaces adpated to domain based time-harmonic Maxwell
equations, cf. [12, Sect. 2]. First of all let us denote Hs(Ω) = Hs(Ω)3 for any domain Ω ⊂ R3

and any s > 0. Let curl2 refer to the operator curl curl. For any open subset Ω ⊂ R3, and
define

H(curl,Ω) :=
{
V ∈ L2(Ω)

∣∣∣ ‖V‖2
H(curl,Ω) := ‖V‖2

L2(Ω)
+ ‖curlV‖2

L2(Ω)
< ∞

}
,

H(curl2,Ω) :=
{
V ∈ L2(Ω)

∣∣∣ ‖V‖2
H(curl2,Ω)

:= ‖V‖2
H(curl,Ω) + ‖curl2V‖2

L2(Ω)
< ∞

}
.

If H(Ω) is any one of these spaces, let H loc(Ω) refer to the set of V ∈ L2
loc(Ω) such that

ϕV ∈ H(Ω) for all compactly supported ϕ ∈ C∞(R3), and let Hcomp(Ω) refer to the set of
V ∈ H(Ω) whose support is bounded. From the definition of curl in the sense of distributions
we infer the following gluing condition for H loc(curl,R3).

Lemma 2.1.

For any u ∈ L2
loc(R

3) such that u|Ωj ∈ H loc(curl,Ωj), ∀j = 0 . . . n, we have u ∈ H loc(curl,R3)
if and only if

n∑

j=0

ˆ

Ωj

curl(u) · v − u · curl(v)dx = 0 ∀v ∈ Hcomp(curl,R
3) .

2.2 Trace spaces and operators

In this paragraph we briefly describe appropriate trace spaces for Maxwell’s equations. For
further details on this subject, we refer the reader to [8, 9, 11].

For any Lipschitz domain Ω ⊂ R3, denote n the unit normal vector to ∂Ω directed
toward the exterior (it can be defined almost everywhere on ∂Ω) and set L2

t(∂Ω) = {V ∈
L2(∂Ω)3 | V · n = 0 } equipped with the norm of L2(∂Ω)3. Define the tangential trace
operator γd : H1(Ω) → L2

t(∂Ω) by

γd(U) := (U× n)|∂Ω , ∀U ∈ H1(Ω) .

In the context of Maxwell’s equations, the role of tangential traces becomes clear from the
integration by parts formula
ˆ

Ω
curl(U) ·V −U · curl(V) dx =

ˆ

∂Ω

(
γd(U)× γd(V)

)
· n dσ ∀U,V ∈ H1(Ω) . (2)

The trace operator γd continuously maps (H1(Ω), ‖ ‖
H1(Ω)) into (L2(∂Ω), ‖ ‖

L2(∂Ω)). We
adopt the following notation for its range,

H
1/2
× (∂Ω) := γd(H

1(Ω) ) .

This trace space is strictly included into L2
t(∂Ω). We equip it with the graph norm

‖V‖
H

1
2
×(∂Ω)

= inf{ ‖U‖
H1(Ω) | U ∈ H1(Ω) and γd(U) = V } ,
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which renders it a Hilbert space and γd : H1(Ω) → H
1/2
× (∂Ω) a continuous operator. The

space H
1/2
× (∂Ω) is dense in L2

t(∂Ω), see [11, Section 2]. Let us define H
−1/2
× (∂Ω) as the

topological dual to H
1/2
× (∂Ω), and introduce the anti-symmetric pairing

〈u,v〉×,∂Ω =

ˆ

∂Ω
(u× v) · n dσ ∀u,v ∈ L2

t(∂Ω) .

In the sequel, the space L2
t(∂Ω) shall be embedded in H

−1/2
× (∂Ω), by identifying any u ∈

L2
t(∂Ω) with the continuous linear form v ,→ 〈u,v〉×,∂Ω, v ∈ H

1/2
× (∂Ω). Hence we set the

notation

〈u,v〉×,∂Ω := u(v) whenever u ∈ H
−1/2
× (∂Ω),v ∈ H

1/2
× (∂Ω).

As in [11, Sect. 3], let H3/2(∂Ω) stand for the formal trace space of H2(Ω). Then define

∇∂Ω(p) := (∇v × n)× n|∂Ω so that n×∇∂Ω(p) = γd(∇v) ∈ H
1/2
× (∂Ω) for any p ∈ H3/2(∂Ω)

such that p = v|∂Ω for some v ∈ H2(Ω). Further, for any u ∈ H
−1/2
× (∂Ω), define the surface

divergence div∂Ω(u) ∈ H−3/2(∂Ω) as adjoint

〈 div∂Ω(u), p 〉∂Ω := −〈u,n×∇∂Ω(p) 〉×,∂Ω ∀u ∈ H
−1/2
× (∂Ω), ∀p ∈ H3/2(∂Ω) ,

where 〈 , 〉∂Ω refers to the duality pairing between H+s(∂Ω) and H−s(∂Ω) for any s > 0. Let
us introduce the space

H− 1

2 (div, ∂Ω) =
{
v ∈ H

−1/2
× (∂Ω)

∣∣ div∂Ω(v) ∈ H−1/2(∂Ω)
}

equipped with the graph norm

‖v‖2
H−1/2(div,∂Ω)

:= ‖v‖2
H

−1/2
× (∂Ω)

+ ‖div∂Ω(v)‖2H−1/2(∂Ω) .

An important result is that the pairing 〈·, ·〉×,∂Ω puts the space H−1/2(div, ∂Ω) in self-duality,
see [11, Lemma 5.6].

Theorem 2.1 (Self-duality of H−1/2(div, ∂Ω)).
The pairing 〈·, ·〉×,∂Ω can be extended to a continuous bilinear form over H−1/2(div, ∂Ω) ×
H−1/2(div, ∂Ω). For any ϕ ∈ H−1/2(div, ∂Ω)′ there exists a unique uϕ ∈ H−1/2(div, ∂Ω)
such that ϕ(v) = 〈uϕ,v〉×,∂Ω for all v ∈ H−1/2(div, ∂Ω), and the map ϕ ,→ uϕ is a continuous
isomorphism.

Since H(curl,Ω) is the proper energy space for Maxwell’s equations, we need an extension
of γd to H(curl,Ω). This is provided by the following theorem, see [11, Section 4].

Theorem 2.2 (Tangential trace theorem for H(curl,Ω)).
The trace operator γd can be extended to a continuous map fromH(curl,Ω) onto H−1/2(div, ∂Ω).
The operator γd : H(curl,Ω) → H−1/2(div, ∂Ω) admits a continous right-inverse. Besides
the following integration by parts formula holds
ˆ

∂Ω
curl(U) ·V −U · curl(V) dx = 〈γd(U),γd(V) 〉×,∂Ω ∀U,V ∈ H(curl,Ω) . (3)
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As indicated by the subscript D, in our analysis the operator γd will play a role analogous
to that of the Dirichlet trace for the scalar wave scattering problem. We also introduce a
counterpart for the Neumann trace: define γn : H(curl2,Ω) → H−1/2(div, ∂Ω) by

γn(U) := γd(curlU) ∀U ∈ H(curl2,Ω) . (4)

By [12, Lemma 3] the operator γn is continuous, surjective, and admits a continuous
right-inverse. Note that Definition (4) does not seem to correspond to a usual notation, see
for example [12, 13], where the wave number is incorporated into the definition of the trace
operator. We prefer (4), because it will mean substantial simplifications in many computa-
tions.

2.3 Traces local to each subdomain

Recall that nj refers to the normal vector to ∂Ωj directed toward the exterior of Ωj . In the

sequel we shall denote by γj
d and γj

n the interior trace with respect to Ωj . More precisely,

γj
d(U) := (U|Ωj × nj)|∂Ωj and γj

n(U) := γj
d(curlU|Ωj ) ∀U ∈ H loc(curl

2,Ωj) .

Besides, γj
d,c,γ

j
n,c will refer to the same trace operators but taken from the exterior, still

based on a normal vector directed toward the exterior of Ωj . Finally we will need averages
and jumps of combinations of these traces

γj(U) :=
(
γj
d(U),γj

n(U)
)&

and γj
c(U) :=

(
γj
d,c(U),γj

n,c(U)
)&

[γj ] := γj − γj
c and {γj} := 1

2(γ
j + γj

c) .

2.4 Transmission conditions

In the present article, we wish to study the scattering of an electromagnetic wave by an
object composed of subdomains, each of which corresponds to a homogeneous medium with
particular material properties, expressed through the two coefficients

εj (permittivity), µj (permeability) ∈ (0,+∞) j = 0 . . . n .

In the transmission problem that we consider, the coefficients µj come into play through
transmission conditions imposed at the interface between two subdomains ∂Ωj ∩ ∂Ωk, j, k =
0 . . . n. These transmission conditions are usually stated as

∀j, k = 0 . . . n






γj
d(U) + γk

d(U) = 0

µ−1
j γj

n(U) + µ−1
k γk

n(U) = 0
on ∂Ωj ∩ ∂Ωk , (5)

for local solutions U ∈ H(curl2,Ωj), j = 0 . . . n, which we would like to compute. Although
(5) is meaningful in the sense of distributions, it is not clear whether the restriction to
∂Ωj∩∂Ωk is a continuous operation in the trace spacesH−1/2(div, ∂Ωj) andH−1/2(div, ∂Ωk).
Hence it is not clear whether (5) fits the setting of trace spaces introduced in the previous
section. This is the reason why we choose to write the transmission conditions in a different
manner: consider the function µ : R3 → (0,+∞) defined by

µ(x) = µj in Ωj with µj ∈ (0,+∞) ∀j = 0 . . . n .

