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Abstract. This paper deals with linear-quadratic optimal control problems constrained by a
parametric or stochastic elliptic or parabolic PDE. We address the (difficult) case that the number
of parameters may be countable infinite, i.e., σj with j ∈ N, and that the PDE operator may depend
non-affinely on the parameters. We consider tracking-type functionals and distributed as well as
boundary controls. Building on recent results in [CDS1, CDS2], we show that the state and the
control are analytic as functions depending on these parameters σj . Polynomial approximations of
state and control in terms of the possibly countably many stochastic coordinates σj will be used to
establish sparsity of polynomial “generalized polynomial chaos (gpc)” expansions of the state and
the control with respect to the parameter sequence (σj)j≥1. These imply, in particular, convergence
rates of best N -term truncations of these expansions. The sparsity result allows in conjunction
with adaptive wavelet Galerkin schemes as in [SG11, G] for sparse, adaptive tensor discretizations
of control problems constrained by linear elliptic and parabolic PDEs developed in [DK, GK, K].

Key words. Linear-quadratic optimal control, linear parametric or stochastic PDE, distributed
or boundary control, elliptic or parabolic PDE, analyticity, polynomial chaos approximation.

AMS subject classifications. 41A, 65K10, 65N99, 49N10, 65C30.

1. Introduction. Increasingly, simulation and design of complex systems re-
quires the numerical solution of partial differential equations (PDEs) involving a large
number of parameters. We mention only PDEs on high dimensional, so-called “design
spaces”. Also stochastic PDEs driven by noise lead to parametric PDEs when Wiener
chaos expansions are employed to circumvent Monte-Carlo simulations. Of particu-
lar interest in this respect are optimal control problems of parametric systems that
are governed by linear parametric or stochastic PDEs: in PDE-constrained control
with a tracking-type optimization functional, the goal is to steer the solution y of the
PDE, called the state, towards a prescribed desired state in a least-squares sense while
minimizing the effort for the control u. If, however, the PDE depends on (possibly
countably many) parameters arising, for example, from random field inputs in models
of uncertainty, this would require the solution of the control problem for each instance
of the parameters. Already for a single random variable σ in the diffusion coefficient,
the computational expense would be enormous: each realization of this variable, e.g.,
in a Monte-Carlo simulation with N draws, would require the solution of the whole
control problem, resulting in necessarily N solutions of the control problem.

For deterministic linear-quadratic control problems constrained by elliptic PDEs,
one needs to solve as first order necessary and sufficient conditions for optimality a
coupled system of linear PDEs for the state y and the adjoint state p each, and a
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2 Angela Kunoth and Christoph Schwab

third equation coupling p with the control u. For such systems of PDEs, in recent
years solvers became available which produce optimal numerical approximations of
the solution triple (y, p, u), in the sense that accuracy versus work to obtain these
approximations is provably proportional to those of best N -term approximations of
the solution triple (y, p, u) which allow to achieve accuracy ε with an optimal order
of arithmetic operations (when compared to wavelet-best N term approximations)
see [DeVK] and the articles therein for related concepts of nonlinear approximation
applied to operator equations. These solvers are based on adaptive wavelet schemes
for which convergence and optimal complexity of the scheme has been proved firstly
for distributed and Neumann boundary control problems in [DK]. We wish to point
out that it is not crucial in the present context to work with wavelets; any (possibly
adaptive) scheme with the property that it guarantees to provide the solution triple
(y, p, u) up to accuracy ε each with a provably minimal amount of degrees of freedom
and complexity for a well-posed system of coupled PDEs having possibly non-smooth
solutions would serve our purpose.

This paper is structured as follows. In the next section, it is proved that the
solution of a linear operator equation involving a general parameter-dependent saddle
point operator in an abstract setting is analytic, with precise bounds on the growth
of the partial derivatives. This allows us in Section 2.4 to obtain rates of N -term
generalized polynomial chaos approximations. These results are specified in Section 3
to linear-quadratic control problems constrained by an elliptic PDE with distributed,
Neumann or Dirichlet boundary controls and in Section 4 to control problems con-
strained by linear parabolic PDEs. We conclude in Section 5 with some remarks how
to realize this practically and how to combine the gpc approximations with discretiza-
tions with respect to space and time.

2. Parametric saddle point problems. We generalize the results of [CDS1]
and study well-posedness, regularity and polynomial approximation of solutions for a
family of abstract parametric saddle point problems. Particular attention is paid to
the case of countably many parameters. The abstract results in the present section
are more general than what is required in our ensuing treatment of optimal control
problems and are of independent interest. We have in mind (and will discuss in detail
in the following sections) optimal control problems for systems constrained by elliptic
and parabolic PDEs with random coefficients.

2.1. An abstract result. Throughout, we denote by X and Y two reflexive
Banach spaces over R (all results will hold with the obvious modifications also for
spaces over C) with (topological) duals X ′ and Y ′, respectively. By L(X ,Y ′), we
denote the set of bounded linear operators G : X → Y ′. The Riesz representation
theorem associates with each G ∈ L(X ,Y ′) a unique bilinear form G(·, ·) : X×Y → R
by means of

G(v, w) = 〈w,Gv〉Y×Y′ for all v ∈ X , w ∈ Y . (2.1)

Here and in what follows, we indicate spaces in duality pairings 〈·, ·〉 by subscripts.
We shall be interested in the solution of linear operator equations Gq = g and

make use of the following solvability result which is a straightforward consequence of
the closed graph theorem, see, e.g., [BF].

Proposition 1. An operator G ∈ L(X ,Y ′) is boundedly invertible if and only
if its associated bilinear form satisfies the inf-sup conditions: there exists a constant
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γ > 0 such that

inf
0 $=v∈X

sup
0 $=w∈Y

G(v, w)
‖v‖X ‖w‖Y

≥ γ (2.2)

and

inf
0 $=w∈Y

sup
0 $=v∈X

G(v, w)
‖v‖X ‖w‖Y

≥ γ . (2.3)

If (2.2) and (2.3) hold, then for every g ∈ Y ′ the operator equation

find q ∈ X : G(q, v) = 〈g, v〉Y′×Y ∀v ∈ Y (2.4)

admits a unique solution q ∈ X . There holds the a-priori estimate

‖q‖X ≤ ‖g‖Y′

γ
. (2.5)

2.2. Parametric operator families. In the present paper, we shall be inter-
ested in parametric families of operators G. We admit both, finitely many as well as
infinitely many parameters. To this end, we denote by σ := (σj)j∈S ∈ S the set of
parameters where S ⊆ N is an at most countable index set. We assume the parameters
to take values in S ⊂ RS. In particular, in the case S = N it holds S ⊆ RN, i.e., each
realization of σ is a sequence of real numbers. We shall consider in particular the
parameter domain S = [−1, 1]N which we equip with the uniform probability measure

ρ(σ) =
⊗

j≥1

dσj

2
. (2.6)

By NN
0 we denote the set of all sequences of nonnegative integers, and by F = {ν ∈ NN

0 :
|ν| < ∞} the set of “finitely supported” such sequences, i.e., sequences of nonnegative
integers which have only a finite number of nonzero entries. For ν ∈ F, we denote by
n ⊂ N the set of coordinates j such that νj .= 0, with j repeated νj ≥ 1 many times.
Analogously, m ⊂ N denotes the supporting coordinate set for µ ∈ F.

We consider parametric families of continuous, linear operators which we denote
as G(σ) ∈ L(X ,Y ′). We now make precise the dependence of G(σ) on the parameter
sequence σ which is required for our regularity and approximation results.

