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Finite Elements of Arbitrary Order
and Quasiinterpolation

for Data in Riemannian Manifolds ∗

P. Grohs

September 5, 2011

Abstract

We consider quasiinterpolation operators for functions assuming their values in a Riemannian
manifold. We construct such operators from corresponding linear quasiinterpolation operators by
replacing affine averages with the Riemannian center of mass. As a main result we show that the
approximation rate of such a nonlinear operator is the same as for the linear operator it has been
derived from. In order to formulate this result in an intrinsic way we use the Sasaki metric to compare
the derivatives of the function to be approximated with the derivatives of the nonlinear approximant.
Numerical experiments confirm our theoretical findings.

AMS Subject Classification: primary 41A25, 65DXX secondary 53BXX

1 Introduction

A fundamental problem in computational science is the handling of massive amounts of data. In addition
to the sheer mass of data to be processed, in recent times many modern sensing mechanisms produce data
which is of nonstandard type, with data points assuming their value in nonlinear geometries. Examples
include

• Deformation Tensors, where the data points consist of elements of the Cartan-Hadamard space of
positive definite symmetric matrices. The data is modeled as a function R3 → SPD(3). Such data
arises for instance in Diffusion Tensor MRI in medical imaging [6] or strain and stress measurement
in materials science.

• Positions of rigid bodies, where the data points consist of elements of the Lie group of rigid body
motions. The data is modeled as a function R → SE(3). Data of this type arises for instance in
kinematics or motion design [30], or Cosserat rod modeling [24].

• Orientations, where the data points consist of elements of the Lie group of orthogonal matrices.
The data is modeled as a function R → SO(3). Orientation-valued data arrays arise for instance as
’black box’ recordings of the orientation of aircrafts, varying with time [23].

• Subspaces, where the data points consist of elements of a Grassmanian manifold. The data is
modeled as a function R → G(k, n). These data types can arise for instance in array signal
processing [23].

• Orthogonal matrices with positive determinants also occur in isospectral-flow problems [17].

• Functions with values in direct products of the Lie groups O(3), SO(3) have been used in the
modeling of human motion data [18].

∗This research was supported by the European Research Council under grant ERC AdG 247277. The results of this
paper have been presented at the Geometry Workshop in Obergurgl on June 22 2011.
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This (incomplete) list suggests that it is of eminent interest to develop useful computational and theo-
retical tools capable of processing manifold-valued functions.

In linear problems, data is usually approximated by finite element spaces [1], both when the function to
be approximated is given explicitly as well as implicitly as a solution of an optimization problem. Among
the key properties which determine the usefulness of such a construction is a high rate of approximation
of the finite element spaces.

It is the aim of the present paper to define nonlinear finite element manifolds which naturally generalize
the linear theory and to prove that the associated approximation properties are exactly of the same order
as for corresponding linear constructions. We do this by constructing explicitly a simple (nonlinear)
projection operator onto these finite element manifolds which is shown to behave optimally.

More specifically, the objective of the present paper is to present a complete extension of the theory
of quasiinterpolation, [3, 5], to the nonlinear case. We will start with a linear quasiinterpolation scheme
and, by replacing affine averages with the Riemannian center of mass [20], wind up with an intrinsic
approximation procedure for manifold-valued functions. Our main result is that the linear properties
completely carry over to the nonlinear case.

Even stating such a result is nontrivial since it is at first glance not clear how to compare between a
differential of a function with the differential of an approximant which both assume their values in the
(iterated) tangent bundle of the manifold. We solve this problem by utilizing the so-called Sasaki metric
[26] which is a canonical Riemannian structure defined on the tangent bundle of a Riemannian manifold.
Using this formulation we are able to give a complete and intrinsic extension of the linear theory, see
Theorem 3.8 below.

To give a flavor of our main result consider a linear quasiinterpolation operator

f #→ Q̄hf(·) :=
∑

j∈Z
f(hj)Φ(h−1 ·−j),

where Φ might be for instance an affine combination of the integer translates of the fundamental cardinal
cubic B-spline function as in Example 2.5 below (of course higher orders than cubic and different functions
are possible).

The well-known linear theory establishes results regarding the decay of the approximation error
∥∥∥∥∥

(
d

dx

)l

(f − Q̄hf)

∥∥∥∥∥
∞

with the stepwidth h tending to zero. This approximation error in h is related to a few simple properties
of Φ such as smoothness or polynomial exactness, see Section 2.1. The quasiinterpolation operator can
thus be used as a projection onto the finite element space spanned by cubic B-splines with meshwidth h
and to study the asymptotic approximation properties of these spaces.

Our main idea is to regard the expression for Q̄hf as a weighted average of the samples f(hj). By
replacing affine averages with the Riemannian center of mass [20] we arrive at a definition of an associated
quasiinterpolation operator Qhf for functions f with values in a differentiable manifold M , see Section
2.2.

In order to study the approximation errors of Qh we need to be able to compare derivatives dlf with
dlQhf , both taking their values in the iterated tangent bundle T lM of M . This is achieved by using the
so-called Sasaki metric on T lM which is described in Section 3.2. With the geodesic distance sl induced
by the Sasaki metric our main result is that the approximation error

sl
(
dlf, dlQhf

)

behaves in the exact same way as the corresponding linear error, see Theorem 3.8 for a more precise
statement.

As an application we construct nonlinear (finite element) approximation manifolds (see Definition 2.7
below) with a prescribed number of degrees of freedom and determine their approximation properties,
see Theorem 3.9 below.

Besides approximating an explicitly given function, a main motivation for our construction is the
potential use of these approximation manifolds to solve manifold-valued optimization problems in a finite

2



element like fashion, compare [24, 25]. Theorem 3.9 opens up the door for a theoretical analysis of such
algorithms.

We would like to note that our construction can easily be adapted to the multivariate case and also
over simplicial grids (compare [25]). The study of the associated approximation properties will be the
subject of forthcoming work.

1.1 Previous Work

There exists by now a substantial body of previous work related to nonlinear data types of which we
only mention some examples. In the paper [23] a manifold-valued wavelet transform has been derived, its
theoretical properties are investigated in [14, 13, 15]. The idea to use nonlinear subdivision schemes for the
approximation of manifold-valued data has been investigated in [30, 12, 31, 34, 32, 28, 11, 33]. Among
these we would like to single out [33] where a different construction of quasiinterpolants is presented
and analyzed numerically. The already mentioned papers [24, 25] present a construction of first order
geodesic finite element spaces much in the spirit of our (higher order) construction. Related to these
constructions, various optimization problems are studied. In [18] a Riemannian framework is introduced
for the modeling of human biomechanics. The paper [6] analyzes computational methods in tensor image
processing based on geometric constructions. In [16] variational splines on manifolds are introduced. The
paper [21] is concerned with the study of Riemannian cubics. Finally, we would like to mention [17],
where Runge-Kutta methods are extended to to the case of Lie-valued (and more general) ODEs.

