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Abstract

The present paper for the first time constructs a frame/dual frame pair of shearlet type such
that both frames possess the distinctive time-frequency localization properties needed in establishing
their desirable approximation properties. Our construction is based on a careful pasting together of
two bandlimited shearlet Parseval frames associated with two different frequency cones, inspired by
domain decomposition methods used primarily for the solution of PDEs.
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1 Introduction

It is by now widely accepted in computational harmonic analysis that the ability to handle anisotropic data
in a multiscale fashion requires transforms which possess an anisotropic scaling operation. Several such
transformations have enriched the field of applied mathematics in the past few years, including curvelets
[4], bandlets [21], shearlets [20] or countourlets [9]. Among these shearlets stand out for several reasons,
including their well-adaptedness to digitization, see for example the discussion in [18]. Nevertheless,
there exist some problems in constructing nice shearlet frames. In particular so far no construction
of a shearlet frame/dual frame pair has been given such that both of these frames possess the time-
frequency localization properties required for the transforms to exhibit their desirable properties, such as

∗This research has been supported by the European Research Council under grant ERC AdG 247277
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optimal best N -term approximation of cartoon functions (e.g., bivariate piecewise C2 functions with C2

singularity curves) [5] It is the purpose of the present paper to close this gap by giving such a construction.
In particular we will construct a frame/dual frame pair Σ, Σ′ such that both Σ and Σ′ are of shearlet
type and such that both of these frames constitute a system of parabolic molecules of arbitrary order
in the sense of [14]. In particular, this latter property ensures that both of these systems possess the
time-frequency localization properties which make shearlets and related transforms so successful, see the
results of [14].

First we start by reviewing the constructions of shearlet frames which have been given so far in the
literature.

1.1 Previous Work

Let us first briefly describe what we understand as systems of shearlet-type. Classical shearlet con-
structions are based on the action of anisotropic scaling and shearing to a single bivariate function ψ,
e.g.,

σ(i,j,l,k)(·) = 23j/4ψi
(
Di

2jS
i
l,j ·−k

)
, (1)

where i ∈ {1, 2}, j ∈ N, k ∈ Z2 and −2j/2 ≤ l < 2j/2, and Di
2j , S

i
l,j are defined as in Section 1.4. Shearlet

systems (constructed with appropriate functions ψi) share many desirable approximation properties with
curvelets [4], which are based on a rotation operation in place of shearing in order to achieve directional
selectivity. The distinctive advantage of shearlet constructions over curvelets is the fact that shearing
operations can be naturally defined for digital data, while for rotations this is not the case. For us a
system of shearlet-type is one, where in (1), the function ψ may also depend on the variables j, l, k to a
small extent, see Section 2 for more precise definitions.

Up to now the following different constructions of shearlet-type frames exist.

Bandlimited Parseval frame

Historically, the first construction is given in [15] where bandlimited Parseval frames are described.
There, two Parseval frames Σ1, Σ2 for the two Hilbert spaces of square integrable functions with frequency
support in the horizontal resp. vertical cones with opening angle π

2 are constructed. In order to aggregate
them to form a frame for the full space L2(R2), a simple orthogonal projection onto the corresponding
frequency cones is performed on the frame elements. This approach can be problematic since the frame
elements which are affected by such a frequency projection completely lose their localization properties
in space, compare Figure 1.

Compactly Supported Frames

Recently, compactly supported shearlet frames have been constructed [17, 19, 18]. It can be shown that
these constructions provide the desired approximation rates for cartoon images but at present it is not
possible to access any properties of the dual frame.