6



Then we rewrite Conditions (5) in the more compact form

U ∈ H loc(curl,R
3) and µ−1curlU ∈ H loc(curl,R

3) . (6)

It is straightforward to check, by means of integration by parts (3), that such conditions are
equivalent to (5) in the sense of distributions.

2.5 Electromagnetic scattering problem

Let ω > 0 refer to the (angular) frequency of the electromagnetic field. Denote by κj :=
ω
√
µjεj the wavenumber in each subdomain Ωj . Let (einc,hinc) ∈ H loc(curl

2,R3)2 be some
incident field i.e. curleinc − ıωµ0 hinc = 0 in R3, and curlhinc + ıωε0 einc = 0 in R3. Let
e,h refer to the total electric and magnetic fields, and suppose that they satisfy Maxwell’s
equations in frequency domain with Silver-Müller radiation conditions [20, Sect. 6.1]






(e,h) ∈ H loc(curl,R3)2 such that

curle− ıωµh = 0 in Ωj , and

curlh+ ıωε e = 0 in Ωj , j = 0 . . . n,

lim
r→+∞

ˆ

∂Br

∣∣∣(h− hinc)× nr − ıκ0(e− einc)
∣∣∣
2
dσr = 0 ,

(7)

where Br is the ball around 0 with radius r, and nr is the unit vector normal to ∂Br directed
toward the exterior of Br. Observe that the first two equations in (7) contain the transmission
conditions (6), since they imply that e ∈ H loc(curl,R3) and µ−1curle ∈ H loc(curl,R3).
Renaming u = e and uinc = einc, we can also rewrite (7) as a 2nd-order equation:






Find u ∈ H loc(curl,Ωj) such that

curl
(
curl u

)
− κ2ju = 0 in Ωj , j = 0 . . . n

lim
r→+∞

ˆ

∂Br

∣∣curl(u− uinc)× nr − ıκ0(u− uinc)
∣∣2dσr = 0

u ∈ H loc(curl,R3) and µ−1curl u ∈ H loc(curl,R3) .

(8)

Problem (8) is well posed, see for exemple [6, Theorem 4.7]. Note that we may consider a
more general situation where εj 0= 0 and 1m{ε2j} ≥ 0 but, as long as Problem (8) remains
well posed, this would only induce minor changes in our analysis, cf. [19].

3 Trace spaces adapted to multi-subdomain geometries

In this section we introduce trace function spaces, built upon the setting described in § 2.2,
that are well adapted to integral equation formulations of Problem (8). These spaces are a
vectorial counterparts of the spaces considered in [19, Section 2]. Our choices take the cue
from the work of Bendali and co-workers on classical single-trace formulation of Maxwell’s
equations for diffraction by composite structures [4, 5].

7



Multi-trace space Since we wish to derive an integral formulation for (8), the cartesian
product of trace spaces of all subdomains appears as a simple and natural setting. Let us
define the combined trace space

H(Γ) :=
n
Π
j=0

H(∂Ωj) where H(∂Ωj) = H− 1

2 (div, ∂Ωj)×H− 1

2 (div, ∂Ωj)

with ‖U‖H =
( n∑

j=0

‖uj‖2
H−1/2(div,∂Ωj)

+ ‖pj‖2
H−1/2(div,∂Ωj)

) 1

2

if U =

(
uj

pj

)

j=0...n

.

Equipped with such a norm, H(Γ) is a Hilbert space. In this space, we shall consider the
following skew symmetric duality pairing

B(U,V) =
n∑

j=0

Bj(Uj ,Vj) where Bj (Uj ,Vj) = 〈uj ,qj〉×,∂Ωj
− 〈vj ,pj〉×,∂Ωj

for any U =

(
uj

pj

)

j=0...n

∈ H(Γ) , V =

(
vj

qj

)

j=0...n

∈ H(Γ) .

(9)

There are many possible choices for a duality pairing on H(Γ), but (9) will be particularly con-
venient for the forthcoming analysis. This pairing is non-degenerate: U = 0 ⇐⇒ B(U,V) =
0, ∀V ∈ H(Γ).

Single-trace space As in [19], we introduce trace spaces adapted to transmission condi-
tions, whose definition does not rely on any orientation of the interfaces ∂Ωk ∩ ∂Ωj . We
set

X(Γ) := { (vj) ∈
n
Π
j=0

H− 1

2 (div, ∂Ωj) | ∃V ∈ H loc(curl,R
3) with vj = γj

d(V) }

X(Γ) :=

{ (
vj

qj

)
∈ H(Γ)

∣∣∣ (vj), (qj) ∈ X(Γ)

}
.

The single-trace space X(Γ) is closed in H(Γ) for ‖ ‖H, as it is defined by constraints involving
continuous functionals. Here is yet another instructive remark; for any j = 0 . . . n, assume
that v ∈ H loc(curl

2,R3 \ Ωj), and consider V = (Vq)q=0...n where Vq = γq(v) if q 0= j and

Vj = γj
c(v). Then V ∈ X(Γ).

The following result provides yet another characterization of X(Γ), which amounts to a
weak version of the transmission conditions (6).

Proposition 3.1.

For any U ∈ H(Γ) we have: U ∈ X(Γ) ⇐⇒ B(U,V) = 0, ∀V ∈ X(Γ)

Proof:

The proof is very similar to the proof of Proposition 2.1 in [18] and is elementary, but we
reproduce it here so that the reader can gain some familiarity with the space X(Γ). According
to the definition of B( , ), it suffices to show that for (vj) ∈ Πn

j=0H
−1/2(div, ∂Ωj) we have

(vj) ∈ X(Γ) ⇐⇒
n∑

j=0

〈vj ,qj〉×,∂Ωj
= 0 ∀(qj) ∈ X(Γ) . (10)

8



First, assume that (vj) ∈ X(Γ), and take some v ∈ H(curl,R3) such that γj(v) = vj ∀j =
0 . . . n. Consider an arbitrary (qj) ∈ X(Γ) and some q ∈ H(curl,R3) with compact support
such that γj(q) = qj ∀j = 0 . . . n. According to (3) and Lemma 2.1, we have

n∑

j=0

〈vj ,qj〉×,∂Ωj
=

n∑

j=0

ˆ

Ωj

curl(v) · q− v · curl(q) dx = 0.

Now assume that (vj) ∈ Πn
j=0H

−1/2(div, ∂Ωj) only satisfies the condition on the right hand

side in (10). Take u ∈ L2(R3) such that u|Ωj ∈ H(curl,Ωj) and γj
d(u) = vj , ∀j = 0 . . . n.

Since (γj
d(q)) ∈ X(Γ) whenever q ∈ Hcomp(curl,R3) we have

n∑

j=0

ˆ

Ωj

curl(u) · q− u · curl(q) dx =
n∑

j=0

〈vj ,γ
j
d(q)〉×,∂Ωj = 0 ∀q ∈ Hcomp(curl,R

3) .

This implies that u ∈ H loc(curl,R3) according to Lemma 2.1. Since vj = γj
d(u), we conclude

that (vj) ∈ X(Γ). !

The single-trace space X(Γ) is particularly convenient for dealing with transmission con-
ditions. Indeed, according to the discussion of §2.4, for any vector field u ∈ L2

loc(R
3) such

that u|Ωj ∈ H loc(curl
2,Ωj) we have

u satisfies (5) ⇐⇒
(
Tµjγ

j(u)
)
j=0...n

∈ X(Γ) where Tµ :=

[
1 0
0 1/µ

]
.

We shall also consider the scaling operator Tµ : H(Γ) → H(Γ) defined by Tµ(U) := (Tµ0
(U0),

. . . ,Tµn(Un)) for any U = (U0, . . . , Un) ∈ H(Γ). Finally we define T0(U) = (Tµ0
(U0),

. . . ,Tµ0
(Un)). In particular, we have the following property T0

(
X(Γ)

)
= X(Γ).

4 Potentials

In this section, we recall already well established results concerning potential operators and
representation results for Maxwell’s equations. These results were reported in detail in [12]
and were proved in [10, 22, 23].

Representation formula Let Gκ(x) = exp(ıκ|x|)/(4π|x|) refer to the radiating funda-
mental solution for the operator −∆ − κ2. First, for any subdomain Ωj , we introduce the
intermediate potentials

Ψj
κ(q)(x) =

ˆ

∂Ωj

Gκ(x− y)q(y)dσ(y) ∀q ∈ H− 1

2 (∂Ωj) ,

Ψj
κ(p)(x) =

ˆ

∂Ωj

Gκ(x− y)p(y)dσ(y) ∀p ∈ H
− 1

2

× (∂Ωj) .
(11)

According to [10, 22], these potentials give rise to continuous mappings Ψj
κ : H−1/2(∂Ωj) →

H1
loc(R

3) and Ψj
κ : H−1/2

× (∂Ωj) → H1
loc(R

3). Based on them, we introduce the electromag-
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netic counterparts of the single and double layer potentials, cf. [12, Sect. 4]:

SLj
κ(q)(x) := Ψj

κ(q)(x) + κ−2∇
(
Ψj

κ

(
div∂Ωj (q)

))
(x) ,

DLj
κ(v)(x) := curl

(
Ψj

κ(v)
)
(x) ,

Gj
κ

([
v

q

])
(x) := DLj

κ(v)(x) + SLj
κ(q)(x) ,

v,q ∈ H− 1

2 (div, ∂Ωj) .