1.2 Outline

The outline is as follows. In Section 2 we will lay out the necessary background from linear approximation
theory and also describe the nonlinear setup we will work with. After that, in Section 3 we will first
show that it suffices to study our approximation problems in a chart, and then we will discuss the Sasaki
metric which will allow us to formulate our results in an intrinsic fashion. Section 4 contains the proof
of our main result and forms the main technical part of this paper. Finally, in Section 5 we present
some numerical computations which confirm our theory. We also include an appendix containing some
auxiliary results which will be needed in the course of the proof.

1.3 Notation

For a function f : R → Rd we use the usual terminology ‖f‖∞ := supx |f(x)| with | · | the maximum
norm on Rd. The space of continuous functions with values in a manifold M is denoted by C0(R,M). If
M is a Euclidean space we simply write C0. Furthermore, we use the symbol l∞ for the Banach space
of bounded, real valued sequences on Z. We use boldface notation for multiindices j ∈ Zk and denote
|j|1 := j1 + · · ·+ jk. Distance metrics on Riemannian manifolds are usually expressed by fraktur letters,
for instance d. The space of polynomials of degree ≤ m on R shall be denoted by Πm. For a set A,
the symbol χA denotes its indicator function. The expression (α) denotes the largest integer which is
smaller or equal α ∈ R. We use the usual notation A = O(B) or A ! B to indicate that the quantity A
is bounded by a constant times B.

2 Preliminaries

2.1 Linear Theory

We start by reviewing some well-known facts from linear quasiinterpolation theory. For more information
we refer to [3, 5, 7]. In the following definition we introduce the smoothness spaces Cα which we will
work with.

Definition 2.1. For a function f : R → Rd we define ∆l
hf , the l-th order forward difference with

stepwidth h > 0 inductively by

∆0
hf := f, and ∆l

hf(x) := ∆l−1
h (x+ h)−∆l−1

h (x).

3



We say that f ∈ Cα, α > 0 if we have
∥∥∥∥∥∆h

(
d

dx

)$α%
f

∥∥∥∥∥
∞

= O
(
hα−$α%

)
.

Linear finite element spaces on a regular partition of an interval are usually constructed from a function
Φ : R → R satisfying the following requirements:

∑

j∈Z
Φ(·− j) = 1 [resolution of identity] (1)

∃N ∈ R : supp Φ ⊂ [−N,N ] [locality] (2)
∑

j∈Z
p(i)Φ(·− j) = p(·), ∀p ∈ Πm−1 [polynomial exactness] (3)

Φ ∈ Cs [smoothness] (4)

Given such a function, we can define the linear finite element spaces

Vh(Φ) :=





∑

j∈Z
a(j)Φ

(
h−1 ·−j

)
: (a(j))j∈Z ∈ l∞




 .

In many applications it is necessary to approximate a given function f by the finite element spaces
Vh(Φ). This can be done either implicitly, when f is given as a solution of an operator equation, or
explicitly, when f is explicitly given. One of the very fundamental results in approximation theory is
that the approximation rate of the finite element spaces for a given function f is exactly governed by the
smoothness of f :

Theorem 2.2 (Jackson Theorem). Assume that f ∈ Cα with α < m. Then for l < α and l < s we have

inf
g∈Vh(Φ)

∥∥∥∥∥

(
d

dx

)l

(f − g)

∥∥∥∥∥
∞

= O(hα−l). (5)

In fact, more can be said: under the assumptions (1 – 4), a quasioptimal approximant g ∈ Vh(Φ) can
be constructed explicitly.

Definition 2.3. For Φ satisfying (1 – 4) we define the linear quasiinterpolation operator Q̄h : C0 →
Vh(Φ) defined via

f(·) #→ Q̄hf(·) :=
∑

j∈Z
f(hj)Φ(h−1 ·−j) ∈ Vh(Φ). (6)

Now we can state the following stronger form of Theorem 2.2.

Theorem 2.4. Assume that f ∈ Cα with α < m. Then for l < α and l < s we have
∥∥∥∥∥

(
d

dx

)l (
f − Q̄hf

)
∥∥∥∥∥
∞

= O(hα−l). (7)

Example 2.5 (Cubic B-spline quasiinterpolation). A classical example of a quasiinterpolation operator
can be constructed from the cardinal cubic B-spline function B3(·), [3]. Even though the choice Φ = B3

would only lead to the low degree polynomial reproduction of 1, it is possible to preprocess the sampling
data of f and arrive at a fourth order quasiinterpolation scheme

Q̄hf(·) :=
∑

j∈Z
B3(h

−1 ·−j)

(
−1

6
f(h(j − 1)) +

4

3
f(hj)− 1

6
f(h(j + 1))

)
,

which falls into our definition by putting

Φ(·) = −1

6
B3(·− 1) +

4

3
B3(·)−

1

6
B3(·+ 1)

which can be shown to satisfy (3) with m = 4 [3]. The linear approximation spaces are given by piecewise
cubic polynomials, C2 at the knots.
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Clearly, Theorem 2.4 implies Theorem 2.2, for a proof of Theorem 2.4 we refer to [3]. We would like
to close this section by noting that the backbone of any approximation method or finite element solver
is given by the validity of a Jackson theorem [1].

2.2 Nonlinear Approximation

Having presented a brief introduction the the construction of regular finite element spaces for functions
f : R → Rd, we would now like to ask whether such a construction can be meaningfully extended to the
case of manifold-valued functions f : R → M , M being a d-dimensional differentiable manifold. More
specifically, our goal is to construct a quasiinterpolation operator operating on M -valued functions such
that an equivalent to Theorem 2.4 holds. The approach we will take is to regard the sum

∑

j∈Z
f(hj)Φ(h−1 ·−j)

in (6) as a weighted average of the points (f(hj))j∈Z with weights given by
(
Φ(h−1 ·−j)

)
j∈Z. By (1)

this is justified. The key insight is that weighted averages also exist in Riemannian manifolds, i.e. a pair
(M, g) with M a differentiable manifold and g a metric tensor field on M , see [8] for more information
on Riemannian geometry.

Definition 2.6. Assume that (M, g) is a Riemannian manifold with induced metric d. For points
(p(j))j∈J and weights (w(j))j∈J the Riemannian center of mass

x∗ = avM ((p(j))j∈J , (w(j))j∈J)

is defined as

x∗ = argminx∈M

∑

j∈J

w(j)d(p(j), x)2.