Assumption 1. The parametric operator family {G(σ) ∈ L(X ,Y ′) : σ ∈ S} is a
regular p-analytic operator family for some 0 < p ≤ 1, i.e.,

(i) G(σ) ∈ L(X ,Y ′) is boundedly invertible for every σ ∈ S with uniformly
bounded inverses G(σ)−1 ∈ L(Y ′,X ), i.e., there exists C0 > 0 such that

sup
σ∈S

‖G(σ)−1‖L(Y′,X ) ≤ C0 (2.7)

and
(ii) for any fixed σ ∈ [−1, 1]N, the operators G(σ) are analytic with respect to

each σj such that there exists a nonnegative sequence b = (bj)j≥1 ∈ &p(N)
such that

∀ν ∈ F\{0} : sup
σ∈S

∥∥(G(0))−1(∂ν
σG(σ))

∥∥
L(X ,X )

≤ C0b
ν . (2.8)

Here ∂ν
σG(σ) := ∂ν1

∂σ1

∂ν2

∂σ2
· · ·G(σ); the notation bν signifies the (finite due to

ν ∈ F) product bν1
1 bν2

2 ... and we use the convention 00 := 1.
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Affine Parameter Dependence. The special case of affine parameter depen-
dence arises, for example, in diffusion problems where the diffusion coefficients are
given in terms of a Karhunen-Loève expansion (see, e.g. [ST] for such Karhunen-
Loève expansions and their numerical analysis, in the context of elliptic PDEs with
random coefficients). Then, there exists a family {Gj}j≥0 ⊂ L(X ,Y ′) such that G(σ)
can be written in the form

∀σ ∈ S : G(σ) = G0 +
∑

j≥1

σjGj . (2.9)

We shall refer to G0 = G(0) as “nominal”, or ‘mean-field” operator, and to Gj , j ≥ 1
as “fluctuation” operators. In order for the sum in (2.9) to converge, we impose the
following assumptions on {Gj}j≥0. In doing so, we associate with the operator Gj

the bilinear forms Gj(·, ·) : X ×Y → R.
Assumption 2. The family of operators {Gj}j≥0 in (2.9) satisfies the following

conditions:
1. The “mean field” operator G0 ∈ L(X ,Y ′) is boundedly invertible, i.e. (cf.

Proposition 1) there exists γ0 > 0 such that

inf
0 $=v∈X

sup
0 $=w∈Y

G0(v, w)

‖v‖X ‖w‖Y
≥ γ0 (2.10)

and that

inf
0 $=w∈Y

sup
0 $=v∈X

G0(v, w)

‖v‖X ‖w‖Y
≥ γ0 . (2.11)

2. The “fluctuation” operators {Gj}j≥1 are small with respect to G0 in the fol-
lowing sense: there exists a constant 0 < κ < 1 such that

∑

j≥1

‖Gj‖X→Y′ ≤ κγ0 . (2.12)

We remark that with (2.10), (2.11), condition (2.12) follows from

∑

j≥1

‖G−1
0 Gj‖X→X ≤ κ . (2.13)

We show next that, under Assumption 2, the parametric family G(σ) is boundedly
invertible uniformly with respect to the parameter vector σ belonging to the parameter
domain S = [−1, 1]N.

Theorem 2. Under Assumption 2, for every realization σ ∈ S = [−1, 1]N of the
parameter vector, the parametric operator G(σ) is boundedly invertible. Specifically,
for the bilinear form G(σ; ·, ·) : X × Y → R associated with G(σ) ∈ L(X ,Y ′) there
hold the uniform inf-sup conditions with γ = (1− κ)γ0 > 0

∀σ ∈ S : inf
0 $=v∈X

sup
0 $=w∈Y

G(σ; v, w)
‖v‖X ‖w‖Y

≥ γ (2.14)

and

∀σ ∈ S : inf
0 $=w∈Y

sup
0 $=v∈X

G(σ; v, w)
‖v‖X ‖w‖Y

≥ γ . (2.15)
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In particular, for every g ∈ Y ′ and for every σ ∈ S, the parametric operator equation

find q(σ) ∈ X : G(σ; q(σ), v) = 〈g, v〉Y×Y′ ∀v ∈ Y (2.16)

admits a unique solution q(σ) which satisfies the a-priori estimate

sup
σ∈S

‖q(σ)‖X ≤ ‖g‖Y′

(1− κ)γ0
. (2.17)

Proof. As the result is essentially a perturbation result, there are several ways to
prove it. One approach, which was used for example in [G], is based on a Neumann
Series argument. We give an alternative proof by verifying the inf-sup conditions
directly. The inf-sup condition (2.2) is equivalent to the following assertion: given
v ∈ X , there exists wv ∈ Y such that i) ‖wv‖Y ≤ c1‖v‖X and ii) G(v, wv) ≥ c2‖v‖2X .
Then (2.2) holds with γ = c2/c1.

By Assumption 2, in particular by (2.10), i) and ii) are satisfied for the bilinear
form G0(·, ·) with constants c1,0 and c2,0, i.e., γ0 = c2,0/c1,0.

With v ∈ X arbitrary and with wv ∈ Y as in i) and ii) for the bilinear form
G0(·, ·) (in particular, independent of σ), we obtain for every σ ∈ S = [−1, 1]N

G(σ; v, wv) = G0(v, wv) +
∑

j≥1

σjGj(v, wv)

≥ c2,0‖v‖2X −
∑

j≥1

|Gj(v, wv)|

= c2,0‖v‖2X − c1,0
∑

j≥1

‖Gj‖X→Y′‖v‖2X

=



c2,0 − c1,0
∑

j≥1

‖Gj‖X→Y′



 ‖v‖2X

≥ c2,0(1− κ)‖v‖2X
≥ c2,0

c1,0
(1− κ)‖v‖X ‖wv‖Y

= γ0(1− κ)‖v‖X ‖wv‖Y .

This implies (2.14). The stability condition (2.15) is verified analogously. The a-priori
bound (2.17) follows then from (2.5) with the constant γ = (1− κ)γ0.

From the preceding considerations, the following is readily verified.
Corollary 3. The affine parametric operator family (2.9) satisfies Assumption

1 with

C0 =
1

(1− κ)γ0
and bj :=

‖Gj‖X→Y′

(1− κ)γ0
for all j ≥ 1 .

2.3. Analytic dependence of solutions. We now establish that the depen-
dence of the solution q(σ) on σ is analytic, with precise bounds on the growth of the
partial derivatives. There holds

Theorem 4. Under Assumption 1, for every f ∈ Y ′ and every σ ∈ S there exists
a unique solution q(σ) ∈ X of the parametric operator equation

G(σ) q(σ) = f in Y ′. (2.18)
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The parametric solution family q(σ) depends analytically on the parameters, and the
partial derivatives of the parametric solution family q(σ) satisfy the bounds

sup
σ∈S

‖(∂ν
σq)(σ)‖X ≤ C0‖f‖Y′ |ν|! b̃ν for all ν ∈ F, (2.19)

where 0! := 1 and the sequence b̃ = (b̃j)j≥1 ∈ &p(N) is defined by

b̃j = bj/ ln 2 for all j ∈ N.

Proof. Rather than proving (2.19), we prove the (slightly) stronger bound

sup
σ∈S

‖(∂ν
σq)(σ)‖X ≤ C0‖f‖Y′ d|ν|b

ν for all ν ∈ F , (2.20)

where the sequence d = (dn)n≥0 is defined recursively by

d0 := 1 , dn :=
n−1∑

i=0

(
n

i

)
di , n = 1, 2, ... . (2.21)

The proof of (2.20) proceeds by induction with respect to |ν|: if |ν| = 0, ν = 0 and
the assertion (2.20) follows from (2.7) and the a-priori bound (2.5). For 0 .= ν ∈ F,
we take the derivative ∂ν

σ of the equation (2.18). Recalling for the (finitely supported)
multiindices ν, µ ∈ F their associated (finite) index sets n,m ⊂ N and abbreviate
n := |n| = |ν|, m := |m| = |µ|, respectively, we find with the generalized product rule
due to the σ-independence of f the identity

∑

m∈P(n)

∂n\m
σ (G(σ)) ∂m

σ (q(σ)) = 0 for all σ ∈ S .

Here, P(n) denotes the power set of n ⊂ N. Solving this identity for ∂n
σ(q(σ)), we find

G(σ)(∂n
σq)(σ) = −

∑

m∈P(n)\{n}

∂n\m
σ (G(σ)) ∂m

σ (q(σ)) in Y ′ .

