
!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
! Eidgenössische
Technische Hochschule
Zürich

Ecole polytechnique fédérale de Zurich
Politecnico federale di Zurigo
Swiss Federal Institute of Technology Zurich

Shearlet Galerkin for transport equations:
implementation and stability

E. Fonn

Research Report No. 2011-50
August 2011

Seminar für Angewandte Mathematik
Eidgenössische Technische Hochschule

CH-8092 Zürich
Switzerland

Shearlet Galerkin for transport equations: implementation
and stability

E. Fonn

August 8, 2011

Abstract

We provide implementation details for the framework of a solver for the advection-
reaction equation using piecewise linear shearlet frames. It is hoped that the direc-
tional features of shearlets will provide a sparse representation of the solution under
an adaptive setting. We investigate the stability of the resulting stiffness matrices,
and find that the effective condition numbers are too high for iterative solvers, even
with a modest number of degrees of freedom. This is a strong hint of instability in
relevant norms.

1 Introduction
This paper describes an implementation for the framework of an adaptive frame
solver for operator equations. Previous research on such methods can be found in
[22], and particularly for elliptic operators [9], [8] and [7].

The motivation for this paper comes from the stationary advenction-reaction
equation (1). The solutions to this equation can exchibit strong anisotropic features,
and it is hoped that frames which are designed to capture directional information
will be well suited for adaptive methods for solving this equation.

There are several such systems available, most notably curvelets ([5], [4]), coun-
tourlets [10], directional wavelets [1] and shearlets ([16], [15], [13]), as well as others
([3], [21]). The theory behind these systems comes mostly from the image compres-
sion community, where they are used for sparse representation of images and edge
detection (such as in [24], and until now there has been little effort made in using
them to solve PDEs.

In this paper we will concern ourselves with compactly supported shearlets and
their related ridgelets in two spatial dimensions, whose implementation can be made
largely parallell. Compactly supported shearlets were introduced in [14]. They have
a particularly nice representation as affine transformations of tensor product func-
tions, and moreover, they can be extended to more than two dimensions. The repre-
sentations they provide are also provably (almost) optimally sparse [12], although it
should be mentioned that this relies on a posteriori information when solving PDEs.

Section 2 introduces the model problem, while section 3 presents the shearlets
in detail. In section 4 the main pseudocode is laid out. Finally, some numerical
experiments are presented in section 5.

1

2 Variational problem
We are concerned with the solution of the stationary advection-reaction equation
with constant advection,

s · ∇u(x) + κ(x)u(x) = f(x), (1)

for x ∈ Ω ⊂ R2. Here, s is the transport direction, κ(x) is the reaction coefficient,
and f(x) is the source term. This requires inflow boundary conditions

u(x) = g(x), on Γ− = {x ∈ ∂Ω | s · n(x) < 0},

where n(x) denotes the outward pointing normal vector for x ∈ ∂Ω. Furthermore,
in our case, we will always work with Ω = [0, 1]2.

Solutions to this equation can exhibit strong anisotropic features. Consider the
case κ = f = 0. Since the boundary condition values are transported perfectly along
the flow s, the regularity of g will directly determine the regularity of u, and any
discontinuities or irregularities will be pointed in the direction of s. It makes sense
to use this as a test equation for anisotropic frames.

We will discretize the equation using the least squares method [17], resulting in
the bilinear form

a(u, v) = (s · ∇u + κu, s · ∇v + κv)L2(Ω)

and the linear form
#(v) = (f, s · ∇v + κv)L2(Ω) .

We can use the offset method to incorporate boundary conditions. Thus, let
ũ = u + g′, where ũ solves (1), u is a function that vanishes on ∂Ω and g′ is an
extension of g to Ω. Then, the variational formulation turns into

a(u, v) = #(v) − a(g′, v) = #̃(v),

where #̃ is the linear form # with f − s · ∇g′ − κg′ in place of f .
This reduces our search to functions which are zero on Γ−. However, this is not

a feature our function spaces will generally have. We can enforce this by multiplying
a basis function ψ with some given function z(x) which is zero on Γ−, but nonzero
everywhere else, in the spirit of the partition of unity method (see [18] and [2]). In
the following analysis, this multiplier function is always included. More on this in
section 3.3.