It can be shown that locally the Riemannian center of mass exists and is unique. Furthermore, locally,
it is characterized by the first order equilibrium condition

∑

j∈J

w(j) logM (x∗, p(j)) = 0, (8)

see e.g. [20]. Here, logM denotes the logarithm mapping of M , e.g., the local inverse of the exponential
function expM of M , [8].

The natural idea is now to replace the affine weighted average in (6) with the Riemannian average in
M . This leads to the following definition.

Definition 2.7. We define the nonlinear finite element manifolds

V M
h (Φ) :=

{
avM

(
(a(j))j∈Z, (Φ(h

−1 ·−j))j∈Z
)
: whenever the average is well-defined

}
.

It is our interest to study the approximation properties of these nonlinear finite element manifolds,
that is instead of approximating with linear spaces we are approximating with nonlinear manifolds with
the same number of degrees of freedom. We will do this by considering explicit projection operators onto
these manifolds in terms of nonlinear quasiinterpolation as defined below.

Definition 2.8. Define the nonlinear quasiinterpolation operator

Qh : C0(R,M) → C0(R,M)

by
Qhf(·) := avM

(
(f(hj))j∈Z, (Φ(h

−1 ·−j)j∈Z
)
. (9)

Remark 2.9. Note that for h sufficiently small and f ∈ Cα for any α > 0 the expression Qhf is always
defined. This is due to the locality of Φ and the fact that all sampling points used in the computation of
Qhf(x) lie in a set of arbitrarily small diameter. Therefore, by local well-definedness of the Riemannian
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center of mass, the average leading to Qhf(x) exists. For this reason we will ignore the issue of well-
definedness in the sequel and tacitly assume that the sampling width h is sufficiently small.

We would also like to remark that for several examples of practical interest, the manifold M possesses
particular structural properties which make the Riemannian averages defined for any initial data. One
such example is the manifold SPD(n) of symmetric positive definite n×n matrices arising e.g. in Diffusion
Tensor MRI in medical imaging [22].

Remark 2.10. Karcher [20] constructs a similar, continuous mollifying procedure for approximating
manifold-valued functions (which may also have a general manifold as domain of definition). In [20,
Page 521] he writes

The approximation of higher derivatives of f , if they exist, by the corresponding derivatives
of [the approximant] is not clear to me. [...]

For the case of functions defined on R and the semidiscrete mollifying operation defined by the Qh operator
we are able to settle this question. We believe that our approach could be suitable for clarifying this
question also in the general case.

The idea to replace affine averages by the Riemannian center of mass is not new. In [12, 29] it has
been applied to study smoothness and approximation properties of manifold-valued subdivision schemes.
The very recent and interesting work [24, 25] constructs first order finite element spaces essentially in the
same way as we do. These spaces are then used to solve manifold-valued optimization problems arising
e.g. in Cosserat rod modeling in a very natural fashion. We expect our present results to be relevant in
this direction. Finally we would like to mention [22] where Riemannian methods are used for the filtering,
denoising and statistical analysis of Diffusion Tensor MRI data.
The central question to ask is whether the approximation properties which are known in the linear case
(e.g., Theorem 2.4) also hold for the nonlinear quasiinterpolation operators. Answering this question
affirmatively will be the main theme of the present paper.
In order to pose the question of approximability of the derivatives of f correctly, it is necessary to give
a canonical notion of difference between elements of the tangent bundles T lM . In Section 3 below we
address this problem and present an appropriate construction, namely the so-called Sasaki metric [26].
Then, in Section 4 we show that indeed the linear approximation results also hold in the same form for
manifold-valued quasiinterpolation.

3 Localization and Natural Metrics

The present section discusses the effect of conducting our computations in a chart. After that we introduce
the concept of the Sasaki metric on tangent bundles of Riemannian manifolds. This allows us to state
our final result Theorem 3.8 in an intrinsic fasion.

3.1 Computations in Charts

We now consider a chart γ : M → Rd and its induced chart (γ, dγ) : TM → R2d. With respect to this
chart, using (8), we can write

γ ◦Qhf(x) = u



γ ◦Qhf(x),
∑

j∈Z
Φ(h−1x− j)v

(
γ ◦Qhf(x), γ ◦ f(hj)

)


 , (10)

with

u(x, y) := γ ◦ expM
(
γ−1(x), (dγ)−1

∣∣
x
y
)

and v(x, y) := dγ
∣∣
γ−1x

(
logM

(
γ−1x, γ−1y

))
, x, y ∈ Rd,

whenever defined.
Our main result is that in any chart γ we have the following approximation rate:
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Theorem 3.1. Assume that f ∈ Cα with α < m and α < s. Then for l < α and any chart γ we have
∥∥∥∥∥

(
d

dx

)l (
γ ◦ f − γ ◦Qhf

)
∥∥∥∥∥
∞

= O(hα−l). (11)

The proof follows in Section 4.
In particular, the previous theorem easily implies that for any Riemannian metric gl on T lM with

induced distance dl (meaning that dl measures the geodesic distance between two points, see [8]) we have
the following result

Theorem 3.2. Assume that f ∈ Cα with α < m and α < s. Then for l < α and any Riemannian metric
gl on the vector bundle T lM with induced distance metric dl, we have the estimate

sup
x

dl
(
dlf, dlQhf

)
= O(hα−l), (12)

where dlf : R → T lM denotes the total differential of order l [8]. The implicit constant is uniform for
data values in a compact set.

Proof. Any chart γ induces the chart dlγ : T lM → R2ld. With respect to this latter chart, by Theorem
3.1 we have ∥∥dlγ ◦

(
dlQhf(·)

)
− dlγ ◦

(
dlf(·)

)∥∥
∞ = O(hα−l).

Since the inverse (dlγ)−1 of the chart dlγ is smooth and in particular Lipschitz with respect to the metric
dl, we arrive at the estimate

sup
x

dl
(
dlf(x), dlQhf(x)

)
= sup

x
dl
(
(dlγ)−1 ◦ dlγ ◦

(
dlf(x)

)
, (dlγ)−1 ◦ dlγ ◦

(
dlQhf(x)

))

= O
(∥∥dlγ ◦

(
dlQhf(·)

)
− dlγ ◦

(
dlf(·)

)∥∥
∞
)
= O(hα−l)

which proves the assertion for data contained in the domain of definition for any single chart γ. If the data
values are contained in a compact set, finitely many charts cover this set and therefore the uniformity of
the implied constant follows.