From the bounded invertibility of G(σ), we get the recursion

(∂ν
σq)(σ) = −

∑

m∈P(n)\{n}

(G(σ))−1∂n\m
σ (G(σ)) ∂m

σ (q(σ)) in Y ′ . (2.22)

Taking the ‖ · ‖X norm on both sides and using the triangle inequality, we find

‖(∂ν
σq)(σ)‖X ≤

∑

m∈P(n)\{n}

‖(G(σ))−1∂n\m
σ (G(σ))‖L(X ,X )‖∂m

σ (q(σ))‖X

≤
n−1∑

m=0

∑

m∈P(n)
|m|=m

‖(G(σ))−1∂n\m
σ (G(σ))‖L(X ,X )‖∂m

σ (q(σ))‖X .
(2.23)

Now (2.20) for n = |ν| = 1 follows directly, upon using (2.8) for the singleton sets
n = {j}.
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We now proceed by induction with respect to |ν|. We consider ν ∈ F such that
n = |ν| ≥ 2 and assume that the assertion (2.20) has already been proved for all ν̃ ∈ F
such that 1 ≤ |ν̃| < n. We then obtain from (2.23)

‖(∂ν
σq)(σ)‖X ≤

∑

m∈P(n)\{n}

‖(G(σ))−1∂n\m
σ (G(σ))‖L(X ,X )‖∂m

σ (q(σ))‖X

≤
n−1∑

m=0

∑

m∈P(n)
|m|=m

C0‖f‖Y′ bν−µdmbµ

= C0‖f‖Y′ bν
n−1∑

m=0

(
n

m

)
dm

= C0‖f‖Y′ bνdn

which is (2.20) for ν ∈ F such that |ν| = n.
The assertion (2.19) now follows from (2.20) and the elementary inequality

dn ≤
(

1

ln 2

)n

n! for all n ∈ N .

2.4. Rates of N-term gpc approximation. The estimates (2.19) of the par-
tial derivatives of q(σ) with respect to σ will be the basis for quantifying approxima-
bility of q(σ) in the space L2(S, ρ;X ). To this end, let Ln(t) denote the Legendre
polynomial of degree n ≥ 0 in (−1, 1) which is normalized such that

∫ 1

−1
|Ln(t)|2

dt

2
= 1 .

Then L0 = 1 and {Ln}n≥0 is an orthonormal basis of L2(−1, 1). For ν ∈ F, denote
ν! = ν1! ν2! ... and introduce the tensorized Legendre polynomials

Lν(σ) =
∏

j≥1

Lνj (σj) .

Note that for each ν ∈ F, there are only finitely many nontrivial factors in this
product, and each Lν(σ) depends only on finitely many of the σj . By construction,
the countable collection {Lν(σ) : ν ∈ F} is a Riesz basis, i.e. a dense, orthonormal
family in L2(S, ρ): in particular, each v ∈ L2(S, ρ;X ) admits an orthogonal expansion

v(σ) =
∑

ν∈F

vνLν(σ) , where vν :=

∫

S
v(σ)Lν(σ)dρ(σ) ∈ X (2.24)

and there holds Parseval’s equality

‖v‖2L2(S,ρ;X ) =
∑

µ∈F

‖vν‖2X . (2.25)

The Legendre representation (2.24) is the basis for the analysis of best N -term ap-
proximation rates. To this end, denote by Λ ⊂ F a subset of cardinalityN = #Λ < ∞.
Then, with qν denoting the Legendre coefficients of the solution q(σ) of the parametric
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operator equation (2.18), Parseval’s identity (2.25) implies

∥∥q(σ)−
∑

ν∈Λ

qνLν(σ)
∥∥2
L2(S,ρ;X )

= inf

{
‖q(σ)− vΛ‖2L2(S,ρ;X ) : vΛ ∈ span

{∑

ν∈Λ

vνLν(σ)
}}

=
∑

ν $∈Λ

‖qν‖2X .

Best N -term approximation rates in ‖ ·‖ L2(S,ρ;X ) will therefore follow from summa-
bility of the norms αν = ‖qν‖X of the Legendre coefficients by Stechkin’s Lemma
whose’s proof is elementary, see, e.g., [DeV].

Lemma 5. Let 0 < p ≤ q and α = (αν)ν∈F be a sequence in &p(F). If FN is the
set of indices corresponding to the N largest values of |αν |, we have

( ∑

ν /∈FN

|αν |q
)1/q ≤ ‖α‖%p(F) N−r,

where r := 1
p − 1

q ≥ 0.
We therefore need to address the p-summability of the ‖·‖X norms of the Legendre

coefficients qν of q(σ). We first prove estimates for these coefficients.
Proposition 6. Let 0 < p ≤ 1 and b = (bj)j≥1 be as in Assumption 1 above.

Moreoever, let the sequence d = (dj)j≥1 be defined by dj := βbj where β = 1/(
√
3 ln 2),

and b̃ = (b̃j)j≥1 be defined by b̃j := bj/ ln 2. Under Assumption 1, we then have for
all ν ∈ F

‖qν‖X ≤ C0‖f‖Y′
|ν|!
ν!

dν (2.26)

and

‖qν‖X ‖Lν‖L∞(S) ≤ C0‖f‖Y′
|ν|!
ν!

b̃ν . (2.27)

Proof. In view of the representation (2.24) in terms of Legendre polynomials, the
expansion coefficients qν of the solution q(σ) of (2.18) read for any ν ∈ F

qν =

∫

S
q(σ)Lν(σ) dρ(σ) ∈ X . (2.28)

Since q(σ) depends analytically on σ, we can use repeated integration by parts to each
of the one-dimensional integrals in (2.28), see the proof of Corollary 6.1 in [CDS1], to
arrive at the a-priori estimate

‖qν‖X ≤ β|ν|

ν!
sup
σ∈S

‖(∂ν
σq)(σ)‖X .

Among others, such estimates allow to steer anisotropic sparse interpolation algo-
rithms of Smolyak type.

Applying (2.19) to further estimate the right hand side immediately yields (2.26).
Similarly, also the estimate (2.27) follows.
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Based on the estimates in Proposition 6, we obtain the following result on con-
vergence rates of best N -term polynomial approximations of the parametric solution
q(σ) of the parametric operator equation (2.18).

Theorem 7. Under Assumption 1 with some 0 < p ≤ 1, there exists a sequence
(ΛN )N∈N ⊂ F of index sets whose cardinality does not exceed N and a constant C > 0
independent of N such that

‖q − qN‖L2(S,ρ;X ) ≤ CN−r , r =
1

p
− 1

2
. (2.29)

Here, qN := qΛN where qΛN denotes the sequence in L2(S, ρ;X ) whose entries qν
equal those of the sequence q if ν ∈ ΛN ⊂ F and which equal zero otherwise.

The proof of this theorem proceeds along the lines of the argument in [CDS1] for
the parametric diffusion problem: we use the bounds (2.26) and (2.27), and Theorem
7.2 of [CDS1], i.e.,

for 0 < p ≤ 1 :

(
|ν|!
ν!

αν

)

ν∈F

∈ &p(F) if and only if ‖α‖%1(N) < 1 and α ∈ &p(N) .

Applying this result to the sequences α = d and to α = b̃ = (ln 2)−1b, we obtain
the p-summability, and, by referring to the Stechkin Lemma 5 with q = 2 and the
Parseval identity (2.25), the assertion (2.29) follows.

We next illustrate the scope of the foregoing abstract results with several concrete
instances of PDE-constrained control problems: we consider problems constrained
by parametric elliptic or parabolic PDE operators and different types of controls.
In either case, we develop gpc approximation results by identifying the parametric
control problem as particular case of the abstract parametric saddle point problem
(2.18). Importantly, due to our formulation as a saddle point problem, the best N -
term approximation rates obtained from Theorem 7 pertain to concurrent N -term
approximation of state and control with the same set of active gpc coefficients.

3. Parametric Linear-Quadratic Elliptic Control Problems. We describe
the setup of the control problem constrained by a linear parametric elliptic PDE by
first addressing conditions on the PDE constraint as an operator equation with a
parametric linear elliptic operator A = A(σ) on a reflexive Banach space Y . Our
standard example with be a scalar diffusion problem.