For any v,q ∈ H−1/2(div, ∂Ωj) the vector fields SLj
κ(q)(x) and DLj

κ(v)(x) are solutions
to Maxwell’s equations in each subdomain and satisfy the Silver-Müller radiation condition.
Besides, the operator Gj

κ : H(∂Ωj) → Πn
k=0H loc(curl

2,Ωk) ∩ L2
loc(R

3) is continuous for any
j = 0 . . . n. A crucial result concerning these potential operators is that when u is a solution
to Maxwell’s equations in Ωj , then Gj

κ can be used to reconstruct u from its traces on ∂Ωj ,
see [12, Thm. 6].

Theorem 4.1 (Stratton-Chu representation formula).
Let u ∈ H loc(curl

2,Ωj) satisfy the Maxwell equations curl(curl u)− κ2ju = 0 in Ωj. In the
case where j = 0, in addition assume that it satisfies the Silver-Müller radiation condition
limr→+∞

´

∂Br

∣∣curl u× nr − ıκ0u
∣∣2dσr = 0. Then we have

Gj
κ

(
γj(u)

)
(x) =






u(x) if x ∈ Ωj

0 if x ∈ R3 \ Ωj .

Similarly, if u ∈ H loc(curl
2,R3 \Ωj) satisfies the Maxwell equations curl(curl u)− κ2ju = 0

in R3 \ Ωj, as well as the Silver-Müller radiation condition limr→+∞
´

∂Br

∣∣curl u × nr −
ıκju

∣∣2dσr = 0 except if j = 0, then we have

Gj
κ

(
γj
c(u)

)
(x) =






0 if x ∈ Ωj

−u(x) if x ∈ R3 \ Ωj .

Another classical and important result concerns the behaviour of the potentials across the
boundary of the associated subdomain, summarized in the jump relations, see [12, Thm. 7],

[γj ] ·Gj
κj
(V) = V ∀V ∈ H(∂Ωj). (12)

In the sequel we will also need a remarkable property involving the potential operators as well
as the elements of X(Γ). Observe that, in the following statement only a single wave number
κ0 is used.

Lemma 4.1.

For any κ0 ∈ (0,+∞) we have

n∑

j=0

Gj
κ0
(Uj)(x) = 0 ∀x ∈ R

3 , ∀U = (Uj)0≤j≤n ∈ X(Γ) . (13)

10



This result corresponds to [18, Lemma 6.1]. The underlying intuition is that the jumps
of the individual potentials Gj

κ0
across interfaces cancel each other in the sum (13).

Proof: (of Lemma 4.1)
Pick any U = (Uj)j=0...n ∈ X(Γ) that will be fixed until the end of the proof. Set

u(x) =
∑n

j=0G
j
κ0
(Uj)(x). We have to prove that u(x) = 0, ∀x ∈ R3.

First, we prove that u ∈ H loc(curl
2,R3). For this, since u ∈ H loc(curl

2,Ωj) for any j =
0 . . . n as is clear from its definition, it is sufficient to show that (γj(u))j=0...n ∈ X(Γ). Take
any j = 0 . . . n, and observe that Gj

κ0
(Uj) ∈ H loc(curl

2,R3 \Ωj), so that (Wq)q=0...n ∈ X(Γ)

where Wq := γq ·Gj
κ0
(Uj) if q 0= j, and Wj := γj

c ·Gj
κ0
(Uj). As a consequence, according

to Proposition 3.1, we have

n∑

q=0

Bq(γ
q ·Gj

κ0
(Uj),Vq) = Bj( [γ

j ] ·Gj
κ0
(Uj),Vj ) +

n∑

q=0

Bq(Wq,Vq)

= Bj(Uj ,Vj) ∀V = (Vj) ∈ X(Γ).

For the second equality above, we used the fact that [γj ] ·Gj
κ0
(Uj) = Uj according to (12).

Summing all such identities over j = 0 . . . n, we obtain

n∑

q=0

Bq(γ
q(u),Vq) =

n∑

j=0

n∑

q=0

Bq(γ
q ·Gj

κ0
(Uj),Vq)

=
n∑

j=0

Bj(Uj ,Vj) = 0 ∀V = (Vj) ∈ X(Γ).

The previous identity implies that (γj(u)) ∈ X(Γ) according to the characterization of X(Γ)
provided by Proposition 3.1, which proves that u ∈ H loc(curl

2,R3).
Now observe that u(x) is an outgoing solution to homogeneous Maxwell’s equations as-

sociated to the wave number κ0 in each subdomain Ωj , since each Gj
κ0
(Uj) satisfies such

equations. Besides u(x) satisfies transmission conditions since (γj(u)) ∈ X(Γ). As a conse-
quence, since Problem (8) is well posed, this implies u = 0. !

Cauchy data and Calderón projectors Now we introduce special trace spaces that will
play an important role in the sequel. We exhibit additional properties of these spaces in the
next section.

Definition 4.1.

The set of interior Cauchy data associated to the subdomain Ωj with respect to the wave
number κj is defined by

Cκj (∂Ωj) :=
{
γj(u)

∣∣∣ u ∈ H loc(curl
2,Ωj), curl(curl u)− κ2j u = 0 in Ωj

and lim
r→+∞

ˆ

∂Br

∣∣curl u× nr − ıκ0u
∣∣2dσr = 0 , if j = 0

}
.

The space of global interior Cauchy data associated to κ = (κ0, . . . ,κn) is defined as the
cartesian product

Cκ(Γ) := Cκ0
(∂Ω0)× · · ·× Cκn(∂Ωn) .
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Note that we may also consider spaces of exterior Cauchy data. However, as we will refer to
exterior Cauchy data only occasionally, we do not introduce special notation for such spaces.
We have the following characterization, cf. [12, Thm. 8].

Proposition 4.1 (Characterization of Cauchy data).
For any j = 0 . . . n the operator γj ·Gj

κj
: H(∂Ωj) → H(∂Ωj) is a continuous projector, called

the interior Calderón projector of Ωj, and for any V ∈ H(∂Ωj) we have

V ∈ Cκj (∂Ωj) ⇐⇒ V = γj ·Gj
κj
(V) .

As a consequence, Cauchy data spaces are closed sub-spaces of H(Γ) since they can be
characterized as kernels of continuous projectors. We introduce other continuous operators
Cj
κj : H(∂Ωj) → H(∂Ωj) defined by

Id/2 + Cj
κj

:= γj ·Gj
κj

. (14)

Thanks to the jump relations (12), this definition can be rewritten Cj
κj = {γj} · Gj

κj
. As

a consequence of (14) we have (2Cj
κj )

2 = Id and also Cκj (∂Ωj) = R(Id/2 + Cj
κj ). From

Proposition 4.1 and Definition (14), we conclude

U ∈ Cκ(Γ) ⇐⇒ (Id/2 + Cκ)U = U where Cκ =





C0
κ0

0 · · · 0

0 C1
κ1

. . .
...

...
. . .

. . . 0
0 · · · 0 Cn

κn




.

Let us emphasize that we also have V ∈ R(Id/2 − Cj
κj ) if and only if there exists some

v ∈ H loc(curl
2,R3 \ Ωj) such that γj

c(v) = V, and such that curl(curl v) − κ2j v = 0 in

R3 \ Ωj , and v satisfies the Silver- Müller radiation condition, except if j = 0.

Scaled Calderón projectors Finally we introduce operators Aj
κj ,µj : H(∂Ωj) → H(∂Ωj)

and Aκ,µ : H(Γ) → H(Γ) such that Id/2 + Aj
κj ,µj , j = 0 . . . n, and Id/2 + Aκ,µ are scaled

versions of Calderón projectors well adapted to the treatment of transmission conditions.
They are defined by

Aj
κj ,µj

= Tµj · Cj
κj

· T−1
µj

and Aκ,µ = Tµ · Cκ · T−1
µ .

It is straightforward to check that Id/2 + Aj
κj ,µj , j = 0 . . . n, and Id/2 + Aκ,µ are projectors.

By analogy with the Cauchy data spaces introduced in Definition 4.1, we define

Cκj ,µj (∂Ωj) := R(Id/2 + Aj
κj ,µj ) ,

Cκ,µ(Γ) := R(Id/2 + Aκ,µ) = Cκ0,µ0
(∂Ω0)× · · ·× Cκn,µn(∂Ωn) .

We also have Cκ,µ(Γ) = Ker(−Id/2 + Aκ,µ). The operator Aκ,µ is symmetric with respect to
the pairing B( , ):

Lemma 4.2.