3.2 Sasaki Metric

Theorem 3.2 above states that for any Riemannian metric defined on the tangent bundle T lM we can show
an approximation theorem as strong as for the linear case. It is a well-known fact that any differentiable
manifold admits a Riemannian metric [27]. However, it would be nice to be able to single out one specific
Riemannian metric on T lM within which we can measure the approximation error between dlf and its
approximation dlQhf . The present section describes such a canonical metric, the so-called Sasaki metric
which has been introduced in [26].

3.2.1 Construction

Before we can describe the Sasaki metric we need some preliminary facts from Riemannian geometry
of tangent bundles, see [35] for more information. Assume we are given a Riemannian manifold (M, g),
where g is a symmetric (0, 2)-tensor field on M . Consider its tangent bundle TM which carries a natural
manifold structure [8]. For p ∈ M we denote TpM the tangent space attached to p and likewise we denote
T(p,u)TM the tangent space attached to the tangent bundle of M at the tangent vector (p, u) ∈ TM . We
want to find a suitable metric tensor gT on the manifold TM , meaning that gT acts on pairs of tangent
vectors of TM . With π : TM → M denoting the bundle projection, we define the vertical subspace

V(p,u) := ker
(
dπ

∣∣
(p,u)

)

of T(p,u)TM at (p, u) ∈ TM . The terminology ’vertical’ stems from the fact that a vertical vector leaves
the basepoint p stationary and only moves along the fiber π−1{p} ⊂ TM . Without going into detail, we
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would like to mention that the vertical subspace V(p,u) can be complemented by the so-called horizontal
subspace

H(p,u) := ker
(
K(p,u)

)
,

where K(p,u) : T(p,u)TM → TpM is defined as (c(t), U(t)) ∈ TM, (c(0), U(0)) = (p, u) #→ ∇c′U(0), where
∇ denotes the Levi-Civita connection of (M, g) (H(p,u) consists of tangent vectors of parallel vector fields).
We have

T(p,u)TM = H(p,u) ⊕ V(p,u),

see also [8, 9].

Definition 3.3. Let X ∈ TpM . Then the horizontal lift of X at (p, u) ∈ TM is the unique vector
Xh ∈ H(p,u) such that dπ(p,u)(X

h) = X. The vertical lift Xv of X at (p, u) is the unique vector
Xv ∈ V(p,u) such that K(p,u)(X

v) = X.

Each Z ∈ T(p,u)TM can be uniquely expressed as Z = Xh + Y v for X,Y ∈ TpM . Based on this
decomposition we can now define natural metrics on TM [19].

Definition 3.4. A metric gT on TM is called natural if

gT (X
h, Y h) = g(X,Y ) and gT (X

h, Y v) = 0 for all vector fields X,Y on M.

Several different natural metrics for TM can be defined by specifying conditions on gT (Xv, Y v). For
instance, the so-called Cheeger-Gromoll metric is uniquely defined by setting

gCG
T (Xv, Y v)(p,u) =

1

1 + g(X,Y )2
(g(X,Y ) + g(X,u)g(Y, u)) ,

see [2]. We will focus on the simpler Sasaki metric.

Definition 3.5. The Sasaki metric is the unique natural metric on TM which satisfies

gST (X
v, Y v) = g(X,Y ) for all vector fields X,Y on M.

By iterating this construction, a Sasaki metric can be defined on the iterated tangent bundles T lM , l ∈ Z+.
The geodesic distance metric on T lM induced by the Riemannian Sasaki metric will be denoted by sl

– it gives a natural notion of (local) distance sl(x, y) between points x, y ∈ T lM .

For a list of various properties satisfied by the Sasaki metric we refer to the original paper [26].

3.2.2 Intrinsic Approximation Results

Now that we have singled out a canonical metric on the tangent bundles T lM we can define smoothness
properties for M -valued functions intrinsically as follows.

Definition 3.6. A M -valued function f : R → M is in Cα(R,M) if

s$α%
(
d$α%f(·+ h), d$α%f(·)

)
= O(hα−$α%)

with the implicit constant uniform in x for data values f(x) in a compact set.

Remark 3.7. It is easy to see that f ∈ Cα(R,M) if and only if γ ◦ f ∈ Cα for all charts γ.

We can finally state our main theorem.

Theorem 3.8. Assume that f ∈ Cα(R,M) with α < m and α < s. Then for l < α we have the estimate

sl
(
dlf, dlQhf

)
= O(hα−l). (13)

The implicit constant is uniform for data values f(x) in a compact set.

Proof. The proof is a direct consequence of Theorem 3.2.
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This theorem immediately implies the following approximation result for the approximation manifold
defined in Definition 2.7.

Theorem 3.9. Assume that f ∈ Cα(R,M) with α < m and α < s. Then for l < α we have the estimate

inf
g∈V M

h (Φ)
sl
(
dlf, dlg

)
= O(hα−l). (14)

The implicit constant is uniform for data values f(x) in a compact set.

4 Proof of Theorem 3.1

From now on we will simply writeQhf(·) in place of γ◦Qhf(·) with the understanding that we are actually
computing in a chart. The only property we shall use is the representation (10) and the smoothness of
the functions u, v.

In a chart the linear quasiinterpolation operator can be written as

Q̄hf(x) =
∑

j∈Z
Φ(h−1x− j)u

(
Qhf(x), v

(
Qhf(x), f(hj)

))
. (15)

The main idea is to compare the nonlinear approximation operator Qhf with its linear counterpart Q̄hf
and to use known properties of the linear operator to show the desired result. Estimating the error
between linear and nonlinear quasiinterpolation will make up the bulk of this section, culminating in the
proof of Theorem 3.1 in Section 4.2 below.

We now define an important asymptotic quantity which will be frequently used in the sequel.

Definition 4.1. For f : R → Rd, h > 0, l ∈ N, we define the quantity

Ωl,h(f) :=
∑

|r|1=l

∏

p

‖∆rp
h f‖∞. (16)

We collect some simple properties of the quantities Ωl,h(f).

Lemma 4.2. Assume that f ∈ Cα with α > l. Then

Ωl,h(f) = O(hl). (17)

Proof. Assume that f ∈ Cα. Then for any l′ < α we have

‖∆l′

hf‖∞ = O(hl′).

It follows that

Ωl,h(f) =
∑

|r|1=l

∏

p

‖∆rp
h f‖∞ = O




∑

|r|1=l

∏

p

hrp



 = O(hl).