Assumption 3. For each fixed σ ∈ S, the operator A(σ) ∈ L(Y, Y ′) is symmetric
and boundedly invertible, i.e., A(σ) : Y → Y ′ is linear, self-adjoint, invertible and
satisfies the continuity and coercivity estimates

∣∣〈v,A(σ)w〉Y×Y ′

∣∣ ≤ CA‖v‖Y ‖w‖Y , v, w ∈ Y, (3.1)

〈v,A(σ)v〉Y×Y ′ ≥ cA‖v‖2Y , v ∈ Y, (3.2)

with some constants 0 < cA ≤ CA < ∞ independent of σ.
These imply the estimates

cA‖w‖Y ≤ ‖A(σ)w‖Y ′ ≤ CA‖w‖Y for any w ∈ Y (3.3)

which, in terms of operator norms, may be expressed as

‖A(σ)‖Y→Y ′ := sup
w∈Y, w $≡0

‖A(σ)w‖Y ′

‖w‖Y
≤ CA, ‖A(σ)−1‖Y ′→Y ≤ c−1

A . (3.4)
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If the precise format of the constants in (3.3) does not matter, we will abbreviate this
as

‖A(σ)w‖Y ′ ∼ ‖w‖Y for any w ∈ Y (3.5)

and use a <∼ b or a >∼ b for the corresponding one-sided estimates.
Some examples of operators A and space Y are provided next which satisfy As-

sumption 3 provided that (3.6) stated below holds. In all the following, Ω ⊂ Rd

denotes a bounded domain with Lipschitz boundary ∂Ω.
Example 8.
(i) (Dirichlet problem with homogeneous Dirichlet boundary conditions)

〈v,A(σ)w〉Y×Y ′ =
∫
Ω(a(σ)∇xv ·∇xw)dx, Y = H1

0 (Ω).
In this and all the following examples, the coefficient a(σ) is supposed to
satisfy the uniform ellipticity assumption UEA(ra, Ra): there exist positive
constants ra, Ra such that for all x ∈ Ω and all σ ∈ S it holds

0 < ra ≤ a(x,σ) ≤ Ra < ∞. (3.6)

(ii) (Reaction-diffusion problem with possibly anisotropic diffusion with Neumann
boundary conditions)

〈v,A(σ)w〉Y×Y ′ =

∫

Ω
(a(σ)∇xv ·∇xw + vw)dx, Y = H1(Ω) .

Note that Assumption 3 is, due to the self-adjointness a special case of the con-
ditions on the operator G in Proposition 1 with X = Y = Y . Thus, this assumption
implies that for any given deterministic f ∈ Y ′ and fixed σ ∈ S, the operator equation

A(σ) y = f (3.7)

has a unique solution y = y(σ) ∈ Y .

3.1. Distributed or Neumann boundary control. Allowing an additional
function u = u(σ) on the right hand side of (3.7), we ask to steer the solution of such
an equation towards a prescribed desired deterministic state y∗, under the condition
that the effort on u should be minimal. Consequently, we can define an optimal
control problem with a functional of tracking type as follows: minimize for σ ∈ S over
the state y(σ) and the control u(σ) the functional

J̃(y(σ), u(σ)) :=
1

2
‖Ty(σ)− y∗‖2O +

ω

2
‖u(σ)‖2U (3.8)

subject to the linear operator equation

A(σ) y(σ) = f + Eu(σ). (3.9)

Here ω > 0 is a fixed constant which balances the least squares approximation of the
states and the norm for the control and T, E are some linear (trace and extension)
operators described below.

We need to add some requirements on the norms used in (3.8). In view of As-
sumption 3, in order for (3.9) to have a well-defined unique solution, we need to assure
that either y ∈ Y or Eu ∈ Y ′. The latter is satisfied if the control space U defining
the penalty norm part of the functional is such that U ⊆ Y ′ with continuous embed-
ding. Then the observation space O defining the least squares part of the functional
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(3.19) may be chosen as any O ⊇ Y . In this case, T may be any continuous linear
operator from Y onto its range, i.e., ‖Tv‖range(T) <∼ ‖v‖Y for v ∈ Y with range(T)
continuously embedded in O. Alternatively, assuring Ty ∈ O and selecting O ⊆ Y
embedded continuously would allow for any choice of U .

There are two standard examples covered by this formulation which we have in
mind (see [DK] for more general formulations). A distributed control problem is one
where the control is exerted on all of the right hand side of (3.9), i.e., E is just
the identity. This case is perhaps rather of academic nature but serves as a good
illustration for the essential mechanisms.

Example 9. (Dirichlet problem with distributed control)
Here the PDE constraints are given by the standard scalar second order Dirichlet
problem with distributed control,

−∂x(a(σ)∂x) y(σ) = f + u(σ) in Ω,

y(σ) = 0 on ∂Ω,
(3.10)

which gives rise to the operator equation (3.9) with

〈v,A(σ)w〉Y×Y ′ =

∫

Ω
a(σ)∇xv ·∇xw dx, Y = H1

0 (Ω), Y ′ = H−1(Ω), (3.11)

and given f ∈ Y ′. Admissible choices for O,U are the classical case O = U = L2(Ω),
see [L], or the natural choice O = Y and U = Y ′, in which case the operators T,E
are the canonical injections T = I, E = I. Many more possible choices covering, in
particular, fractional Sobolev spaces, have been discussed in [DK], as well as including
a class of Neumann problems with distributed control.

Example 10. (Reaction-diffusion problem with Neumann boundary control)
Consider the second order Neumann problem in strong form

−∂x(a(σ)∂x) y(σ) + y(σ) = f in Ω,

(a(σ)∇xy(σ)) · n = u(σ) on ∂Ω,
(3.12)

where n denotes the outward normal at ∂Ω. Here the weak form is based on setting
Y = H1(Ω) and

〈v,A(σ)w〉Y×Y ′ =

∫

Ω
(a(σ)∇xv ·∇xw + vw)dx, (3.13)

and given f ∈ Y ′. Recall that for any v ∈ H1(Ω), its normal trace n · ∇xv to ∂Ω
belongs to H−1/2(∂Ω). Thus, in order for the right hand side of (3.12) to be well-
defined, the control u must belong to H−1/2(∂Ω), i.e., the operator E is the adjoint
of the normal trace operator, or, E : H−1/2(∂Ω) → Y ′ is an extension operator to Ω.
The formulation of the constraint as an operator equation reads in this case

A(σ) y(σ) = f + Eu(σ). (3.14)

As previously, one could choose O to be a space defined on Ω. However, a more
frequent practical situation arises when one wants to achieve a prescribed state on
some part of the boundary. Denote by Γ◦ ⊆ ∂Ω an observation boundary with strictly
positive d−1-dimensional measure and by T : H1(Ω) → H1/2(Γ◦) the trace operator to
this part of the boundary. Then an admissible choice is O = H1/2(Γ◦). As discussed
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above, we need to require for the control that u ∈ H−1/2(∂Ω). For these choices, the
functional (3.8) is of the form

J̃(y, u) =
1

2
‖Ty − y∗‖2H1/2(Γ◦)

+
ω

2
‖u‖2H−1/2(∂Ω). (3.15)

The fractional trace norms appearing here in a natural form are often replaced, perhaps
partly due to the difficulty of evaluating fractional order Sobolev norms numerically,
by the classical choice Γ◦ = ∂Ω and O = U = L2(∂Ω) [L]; we hasten to add, however,
that in the context of multiresolution discretizations in Ω and on ∂Ω, fractional Sobolev
norms can be realized numerically in optimal complexity (see, e.g.,[DK, GK] and the
references there).

One calls (3.8) with constraints (3.9) a linear-quadratic control problem: a qua-
dratic functional is to be minimized subject to a linear equation coupling state and
control. From an optimization point of view, the solution of this problem has a simple
structure: on account of J̃ being convex, one only needs to consider the first order
conditions for optimality. To derive these, for σ ∈ S, in principle, the dual operator
of A(σ) comes into play which is defined by

〈A(σ)∗v, w〉Y ′×Y := 〈v,A(σ)w〉Y×Y ′ (3.16)

that is, A(σ)∗ ∈ L(Y, Y ′). Of course, since in Assumption 3 A(σ) was required to be
self-adjoint for each fixed σ ∈ S, we have A(σ)∗ = A(σ).

Note that in case of an unsymmetric A(σ), the property to be boundedly invertible
(3.5) immediately carries over to A(σ)∗, that is, for fixed σ ∈ S and any v ∈ Y , one
has the mapping property

‖A(σ)∗v‖Y ′ ∼ ‖v‖Y . (3.17)

For ease of presentation in this paper, we select here the natural case O = Y
and U = Y ′ resulting in T = I and E = I for the trace and extension operators.
The more general case which may involve Sobolev spaces with possibly fractional
smoothness indices has been treated in [DK] for PDE-constrained control problems
without parameters.