B ( (Id/2 + Aκ,µ)U,V ) = B ( (−Id/2 + Aκ,µ)V,U ) ∀U,V ∈ H(Γ) .
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Proof:

According to [13, Theorem 3.9], we have Bj(Cκj (Uj),Vj) = Bj(Cκj (Vj),Uj) for all

Uj ,Vj ∈ H(∂Ωj), and any j = 0 . . . n. Besides, since Bj(Tµj (Uj),Vj) = µ−1
j Bj(Uj ,T1/µj

(Vj)),
we deduce that Bj(Aκj ,µj (Uj),Vj) = Bj(Aκj ,µj (Vj),Uj). As Bj(Uj ,Vj) = −Bj(Vj ,Uj),
the result stated above is obtained by summing the previous identities over j = 0 . . . n. !

5 Classical single-trace formulation of the first kind

In this section, we briefly recall the derivation of the classical PMCHWT single-trace for-
mulation of the first kind. We adhere to a variational perspective pioneered in the work of
Bendali and his co-workers (see [4, 5]) based on Rumsey’s principle. It is the same perspective
employed in the mathematical analysis of single-trace formulations in [32] (for acoustics) and
[6] (for electromagnetics). Then, we use the single-trace formulation as a stepping stone for
motivating our new multi-trace boundary integral equations via a “gap idea”, cf. [19, Sect. 5].

In this formulation the unknown will be U = (Tµj · γj(u))j=0...n where u is the solution
to problem (8). We also have to consider Uinc = (Tµ0

· γ0(uinc),0, . . . ,0). With these new
notations, Problem (8) may then be reformulated in the follwing manner

Find U ∈ X(Γ) such that

(Id/2− Cκ) T−1
µ (U−Uinc) = 0 .

(15)

This formulation is clearly well posed since it is exactly equivalent to Problem (8) that is
itself well posed. Let us define

Finc := (Id/2−Aκ,µ)U
inc .

With these notations, since B(U,V) = 0 whenever U,V ∈ X(Γ), multiplying Formulation
(15) on the left by Tµ and testing with functions V ∈ X(Γ) we obtain

Find U ∈ X(Γ) such that

B(Aκ,µ(U),V) = −B(Finc,V) ∀V ∈ X(Γ).
(16)

If U ∈ X(Γ) is solution to (15), then it is clearly solution to (16). The converse also holds,
athough this is much less trivial, and this implies that (16) is well posed. It is a consequence
of the following result that was proved in [6].

Proposition 5.1 (Unique solvability of single-trace formulation).
Assume that εj , µj ∈ (0,+∞) and consider any F ∈ H(Γ). Then there exists a unique
U ∈ X(Γ) satisfying B(Aκ,µ(U),V) = B(F,V) , ∀V ∈ X(Γ).

Next, let us zero in on the case of three subdomains (n = 2), with Ω1 and Ω2 being
separated, ∂Ω1 ∩ ∂Ω2 = ∅, which means Γ = ∂Ω1 ∪ ∂Ω2 = ∂Ω0. In this case a simple
characterization of X(Γ) is available

X(Γ) = =

{
(

(
−V1

−V2

)
,V1,V2) | V1 ∈ H(∂Ω1),V2 ∈ H(∂Ω2)

}
, (17)

where the ∂Ω0-component of X(Γ) has been split into traces on ∂Ω1 and ∂Ω2.
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Further, for the sake of lucidity, we only consider uniform permeabilities µ0 = µ1 = µ2 = 1
(and will suppress them in the notations in the sequel). Then, thanks to (17) the single-trace
formulation (15) for this special situation can be recast as

(12 Id− C0
κ0
)

(
−U1

−U2

)
=

(
−γ1(uinc)
−γ2(uinc)

)
, (12 Id− C1

κ1
)U1 = 0 , (12 Id− C2

κ2
)U2 = 0 . (18)

The splitting of H(∂Ω0) induces a splitting of the first boundary integral equation in (18):

(12 Id− C0
κ0
)

(
U1

U2

)
=

(
1
2 Id + C1

κ0
R1,2

κ0

R2,1
κ0

1
2 Id + C2

κ0

)(
U1

U2

)
=

(
γ1(uinc)
γ2(uinc)

)
, (19)

where the operators

R2,1
κ0

:= γ2G1
κ0

: H(∂Ω1) → H(∂Ω2) and R1,2
κ0

:= γ1G2
κ0

: H(∂Ω2) → H(∂Ω1) (20)

take into account the coupling between the different parts of ∂Ω0. Then we can merge the
equations of (18) into one final single-trace formulation

(
C1
κ1

+C1
κ0

R1,2
κ0

R2,1
κ0

C2
κ1

+ C2
κ0

)(
U1

U2

)
=

(
γ1(uinc)
γ2(uinc)

)
. (21)

Starting from (21) we motivate our new multi-trace formulation by means of a gap idea,
cf. [19, Sect. 5]. As above, for the sake of clarity, the case n = 2 with adjacent Ω1, Ω2 will be
considered in the remainder of this section. We imagine that we tear apart Ω1 and Ω2, thus
opening up a narrow ”virtual gap” into which Ω0 can intrude, see Figure 2 (right).

Ω1

Ω2

Ω1

Ω2

Figure 2: Introducing a virtual gap (colored in yellow) separating subdomains

When (21) is applied in the situation with a gap of non-zero width, the integral operators
comprising R1,2

κ0
and R2,1

κ0
feature analytic kernels. However, the crucial observation, readily

seen from the definition (20) is that these integral operators remain meaningful even when
the gap is shrunk to ”width zero”. Hence we can apply the single-trace formulation in the
form (21) to the original situation of Figure 2, left.

The unknown traces will be sought in H(∂Ω1)×H(Ω2), which means that

• the unknowns on ∂Ω0 are a single pair of traces,

• on ∂Ω1 ∩ Ω2 there are two pairs of unknown traces.

For this reason we have dubbed the new formulation, our new interpretation on (21) “multi-
trace”.
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6 Remarkable properties of the space of Cauchy data

Parallel to [19, Sect. 6], in this section, we point out several properties of the Cauchy data
spaces Cκj ,µj (∂Ωj). The most important is probably that Cκ,µ(Γ) provides a complement to
X(Γ) in H(Γ) for any value of κ, µ ∈ (0,+∞).

Proposition 6.1.

Consider any µj ,κj ∈ (0,+∞), j = 0 . . . n. Then we have the decomposition

H(Γ) = X(Γ)⊕ Cκ,µ(Γ) . (22)

We do not provide the proof for this result because it is nearly the same as the proof to
Proposition 6.1 in [19]. Next we state a characterization of Cauchy data along the lines of
Proposition 3.1.

Lemma 6.1.

For any U ∈ H(Γ) we have: U ∈ Cκ,µ(Γ) ⇐⇒ B(U,V) = 0, ∀V ∈ Cκ,µ(Γ).

Proof:

To show this, we may proceed as in [19, Lemma 6.1]. We propose here a different proof
that is straightforward. Recall that R(Id/2 + Aκ,µ) = Ker(−Id/2 + Aκ,µ) = Cκ,µ(Γ). Using
Lemma 4.2, we see that for any U ∈ H(Γ), we have U ∈ Cκ,µ(Γ) if and only if

B
(
(−Id/2 + Aκ,µ)U,V

)
= 0 ∀V ∈ H(Γ)

⇐⇒ B(U, (Id/2 + Aκ,µ)V) = 0 ∀V ∈ H(Γ)

⇐⇒ B(U,V) = 0 ∀V ∈ Cκ,µ(Γ) .

!

An immediate consequence of the previous lemma is that Uj ∈ Cκj ,µj (∂Ωj) if and only if
Bj(Uj ,Vj) = 0, ∀Vj ∈ Cκj ,µj (∂Ωj). It is straightforward to adapt the proof of Lemma 6.1
so as to prove the following result.

Lemma 6.2.

Let j = 0 . . . n and take any κj , µj ∈ (0,+∞). For any Uj ∈ H(∂Ωj), we have Uj ∈
R(−Id/2 + Aκj ,µj ) if and only if Bj(Uj ,Vj) = 0 ∀Vj ∈ R(−Id/2 + Aκj ,µj ).

7 New functional setting

Following the same approach as in [19, Sect. 7], we introduce a new functional setting adapted
to traces of functions restricted to R3 \ Ω0. We set

Ĥ(Γ) = Πn
j=1H(∂Ωj)

Ĉ0(Γ) = Πn
j=1Cκ0,µ0

(∂Ωj)

X̂(Γ) = { (γj(U) )j=1,...n ∈ Ĥ(Γ) | U ∈ H loc(curl
2,R3) } .

(23)

15



Note that the space Ĥ(Γ) differs from H(Γ) as the index j in its definition ranges from 1 to

n (not from 0 to n). Moreover, notice that in the definition of Ĉ0(Γ), all wave numbers are
equal to κ0, and that only µ0 is involved (and not µj for j 0= 0). It is clear from (22) and (23)
considered in the case κj = κ0, ∀j that

X̂(Γ) + Ĉ0(Γ) = Ĥ(Γ) .

The sum above is not a direct sum as X̂(Γ) ∩ Ĉ0(Γ) 0= {0}. We equip the space Ĥ(Γ) with a
norm denoted ‖ ‖, and a duality pairing analogous to the one considered for H(Γ), setting

‖Û‖ =
( n∑

j=1

‖uj‖2
H−1/2(div,∂Ω)

+ ‖pj‖2
H−1/2(div,∂Ω)

) 1

2

for Û =

(
uj

pj

)

j=1...n

∈ Ĥ(Γ) .