3 Shearlets
Shearlets are one among several function systems designed to efficiently capture
anisotropic features in two dimensions. The shearlets are generated by a family of
mother shearlets Ψ̂m : R2 → R via affine transformations and translations,

ΨA(x) =
(

DAΨ̂
)

(x) = |A|−1/2Ψ̂(Ax), Ψc(x) =
(

TcΨ̂
)

(x) = Ψ̂(x − c),

where A ∈ R2×2 and c ∈ R2.

2

3.1 Parameters
Given mother shearlets Ψ̂m, with 1 ≤ m ≤ M , the shearlets are defined as

Ψj,k
m,c,r = TcDAj,k

r
Ψ̂m, (2)

where
Aj,k

r =
(

1 sxk/sy

1

) (
sj

x

sj
y

) (
1

1

)r

, (3)

and c ∈ R2. The leftmost matrix is a shearing transformation and the middle
matrix is an anisotropic scaling. The values of sx and sy can be tweaked to allow for
various cases which we shall come back to. Some interesting choices are (sx, sy) ∈{

(4, 2), (2,
√

2), (2, 1)
}

. We will assume that sx > sy ≥ 1 and often also that sx/sy

is an integer.
The significance of the parameters are as follows.
• m is the mother shearlet index, satisfying 1 ≤ m ≤ M(j), where M(j) ≥ 1 is

the number of generators for level j.
• c ∈ R2 is the translation parameter. If Ψ̂m is a function with support centered

in the origin (as we will see later), Ψ·,·
m,c,· is a function with support centered

at c.
• The scale or level parameter j ≥ 0 is an integer that scales Ψ̂m anisotropically.

For large j, the functions Ψj,·
·,·,· will have very slender supports, but also smaller.

Specifically, if Ψ̂m has square support, Ψj,0
m,·,· has rectangular support that is

(sx/sy)j times longer in the x-direction than in the y-direction.
• The shear parameter k is an integer satisfying −2j ≤ k ≤ 2j . Its purpose is to

tilt the support of Ψ·,k
·,·,· to a certain direction. The maximal tilt is achieved for

k = ±2j , which is at an angle of π/4 off the original direction (where k = 0).
Note also that with increasing level, the resolution in directions also increases
two-fold, and that if Ψ̂m has support centered at the origin, then Ψ·,k

m,c,· has
support centered at c for all k.

• Finally the cone parameter r ∈ {0, 1} mirrors the axes if r = 1, so that we can
generate shearlets pointing in all directions. The principal directions for r = 0
are all in the up-down “cone”, and for r = 1 they are in the left-right “cone”.

We offer some illustrations to make these concepts clear in figure 1.

3.2 The mother shearlet
The mother shearlets Ψ̂m are usually chosen as tensor products Ψ̂m(x) = ψm(x1)ϕm(x2),
where ψm are wavelets and ϕm are scaling functions. These can be chosen to be,
say, piecewise linear, so that Ψ̂ is piecewise bilinear on a rectangular mesh. Other
choices are possible, but for our purposes we will restrict ourselves to linear ψ· and
ϕ·, whose supports are (subsets of) the interval [−1/2, 1/2], so that Ψ̂m is supported
in the square [−1/2, 1/2]2, which we will consider to be our “reference” element in
the sense of section 4.2.

For scaling functions, we will always use ϕ(x) = 1 − 2|x| for |x| < 1/2, which is
simply a hat function.

3

k=!1

k=0

k=1

(a) (4, 2, 1, 0)

k=!1

k=0

k=1

(b) (4, 2, 1, 1)

k=!2

k=!1

k=0

k=1

k=2

(c) (4, 2, 2, 0)

k=!2

k=!1

k=0

k=1

k=2

(d) (4, 2, 2, 1)

k=!1

k=0

k=1

(e) (2, 1, 1, 0)

k=!1

k=0

k=1

(f) (2, 1, 1, 1)

k=!2

k=!1

k=0

k=1

k=2

(g) (2, 1, 2, 0)

k=!2

k=!1

k=0

k=1

k=2

(h) (2, 1, 2, 1)

Figure 1: The support of some shearlets are shown in outlines of various colors. The blue
box is always the square [0, 1]2. The figures show all the possible shears k superimposed
over one another. The caption to each figure gives the values of sx, sy, j and r, in that
order. 4

x

y

!0.5

0

0.5

1

(a) m = 0

x

y

!0.3

!0.2

!0.1

0

0.1

0.2

0.3

(b) m = 1

Figure 2: Two mother shearlets.

x

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 3: A level 0 mother shearlet.