1.2 Motivation

However, for several reasons it can be important to have a construction of a shearlet frame which possesses
a dual frame that is also of shearlet type.
Let us give two concrete problems where such a construction is needed. The first one is of a theoretical
nature, namely the study of shearlet function spaces. We would like to rigorously establish the fact
that the function spaces spanned by a shearlet frame are the same as those spanned by a curvelet frame
Γ [6] and similar equivalent constructions as in [2]. The fact that for shearlets we do not in general
have information on the dual frame poses a big obstacle in this regard. Assume we are given a shearlet
frame Σ which has a dual frame Σ′ and that f is a tempered distribution which lies in some curvelet
function space, meaning that the sequence 〈f,Γ〉 of curvelet coefficients lies in some discrete sequence
space, compare [2]. To show that then also the shearlet coefficient sequence lies in the same sequence
space one can write

〈f,Σ〉 = 〈f,Γ〉"〈Γ,Σ〉

2



Figure 1: Left: indicator function of the unit disc. Right: frequency projection onto the horizontal
frequency cone with opening angle π

2 .

and use the fact that the Gramian matrix 〈Γ,Σ〉 is almost diagonal. This property only holds if the
shearlet frame Σ possesses the same essential time-frequency localization properties as the curvelet frame
Γ. To show the converse, e.g., that if the sequence 〈f,Σ〉 lies in a certain sequence space, then also the
curvelet coefficient sequence of f lies in the same space, we can proceed similarly, e.g., we can write

〈f,Γ〉 = 〈f,Σ〉"〈Σ′,Γ〉

and again conclude that if the dual frame Σ′ possesses the same time-frequency localization properties as
Γ, the Gramian 〈Σ′,Γ〉 is almost diagonal which shows that 〈f,Γ〉 lies in the same sequence space. This
superficial discussion shows that in order to study function spaces associated to shearlets it is imperative
to have precise control over the primal, as well as the dual frame! Similar considerations related to
wavelets and Besov spaces can be found in [11].
The second problem is more of an applied nature. Assume that we would like to compute the evolution
of a function (initial condition) f under the action of a wave propagator. The paper [3] shows that by
representing the initial condition in a curvelet frame, the associated Gramian matrix of the wave prop-
agator is compressible in the sense of [8]. This implies that if the initial condition to the evolution is
sparse in a curvelet frame, then, at least theoretically, it is possible to apply the evolution operator to
the curvelet coefficients in linear complexity. Arguably, this is only a theoretical result since it is highly
nontrivial how to actually compute a compressed version of the evolution operator without deteriorat-
ing the complexity, compare [12] for a similar discussion related to wavelet bases and elliptic operator
equations. Nevertheless, it is of interest to transfer such a result to the shearlet setting. With a shearlet
frame Σ and dual frame Σ′ we can write

f = 〈f,Σ〉"Σ′

and let the wave propagator E(t) associated with time t act on the shearlet coefficients of f via

〈E(t)f,Σ〉 = 〈f,Σ〉"〈E(t)Σ′,Σ〉.

In order to arrive at results in the spirit of [3] we need to establish that the Gramian 〈E(t)Σ′,Σ〉 is almost
diagonal and that the coefficient sequence 〈f,Σ〉 is sparse. Thus, here again we need to be able to have
precise control over the time-frequency localization properties of Σ and its dual Σ′.

1.3 Contributions

The purpose of this paper is to give a construction of a shearlet frame Σ with a shearlet dual Σ′, both
having the time-frequency localization properties needed for proving such important results as best N -
term approximation of cartoon images [3] or sparsity of Fourier integral operators. In particular we will

3



show that, given any two Parseval frames of shearlet type for the two frequency cones, one can aggregate
them to a frame for L2(R2) such there exists a dual frame which is of the same type. This dual frame
will in general not be the canonical dual frame which poses no problem. Our construction is completely
explicit and is inspired by domain decomposition methods in Finite Element analysis [1, 23].

Outline

The outline is as follows: First in Section 2 we describe mathematically what it means for a system of
functions to possess the correct time-frequency localization properties. To this end we make use of the
recently introduced concept of parabolic molecules [14]. Then in Section 3 we present the main idea of our
novel construction. As previously mentioned the inspiration comes from domain decomposition methods
for wavelet frames [23] but also from [13], where a similar construction is given for continuous shearlet
frames. Essentially our construction is based on patching together shearlet tight frames associated to
different frequency cones. The construction of these different tight frames is the subject in Section 4.
Section 5 treats the crucial problem of designing suitable weight functions in the frequency domain to
patch together the tight frames constructed in Section 4. This is the technically most demanding part of
the present paper. In Section 6 we illustrate a few applications of our construction before we close with
a discussion of the present work.