B̂(U,V) =
n∑

j=1

Bj(Uj ,Vj) for U,V ∈ Ĥ(Γ) .

Although X̂(Γ) may seem ”smaller” than X(Γ) at first glance, both spaces are actually iso-
morphic, as pointed out by the following lemma.

Lemma 7.1.

For any Û ∈ X̂(Γ), there exists a unique U0 ∈ H(∂Ω0) such that (U0, Û) ∈ X(Γ).

Proof:

The existence is clear, what has to be proved here is the uniqueness of U0. Assume that
for U0,V0 ∈ H(∂Ω0) we have (U0, Û) ∈ X(Γ) and (V0, Û) ∈ X(Γ) so that U := (U0 −
V0, 0, . . . , 0) ∈ X(Γ). Consider u0,p0 ∈ H− 1

2 (div, ∂Ω0) such that U0 −V0 = (u0,p0)&. Let

us show that u0 = 0. Take any w0 ∈ H− 1

2 (div, ∂Ω0), and choose wj ∈ H− 1

2 (div, ∂Ωj), j =
0 . . . n such that (wj)j=0...n ∈ X(Γ) so that W = (0,wj)&j=0...n belongs to X(Γ). We have

〈u0,w0〉×,∂Ω0
= B(U,W) = 0

since both U and W belong to X(Γ). Since w0 was chosen arbitrarily, we obtain that u0 = 0.
We prove in the same manner that p0 = 0. This finally shows that U0 = V0. !

We will also need a weak characterization of the space X̂(Γ). Although X(Γ) is its own
polar set according to Proposition 3.1, such is not the case for X̂(Γ).

Proposition 7.1.

Let X̂0(Γ) = { V̂ ∈ X̂(Γ) | (0, V̂) ∈ X(Γ) }. For any Û ∈ Ĥ(Γ) we have

Û ∈ X̂(Γ) ⇐⇒ B̂(Û, V̂) = 0 ∀V̂ ∈ X̂0(Γ). (24)

Proof:

Assume first that Û ∈ X̂(Γ) and consider any V̂ ∈ X̂0(Γ). Take U0 ∈ H(∂Ω0) such that
(U0, Û) ∈ X(Γ) and set V = (0, V̂) ∈ X(Γ). Applying Proposition 3.1, we have B̂(Û, V̂) =
B(U,V) = 0.

Now assume that Û = (uj ,pj)&j=1...n ∈ Ĥ(Γ) satisfies the condition in the right hand

side of (24). Let us show that (u0,u1, . . . ,un) ∈ X(Γ) for some u0 ∈ H−1/2(div, ∂Ω0).
Take v ∈ L2

loc(R
3 \ Ω0) such that v|Ωj ∈ H loc(curl

2,Ωj) and γj
d(v) = uj , j = 1 . . . n. Take
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any w ∈ H loc(curl,R3) such that γ0
d(w) = 0. Set Ŵ = (0,γj

d(w))&j=1...n and observe that

Ŵ ∈ X̂0(Γ). Then we have

ˆ

R3\Ω0

v · curl(w) dx −
n∑

j=1

ˆ

∂Ωj

w · curl(v) dx = B̂(Û,Ŵ) = 0.

Since this holds for any w ∈ H loc(curl,R3) such that γ0
d(w) = 0, we conclude that v ∈

H loc(curl,R3 \ Ω0). Extending v properly, using a continuous right inverse of γ0
d, we can

consider that v ∈ H loc(curl,R3). Setting u0 = γ0
d(v) we obtain (uj)j=0...n ∈ X(Γ). We

prove in the same manner that there exists p0 such that (p0,p1 . . . ,pn) ∈ X(Γ). Setting
U0 = (u0,p0)& ∈ H(∂Ω0), we finally have (U0, Û) ∈ X(Γ). !

8 New formulation of the first kind

In the present section, we state a reformulation of Problem (16). To justify such a new
formulation, the proof is nearly exactly the same as in Section 7, 8 and 9 of [19] (even
notations coincide), so we do not give a lot of details. The only specific point, in the case of
Maxwell’s equations compared to the acoustic scattering problem, is the proof of Lemma 4.1
of the present article, that is different from the proof of Lemma 8.1 in [19].

To state this new formulation, we have to introduce a ”transformed right hand side” and
a ”transformed operator”. Following [19], we set

F̂inc := −
(
Finc
j + Tµ0

· γj ·G0
κ0
( T−1

µ0
(Finc

0 )
) )

j=1...n

with Finc = (Finc
j )j=0...n ∈ R(−Id/2 + Aκ,µ) .

(25)

As in [19], we emphasize that the analysis underlying the formulation that we introduce do
not depend on the specific form of F̂inc. For any U = (U1, . . . ,Un) ∈ Ĥ(Γ), we define

Âκ,µ ·U =





A1
κ1,µ1

+A1
κ0,µ0

R1,2
κ0,µ0

· · · · · · R1,n
κ0,µ0

R2,1
κ0,µ0

A2
κ2,µ2

+A2
κ0,µ0

· · · · · · R2,n
κ0,µ0

R3,1
κ0,µ0

R3,2
κ0,µ0

. . .
...

...
...

. . . Rn−1,n
κ0,µ0

Rn,1
κ0,µ0

Rn,2
κ0,µ0

· · · · · · An
κn,µn

+An
κ0,µ0









U1

U2

...

Un−1

Un





(26)

where we have set
Rq,j

κ,µ
def
= Tµ · γq ·Gj

κ · T−1
µ . (27)

Clearly, the operators Rq,j
κ0,µ0

are continuous maps from H(∂Ωj) into H(∂Ωq). Note that, as a

consequence of Theorem 4.1, we have Rq,j
κ0,µ0

·(Id/2+Aj
κ0,µ0

) = 0 and (Id/2−Aq
κ0,µ0

)·Rq,j
κ0,µ0

= 0
as well as Rq,j

κ0,µ0
· Rj,p

κ0,µ0
= 0 whenever q 0= j. With the previous notations, a derivation

identical to Section 7,8 and 9 of [19] leads to the following theorem.
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Theorem 8.1.

Assume that Finc and F̂inc satisfy Equation (25). In this case U = (U0, Û) ∈ H(Γ) is solution
to (16) if and only if Û is solution to the problem

Find Û ∈ Ĥ(Γ) such that

B̂
(
Âκ,µ(Û), V̂

)
= B̂

(
F̂inc, V̂

)
∀V̂ ∈ Ĥ(Γ).

(28)

The proof of this theorem is identical to the proof of Theorem 8.1 and 8.2 in [19]. A
remarkable feature of Formulation (28) is that it is posed in Ĥ(Γ) and not in X̂(Γ). In other
words, this new variational setting does not contain any constraint.

We end this section by proving a symmetry property satisfied by the operator Âκ,µ, that
is, the multi-subdomain counterpart of Theorem 9 in [13]. This property will be useful in the
next section.

Proposition 8.1 (Symmetry of multi-trace operator).
For any κ0,κ1, . . . ,κn ∈ (0,+∞) and any µ0, µ1, . . . , µn ∈ (0,+∞) we have the following
symmetry property

B̂
(
Âκ,µ(U),V

)
= B̂

(
Âκ,µ(V),U

)
∀U,V ∈ Ĥ(Γ) .

Proof:

We know that Bj(Aκj ,µj (Uj),Vj) = Bj(Aκj ,µj (Vj),Uj) for any Uj ,Vj ∈ H(∂Ωj) and
any value of κj , µj ∈ (0,+∞), see the proof of Lemma 4.2. As a consequence, the result will
be proved if we can show that

Bj(R
j,q
κ0,µ0

(Uq),Vj) = Bq(R
q,j
κ0,µ0

(Vj),Uq) for j 0= q . (29)

Since Bj(R
j,q
κ0,µ0

(Uq),Vj) = µ−1
0 Bj(γjGq

κ0
(T−1

µ0
Uq),T−1

µ0
Vj), it suffices to show the following

identity

Bj(γ
j ·Gq

κ0
(Uq),Vj) = Bq(γ

q ·Gj
κ0
(Vj),Uq) ∀Uq ∈ H(∂Ωq), ∀Vj ∈ H(∂Ωj) (30)

for any j, q ∈ {1, . . . n} with j 0= q. Hence pick arbitrary j, q ∈ {1, . . . n} with j 0= q and
Uq ∈ H(∂Ωq), Vj ∈ H(∂Ωj). Consider Wj ,Wq ∈ X(Γ) defined by Wα = (Wα

j )j=0...n for
α = j, q with

W
q
q = γq

c ·Gq
κ0
(Uq) and W

q
k = γk ·Gq

κ0
(Uq) for k 0= q,

W
j
j = γj

c ·Gj
κ0
(Vj) and W

j
k = γk ·Gj

κ0
(Vj) for k 0= j .