Lemma 4.3. We have
Ωl1,h(f)Ωl2,h(f) = O (Ωl1+l2,h(f)) . (18)

Proof. The proof follows simply by noting that all terms occurring on the left hand side of (18) also occur
on the right hand side.
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4.1 Proximity Inequality

Our basic strategy will be to compare the linear representation with the nonlinear one in order to infer
properties for the nonlinear operator from properties of the linear one.

In the sequel we will make use of the following definition.

Definition 4.4. For an arbitrary vector-valued sequence p : Z → Rd we define the l-th forward difference
via

δlp(j) :=
l∑

i=0

(−1)l−i

(
l

i

)
p(j + i). (19)

In addition we shall use the following notation. For a vector v ∈ Rd we define the concatenation

[v]k := (v, . . . , v) ∈ Rkd.

Furthermore, for a function f(x) and a multiindex l ∈ Zk
+ we denote

∆l
h[f ]

k(x) :=
(
∆l1

h f(x1), . . . ,∆
lk
h f(xk)

)
, x ∈ Rk,

and similarly for a sequence p(j)

δl[p]k(j) :=
(
δl1p(j1), . . . , δ

lkp(jk)
)
, j ∈ Zk.

We will use Taylor expansion of the smooth function u in the second component, namely

u(y, z) =
M∑

k=0

1

k!
d(k)2 u

∣∣
(y,0)

(
[z]k

)
+R(M+1)(y, z)

(
[z]M+1

)
, (20)

with R(M+1) a (M + 1)-multilinear form, smoothly depending on y, z, and d(k)2 denoting the k-th total
derivative in the second coordinate. Therefore, Taylor expanding (10) up to order M we obtain

Qhf(x) =
M∑

k=0

1

k!
d(k)2 u

∣∣
(Qhf(x),0)








∑

j∈Z
Φ(h−1x− j)v

(
Qhf(x), f(hj)

)



k


+

R(M+1)



Qhf(x),
∑

j∈Z
Φ(h−1x− j)v

(
Qhf(x), f(hj)

)











∑

j∈Z
Φ(h−1x− j)v

(
Qhf(x), f(hj)

)



M+1



 .

(21)

Taylor expanding (15) up to order M we obtain

Q̄hf(x) =
M∑

k=0

∑

j∈Z
Φ(h−1x− j)

1

k!
d(k)2 u

∣∣
(Qhf(x),0)

([
v
(
Qhf(x), f(hj)

)]k)
+

∑

j∈Z
Φ(h−1x− j)R(M+1)

(
Qhf(x), v

(
Qhf(x), f(hj)

)) ([
v
(
Qhf(x), f(hj)

)]M+1
)
. (22)

Our first goal is to gather useful estimates for the differences

Fk := d(k)2 u
∣∣
(Qhf(x),0)








∑

j∈Z
Φ(h−1x− j)v

(
Qhf(x), f(hj)

)



k


−

∑

j∈Z
Φ(h−1x− j)d(k)2 u

∣∣
(Qhf(x),0)

([
v
(
Qhf(x), f(hj)

)]k)
, (23)

namely the following lemma. The proof is based on a combinatorial argument exploiting the polynomial
reproduction property (3) of Φ. Similar arguments have been used in previous work in different contexts
[10, 32, 4].
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Lemma 4.5. For l < s we have

|∆l
h′Fk| = O

(
Ωm,h(f)

l∑

i=0

(h−1h′)l−iΩi,h′
(
Qhf

)
)
. (24)

Proof. Define j̄ :=
⌊
h−1x−N

⌋
. Then every index j occurring in the summation formula for Fk satisfies

j ≥ j̄ and j − j̄ = O(1), due to the support properties of Φ. By the definition of the forward differences
we can represent each vector v

(
Qhf(x), f(hj)

)
by

v
(
Qhf(x), f(hj)

)
=

j−j̄∑

i=0

(
j − j̄

i

)
δiv

(
Qhf(x), f(hj̄)

)
. (25)

Inserting (25) into the definition of Fk we get Fk = F 1
k + F 2

k , where

F 1
k :=

∑

i1,...,ik∈Z+

∑

j1,...,jk∈Z

∏

r

Φ(h−1x− jr)

(
jr − j̄

ir

)

d(k)2 u
∣∣
(Qhf(x),0)

(
δi1v

(
Qhf(x), f(hj̄)

)
, . . . , δikv

(
Qhf(x), f(hj̄)

))
,

and

F 2
k :=

∑

i1,...,ik∈Z+

∑

j∈Z
Φ(h−1 ·−j)

∏

r

(
j − j̄

ir

)

d(k)2 u
∣∣
(Qhf(x),0)

(
δi1v

(
Qhf(x), f(hj̄)

)
, . . . , δikv

(
Qhf(x), f(hj̄)

))
.

Let us now fix (i1, . . . , ik) with i1 + · · · + ik < m. Then the functions pr := pr(jr) =
(jr−j̄

ir

)
, p(j) :=

∏k
r=1

(j−j̄
ir

)
are polynomials of total degree < m. Therefore, by polynomial reproduction of the function

Φ of order m− 1 we get

∑

j1,...,jk∈Z

∏

r

Φ(h−1x− jr)

(
jr − j̄

i1

)
=

∑

j∈Z
Φ(h−1x− j)

∏

r

(
j − j̄

ir

)
= p(h−1x),

and therefore we only need to consider terms with i1 + · · · + ik ≥ m in the summation formula for
Fk = F 1

k − F k
2 . In summary, Fk can be expressed as a finite linear combination of terms of the form

c(x)d(k)2 u
∣∣
(Qhf(x),0)

(
δi1v

(
Qhf(x), f(hj̄)

)
, . . . , δikv

(
Qhf(x), f(hj̄)

))
,

with
i1 + · · ·+ ik ≥ m

and

c(x) :=
k∏

r=1

Φ(h−1x− j1)pr(jr)− χj1=···=jk(j1, . . . , jk)Φ(h
−1x− j1)p(j1). (26)

We need to bound ∆l
h′Fk and by the above discussion it suffices to get a bound on

∆l
h′c(x)d

(k)
2 u

∣∣
(Qhf(x),0)

(
δi1v

(
Qhf(x), f(hj̄)

)
, . . . , δikv

(
Qhf(x), f(hj̄)

))
(27)

with i1 + · · · + ik ≥ m. The expression (27) can be rewritten as a finite linear combination of terms of
the form

(
∆l1

h′c(x1)
)(

∆l2
h′d

(k)
2 u

∣∣
(Qhf(x2),0)

)(
∆l3

h′δi1v
(
Qhf(x3), f(hj̄)

)
, . . . ,∆

lk+2

h′ δikv
(
Qhf(xk+2), f(hj̄)

))
,

with l1 + · · ·+ lk+2 = l. By (26) and the smoothness of Φ we can estimate

∆l1
h′c(x) = O

(
h−l1(h′)l1

)
. (28)
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Further, due to the smoothness of u and Lemma A.2 we can estimate
∥∥∥∆l2

h′d
(k)
2 u

∣∣
(Qhf(x2),0)

∥∥∥ = O
(
Ωl2,h′(Qhf)

)
. (29)

Finally, by Lemma A.3 we have for general l′, i′ that

∆l′

h′δi
′
v
(
Qhf(x), f(hj̄)

)
= O

(
Ωl′,h′(Qhf)Ωi′,h(f)

)
. (30)

By putting estimates (28), (29) and (30) into (27) we finally arrive at the desired result.