1.4 Notation

We shall write Rθ =

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
the rotation matrix of angle θ and D1

a := diag(a,
√
a), D2

a :=

diag(
√
a, a) and 〈x〉 :=

(
1 + x2

)1/2
. Furthermore we denote S1

l,j =

(
1 2−j/2l
0 1

)
and S2

l,j :=
(
S1
l,j

)"
.

We denote S the space of Schwartz functions on R2 and S ′ its dual, the space of tempered distributions
[22]. For f ∈ S, the symbol f̂ denotes its Fourier transform

f̂(·) :=
∫

R2

f(x) exp (2πi〈·, x〉) dx

and extended to f ∈ S ′ by duality. Assume that Ψ = {ψλ : λ ∈ Λ} is a sequence of functions and
c = (cλ)λ∈Λ a complex valued sequence, where Λ is a discrete index set. Then we denote

c"Ψ :=
∑

λ∈Λ

cλψλ.

A system Ψ is called a frame for a Hilbert space H if we have the norm equivalence

‖f‖2H ∼ inf
c!Ψ=f

‖c‖22.

If the previous norm equivalence is an equality up to a constant we speak of a tight frame, if the constant
is 1, we speak of a Parseval frame. A second frame Σ′ is called dual frame of Σ if the identity

f = 〈f,Σ〉"Σ′ for all f ∈ H.

See [7] for more information related to frames.

2 Parabolic Molecules

In order to put the various time-frequency localization properties of parabolic transforms like curvelets
or shearlets under one roof, the concept of parabolic molecules is introduced in [14]. Roughly speaking
a system of parabolic molecules is a frame having equivalent localization properties as e.g. the curvelet
frame constructed in [3]. A main result of [14] is that any two such systems are equivalent in terms of
their approximation properties. To define parabolic molecules we need to define what we mean by a
parameterization.

4



Definition 2.1. A parameterization consists of a pair (Λ,ΦΛ) where Λ is a discrete index set and ΦΛ is
a mapping

ΦΛ :

{
Λ → P,

λ ∈ Λ *→ (sλ, θλ, xλ) .

which associate with each λ ∈ Λ a scale sλ, a direction θλ and a location xλ ∈ R2.

We can now define precisely what we mean by the notion of parabolic molecules.

Definition 2.2. Let Λ be a parameterization. A family (mλ)λ∈Λ is called a family of parabolic molecules
of order (R,M,N1, N2) if it can be written as

mλ(x) = 23sλ/4a(λ) (D2sλRθλ (x− xλ))

such that ∣∣∣∂β â(λ)(ξ)
∣∣∣ ! min

(
1, 2−sλ + |ξ1|+ 2−sλ/2|ξ2|

)M
〈‖ξ‖〉−N1 〈ξ2〉−N2 (2)

for all |β| ≤ R The implicit constants are uniform over λ ∈ Λ.

The main point of interest for parabolic molecules it that they are all essentially equivalent as far as
their approximation properties are concerned, see [14] for more information. In particular in [14] it is
shown that for any two systems (mλ), (m′

λ′) of parabolic molecules, their cross Gramian matrix 〈mλ,m′
λ′〉

is almost diagonal in a very strong sense.
Importantly, it turns out that shearlet-type systems are instances of parabolic molecules. Consider
functions ϕ, ψ0

j,l,k, ψ1
j,l,k satisfy

|∂βψ̂i
j,l,k(ξ1, ξ2)| ! min (1, |ξi|)M 〈‖ξ‖〉−N1〈ξ3−i〉−N2 (3)

for every β ∈ N2 with |β| ≤ R. Then [14] shows that the shearlet system

Σ := {σλ : λ ∈ Λ} , (4)

where
Λ :=

{
(i, j, l, k) ∈ {1, 2}× N× Z× Z2 : −2 · 2j/2 ≤ l ≤ 2 · 2j/2

}

and
σ(i,j,l,k)(·) = 23j/4ψi

j,l,k

(
Di

2jS
i
l,j ·−k

)

constitutes a system of parabolic molecules of order (R,M,N1, N2) associated with a nice parameteriza-
tion.
The main goal of the present paper is to give a (the first) construction of a shearlet frame Σ with a
dual frame Σ′, such that both Σ, Σ′ are of the form (4) with generators satisfying (3) for arbitrary
(R,M,N1, N2).