We have Vj = [γj ] · Gj
κ0
(Vj) according to the jump formula (12). As Wj ,Wq ∈ X(Γ), we

can apply Proposition 3.1 and Lemma 6.1 which yields

Bj(γj ·Gq
κ0
(Uq),Vj) = Bj

(
γj ·Gq

κ0
(Uq), [γj ] ·Gj

κ0
(Vj)

)

= −Bj
(
γj ·Gq

κ0
(Uq),γ

j
c ·Gj

κ0
(Vj)

)
= −Bj(W

q
j ,W

j
j)

= Bq(W
q
q ,W

j
q) +

∑

k=0...n
k )=j,q

Bk(W
q
k,W

j
k) .
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We have W
j
k,W

q
k ∈ Cκ0,µ0

(∂Ωk) for k ∈ {0 . . . n} \ {j, q}. As a consequence, we can apply
Lemma 6.1, and since Uq = [γq] ·Gq

κ0
(Uq), we obtain

Bj(γ
j ·Gq

κ0
(Uq),Vj) = Bq(γ

q
c ·Gq

κ0
(Uq),γ

q ·Gj
κ0
(Vj))

= −Bq([γ
q] ·Gq

κ0
(Uq),γ

q ·Gj
κ0
(Vj)) = Bq(γ

q ·Gj
κ0
(Vj),Uq) ,

which concludes the proof. !

9 Coercivity

The coercivity property for Problem (28), which we tackle now, is more involved in the case
of Maxwell’s equations than in the case of acoustic scattering. As a consequence, we shall
give much more details here.

9.1 Splitting of the variational space

The proof of coercivity for first kind integral formulations in the case of Maxwell’s equations
developed in [13] relies on a key splitting idea, which was pioneered in [15, 26, 23]. We will
adopt a similar approach in the present case. First, let us recall the following result that was
established in [12, Lemma 2].

Lemma 9.1 (Regular decomposition of trace space).

For any Lipschitz open set Ω ⊂ R3, there exists a subspace Z(∂Ω) ⊂ H
1/2
× (∂Ω) that is closed

in H−1/2(div, ∂Ω) and gives a direct sum decomposition

Z(∂Ω)⊕N(∂Ω) = H− 1

2 (div, ∂Ω) ,

where N(∂Ω) := {q ∈ H− 1

2 (div, ∂Ω) | div∂Ω(q) = 0 }.
(31)

Note that, since the injection H
1/2
× (∂Ω) ↪→ H

−1/2
× (∂Ω) is compact, the bilinear form

(u,v) ,→ 〈u,v〉×,∂Ω is compact when restricted to Z(∂Ω) × Z(∂Ω). Besides, since Z(∂Ωj) is

closed in H−1/2(div, ∂Ωj), for any j = 1 . . . n there exists a continuous extension operator
Φj : Z(∂Ωj) → H1

loc(Ωj) such that

γj
d ·Φj(v) = v ∀v ∈ Z(∂Ωj) ∀j = 1 . . . n .

Such a decomposition as (31) should be understood in the sense that any element ofH−1/2(div, ∂Ω)
can be decomposed in a regular trace (which will bring some compactness property in the
forthcoming analysis) and a trace with vanishing surface divergence. We shall consider the
cartesian product of pairs of such decompositions for all subdomains, writing

Ĥ(Γ) = Z(Γ)⊕N(Γ)

where Z(Γ) = Πn
j=1(Z(∂Ωj))2 and N(Γ) = Πn

j=1(N(∂Ωj))2 .

Define the projectors PZ : Ĥ(Γ) → Z(Γ) such that Ker(PZ) = N(Γ). In the sequel, following
the exemple of [13, Theorem 3.12], we shall also simply write UZ = PZ(U) and UN =
U− PZ(U). Finally we define the operator Ξ : Ĥ(Γ) → Ĥ(Γ) by

Ξ(U) = U− 2PZ(U) = UN −UZ for U = UN +UZ .
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Observe that Ξ : Ĥ(Γ) → Ĥ(Γ) is clearly a continuous isomorphism since it is an involution
i.e. Ξ2 = Id.

9.2 Outline of the proof of coercivity

Before delving into the proof of coercivity, we list a few useful observations. First of all, notice
that the elements located on the diagonal of Âκ,µ are operators associated with formulations
of the first kind for transmission problems in the case of isolated scatterers. For each of these
operators, coercivity has already been established. This suggests that we decompose Âκ,µ in
the following manner,

Âκ,µ = Dκ,µ +Rκ0,µ0
with Dκ,µ :=





A1
κ1,µ1

0 · · · 0

0
. . .

...
...

. . . 0
0 · · · 0 An

κn,µn




.

The operator Rκ0,µ0
only depends on κ0, µ0 (and not on κ1, µ1, . . . ,κn, µn). We already

know from [13, Theorem 3.12] or [12, Theorem 9], that Dκ,µ satisfies a generalized G̊arding
inequality.

Theorem 9.1.

There exists a compact operator K1 : Ĥ(Γ) → Ĥ(Γ) and a constant C > 0 such that

8e
{
B̂
(
(Dκ,µ +K1)U, Ξ(U)

) }
≥ C ‖U‖2 ∀U ∈ Ĥ(Γ) .

In order to prove a similar result for Âκ,µ, we are going to show that Rκ,µ satisfies a
positivity property up to some compact perturbation: we are going to prove that there exists
a compact operator K2 : Ĥ(Γ) → Ĥ(Γ) such that

8e
{
B̂
(
(Rκ0,µ0

+K2)U, Ξ(U)
) }

≥ 0 ∀U ∈ Ĥ(Γ) . (32)

Slightly abusing notations, denote T0(U) := (Tµ0
(U1), . . . ,Tµ0

(Un)) for any Û = (U1, . . . ,Un) ∈
Ĥ(Γ). Consider the operator Rκ0

defined in the same manner as Rκ0,µ0
but with µ0 = 1. Then

we have Rκ0,µ0
= T0 · Rκ0

· T−1
0 . Since T0 · Ξ = Ξ · T0, we have

B̂
(
Rκ0,µ0

(U),Ξ(U)
)
= µ−1

0 · B̂
(
Rκ0

(T−1
0 U), Ξ(T−1

0 U)
)

∀U ∈ Ĥ(Γ) .

As a consequence, Estimate (32) holds if and only if there exists some compact operator
K3 : Ĥ(Γ) → Ĥ(Γ) such that

8e
{
B̂
(
(Rκ0

+K3)U, Ξ(U)
) }

≥ 0 ∀U ∈ Ĥ(Γ) . (33)

9.3 Perturbed potentials

To further simpify the analysis, we need to introduce perturbed potentials by picking the
imaginary “wave number” κ = ı (imaginary unit). Note that Gı(x) = exp(−|x|)/(4π|x|) is a
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positive real valued function exponentially decreasing for |x| →∞ . Consider the correspond-
ing Newton potentials Ψı and Ψı defined by (11). Set

SLj
ı(q)(x) := Ψj

ı(q)(x) + κ−2
0 ∇

(
Ψj

ı

(
div∂Ωj (q)

))
(x)

DLj
ı(v)(x) := curl

(
Ψj

ı(v)
)
(x)

Gj
ı

([
v

q

])
(x) = DLj

ı(v)(x) + SLj
ı(q)(x) ∀v,q ∈ H− 1

2 (div, ∂Ωj) .

Observe that SLj
ı(q)(x) still depends on κ0. The only difference in the definition of Gj

ı

compared to the definition of Gj
κ0

is that Ψj
κ0

and Ψj
κ0

have been replaced by Ψj
ı ,Ψ

j
ı . Then

we consider the operator

Rı ·U =





{γ1} ·G1
ı γ1 ·G2

ı · · · γ1 ·Gn
ı

γ2 ·G1
ı {γ2} ·G2

ı · · · γ2 ·Gn
ı

...
...

. . .
...

γn ·G1
ı γn ·G2

ı · · · {γn} ·Gn
ı









U1

U2

...

Un





. (34)

Because of the regularity of Gκ0
(x)− Gı(x), we obtain that Ψκ0

−Ψı is an operator of order
−4 that is continuous from H1(Br)′ to H3(Br) for any open ball Br that contains ∪n

j=1Ωj ,

see [35, Rem. 3.1.3]. We deduce that Rκ0
− Rı : Ĥ(Γ) → Ĥ(Γ) is a compact operator.

As a consequence, to show (33), it suffices to prove that there exists a compact operator
K4 : Ĥ(Γ) → Ĥ(Γ) such that

8e
{
B̂
(
(Rı +K4)U, Ξ(U)

) }
≥ 0 ∀U ∈ Ĥ(Γ) . (35)

Let us take a closer look at the expression of B̂(RıU, Ξ(U) ), taking into account the definition
of Ξ. We have

8e
{
B̂( RıU, Ξ(U) )

}
= 8e

{
B̂( RıU

N, UN )− B̂( RıU
Z, UZ )

}
+

8e
{
B̂( RıU

Z, UN )− B̂( RıU
N, UZ )

}
.

= 8e
{
B̂( RıU

N, UN )− B̂( RıU
Z, UZ )

}
,

because Rı commutes with complex conjugation (since the kernels of its integral operators are
real) and enjoys symmetry with respect to the pairing B̂(·, ·), which can be proved in exactly
the same way as (29).