To represent the Hilbert space norms in the optimization functional, we shall
employ Riesz operators RY : Y → Y ′ defined by

〈v,RY w〉Y×Y ′ := (v, w)Y , v, w ∈ Y. (3.18)

Defining RY ′ : Y ′ → Y correspondingly by 〈v,RY ′w〉Y ′×Y := (v, w)Y ′ for v, w ∈ Y ′,

this implies RY ′ = R−1
Y so that we can write both norms in the target functional in

terms of one Riesz operator R = RY . Since the inner product (·, ·)Y is symmetric,
the Riesz operator R is also symmetric.

Proposition 11. Necessary and sufficient for the linear-quadratic control prob-
lem to minimize for σ ∈ S

J(y(σ), u(σ)) :=
1

2
‖y(σ)− y∗‖2Y +

ω

2
‖u(σ)‖2Y ′ (3.19)

over all (y(σ), u(σ)) ∈ Y ×Y ′ subject to (3.9) are the Euler equations for the solution
triple (y(σ), p(σ), u(σ)) ∈ Y × Y × Y ′

A(σ) y(σ) = f + u(σ)

(EE) A(σ)∗ p(σ) = R(y∗ − y(σ)) (3.20)

ωR−1 u(σ) = p(σ). (3.21)
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Proof. We present a proof of this well-known result only to bring out the roles of
the Riesz operators; we skip in this proof the dependence of σ for better readability.
The derivation of (EE) is based on computing the zeroes of the first order variations
of the Lagrangian functional

Lagr(y, p, u) := J(y, u) + 〈p,A y − f − u〉Y×Y ′ , (3.22)

introducing a new variable p ∈ Y called the Lagrangian or adjoint variable by which
the constraints (3.9) are appended to the functional J , see, e.g., [L]. By inserting
definition (3.19) and (3.18), the Lagrangian functional attains the form

Lagr(y, p, u) = 1
2 〈y − y∗, R(y − y∗)〉Y×Y ′ + ω

2

〈
u,R−1u

〉
Y ′×Y

+ 〈p,A y − f − u〉Y×Y ′ .

(3.23)
The constraint (3.9) is recovered as the zero of the first variation of Lagr(y, p, u) in
direction of p. Moreover, ∂

∂u Lagr(y, p, u) = 0 yields ωR−1u− p = 0. Finally,

∂

∂y
Lagr(y, p, u) := lim

δ→0

Lagr(y + δ, p, u)− Lagr(y, p, u)

δ

= lim
δ→0

1
2 〈δ, R(y − y∗)〉Y×Y ′ + 1

2 〈y − y∗, Rδ〉Y×Y ′ + 〈p,Aδ〉Y×Y ′

δ

= lim
δ→0

〈δ, R(y − y∗)〉Y×Y ′ + 〈p,Aδ〉Y×Y ′

δ

by symmetry of R. Bringing A on the other side of the dual form yields

∂

∂y
Lagr(y, p, u) = R(y − y∗) +A∗p

and therefore ∂
∂y Lagr(y, p, u) = 0 if and only if (3.20) holds.

In our formulation, the design equation (3.21) expresses the control just as a
weighted Riesz transformed adjoint state. For later analysis, it will help us to eliminate
the control using (3.21) and write (EE) as the condensed Euler equations for the
solution pair (y(σ), p(σ)) ∈ Y × Y

A(σ) y(σ) = f + 1
ωRp(σ) (3.24)

A(σ)∗ p(σ) = R(y∗ − y(σ)).

With the abbreviation ŷ∗ := Ry∗ ∈ Y ′, we write this as a coupled system to find for
given (f, ŷ∗) ∈ Y ′ × Y ′ a solution pair (y(σ), p(σ)) ∈ Y × Y which solves

(
A(σ) − 1

ω R

R A(σ)∗

)(
y(σ)

p(σ)

)
=

(
f

ŷ∗

)
. (3.25)

Identifying the matrix operator appearing in this system withG(σ) in the abstract
problem in Section 2, we define the corresponding bilinear form G(σ; ·, ·) : X ×X → R
where X := Y × Y , Y := X , for q = (y, p), q̃ = (ỹ, p̃) ∈ X by

G(σ; q, q̃) :=
〈
q,

(
A(σ) − 1

ω R

R A(σ)∗

)
q̃

〉

X×X ′

(3.26)

= 〈y,A(σ)ỹ〉Y×Y ′ − 1
ω 〈y,Rp̃〉Y×Y ′ + 〈p,Rỹ〉Y×Y ′ + 〈p,A(σ)∗p̃〉Y×Y ′ .
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We equip the space X with the norm

‖q‖X =

∥∥∥∥

(
y

p

)∥∥∥∥
Y×Y

= ‖y‖Y + ‖p‖Y . (3.27)

Proposition 12. The parametric bilinear form G(σ; ·, ·) : X × X → R is con-
tinuous on X ×X for any constant weight ω > 0, and uniformly with respect to the
parameter vector σ. It is coercive on X for ω = 1 with coercivity constant cG := cA

2
and cA from (3.2). For 0 < ω ≤ 1, it is coercive on X with a constant cG defined
below in (3.29). Moreover, it is symmetric for ω = 1.

Proof. The symmetry of G(σ; ·, ·) for ω = 1 follows immediately from the repre-
sentation (3.26) and by recalling that A(σ) is self-adjoint. The continuity of G(σ; ·, ·)
results from the definition of R (3.18) and applying Cauchy-Schwarz inequality, to-
gether with the continuity (3.1) of A(σ), i.e., for any q = (y, p), q̃ = (ỹ, p̃) ∈ X we
have from (3.26)

|G(σ; q, q̃)| ≤
∣∣〈y,A(σ)ỹ〉Y×Y ′

∣∣+
∣∣〈p,A(σ)∗p̃〉Y×Y ′

∣∣+ 1
ω |(y, p̃)Y |+ |(p, ỹ)Y |

≤ CA (‖y‖Y ‖ỹ‖Y + ‖p‖Y ‖p̃‖Y ) + 1
ω‖y‖Y ‖p̃‖Y + ‖p‖Y ‖ỹ‖Y

≤ CA

(
1 + 1

ω

)
‖q‖X ‖q̃‖X =: CG‖q‖X ‖q̃‖X . (3.28)

As for the coercivity, for q = (y, p) ∈ X , using the symmetry of R, its definition, the
coercivity (3.2) and Cauchy-Schwarz’ inequality, we infer for 0 < ω ≤ 1 (meaning that
(1− 1

ω ≤ 0)

G(σ; q, q) = 〈y,A(σ)y〉Y×Y ′ + 〈p,A(σ)∗p〉Y×Y ′ +
(
1− 1

ω

)
〈y,Rp〉Y×Y ′

≥ cA
(
‖y‖2Y + ‖p‖2Y

)
+
(
1
ω − 1

)
|(y, p)Y |

≥ cA
(
‖y‖2Y + ‖p‖2Y

)
+
(
1
ω − 1

)
‖y‖Y ‖p‖Y .

In case ω = 1, this immediately yields G(σ; q, q) ≥ cA
2 ‖q‖2X = cG‖q‖2X for every σ ∈ S.

For ω < 1, we obtain

G(σ; q, q) ≥ cA
(
‖y‖2Y + ‖p‖2Y

)
+
(
1
ω − 1

)
‖y‖Y ‖p‖Y

≥ min{ cA
2 , 1

ω − 1}‖q‖2X =: cG‖q‖2X . (3.29)

By the Theorem of Lax-Milgram, we therefore have, based on Proposition 12, the
following result.

Theorem 13. Under Assumption 3, for every 0 < ω ≤ 1 and for every σ ∈ S,
the control problem (3.25) admits a unique solution q(σ) = (y(σ), u(σ)) ∈ X for any
given deterministic right hand side g := (f, ŷ∗) ∈ X ′.

If, morever, the parametric family {A(σ) : σ ∈ S} depends on σ in a affine
fashion, i.e., if

A(σ) = A0 +
∑

j≥1

σjAj , (3.30)

the parametric matrix operator G(σ) ∈ L(X ,X ′) satisfies Assumption 2 with X =
Y = Y × Y .

Corollary 14. On account of Theorem 4, the preceding result establishes the si-
multaneous analyticity of state as well as of the costate, with respect to all parameters
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and therefore, by (3.21), also of the control. Moreover, by Theorem 7, this implies
sparsity of the tensorized Legendre expansion of the solution triple (y, p, u) and there-
fore, in particular, best N -term gpc approximation rates of all these quantities in the
L2(S, ρ;X ) norm.