3 Basic Idea

We define the frequency cones

C1 :=

{
ξ : |ξ1| ≥

1

8
,
|ξ2|
|ξ1|

≤ 3

2

}
, C̄1 :=

{
ξ : |ξ1| ≥

1

4
,
|ξ2|
|ξ1|

≤ 4

3

}
,

C2 :=

{
ξ : |ξ2| ≥

1

8
,
|ξ1|
|ξ2|

≤ 3

2

}
, C̄2 :=

{
ξ : |ξ2| ≥

1

4
,
|ξ1|
|ξ2|

≤ 4

3

}
,

and low-frequency boxes

C0 := {ξ : ‖ξ‖∞ ≤ 1} , C̄0 :=

{
ξ : ‖ξ‖∞ ≤ 2

3

}
.
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Let us for now assume that we have Parseval frames Σi for the Hilbert spaces L2

(
Ci
)∨

for i = 0, 1, 2. In
Section 4 we will see how such frames of shearlet type can easily be constructed using standard methods
as in [15, 16]. We then find a method to patch together these frames to obtain a shearlet type frame
for L2(R2) which also possesses a dual frame of the same type. Our construction is inspired by domain
decomposition methods used for the solution of elliptic PDEs, see in particular [23, 1]. In several aspects
however our construction crucially differs from known approaches used in domain decomposition methods.
For instance, we are dealing with a domain decomposition in the Fourier domain and the decomposition
includes infinite subdomains. In the remainder of this section we will lay out the main idea on how three
shearlet frames associated to Ci, i = 0, 1, 2 can be patched together using carefully constructed partition-
of-unity functions. In later sections we will then elaborate on the details of constructing suitable frames
and partition functions which will comprise the main technical part of this paper. First we describe the
main idea.

Definition 3.1. Pick partition functions γi, χi ∈ C∞(R2), i = 0, 1, 2 satisfying the following properties:

(i) supp γi ⊂ Ci and supp χi ⊂ C̄ifor i = 0, 1, 2,

(ii) χi ≥ 0 for i = 0, 1, 2 and
∑2

i=0 χ
i = 1,

(iii) χi

γi ! 1 for i = 0, 1, 2.

Consider the two systems

Σ :=
2⋃

i=0

(
γiΣ̂i

)∨
and Σ′ :=

2⋃

i=0

(
χi

γi
Σ̂i

)∨

. (5)

The crucial observation is the following result:

Proposition 3.2. The system Σ, constitutes a frame for L2(R2) with a dual frame given by Σ′.

Proof. We first show that Σ constitutes a frame which is equivalent to the validity of

‖f‖22 ∼ inf
c!Σ=f

‖c‖22, (6)

which, due to the fact that the Σi’s constitute frames for L2(Ci)∨, follows from

‖f‖22 ∼ inf
f=

∑
i fi

f̂i

γi ∈L2(Ci)

2∑

i=0

∥∥∥∥∥
f̂ i

γi

∥∥∥∥∥

2

2

, (7)

which is what we will show. Note that the assumption f̂i

γi ∈ L2(Ci) implies that f̂ i is supported in Ci.
We start by showing the estimate

‖f‖22 ! inf
f=

∑
i fi

f̂i

γi ∈L2(Ci)

2∑

i=0

∥∥∥∥∥
f̂ i

γi

∥∥∥∥∥

2

2

.

To this end, assume that f =
∑2

i=0 f
i. Then we have

‖f‖22 !
2∑

i=0

‖f i‖22 =
2∑

i=0

‖f̂ i‖22 !
2∑

i=0

∥∥∥∥∥
f̂ i

γi

∥∥∥∥∥

2

2

,

the last inequality following from the general fact that

‖γig‖22 ! ‖g‖22, for g ∈ L2(Ci), (8)

which holds since γi is bounded. This shows the upper inequality in (7).
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We turn to the estimate from below, i.e.