To deal with remaining terms, let us inspect in detail the expression of B(RıV, V ) for
any V ∈ Ĥ(Γ). If V = (vj ,qj)&j=1...n then we have

B(RıV, V ) =
n∑

i=1

n∑

j=1

〈γi
d · SLj

ı(qj),qi 〉×,∂Ωi + 〈γi
d · SLj

ı(vj),vi 〉×,∂Ωi

+
n∑

j=1

〈 {γj
d} ·DLj

ı(vj),vj 〉×,∂Ωj + 〈 {γj
d} ·DLj

ı(qj),qj 〉×,∂Ωj

+
n∑

i=1

n∑

j=1
j )=i

〈γi
d ·DLj

ı(vj),vi 〉×,∂Ωj + 〈γi
d ·DLj

ı(qj),qi 〉×,∂Ωj .

(36)
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We already know from [13, Proposition 3.13] or [12, Lemma 12] that the second line in (36) is
a compact contribution. We are going to show that the third line is a compact contribution
as well when either V ∈ Z(Γ) or V ∈ N(Γ).

9.4 Compactness result

In the sequel, γjd : H1
loc(Ωj) → H1/2(Ωj) will refer to the “pointwise” interior Dirichlet trace

operator at the boundary of the subdomain Ωj i.e. γjd(u) = (u|Ωj )|∂Ωj for any u ∈ H1
loc(Ωj).

Moreover 〈·, ·〉∂Ωj will refer to the duality pairing between H1/2(∂Ωj) and H−1/2(∂Ωj).

Proposition 9.1.

For any i, j = 1 . . . n such that i 0= j, the bilinear form (u,v) ,→ 〈γi
n ·Ψj

ı(u),v〉×,∂Ωi , with Ψj
ı

defined in (11), is compact when restricted either to Z(∂Ωj)× Z(∂Ωi) or N(∂Ωj)×N(∂Ωi).

Proof:

Both statements can be obtained by a straightforward adaptation of the proof of Propo-
sition 3.13 in [13]. We illustrate this by providing the proof of the first statement. The proof
of the second statement is obtained by the same adaptation process.

Choose an arbitrary (u,v) ∈ Z(∂Ωj)× Z(∂Ωi). Recall that ∆Ψj
ı(u) = Ψj

ı(u) in R3 \ Ωj ,
so that curl(curlΨj

ı(u)) = ∇(divΨj
ı(u))−Ψj

ı(u). Applying Green’s Formula (3), we obtain

〈γi
n ·Ψj

ı(u),v〉×,∂Ωi = −
ˆ

Ωi

Ψj
ı(u) ·Φi(v)− curlΨj

ı(u) · curlΦi(v) dx

−
ˆ

Ωi

divΨj
ı(u) · divΦi(v) dx

+

ˆ

∂Ωi

γidΨ
j
ı(div∂Ωju) ni ·Φi(v) dσ ,

∣∣〈γi
n ·Ψj

ı(u),v〉×,∂Ωi

∣∣ ≤ ‖Φi(v)‖
H1(Ωi)

[
‖Ψj

ı(u)‖H1(Ωi)
+ ‖γidΨj

ı(div∂Ωju)‖L2(∂Ωi)

]

≤ C ‖v‖
H−1/2(div,∂Ωi)

[
‖u‖

H
−1/2
× (∂Ωj)

+ ‖γidΨj
ı(div∂Ωju)‖L2(∂Ωi)

]
.

It is well known that γidΨ
j
ı continuously maps H−1/2(∂Ωj) into H+1/2(∂Ωi), and since the

embedding H1/2(∂Ωi) ↪→ L2(∂Ωi) is compact, the operator γid · Ψj
ı · div∂Ωj compactly maps

H−1/2(div, ∂Ωj) into L2(∂Ωi). Besides, recall that Z(∂Ωj) is compactly embedded inH
−1/2
× (∂Ωj).

This leads to the conclusion. !

Denote by S : Ĥ(Γ)2 → C the bilinear form in the first line of (36). According to Proposition
9.1 there exists a compact operator K6 : Ĥ(Γ) → Ĥ(Γ) such that ∀U = UZ +UN ∈ Ĥ(Γ) we
have

8e
{
B̂
(
(Rı +K6)U, Ξ(U)

) }
= 8e

{
S(UN,UN)− S(UZ,UZ)

}

where

S(V,V) :=
n∑

i=1

n∑

j=1

〈γi
d · SLj

ı(qj),qi 〉×,∂Ωi + 〈γi
d · SLj

ı(vj),vi 〉×,∂Ωi .

(37)
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9.5 Generalized G̊arding inequality for the single layer potential

Identity (37) clearly shows that it is sufficient to prove positivity properties of the bilinear
form S( , ) in order to prove (33). Since SLj

ı involves the potential operators Ψj
ı ,Ψ

j
ı , we

derive positivity result form bilinear forms induced by these potentials.

Proposition 9.2.

8e
{ n∑

i=1

n∑

j=1

〈 γid ·Ψj
ı(qj), qi 〉∂Ωi

}
≥ 0 ∀(qj) ∈

n
Π
j=1

H− 1

2 (∂Ωj),

8e
{ n∑

i=1

n∑

j=1

〈γi
d ·Ψj

ı(pj),pi 〉×,∂Ωi

}
≥ 0 ∀(pj) ∈

n
Π
j=1

N(∂Ωj).

Proof:

We only prove the second identity, since the first one can be proved in a completely
similar manner. Consider some (pj) ∈ Πn

j=1N(∂Ωj), and observe that Ψj
ı(pj) = SLj

ı(pj)

since div∂Ωj (pj) = 0. Using [γi
n] · SLi

ı(pi) = pi according to (12), each term in the left hand
side of the desired inequality can be rewritten in the following manner

〈γi
d ·Ψj

ı(pj),pi 〉×,∂Ωi = 〈γi
d · SLj

ı(pj), [γ
i
n] · SLi

ı(pi) 〉×,∂Ωi . (38)

Applying Green’s Formula (3) both in Ωi and R3 \ Ωi, and taking account that SLj
ı(pj) ∈

H(curl,R3) so that γi
d · SLj

ı(pj) = γi
d,c · SLj

ı(pj) ∀i, j = 1 . . . n, and curl2(SLi
ı(pi)) +

SLi
ı(pi) = 0 in Ωi ∪ (R3 \ Ωi) for all i = 1 . . . n, we have

〈γi
d ·Ψj

ı(pj),pi 〉×,∂Ωi =

ˆ

R3

curl(SLj
ı(pj)) · curl(SLi

ı(pi))+ SLj
ı(pj) · SLi

ı(pi) dx.

Summing over i, j = 1 . . . n, we obtain

n∑

i=1

n∑

j=1

〈γi
d ·Ψj

ı(pj),pi 〉×,∂Ωi =
∥∥∥

n∑

j=1

SLj
ı(pj)

∥∥∥
2

H(curl,R3)
≥ 0 .

This yields the assertion. !

From the proposition above, we can deduce positivity properties of the bilinear form S( , )
up to some compact perturbation.

Corollary 9.1.

There exists a compact operator K7 : Ĥ(Γ) → Ĥ(Γ) such that

8e{ S(V,V) } ≥ 0, ∀V ∈ N(Γ).

8e{ −S(V,V) + B̂(K7V,V) } ≥ 0, ∀V ∈ Z(Γ).

Proof:
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Assume first that V = (vj ,qj)&j=1...n ∈ N(Γ). Then we have SLj
ı(vj) = Ψj

ı(vj) and

SLj
ı(qj) = Ψj

ı(qj). Hence in this case, the proof is a straightforward application of Proposi-
tion 9.2, since

8e{S(V,V)} = 8e
{ n∑

i=1

n∑

j=1

〈γi
d ·Ψj

ı(vj),vi〉×,∂Ωi + 〈γi
d ·Ψj

ı(vj),vi〉×,∂Ωi

}
.

Now let us consider V = (vj ,qj)&j=1...n ∈ Z(Γ) so as to prove the second inequality. Applying
an integration by parts formula for surfaces on each boundary ∂Ωi, we have the expression

−S(V,V) =
n∑

i=1

n∑

j=1

〈 γid ·Ψj
ı

(
div∂Ωjvj

)
, div∂Ωivi 〉×,∂Ωi

+
n∑

i=1

n∑

j=1

〈 γid ·Ψj
ı

(
div∂Ωjqj

)
, div∂Ωiqi 〉×,∂Ωi

−
n∑

i=1

n∑

j=1

〈γi
d ·Ψj

ı(vj),vi 〉×,∂Ωi + 〈γi
d ·Ψj

ı(qj),qi 〉×,∂Ωi .

(39)

Since the operator γi
d ·Ψj

ı : H−1/2
× (∂Ωj) → H

+1/2
× (∂Ωi) is continuous for any i, j = 1 . . . n,

and since Z(∂Ωj) is compactly embedded in H
−1/2
× (∂Ωj), we conclude that the third line in

(39) only contains compact contributions. As a consequence, the first inequality provided by
Proposition 9.2 leads to the conclusion of the proof. !

We now have all the necessary ingredients to establish a generalized Garding inequality for
the operator Âκ,µ. Indeed in § 9.2, 9.3 and 9.4, we saw that such an inequality holds if there

exists a compact operator K : Ĥ(Γ) → Ĥ(Γ) such that

8e{ B̂
(
KU,Ξ(U)

)
+ S(UN,UN)− S(UZ,UZ) } ≥ 0 ∀U = UN +UZ ∈ Ĥ(Γ) .

Corollary 9.1 shows that such an estimate indeed holds for some compact operator K. This
proves the folllowing main result of this section.