We next treat the remainder terms in the Taylor representations.

Lemma 4.6. For M > 0 and l < s we have

∆l
h′R(M+1)



Qhf(x),
∑

j∈Z
Φ(h−1x− j)v

(
Qhf(x), f(hj)

)











∑

j∈Z
Φ(h−1x− j)v

(
Qhf(x), f(hj)

)



M+1





= ‖∆hf‖M−l
∞ O

(
l∑

i=0

(h−1h′)l−iΩi,h′
(
Qhf

)
)

(31)

and

∆l
h′

∑

j∈Z
Φ(h−1x− j)R(M+1)

(
Qhf(x), v

(
Qhf(x), f(hj)

)) ([
v
(
Qhf(x), f(hj)

)]M+1
)

= ‖∆hf‖M−l
∞ O

(
l∑

i=0

(h−1h′)l−iΩi,h′
(
Qhf

)
)
. (32)

Proof. We start with (31). The proof goes by iteratively rewriting the divided differences in order to
arrive at simpler expressions. First, note that the left-hand-side of (31) can be expressed as a linear
combination of terms of the form



∆l1
h′R(M+1)



Qhf(x1),
∑

j∈Z
Φ(h−1x1 − j)v

(
Qhf(x1), f(hj)

)










∆l2
h′




∑

j∈Z
Φ(h−1 ·−j)v

(
Qhf(·), f(hj)

)



M+1

(x2)



 ,

with l1 + |l2|1 = l. Due to the smoothness of u and (48) we can estimate

∥∥∥∥∥∥
∆l1

h′R(M+1)



Qhf(x),
∑

j∈Z
Φ(h−1x− j)v

(
Qhf(x), f(hj)

)




∥∥∥∥∥∥
≤

∑

r1+r2=l1

Ωr1,h′(Qhf)Ωr2,h′




∑

j∈Z
Φ(h−1 ·−j)v

(
Qhf(·), f(hj)

)


 .

Due to the smoothness of R(M+1) and Equation (48), this expression can further be estimated by
∑

r1+r2=l1

Ωr1,h′
(
Qhf

)
sup
j

Ωr2,h′
(
Φ(h−1 ·−j)v

(
Qhf(·), f(hj)

))
. (33)

For the second term in this product we employ the following estimate for r ≥ 0:

∥∥∆r
h′Φ(h−1 ·−j)v

(
Qhf(·), f(hj)

)∥∥
∞ !

∑

t1+t2=r

Ωt1,h′
(
Φ(h−1 ·−j)

)
Ωt2,h′

(
v
(
Qhf(·), f(hj)

))
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which, by the smoothness of v and (48), can be bounded by

∑

t1+t2=r

Ωt1,h′
(
Φ(h−1 ·−j)

)
Ωt2,h′

(
Qhf(·)

)
. (34)

Due to the smoothness of Φ, this expression can be estimated by

∑

t1+t2=r

h−t1(h′)t1Ωt2,h′
(
Qhf(·)

)
. (35)

Combining (33) and (35) and using Lemma 4.3, we obtain

∥∥∥∥∥∥
∆l1

h′R(M+1)



Qhf(x),
∑

j∈Z
Φ(h−1x− j)v

(
Qhf(x), f(hj)

)




∥∥∥∥∥∥
= O




∑

i≤l1

(h−1h′)l1−iΩi,h′
(
Qhf

)


 . (36)

Now we go on to estimate entries in the vector

∆l2
h′




∑

j∈Z
Φ(h−1 ·−j)v

(
Qhf(x), f(hj)

)



M+1

.

since |l2|1 ≤ l, we can assume that only the first l entries of l2 are nonzero. The other M + 1− l entries
can be bounded by O (‖∆hf‖∞) by Lemma A.1. For the other entries we can use the estimate (35) with
r replaced by (l2)i. Combining this estimate with (36) finally yields the desired estimate to show (31).
The proof for (32) works analogously.

Putting together the two previous estimates we arrive at the following general result.

Corollary 4.7. We have the proximity inequality

∥∥∆l
h′
(
Qhf(·)− Q̄hf(·)

)∥∥
∞ = O

(
Ωm,h(f)

l∑

i=0

(h−1h′)l−iΩi,h′
(
Qhf

)
)
. (37)

Proof. If we disregard the residue terms in the Taylor expansions of Qhf and Q̄hf , then the estimate
follows directly from Lemma 4.5. The residual terms are handled by Lemma 4.6 and by choosing M ≥
m+ 1 + l.

4.2 Main Theorem

We are almost in a position to give a proof of our main Theorem 3.1. First we need the following lemma
which states that the quasiinterpolants Qhf are uniformly smooth, independent of h.

Lemma 4.8. Assume that f ∈ Cα with α < m and α < s. Then for l ≤ α we have

∥∥∆l
h′Qhf

∥∥
∞ = O

(
(h′)l

)
, (38)

the implicit constant being independent of h.

Proof. We perform induction on l, the case l = 0 being trivial. Let us now assume that for all l′ < l we
have an inequality of the form (38). We can estimate

∥∥∆l
h′Qhf

∥∥
∞ ≤

∥∥∆l
h′
(
Qhf − Q̄hf

)∥∥
∞ +

∥∥∆l
h′Q̄hf

∥∥
∞

which, by Corollary 4.7 can be bounded by

C




∑

|s|1=m

∏

q

‖∆sq
h f‖∞

∑

|r|1≤l

(h−1h′)l−|r|1
∏

p

‖∆rp
h′Qhf‖∞



+
∥∥∆l

h′Q̄hf
∥∥
∞ .
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By the smoothness of f , Lemma 4.2, and the induction hypothesis, we can bound the above quantity by

Chα−l(h′)l + Chα‖∆l
h′Qhf‖∞ +

∥∥∆l
h′Q̄hf

∥∥
∞ ,

with another constant C.
Utilizing the fact that

∥∥∆l
h′Q̄hf

∥∥
∞ = O

(
(h′)l

)
, we arrive at the estimate

∥∥∆l
h′Qhf

∥∥
∞ ≤ Chα−l(h′)l + Chα‖∆l

h′Qhf‖∞ + C̄(h′)l.