‖f‖22 " inf
f=

∑
i fi

f̂i

γi ∈L2(Ci)

2∑

i=0

∥∥∥∥∥
f̂ i

γi

∥∥∥∥∥

2

2

. (9)

Here, the functions χi will come into play. Indeed, due to Property (ii) in Definition 3.1 we can write

f =
i∑

i=0

f i where f i :=
(
χif̂

)∨
. (10)

Furthermore, due to Property (iii) in Definition 3.1 we have that

f̂ i

γi
∈ L2(Ci),

which makes (10) a valid decomposition for (9). To show (9) we write

‖f‖22 = ‖f̂‖22 =

∫
(
∑

i

χi)2|f̂ |2 ≥
∑

i

∫ (
χif̂

)2
=

∑

i

‖f̂ i‖22 "
∑

i

∥∥∥∥∥
f̂ i

γi

∥∥∥∥∥

2

2

,

the first inequality follows from the positivity of the functions χi, the second one from (8). This proves
(7) and hence that Σ is indeed a frame for L2(R2). A similar argument establishes that Σ′ is also a frame
for L2(R2).

It remains to show that Σ′ is a dual frame of Σ. This turns out to be quite simple: We have

〈
f,
(
γiΣ̂i

)∨
〉"

Σ̂i = γif̂ ,

since Σi constitutes a Parseval frame for L2(Ci)∨. Therefore

2∑

i=0

〈
f,
(
γiΣ̂i

)∨
〉" χi

γi
Σ̂i = f̂ ,

which shows the desired statement.

The challenge is now to come up with functions γi, χi such that the resulting frames Σ, Σ′ are “nice”
in a certain way. More specifically, we would like to wind up with two systems of parabolic molecules
which, among other things, would imply that the shearlet coefficients 〈f,Σ〉 characterize exactly the same
function spaces as curvelet coefficients.

4 Construction of the Frames Σi

First we need to spend some time to construct the frames Σi, i = 0, 1, 2. This is more or less standard.
Start with a wavelet ψ1 which satisfies

∑

j∈Z

∣∣∣ψ̂1

(
2−jξ

)∣∣∣
2
= 1, for ξ ∈ R (11)

and

supp ψ̂1 ⊂
[
−1

4
,− 1

32

]
∪
[
1

32
,
1

4

]
. (12)

We also need a frequency window function ψ2 which satisfies

2∑

k=−2

∣∣∣ψ̂2(ξ − k)
∣∣∣
2
= 1 for ξ ∈

[
−3

2
,
3

2

]
, (13)

7



and

supp ψ̂2 ⊂
[
−3

2
,
3

2

]
. (14)

Define

ψ̂1(ξ) := ψ̂1(ξ1)ψ̂2

(
ξ2
ξ1

)
, ψ̂2(ξ1, ξ2) := ψ̂1(ξ2, ξ1).

Using these functions we can construct shearlet systems Σ1, Σ2 via

Σ1 :=
{
22j/4ψ1 (D2jSj,l ·−k) : j ≥ 0, −2 · 2j/2 ≤ l ≤ 2 · 2j/2, k ∈ Z2

}
, (15)

and Σ2 defined similarly.

Lemma 4.1. The system Σi constitutes a Parseval frame for L2(Ci)∨ with i = 1, 2.

Proof. Consider the case i = 1 (the case i = 2 is the same). We need to show that

∑

j≥0

∑

−2·2j/2≤l≤2·2j/2

∣∣∣ψ̂1
(
D2−jS"

j,−lξ
)∣∣∣

2
= 1 for all ξ ∈ C1. (16)

Then the assertion follows from standard arguments (using that supp ψ̂1 ⊂
[
− 1

2 ,
1
2

]2
). To show (16) we

write

∑

j≥0

∑

−2·2j/2≤l≤2·2j/2

∣∣∣ψ̂1
(
D2−jS"

j,−lξ
)∣∣∣

2
=

∑

j≥0

∣∣∣ψ̂1

(
2−jξ1

)∣∣∣
2 ∑

−2·2j/2≤l≤2·2j/2

∣∣∣∣ψ̂1

(
2j/2

ξ2
ξ1

+ l

)∣∣∣∣
2

= 1 for ξ ∈ C1,

because of (11) and (13) and the support properties of ψ̂1 and ψ̂2.