Remark 15. Note that the affine dependence of the operator G(σ) in (3.26),
see Corollary 3, was crucial in being able to use the abstract results of Section 2.
Analogous analytic dependence results also hold for control problems with certain more
general parameter dependences.

Occasionally, it is useful to derive from (3.25) an equation for the control alone.
Proposition 16. Under Assumption 3, system (EE) reduces to the condensed

equation for the control

(A(σ)−∗RA(σ)−1 + ωR−1)u(σ) = A(σ)−∗R
(
y∗ −A(σ)−1f

)
(3.31)

(using A−∗ := (A∗)−1) which we abbreviate as

M(σ)u(σ) = m(σ). (3.32)

Proof. On account of Assumption 3, A(σ) ∈ L(Y, Y ′) is invertible uniformly with
respect to σ ∈ S so that (3.9) can be expressed as

y(σ) = A(σ)−1 f +A(σ)−1 u(σ). (3.33)

Inserted into (3.20) this yields

A(σ)∗p(σ) = −RA(σ)−1 u(σ) +R(y∗ −A(σ)−1f) (3.34)

and, again by Assumption 3,

p(σ) = −A(σ)−∗RA(σ)−1 u(σ) +A(σ)−∗R(y∗ −A(σ)−1f).

Using the identity (3.21), we can eliminate p(σ) and arrive at

ωR−1 u(σ) = −A(σ)−∗RA(σ)−1 u(σ) +A(σ)−∗R(y∗ −A(σ)−1f)

which is just (3.31).
Remark 17. We observe that the condensed equation (3.31) contains the bound-

edly invertible, parametric Schur complement operator M(σ); this operator, while be-
ing boundedly invertible, is not affine in the parameter vector σ anymore. Therefore,
the theory developed in Section 2 does not apply. Nevertheless, analytic parameter
dependence can be inferred for M(σ) from the structure of its definition, and analytic
continuation as in [CDS2] will allow to infer directly analytic dependence and best
N -term gpc approximation rates for the control u(σ) without approximation of the
state. As this requires introduction of complex extensions of all operators, forms and
spaces involved, we do not address this in detail here.

Remark 18. The setup of the class of control problems to minimize (3.19) sub-
ject to (3.9) is different from the stochastic control problems considered in [GLL] and
papers cited therein. There the Neumann boundary control is assumed to be determin-
istic independent of the parameters, and the expectation of the objective functional is
minimized. Moreover, the number of stochastic parameters is assumed to be finite.
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3.2. Dirichlet boundary control. The last and perhaps practically most rel-
evant example of control problems with a tracking-type functional and a stationary
PDE as constraint concerns problems with Dirichlet boundary control: minimize for
some given data y∗ the quadratic functional

J(y, u) =
1

2
‖y − y∗‖2O +

ω

2
‖u‖2U , (3.35)

where state y and control u are coupled through the linear elliptic boundary value
problem

−∇x · (a(σ)∇xy) + y = f in Ω,
y = u on Γ,

(a(σ)∇xy) · n = 0 on ∂Ω \ Γ.
(3.36)

Here Γ ⊂ ∂Ω denotes the control boundary assumed to be a set of positive Lebesgue
measure on which the control is exerted. Of course, we could allow again for an
observation boundary and trace to this boundary in (3.35) as in Example 10, see
[K]. We dispense with this generalization here and choose for the following simply
O = H1(Ω) and given observation y∗ ∈ H1(Ω). To formulate (3.36) in weak form,
we define A(σ) as in (3.13), and set Y = H1(Ω). It is because of the appearance
of the control u as a Dirichlet boundary condition in (3.36) that this is referred to
as a Dirichlet boundary control problem. As it will be required to allow for repeated
updates of the control, this suggests to formulate the constraints (3.36) weakly as
a saddle point problem itself which results from appending the Dirichlet boundary
conditions by Lagrange multipliers as follows. The trace operator to Γ, T : H1(Ω) →
H1/2(Γ) is surjective and defines a bilinear form

〈Tv, w〉H1/2(Γ)×(H1/2(Γ))′ = 〈Tv, w〉H1/2(Γ)×(H1/2(Γ))′ (3.37)

on H1(Ω) × (H1/2(Γ))′. Setting Q := (H1/2(Γ))′, the PDE constraint (3.36) can be
formulated weakly as a linear saddle point problem: find (y1, y2) ∈ Y ×Q such that

(
A(σ) T∗

T 0

)(
y1(σ)

y2(σ)

)
=

(
f

u(σ)

)
(3.38)

holds. The trace operator T : Y → Q is continuous and surjective on the kernel of
A(σ) yielding that the linear saddle point operator

B(σ) :=

(
A(σ) T∗

T 0

)
: Y ×Q → Y ′ ×Q′ (3.39)

is an isomorphism and one has the norm equivalence
∥∥∥∥B(σ)

(
v1
v2

)∥∥∥∥
Y ′×Q′

∼
∥∥∥∥

(
v1
v2

)∥∥∥∥
Y×Q

, (3.40)

see, e.g., [K]. Thus, if again A(σ) satisfies Assumption 3, we have assured that the
saddle point operator B(σ) for the PDE constraint defined in (3.38) also satisfies
Assumption 3. Finally, we choose for the control in (3.35) the natural space U =
H1/2(Γ). For the control problem to minimize (3.35) subject to (3.38), the optimality
conditions, derived analogously as in Proposition 11 are now to find for given f ∈
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Y ′, y∗ ∈ Y the quintuple (y1(σ), y2(σ), p1(σ), p2(σ), u(σ)) ∈ X×X×Q for X := Y ×Q
such that

B(σ)

(
y1(σ)

y2(σ)

)
=

(
f

u(σ)

)

(DEE) B(σ)∗
(
p1(σ)

p2(σ)

)
=

(
−RY (y(σ)− y∗)

0

)

ωRUu(σ) = p2(σ)

where RY is defined as in (3.18) and RU accordingly for (·, ·)U . Setting ŷ∗ := RY y∗ ∈
Y ′ and using the design equation in (DEE) to eliminate p2(σ), we arrive at the saddle
point system of saddle point problems similar to (3.25), to solve for y(σ), p(σ)) :=
(y1(σ), y2(σ), p1(σ), p2(σ)) ∈ X ×X the system

G(σ) :=




B(σ)

(
0 0
0 − 1

ωR
−1
U

)

(
RY 0
0 0

)
B(σ)∗





(
y(σ)
p(σ)

)
=





f
0
ŷ∗
0



 =: g . (3.41)

Corollary 19. Together with Theorem 13, we have therefore established again
the simultaneous analyticity of all the solution functions y(σ), p(σ), u(σ) for the case
that A(σ) depends affinely on σ according to (3.30). Moreover, applying again Theo-
rem 7, we have established best N -term gpc approximation rates for the state, costate
and control in the L2(S, ρ;X ) norm with the same rate r.

4. Parametric Linear-Quadratic Parabolic Control Problems. The pre-
ceding control problems were stationary, i.e., the equation of state was elliptic. We
now show how control problems with parabolic equations of state fit into the the ab-
stract results in Section 2. Accordingly, we introduce in the present section first an
appropriate functional frame work for parabolic evolution problems, following [SS].
In view of Theorem 2, we verify in particular the stability conditions (2.10), (2.11)
for the nominal parabolic operator G0, in the corresponding spaces X and Y and
establish its mapping properties and bounded invertibility. We then present examples
of optimal control problems, following [GK].

The functional setting of the nominal problem is next used to formulate results
for its parametric version and, in particular, for precise statements of smallness of per-
turbations. Sufficient conditions are once more given to cast the parametric parabolic
control problem into the abstract theory of Section 2, implying in particular analytic
dependence of state and controls on the parameter vector σ. Sufficient conditions on
the perturbations to ensure best N -term convergence rates will be identified.