Now let h be small enough such that Chα ≤ 1
2 . Then we have

1

2

∥∥∆l
h′Qhf

∥∥
∞ ≤ Chα−l(h′)l + C̄(h′)l,

and this shows the desired assertion.

We can finally conclude the proof of Theorem 3.1.

Proof of Theorem 3.1. The idea is to use the linear theory which states that
∥∥∥∥∥

(
d

dx

)l (
f − Q̄hf

)
∥∥∥∥∥
∞

= O(hα−l),

together with a suitable estimate for the difference between the linear and the nonlinear approximation
procedure, namely we will show that

∥∥∥∥∥

(
d

dx

)l (
Qhf − Q̄hf

)
∥∥∥∥∥
∞

= O(hα−l). (39)

In order to arrive at (39) we observe that the expression to be estimated can be written as
∥∥∥∥∥

(
d

dx

)l (
Qhf − Q̄hf

)
∥∥∥∥∥
∞

= lim
h′→0

(h′)−l
∥∥∆l

h′
(
Qhf − Q̄hf

)∥∥
∞ . (40)

By corollary 4.7, the right hand side in (40) can be estimated by a constant times

(h′)−lΩm,h(f)
l∑

i=0

(h−1h′)l−iΩi,h′
(
Qhf

)
. (41)

By Lemma 4.8 we can estimate

‖∆r
h′Qhf‖∞ = O((h′)r), r = 0, . . . , l,

and hence
Ωi,h′

(
Qhf

)
= O

(
(h′)i

)
(42)

with an implicit constant independent of h, h′. Furthermore, due to the fact that f ∈ Cα and Lemma
4.2 we have

Ωm,h(f) = O(hα). (43)

Putting (42) and (43) into (41), we arrive at the estimate

(h′)−l
∥∥∆l

h′
(
Qhf − Q̄hf

)∥∥
∞ = O(hα−l),

with the implicit constant independent of h′. By (40), this implies that
∥∥∥∥∥

(
d

dx

)l (
Qhf − Q̄hf

)
∥∥∥∥∥
∞

= O(hα−l).

This proves (39) and hence the theorem.
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5 Numerical Experiments

In the present section we conduct some simple numerical experiments which confirm our theoretical
findings. We will confine ourselves to the case M = SO(2), the manifold of orthogonal 2 × 2 matrices
with positive determinant. This is a compact Riemannian manifold and also a Lie group. Its tangent
bundle TM is given by SO(2)× so2, where so2 is the Lie algebra of 2× 2 skew-symmetric matrices.

The exponential function of M is defined by the matrix exponential

expM (p, q) := p

( ∞∑

i=0

qi

i!

)
, (p, q) ∈ SO(2)× so2.

its (local) inverse is given by

logM (p, q) :=
∑

i=0

(−1)i
(qp−1 − I)i

i
, p, q ∈ SO(2),

the usual matrix logarithm.
We compute the Riemannian center of mass

avM ((p(j))j , (w(j))j)

via the fixed point iteration

xn+1 = expM



xn,
∑

j

w(j) logM (xn, p(j))



 .

In [20] it is shown that this iterative procedure converges linearly to the center of mass.

Example 5.1 (Quasiinterpolation with cubic B-splines: smooth data). In this example we set

Φ(x) := −1

6
B3(x− 1) +

4

3
B3(x)−

1

6
B3(x+ 1),

with B3 the cardinal cubic B-spline function [3]. In the linear case this gives a well known quasiinterpo-
lation scheme with polynomial reproduction m = 4 and smoothness s = 2. We study the approximation
rate for the smooth SO(2)-valued function

f(x) =

(
cos(sin(2x)) − sin(sin(2x))
sin(sin(2x)) cos(sin(2x))

)
(44)

and its first two derivatives, see Figure 1. The error is measured in the Frobenius norm. Our experiment
confirms the approximation rates predicted by the theory.

Example 5.2 (Quasiinterpolation with cubic B-splines: nonsmooth data). In this example we study the
same approximation procedure as in Example 5.1, this time with the nonsmooth function f : [0, 1] → SO(2)
defined via

f(x) =

(
cos(|x− .5|1/2) − sin(|x− .5|1/2)
sin(|x− .5|1/2) cos(|x− .5|1/2)

)
. (45)

The function f is only in C1/2 and therefore we only expect an approximation rate of 1
2 which is observed

in Figure 2.

Example 5.3 (High order approximation). In our final example we consider quasiinterpolation with a
quintic B-spline function. With B5 the cardinal B-spline function of degree 5 we put

Φ(·) = 13

240
B5(x− 2)− 7

15
B5(x− 1) +

73

40
B5(x)−

7

15
B5(x+ 1) +

13

240
B5(x+ 2).

It can be shown that this function satisfies the assumptions (1–4) with m = 6 and s = 4. It follows that
the approximation error

f −Qhf

is expected to be of order h6. This is confirmed by the numerical experiment in Figure 3, where the smooth
function f from Example 5.1 is approximated numerically.
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Figure 1: In this example the function f(x) : [0, 1] → SO(2) given by (44) is approximated by nonlin-
ear cubic B-spline quasiinterpolation. Top left: f(x). Top right: Approximation error. Bottom left:
Approximation error of first derivatives. Bottom right: Approximation error of second derivatives.
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Figure 2: In this example the function f(x) : [0, 1] → SO(2) given by (45) is approximated by nonlinear
cubic B-spline quasiinterpolation. Top left: f(x). Top right: Approximation error.
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Figure 3: Approximation rate of the smooth function f given in (44) by quintic B-spline quasiinterpola-
tion. The plot suggests the expected approximation order h6.
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A Appendix

Lemma A.1. We have

χ[−N,N ](h
−1x− i)v(Qh(x), f(hj)) = O (‖∆hf(·)‖∞) .

Proof. Let us assume for simplicity that M is embedded in Euclidean space. First note that

logM (x, y) = logM (x, x) +O(|x− y|) = O(|x− y|) (46)

since v(x, x) = 0. By [20, 1.5.1] it holds that

|f(hj)−Qhf(x)| ! d
(
f(hj), Qhf(x)

)
!

∣∣∣∣∣
∑

l∈Z
Φ(h−1x− l) logM (f(hl), f(hi))

∣∣∣∣∣ . (47)

This expression is only nonzero if
h−1x− l ∈ [−N,N ].