The construction of a translation-invariant Parseval frame for L2(C0)∨ is well-known and will not be
detailed here.

5 Construction of the Partition Functions

Here we construct suitable partition functions and prove that the resulting systems Σ, Σ′ are parabolic
molecules of arbitrary order. The construction turns out to be somewhat delicate and we apologize for
the heavy notation.

We start with the function γ0 which can be quite arbitrary with supp γ0 ⊂ C0. The functions γi,
i = 1, 2 are constructed using two smooth, univariate, real-valued functions g1, g2 satisfying

supp g1 ⊂
[
1

8
,∞

)
and supp g2 ⊂

[
−3

2
,
3

2

]
. (17)

Now define

γ1(ξ) := g1(ξ1)g2

(
ξ2
ξ1

)
, γ2(ξ1, ξ2) := γ1(ξ2, ξ1). (18)

clearly we have supp γi ⊂ Ci for all i = 0, 1, 2. The construction of the functions χi is slightly more
complicated. We start again with two nonnegative, nondecreasing functions h1, h2 satisfying

supp h1 ⊂
[
1

4
,∞

)
, h1

∣∣
[ 12 ,∞) ≡ 1, supp h2 ⊂

[
−4

3
,
4

3

]
, h2

∣∣
[− 3

4 ,
3
4 ]

≡ 1. (19)

Define

χ1(ξ) := h1(ξ1)h2

(
ξ2
ξ1

)
, χ2(ξ) := h1(ξ2)

(
1− h2

(
ξ2
ξ1

))
. (20)

Further, we define
χ0 := 1− χ1 − χ2. (21)
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Lemma 5.1. We have
supp χi ⊂ C̄i, for i = 0, 1, 2.

Proof. The case i = 1, 2 is quite clear, so we only show that supp χ0 ⊂ C̄0. Assume that ξ ∈ R2 \ C̄0.
Then we can distinguish three cases as follows:
Case 1:

|ξ1| ≥
2

3
and |ξ2| ≥

1

2
or |ξ2| ≥

2

3
and |ξ1| ≥

1

2
.

In this case we have h1(ξ1) = h1(ξ2) = 1 and therefore

χ1(ξ) + χ2(ξ) = h2

(
ξ2
ξ1

)
+ 1− h2

(
ξ2
ξ1

)
= 1,

and hence χ0(ξ) = 0.
Case 2:

|ξ1| ≥
2

3
and |ξ2| <

1

2
.

In this case we have h1(ξ1) = 1 and, since |ξ2|
|ξ1| ≤

3
4 , h2

(
ξ2
ξ1

)
= 1, which implies that

χ1(ξ) + χ2(ξ) = 1

which implies χ0(ξ) = 0.
Case 3:

|ξ2| ≥
2

3
and |ξ1| <

1

2
.

In this case we have h1(ξ2) = 1 and, since |ξ2|
|ξ1| ≥

4
3 , h2

(
ξ2
ξ1

)
= 0, which implies that

χ1(ξ) + χ2(ξ) = 1

which implies χ0(ξ) = 0. This completes the proof.

Proposition 5.2. We have

χi
((

Di
2jS

i
j,l

)"
ξ
)
∈ C∞

(
supp ψ̂i

)
, for i = 1, 2 (22)

with norms ∥∥∥χi
((

Di
2jS

i
j,l

)" ·
)∥∥∥

CN(supp ψ̂i)
≤ γN , N ∈ N

with constants γN independent of j. The same fact is true for γi and χi

γi .

Proof. First we define yet another pair of frequency cones, namely

C̃1 :=

{
ξ : |ξ1| ≥

1

32
,
|ξ2|
|ξ1|

≤ 3

2

}
,

and

C̃2 :=

{
ξ : |ξ2| ≥

1

32
,
|ξ1|
|ξ2|

≤ 3

2

}
,

i = 1: Let us consider the case i = 1. In this case we have that

supp ψ̂1 ⊂ C̃1.