4.1. Space–Time Variational Formulations of Parabolic State Equa-
tions. Denote by ΩT := I ×Ω with time interval I := (0, T ) the time–space cylinder
for functions f = f(t, x) depending on time t and space x. The parameter T < ∞
will always denote a finite time horizon. Let Y be a dense subspace of H := L2(Ω)
which is continuously embedded in L2(Ω) and denote by Y ′ its topological dual. The
associated dual form is denoted by 〈·, ·〉Y ′×Y or, shortly 〈·, ·〉. Later we will use 〈·, ·〉
also for duality pairings between function spaces on the time-space cylinder ΩT with
the precise meaning clear from the context. We consider abstract parabolic problems
as developed, e.g., in [L, Chapter III, pp. 100]. Specifically, we assume given for a.e.
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t ∈ I and for σ ∈ S bilinear forms a(σ, t; ·, ·) : Y × Y → R so that t 3→ a0(σ, t; ·, ·) is
measurable on I and such that a(σ, t; ·, ·) is continuous and elliptic on Y , uniformly
in t ∈ I and in σ ∈ S: there exist constants 0 < α1 ≤ α2 < ∞ independent of t such
that for a.e. t ∈ I and for every σ ∈ S

|a(σ, t; v, w)| ≤ α2‖v‖Y ‖w‖Y , v, w ∈ Y,

a(σ, t; v, v) ≥ α1‖v‖2Y , v ∈ Y .
(4.1)

By the Riesz representation theorem, there exists a one-parameter family of bounded,
linear operators A(σ, t) ∈ L(Y, Y ′) such that

∀σ ∈ S : 〈A(σ, t)v, w〉 := a(σ, t; v, w), v, w ∈ Y . (4.2)

Typically, A(σ, t) will be a linear elliptic differential operator of second order on Ω and
Y will denote a function space on Ω, such as, e.g., Y = H1

0 (Ω). We denote by L2(I;Z)
the space of all functions v = v(t, x) for which for a.e. t ∈ I one has v(t, ·) ∈ Z. Instead
of L2(I;Z), we will write this space as the (topological) tensor product of the two
separable Hilbert spaces, L2(I)⊗Z, which, by [A, Theorem 12.6.1], can be identified.

For analytical purposes, linear parabolic evolution equations are often viewed as
ordinary differential equations in Y (see, e.g., [E]): given an initial condition y0 ∈ H
and right-hand side f ∈ L2(I;Y ′), find y(σ; ·) in some function space on ΩT such that

〈∂y(σ;t,·)∂t , v〉+ 〈A(σ, t) y(σ; t, ·), v〉 = 〈f(t, ·), v〉 for all v ∈ Y and a.e. t ∈ (0, T ),

〈y(0, ·), v〉 = 〈y0, v〉 for all v ∈ H .
(4.3)

In order to cast such parabolic equations of state into the abstract setting of
Section 2 and as basis for the recently developed space-time adaptive, compressive
discretizations of such equations of state, however, space–time variational formulation
for (4.3) are required. One such formulation is based on the Bochner type solution
space

X := {w ∈ L2(I;Y ) : ∂w(t,·)
∂t ∈ L2(I;Y ′)} = L2(I;Y ) ∩H1(I;Y ′)

= (L2(I)⊗ Y ) ∩
(
H1(I)⊗ Y ′) (4.4)

equipped with the graph norm

‖w‖2X := ‖w‖2L2(I;Y ) + ‖∂w(t,·)
∂t ‖2L2(I;Y ′) (4.5)

and the Bochner space of test functions

Y := L2(I;Y )×H = (L2(I)⊗ Y )×H (4.6)

equipped, for v = (v1, v2) ∈ Y, with the norm

‖v‖2Y := ‖v1‖2L2(I;Y ) + ‖v2‖2H (4.7)

Note that v1 = v1(t, x) and v2 = v2(x). (We remark in passing that the choices
(4.4) of spaces incorporates the initial condition as essential condition in the space;
other possible formulations allow for the initial condition as natural condition, see
[ChSt11] for details on such formulations which, in the present context of tracking
type, high-dimensional parametric control problems, allow for completely analogous
results).
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Integration of (4.3) over t ∈ I leads to the variational problem: given f ∈ Y ′, for
every σ ∈ S find a function y(σ) ∈ Y

b(σ; y(σ), v) = 〈f, v〉 for all v = (v1, v2) ∈ Y, (4.8)

where the bilinear form b(σ; ·, ·) : X × Y → R is defined by

b(σ;w, (v1, v2)) :=

∫

I

(
〈∂w(t,·)

∂t , v1(t, ·)〉+ 〈A(σ, t)w(t, ·), v1(t, ·)〉
)
dt+ 〈w(0, ·), v2〉

(4.9)
and the right-hand side 〈f + y0, ·〉 : Y → R by

〈f, v1〉+ 〈y0, v2〉 :=
∫

I
〈f(t, ·), v1(t, ·)〉 dt+ 〈y0, v2〉 (4.10)

for v = (v1, v2) ∈ Y. It is well-known (see, e.g. [DL, Chapter XVIII, Sect. 3]) that
the parametric operator family {B(σ) : σ ∈ S} defined by the bilinear form b(σ; ·, ·) in
(4.9) is a family of isomorphisms from X to Y ′. In [SS], detailed bounds on the norms
of the operator and its inverse were established. To prepare the ensuing formulation
and regularity results on the parametric parabolic optimal control problem, we next
formulate the corresponding result for the state equation (4.8). This result is again
a special case of the abstract results, Theorem 4 and Theorem 7. Alternatively, it
could be inferred from the abstract theory of parabolic evolution equations in [PS],
subject to a requirement of continuity of A(σ, t) with respect to t ∈ [0, T ], uniformly
with respect to σ ∈ S.

Theorem 20. Assume that the parametric family {A(σ, t) ∈ L(Y, Y ′) : σ ∈
S, t ∈ I} satisfies Assumption 1 with X = Y = Y , uniformly for t ∈ I, i.e., A(σ, t)
is boundedly invertible with uniform (w.r. to t ∈ I and σ ∈ S) bound C0 and there
exists a sequence b ∈ &p(N) for some 0 < p ≤ 1 such that

∀ν ∈ F : sup
t∈I

sup
σ∈S

∥∥(A(0, t))−1(∂ν
σA(σ, t))

∥∥
L(Y,Y )

≤ C0b
ν .

Then, for every σ ∈ S, the parabolic evolution operator B(σ) ∈ L(X ,Y ′) defined
by 〈B(σ)w, v〉 := b(σ;w, v) for w ∈ X and for v ∈ Y with the parametric bilinear
form b(σ; ·, ·) from (4.9) and with the choice of spaces X , Y as in (4.4) and (4.6) is
boundedly invertible: there exist constants 0 < β1 ≤ β2 < ∞ such that

sup
σ∈S

‖B(σ)‖X→Y′ ≤ β2 and ‖B(σ)−1‖Y′→X ≤ 1

β1
. (4.11)

Moreoever, the parametric operator family {B(σ) : σ ∈ S} satisfies Assumption 1. In
particular, the parametric family y(σ) in (4.8) of states satisfies the a-priori estimate

∀ν ∈ F : sup
σ∈S

‖(∂ν
σy)(σ)‖X ≤ C0‖f‖Y′ |ν|!b̃ν , (4.12)

and admits a Legendre expansion

y(σ) =
∑

ν∈F

yν(σ)Lν(σ) , yν =

∫

σ∈S
y(σ)Lν(σ)ρ(dσ) . (4.13)

which converges in L2(S, ρ;X ). Morever, (‖yν‖X )ν∈F ∈ &p(F) and best N -term trun-
cated Legendre expansions converge at rate N−(1/p−1/2).
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Proof. As proved in [SS], for every σ ∈ S the continuity constant β2 and the
inf–sup condition constant β1 for b(σ; ·, ·) are independent of σ ∈ S and satisfy

β1 ≥ min(α1α
−2
2 ,α1)√

2max(α−2
1 , 1) + -2

, β2 ≤
√
2max(1,α2

2) + -2, (4.14)

where α1,α2 are the constants from (4.1) bounding A(σ, t) and - is defined as

- := sup
0 $≡w∈Y

‖w(0, ·)‖H
‖w‖Y

. (4.15)

We like to recall from [DL, E] that Y is continuously embedded in C0(I;H) so that
the pointwise in time initial condition in (4.3) is well-defined. From this it follows
that the constant - is bounded uniformly for the choice of Y ↪→ H.