Further, by assumption we have
h−1x− i ∈ [−N,N ],

which implies that |hl − hi| ! h. Therefore, by (46) and (47) we get

χ[−N,N ](h
−1x− i)|f(hj)−Qhf(x)| = O (‖∆hf‖∞) .

The final estimate follows from noting that
∣∣v

(
f(hj), Qhf(x)

)∣∣ ! |f(hj)−Qhf(x)|,

which can be shown in the same fashion as (46).

Lemma A.2. Assume that g : Rk → R is a smooth function and f = (f1, . . . , fk) : R → Rk. Then

∆l
h′g (f(·)) = O




∑

|r|1=l

∏

q

Ωrq,h′(fq)



 (48)

Proof. We use Taylor expansion of g at (f1(x), . . . , fk(x)):

g (f(x+ y)) =
l−1∑

i=1

∑

s∈{1,...,k}i

disg
∣∣
(f(x))

(fs1(x+ y)− fs1(x), . . . , fsi(x+ y)− fsi(x))

+
∑

s∈{1,...,k}l

dlsg
∣∣
ξ(f(x+y))

(fs1(x+ y)− fs1(x), . . . , fsi(x+ y)− fsi(x)) .

Here the expression disg denotes the partial derivative ∂s1 . . . ∂sig. The last term in the above expression
is clearly of order

O




∑

s∈{1,...,k}l

∏

q

‖∆h′fsq‖l∞



 for |y| ≤ lh′,

and therefore we can estimate

∆l
h′g (f(x)) =

l−1∑

i=1

∑

s∈{1,...,k}i

∆l
h′disg

∣∣
f
(fs1(x+ y)− fs1(x), . . . , fsi(x+ y)− fsi(x))

+O




∑

s∈{1,...,k}l

∏

q

‖∆h′fsq‖l∞



 . (49)
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Each of the terms
∆l

h′disg
∣∣
f(x)

(fs1(x+ y)− fs1(x), . . . , fsi(x+ y)− fsi(x))

can be expressed as a finite linear combination of terms of the form

disg
∣∣
f(x)

(
∆l1

h′fs1(x1 + ·)− fs1(x1), . . . ,∆
li
h′fsi(xi + ·)− fsi(xi)

)

with l1 + · · ·+ li = l and some (x1, . . . , xi) ∈ Ri. This gives the final bound.

Lemma A.3. We have the estimate

∆l1
h′δl2v

(
Qh(x), f(hj)

)
= O

(
Ωl1,h′(Qhf)Ωl2,h(f)

)
. (50)

Proof. Again we use Taylor expansion of the bivariate function v(x, y) together with arguments akin to the
proof of Lemma A.2. Put j̄ =

⌊
h−1x−N

⌋
. Then hj̄−hj = O(h) for all j such that v

(
Qhf(x), f(hj)

)
2= 0.

We have

v
(
Qhf(x), f(hj)

)
=

l2−1∑

i=0

d(i)2 v
∣∣
(Qhf(x),f(hj̄))

(
[f(hj)− f(hj̄)]

i
)

+R(l2)
(
Qhf(x), f(hj)

) (
[f(hj)− f(hj̄)]

i
)
.

For any i we can write

δl2∆l1
h′d

(i)
2 v

∣∣
(Qhf(x),f(hj̄))

(
[f(hj)− f(hj̄)]

i
)

as a finite linear combination of terms of the form

∆l1
h′d

(i)
2 v

∣∣
(Qhf(x),f(hj̄))

(
δs [f(hj)− f(hj̄)]

i
)

with |s|1 = l2. This expression can be bounded by

∥∥∥∆l1
h′d

(i)
2 v

∣∣
(Qhf(x),f(hj̄))

∥∥∥
∑

|s|1=l2

∏

q

‖∆sq
h f‖∞.

Furthermore, by Lemma A.2 we have

∥∥∥∆l1
h′d

(i)
2 v

∣∣
(Qhf(x),f(hj̄))

∥∥∥ = O




∑

|r|1=l1

∏

p

‖∆rpQhf‖∞



 .

To handle the residual term we note that we can bound the expression

δl2∆l1
h′R(l2)

(
Qhf(x), f(hj)

) (
[f(hj)− f(hj̄)]

l2
)

by terms of the form

∆l1
h′R(l2)

(
Qhf(x), f(hj)

) (
[f(hj)− f(hj̄)]

l2
)
,

which can in turn be bounded by

∥∥∥∆l1
h′R(l2)

(
Qhf(x), f(hj)

)∥∥∥ |f(hj)− f(hj̄)|l2 = O




∑

|r|1=l1

∏

p

‖∆rpQhf‖∞‖∆hf‖l2∞



 .

We have used Lemma A.2 and the fact that hj − hj̄ = O(h). Summing up these estimates gives the
desired result.

20



Research Reports

No. Authors/Title

11-56 P. Grohs
Finite elements of arbitrary order and quasiinterpolation for data in Rie-
mannian manifolds

11-55 P. Grohs
Bandlimited shearlet-type frames with nice duals

11-54 A. Kunoth and Ch. Schwab
Analytic regularity and GPC approximation for control problems con-
strained by linear parametric elliptic and parabolic PDEs

11-53 Ch. Schwab and S.A. Tokareva
High order approximation of probabilistic shock profiles in hyperbolic
conservation laws with uncertain initial data

11-52 F.Y. Kuo, Ch. Schwab and I.H. Sloan
Quasi-Monte Carlo finite element methods for a class of elliptic partial
differential equations with random coefficients

11-51 A. Chernov and Ch. Schwab
First order k-th moment finite element analysis of nonlinear operator
equations with stochastic data

11-50 E. Fonn
Shearlet Galerkin for transport equations: implementation and stability

11-49 M.J. Castro, U.S. Fjordholm, S. Mishra and C. Parés
Entropy conservative and entropy stable schemes for non-conservative
hyperbolic systems

11-48 D. Kressner and Ch. Tobler
Preconditioned low-rank methods for high-dimensional elliptic PDE
eigenvalue problems

11-47 H. Heumann and R. Hiptmair
Convergence of lowest order semi-Lagrangian schemes

11-46 K. Grella and Ch. Schwab
Sparse discrete ordinates method in radiative transfer

11-45 X. Claeys and R. Hiptmair
Boundary integral formulation of the first kind for acoustic scattering by
composite structures

11-44 A. Chkifa, A. Cohen, R. DeVore and Ch. Schwab
Sparse adaptive Taylor approximation algorithms for parametric and
stochastic elliptic PDEs