We need to study

χ1
(
2jξ1, l2

j/2ξ1 + 2j/2ξ2
)
= h1

(
2jξ1

)
h2

(
2−j/2

(
l +

ξ2
ξ1

))
.
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First, note that we can disregard the factor h1

(
2jξ1

)
, since whenever j ≥ 2 and ξ ∈ C̃1, we have

h1

(
2jξ1

)
≡ 1. The function h2

(
2−j/2

(
l + ξ2

ξ1

))
on the other hand is clearly in C∞

(
C̃1

)
which is what

we want.
i = 2: We go on and treat the case i = 2 which is a bit trickier. The object to study is the function

χ2
(
l2j/2ξ2 + 2j/2ξ1, 2

jξ2
)
= h1

(
2jξ2

)(
1− h2

(
2jξ2

l2j/2ξ2 + 2j/2ξ1

))
,

with
ξ ∈ supp ψ̂2 ⊂ C̃2.

Arguing as before we can safely ignore the factor h1

(
2jξ2

)
and we are left to study the factor h2

(
2jξ2

l2j/2ξ2+2j/2ξ1

)
.

We estimate for ξ ∈ C̃2 (which implies that |ξ2| ≥ 2
3 |ξ1|)

∣∣∣∣
2jξ2

l2j/2ξ2 + 2j/2ξ1

∣∣∣∣ ≥
2j |ξ2|

l2j/2|ξ2|+ 2j/2|ξ1|
" 2j |ξ2|

l2j/2|ξ2|+ 2j/2|ξ2|
=

2j

(l + 1)2j/2
(23)

Recall that supp h2 ⊂
[
− 4

3 ,
4
3

]
which by (23) implies that h2

(
2jξ2

l2j/2ξ2+2j/2ξ1

)
can only be nonzero on C1

if l " 2j/2. An elementary discussion shows that under these assumptions (l " 2j/2, ξ ∈ C̃2) the function
2jξ2

l2j/2ξ2+2j/2ξ1
possesses uniformly bounded derivatives of arbitrary order which is exactly what we need.

The proof for γi is the same.

Definition 5.3. With the appropriate window functions constructed we define the two systems

Σ :=
{
σi
j,l,k : i ∈ {1, 2}, j ∈ N, −2 · 2j/2 ≤ l ≤ 2 · 2j/2, k ∈ Z2

}
, (24)

where
σ̂i
j,l,k(·) := γi(·)ψ̂i

j,l,k(·), (25)

and
Σ′ :=

{
σ̃i
j,l,k : i ∈ {1, 2}, j ∈ N, −2 · 2j/2 ≤ l ≤ 2 · 2j/2, k ∈ Z2

}
, (26)

where

ˆ̃σi
j,l,k(·) :=

χi(·)
γi(·) ψ̂

i
j,l,k(·). (27)

We can now formulate and prove our main result.

Theorem 5.4. The systems Σ, Σ′ constitute two systems of parabolic molecules of arbitrary order.
Furthermore, they constitute two mutually dual frames for L2(R2).

Proof. We need to show (3) for the functions

σ̂i
j,l,k(·) := χi

((
Di

2jS
i
j,l

)" ·
)
ψ̂i(·)

and (R,M,N1, N2) arbitrary. But this follows directly from Proposition 5.2 together with the support
properties of ψ̂i. The fact that Σ, Σ′ constitute mutually dual frames follows from Proposition 3.2

6 Applications

In the present section we would like to briefly elaborate on some implications of our construction, see also
[14] for a more detailed discussion of related results. The main importance lies in the fact that with the
results of [14], for the first time a clean correspondence principle between curvelet and shearlet results is
available. More precisely, due to the fact that the frames constructed in the present paper are parabolic
molecules of arbitrary order, by the results in [14], it follows that the Gramian matrices

G := 〈Σ,Γ〉, G′ := 〈Σ′,Γ〉,
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Γ being the curvelet frame from [6], are almost diagonal in a very strong sense. In the following we briefly
illustrate to the reader how curvelet properties can be transformed into properties of the frames Σ using
the almost-diagonality of the matrices G, G′. Since this chapter is only meant to illustrate, we will be
a bit sketchy in some places , and leave a more detailed discussion of similar results (in a more general
setting) to [14].