Theorem 9.2 (Coercivity of multi-trace operator).
There exists a compact operator K : Ĥ(Γ) → Ĥ(Γ) such that the following generalized G̊arding
inequality holds

8e
{
B̂( (Âκ,µ +K)U,Ξ(U) )

}
≥ 0 ∀U ∈ Ĥ(Γ) .

From this theorem we conclude in particular that Âκ,µ : Ĥ(Γ) → Ĥ(Γ) is a Fredholm operator
with index zero. It actually is an isomorphism.

Corollary 9.2.

The operator Âκ,µ : Ĥ(Γ) → Ĥ(Γ) is an isomorphism.

Proof:

According to Fredholm alternative, we only need to prove that Âκ,µ is one-to-one. Set

F̂ = 0. Then the problem

Find U ∈ Ĥ(Γ) such that B̂(Âκ,µU,V) = B̂(F̂,V) , ∀V ∈ Ĥ(Γ)

actually fits the assumptions of Theorem 8.1. As a consequence, it admits a unique solution
that is U = 0. Hence Âκ,µ is one-to-one. !
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10 Galerkin boundary element discretization

We briefly address the Galerkin discretization of Formulation (28). Proof of optimal rate
of convergence under reasonable discretization process relies on known results. Indeed, in
Section 9 we have just proved that Formulation (28) fits the framework of [6], as it satisfies
Assumption 1 of this article. As a consequence, we can state the following result as a direct
application of [6, Theorem 3.7].

Proposition 10.1.

Let (Ĥh)0<h<1 with Ĥh ⊂ Ĥ(Γ) be any family of finite dimensional subspace that satisfies two
assumptions

• (CAS) property: The family (Ĥh) has the complete approximation property:

lim
h→0

inf
Uh∈Ĥh

‖U−Uh‖ = 0 ∀U ∈ Ĥ(Γ) ,

• (GAP) property: The family (Ĥh) admits a decomposition that satisfies the gap prop-
erty: there exists subspaces Zh ⊂ Ĥh and Nh ⊂ Ĥh such that

sup
Uh∈Zh

inf
U∈Z(Γ)

‖U−Uh‖
‖Uh‖

+ sup
Uh∈Nh

inf
U∈N(Γ)

‖U−Uh‖
‖Uh‖

−→
h→0

0 .

Under the above assumptions, there exists c0, h0 > 0 such that, the following uniform discrete
inf − sup condition is satisfied

inf
Uh∈Ĥh

sup
Vh∈Ĥh

8e{ B̂(Âκ,µUh,Vh) }
‖Uh‖ ‖Vh‖

> c0 ∀h ∈ (0, h0) .

Recall that B̂(Âκ,µU,V) = B̂(Âκ,µV,U) ∀U,V ∈ Ĥ(Γ) according to Proposition 8.1. As a
consequence, see [35, Theorem 4.2.1], if the discretization process obeys the assumptions of
Proposition 10.1, the corresponding Galerkin approximation is quasi-optimally convergent.

Proposition 10.2.

Consider any F ∈ Ĥ(Γ). Consider a family of finite dimensional subspaces (Ĥh)0<h<1 with
Ĥh ⊂ Ĥ(Γ), that satisfy the (CAS) and (GAP) assumptions of Proposition 10.1. Consider
the problem

Find Uh ∈ Ĥh such that

B̂(Âκ,µUh,Vh) = B̂(F,Vh) ∀Vh ∈ Ĥh.
(40)

Then there exists h0 > 0 such that Problem (40) admits a unique solution for all h ∈ (0, h0).
Moreover if U refers to the unique solution to Problem (28), then there exists C > 0 inde-
pendent of h such that

‖U−Uh‖ ≤ C inf
Vh∈Ĥh

‖U−Vh‖ ∀h ∈ (0, h0) .
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We point out that, to obtain a discrete variational space Ĥh fulfilling the assumtptions of
Proposition 10.1, it suffices to define it as a cartesian product Ĥh = Hh(∂Ω1)×· · · ×Hh(∂Ωn),
where each Ĥh(∂Ωj) satisfies (CAS) and (GAP) relatively toH(∂Ωj) = (Z(∂Ωj))2⊕(N(∂Ωj))2.

For example, one may take Ĥh(∂Ωj) as Raviart-Thomas or Brezzi-Douglas-Marini finite
elements constructed on a regular family of triangulation of ∂Ωj . According to [13, Section
4], such discretizations satisfy the (CAS) and (GAP) properties local to ∂Ωj .

Finally let us underline one comfortable aspect of Formulation (40) as regards implemen-
tation: it does not require any particular treatment of triple junctions (i.e. points of Γ where
three or more subdomains abut). Moreover this formulation permits us to choose the trial
and test spaces on different boundaries of subdomains completely independently.

11 Calderón preconditioning

Eventually, the possibility for Calderón preconditioning provides the chief rationale for our
investigating the new multi-trace formulation (28). It seems that this possibility is elusive for
the single-trace formulation (16), unless all bounded subdomain are separated, see [21, 41].

However, this is a crucial observation, if Calderón identities for the single-trace formulation
are available for separated subdomains, we may again resort to the gap idea presented in
Section 5 to transfer them to our new multi-trace formulation. Again, to explain this, we zero
in on the model setting with two bounded subdomains (n = 2) and assume µ0 = µ1 = µ2, see
Figure 2 in Section 5.

For the Calderón projector associated with Ω0 the standard Calderón identity (12 Id +
C0
κ0
)2 = 1

2 Id + C0
κ0

when expressed in terms of traces on the subdomain boundaries ∂Ω1 and
∂Ω2 as in (19), immediately yields

R1,2
κ0

R2,1
κ0

= R2,1
κ0

R1,2
κ0

= 0 , R2,1
κ0

C1
κ0

+C2
κ0
R2,1

κ0
= 0 , R1,2

κ0
C2
κ0

+C1
κ0
R1,2

κ0
= 0 . (41)

Using these identities along with ( 2C1
κ )

2 = Id and ( 2C2
κ )

2 = Id for any κ ∈ R+ \{0}, we find
for the multi-trace boundary integral operator from (21)

(
C1
κ +C1

κ R1,2
κ

R2,1
κ C2

κ +C2
κ

)2

= Id on Ĥ(Γ) , (42)

for any κ ∈ C. Recalling from Section 9.3 that a change of the wave number amounts to
a compact perturbation (recall that we assume µ0 = µ1 = µ2 here), we see that there is a
compact operator K : Ĥ → Ĥ such that

(
2C1

κ R1,2
κ

R2,1
κ 2C2

κ

)(
C1
κ1

+C1
κ0

R1,2
κ0

R2,1
κ0

C2
κ1

+C2
κ0

)
= Id + K . (43)

In words, the first left boundary integral operator in (43) is a preconditioning operator for
the multi-trace boundary integral operator that has the effect of making the spectrum of the
product operator cluster around 1.

From these considerations it should become clear how the Calderón identity for the gen-
eral multi-trace operator (26) will read. We state it in the following result. The proof, that
we do not provide, is exactly the same as for Theorem 11.1 in [19].
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Theorem 11.1 (Calderón identity for multi-trace boundary integral operator).

If κ0 = κ1 = · · · = κn and µ0 = µ1 = · · · = µn with κ0, µ0 ∈ (0,+∞), then
(
Âκ,µ

)2
= Id.

This paves the way of applying the powerful technique of operator preconditioning [24] to the
discrete multi-trace formulation (40). What is needed is another family of finite dimensional
subspaces (H̃h)0<h<1 that

• gives rise to an h-uniformly stable discretization of (40) by meeting the requirements
stated in Section 10,

• supports a stable discrete duality pairing in the sense that, for some h0 > 0,

inf
Uh∈Ĥh

sup
Vh∈H̃h

8e{ B̂(Âκ,µUh,Vh) }
‖Uh‖ ‖Vh‖

> cd ∀h ∈ (0, h0) . (44)

This condition entails dim Ĥ = dim H̃.

Then [24, Thm. 2.1] tells us that the spectral condition number of the product matrix
D−1

h BhD
−&
h Ah is bounded independently of h, which renders D−1

h BhD
−&
h an asymptot-

ically optimal preconditioner. Here,

• Ah is the Ĥh-Galerkin matrix for the multi-trace variational problem (28),

• Bh is the Galerkin matrix for the multi-trace operator with globally constant coefficients
κ, µ and with respect to the trial and test spaces H̃h,

• Dh is the Galerkin matrix for the pairing B̂ : Ĥ(Γ)× Ĥ(Γ) → C discretized on Ĥh× H̃h.

As discovered by Buffa and Christiansen [7], when Raviart-Thomas boundary elements are
used to build Ĥh, the same type of elements on a dual mesh can provide suitable spaces H̃h.
For details we refer to [7, 1].
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land, 2010. Accepted by Adv. Appl. Math.

[26] R. Hiptmair and C. Schwab. Natural boundary element methods for the electric field
integral equation on polyhedra. SIAM J. Numer. Anal., 40(1):66–86, 2002.

[27] G. C. Hsiao, O. Steinbach, and W. L. Wendland. Domain decomposition methods via
boundary integral equations. J. Comput. Appl. Math., 125(1-2):521–537, 2000. Numerical
analysis 2000, Vol. VI, Ordinary differential equations and integral equations.
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