In the sequel, we will require the dual operator B(σ)∗ : Y → X ′ of B(σ) which is
defined formally by

∀σ ∈ S : 〈B(σ)w, v〉 =: 〈w,B(σ)∗v〉 . (4.16)

From the definition of the bilinear form (4.9) on X × Y , it follows by integration by
parts for the first term with respect to time and using the adjoint A(σ, t)∗ with respect
to the duality pairing Y ′ × Y that

b(σ;w, (v1, v2)) =

∫

I

(
〈w(t, ·), ∂v1(t,·)

∂t 〉+ 〈w(t, ·), A(σ, t)∗v1(t, ·)〉
)
dt

+ 〈w(0, ·), v2〉+ 〈w(t, ·), v2〉|T0

=

∫

I

(
〈w(t, ·), ∂v1(t,·)

∂t 〉+ 〈w(t, ·), A(σ, t)∗v1(t, ·)〉
)
dt

+ 〈w(T, ·), v2〉

=: 〈w,B(σ)∗v〉. (4.17)

Note that the first term of the right-hand side which involves ∂
∂tv1(t, ·) is still well-

defined with respect to t as an element of Y ′ on account of w ∈ Y.
So far, we considered only the parabolic state equation and proved analyticity

and polynomial approximation rates.
We now turn to perturbed, parametric state equations resulting from parametric

uncertainty in the spatial operator A(σ, t), and present in particular sufficient condi-
tions on the perturbations of A0(t) in order for the perturbed state equation to fit
into the general Assumption 2 and Theorem 2.

4.2. Tracking-type control problem constrained by a parametric, para-
bolic PDE. Recalling the situation from [GK], we wish to minimize, for some given
target state y∗ and fixed end time T > 0, the quadratic functional

J(y, u) := ω1
2 ‖y − y∗‖2L2(I;O) +

ω2
2 ‖y(T, ·)− y∗(T, ·)‖2O + ω3

2 ‖u‖2L2(I;U) (4.18)

over the state y(σ) = y(σ; t, x) and over the control u(σ) = u(σ; t, x) subject to

B(σ)y(σ) = Eu(σ) +

(
f

y0

)
in Y ′, (4.19)
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where B(σ) denotes the parametric, parabolic evolution operator defined by Theorem
20 and where f ∈ Y ′ is given by (4.10). In (4.18), the real weight parameters ω1,ω2 ≥
0 are such that ω1 + ω2 > 0 and ω3 > 0. The space O by which the integral over
Ω in the first two terms in (4.18) is indexed is to satisfy O ⊇ Y with continuous
embedding. Although there is in the wavelet framework great flexibility in choosing
even fractional Sobolev spaces for O, for better readibility, we pick here O = Y .
Moreover, in a general case we suppose that the operator E is a linear operator
E : U → Y ′ extending

∫
I〈u(t, ·), v1(t, ·)〉 dt trivially, i.e., E ≡ (I, 0)+. For ease of

presentation in the current setting, we choose again U = Y ′ similar to the stationary
case in Section 3.1.

The tracking type control problem consists in minimizing the functional (4.18)
subject to the parametric parabolic equation of state (4.19). We recall that the Riesz
operator RY : Y → Y ′ defined by

(v, z)Y =: 〈v,RY z〉, v, z ∈ Y, (4.20)

maps Y boundedly invertibly onto its dual Y ′. Since here RU = R−1
Y as in Section

3.1, we write R = RY .
Analogously to the derivation of the system (EE) in Section 3.1, we can derive

the first order necessary conditions consisting of the primal system together with the
costate or adjoint equations and the design equation. For a unification of notation, it
will be useful to define

y1(σ) := y(σ), y2(σ) := y(σ; 0)

and, since the adjoint state also requires the state to be evaluated at the finite end
point (sometimes also denoted as finite horizon) T , y3(σ) := y(σ;T ). Then the
necessary conditions for optimality read:
find the solution tuple (y1(σ), y2(σ), y3(σ), p1(σ), p2(σ), u(σ)) ∈ X×Y ×Y ×X×Y ×Y ′

as

B1(σ) y1(σ) = u(σ) + f

B2(σ)y2(σ) = y0

B1(σ)
∗p1(σ) + ω1RY y1(σ) = ω1RY y∗ (4.21)

B2(σ)
∗p2(σ) + ω2RY y3(σ) = ω2RY y∗(T )

ω3u(σ) = RY p1(σ) .

Here B1(σ), B2(σ) are the linear operators defined by the first and second dual forms
in (4.9), respectively, with ‘dual’ B1(σ)∗, B2(σ)∗ defined according to (4.17). Note
that the appearance of the Lagrange multipliers p1(σ), p2(σ) is caused by appending
the parabolic constraints (4.19) to the functional (4.18). Thus, the variable p1(σ) is
the adjoint state p1(σ) = p(σ; t, x), and p2(σ) may be interpreted as evaluating p at
the end point T , i.e., p2(σ) = p(σ;T, x). For presentation purposes, we also define
p3(σ) = p(σ; 0, x). Eliminating u(σ) = ω−1

3 RY p1(σ) from the design equation and
abbreviating

ŷ∗ := RY y∗ and ŷ∗(T ) := RY y∗(T ) ,

and

ŷ(σ) = (y1(σ), y2(σ), y3(σ)), p̂(σ)) = (p1(σ), p2(σ), p3(σ))
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we arrive at the coupled system

G(σ)

(
ŷ(σ)

p̂(σ)

)
:=





B̂(σ) diag(− 1
ω3

RY , 0, 0)




1
ω1

RY 0 0
0 0 1

ω2
RY

0 0 0



 B̂(σ)
∗





(
ŷ(σ)

p̂(σ)

)
(4.22)

=





f
y0
0

ω1ŷ∗
ω2ŷ∗(T )

0




=: g

where B̂(σ) := diag(B1(σ), B2(σ), 0).
Theorem 21. Let for every t ∈ [0, T ] the parametric family of spatial opera-

tors {A(σ, t) ∈ L(Y, Y ′) : σ ∈ S} satisfies Assumption 1. Then for every σ ∈ S,
the tracking type control problem (4.21) can be written as a parametric saddle point

operator equation G(σ)(ŷ(σ), p̂(σ)) = g for the solution tuple (ŷ(σ), p̂(σ)) ∈ X with
G(σ) ∈ L(X ,Y ′) where the space X = Y is given by

X = X × Y × Y. (4.23)

Moreover, for ω1 + ω2 > 0, ω3 > 0, the parametric saddle point operator G(σ) ∈
L(X ,Y) in (4.22) is boundedly invertible for all σ ∈ S and satisfies Assumption 1.

The parametric family of state-control pairs S 7 σ 3→
(
ŷ(σ)

p̂(σ)

)
∈ L2(S, ρ;X ) depends

analytically on σ ∈ S and admits a concurrent Legendre expansion

(
ŷ(σ)

p̂(σ)

)
=

∑

ν∈F

Lν(σ)

(
yν
pν

)
,

(
yν
pν

)
∈ X . (4.24)

Furthermore, the parametric Legendre expansion is sparse in the sense that, if the
elliptic operator family A(σ, t) is a uniformly in t ∈ [0, T ] p-analytic operator family
in the sense that, for every fixed t ∈ [0, T ], Assumption 1 and, in particular, (2.8),
holds, then the coefficient sequence in (4.24) is p-summable. This means that

(∥∥∥∥

(
yν
pν

)∥∥∥∥
X

)

ν∈F

∈ &p(F)

for the same value of p and, for every N ∈ N, there exists an index set Λ ⊂ F of
cardinality not exceeding N such that the N -term truncated Legendre expansion

(
yN (σ)
pN (σ)

)
:=

∑

ν∈Λ

Lν(σ)

(
yν
pν

)
,

(
yν
pν

)
∈ X

approximates concurrently the state and the control on the entire parameter domain
S at rate N−(1/p−1/2) in L2(S, ρ;X ).
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5. Conclusion. We have proved, for control problems constrained by linear
elliptic and parabolic PDEs which depend on possibly countably infinitely many
paramters, analytic parameter dependence of the state, co-state and of the control.
The parameter dependence was allowed to be more general than affine. The particular
case of affine dependence arises, for example, in state equations with random coef-
ficients which are parametrized in terms of Karhunen-Loève expansions as in [ST].
We have quantified the analytic dependence of (co)state and control. Specifically,
we established that these quantities allow expansions in terms of tensorized “polyno-
mial chaos” type bases which are sparse, their sparsity being quantified in terms of
p-summability of the coefficient sequences. This sparsity result is the analytical foun-
dation for the development of sparse tensor discretizations of these problems which
allow adaptive Galerkin approximations of (co)state and control on the entire (possi-
bly infinite-dimensional) parameter space, following [G], combined with appropriate
discretizations in space and time, following [DK, GK, K]. Details of this will be
reported in [KS].
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