6.1 Shearlet Function Spaces

Given our shearlet frames Σ, Σ′ it is natural to study the associated approximation spaces

Sα
p,q :=

{
f ∈ S ′ : ‖f‖Sα

p,q
< ∞

}
(28)

and

‖f‖Sα
p,q

:=




∑

i,j,l

2αjq
(
∑

k

|〈f,σi,j,l,k〉|p
) q

p





1
q

. (29)

In particular it is important to know whether these spaces are genuinely new or if they coincide with
other, already known spaces. As a matter of fact, it turns out that they coincide with the corresponding
curvelet approximation spaces as well as with the spaces Sα

p,q as defined in [2]. This follows directly from
the almost orthogonality property between any two systems of parabolic molecules as shown in [14]. We
do not elaborate on the details here but rather refer to [14] for more information and state the following
theorem:

Theorem 6.1. We have the norm equivalence

‖ · ‖Sα
p,q

∼ ‖ · ‖Rα
p,q

, p, q,α > 0,

where Rα
p,q denotes the curvelet space introduced in [2, Section 7] with the norm defined as in (29) but

the shearlets σi,j,k,l replaced with second generation curvelets as defined in [6].

Proof. Using the fact that Σ, Σ′ and the curvelet frame from [6] are all parabolic molecules of arbitrary
order, this follows directly from the results in [14].

We hence for the first time have a rigorous statement of the meta theorem frequently heard from
experts, stating that curvelet- and shearlet properties are equivalent.

6.2 Cartoon Approximation

A main motivation for the introduction of curvelet or shearlet frame has been the efficient approximation
of functions with anisotropic features such as those arising in image data. A popular model for such
functions is given by class F the so-called cartoon images which are (roughly) defined as piecewise C2

functions with C2 singularity curves, defined on the unit square in R2 [10, 5]. It is well-known that
keeping N coefficients in any frame expansion can only give an L2-approximation error of at best ∼ N−1,
uniformly for all f ∈ F [10]. An important property of curvelets is the fact that they almost attain this
optimal rate, namely for any ε > 0 we have

‖f − fΓ
N‖ ! N−1+ε,

where fΓ
N arises from only keeping the largest N coefficients in the frame expansion f = 〈f,Γ〉"Γ. Again,

the almost diagonality of the Gramian matrix G immediately implies that an analogous statement holds
with Γ replaced by Σ, namely

Theorem 6.2. For any ε > 0 we have

‖f − fΣ
N‖ ! N−1+ε,

where fΣ
N arises from the frame expansion f = 〈f,Σ〉"Σ′ by keeping only the N largest coefficients in

modulus. The implicit constant is uniform in f ∈ F .

Remark 6.3. Actually, the factor N−1+ε can be slightly improved to N−1 log(N)3/2 by repeating the
curvelet-arguments in [5] which only use the time-frequency localization properties of the curvelet frame
Γ.
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6.3 Wave Propagation

Let E(t) be the propagation operator of a time-dependent wave equation of the form

∂u

∂t
(x, t) + 〈A(x),∇u(x, t)〉+B(x)u(x, t) = 0,

where u : R+ × R2 → R, A : R → R2 and B : R → R with all occurring functions arbitrarily smooth. In
[3] it is shown that the Gramian matrix

EΓ := 〈E(t)Γ,Γ〉

is sparse in the sense that the discrete operator norms

‖EΓ‖lp→lp

are all bounded for p > 0. This opens up a path for studying efficient algorithms for wave propagation
based on curvelets. We only scratch the surface of this topic, the interested reader is referred to [5] and
the references therein. Due to the fact that the matrices G,G′ are almost diagonal and therefore also
bounded on all lp spaces, we immediately arrive at the following result.

Theorem 6.4. Define
EΣ := 〈E(t)Σ,Σ′〉.

then the matrix operator induced by EΣ is bounded on lp for any p > 0.
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