We (usually) use two different wavelets. They are

ψ1(x) = ϕ(2x)− 1
2ϕ(2x−1)+ 1

2ϕ(2x+1), ψ2(x) = 1
2
√

2
ϕ(2x−1)− 1

2
√

2
ϕ(2x+1),

with ϕ as previously defined (having a support of length 1).
This yields the two mother shearlets shown in figure 2.
This is valid for j > 0. For the first level, we use a single bilinear hat function

as mother shearlet, namely ψ = ϕ. Without this, we cannot capture the lower
frequencies of a signal. This is shown in figure 3.

Of course, there is nothing in our construction that prohibits mother shearlets
from also depending on j.

3.3 Boundary conditions
Mathematically, there are several different kinds of boundary conditions worth in-
vestigating.

As far as the inflow boundary conditions are concerned, we mentioned in section
2 that we wish to use an offset function. This again requires that our basis functions
vanish on the inflow boundary, which, by design, the shearlets do not.

Thus, in the spirit of the partition of unity method ([18] and [2]), we multiply all
basis functions with a global function z(x) which is zero on the inflow boundary and

5

nonzero everywhere else. It is in our utmost interest to keep z as simple as possible,
both to preserve shearlet qualities and not to impose unreasonable conditions on
quadrature rules.

If the inflow boundary consists only of entire edges of the domain, z can be
polynomial. If, for example s(x) = (1, 1)T , the inflow boundary consists of the
edges along the first and second axes, and so z(x) = x1x2 is a natural choice.

Another possibility is periodic boundary conditions. By construction, the shear-
lets can be periodicaly extended and remain well-defined. The periodic case requires
some special care in the implementation, which will be dealt with where applicable
in section 4.

3.4 Translations
It remains to specify the translation parameter c. Assume that the fundamental
wavelets and scaling functions ψ· and ϕ· are piecewise linear with exactly W and
S equally sized pieces respectively. Now fix j and let k = 0. Then, these shearlets
are piecewise linear in both directions on a mesh with resolution of size s−j

x /W and
s−j

y /S respectively. As long as sx and sy are integers, this mesh matches perfectly
with the boundaries of the domain.

This indicates that we should choose translation steps spaced by s−j
x /W in the

first direction, and s−j
y /S in the second, whence the translation parameter attains

the values

c ∈
{(

L(j) + α/sj
xW

D(j) + β/sj
yS

) ∣∣∣∣∣ α ∈ {0, . . . , R(j)}, β ∈ {0, . . . , U(j)}
}

. (4)

The exact values of the positions for the “bottom left” shearlet in (L(j), D(j)) and
the maximal necessary displacement in the left-right direction R(j) and the up-
down direction U(j) will depend on the boundary conditions. Assuming inflow or
no boundary conditions and sx/sy integral, we find that

L(j) = 1
sj

xW
− 1

2

(
1
sj

x

+ 1
sj

y

)
, R(j) = sj

xW (1 − 2L(j)) + 1

captures all translations where at least one shear intersects the domain. The up-
down direction is easier, because the shearing does not affect it:

D(j) = 0, U(j) = sj
yS.

We offer some illustrations in figures 4 and 5 for the case W = S = 4 and sx = 4,
sy = 2. For the remainder of this discussion, we will refer to a translation point c
as parametrized by α and β according to (4).

Note that W and S are numbers that depend on the mother shearlets Ψ̂m. We
have allowed for mother shearlets to depend on j, and thus, we must consider that
W and S are also functions of j.

Some care will be required if the wavelets and scaling functions ψ· and ϕ· have
different numbers of polynomial subparts (i.e. W and S depend on m). Our con-
struction do not allow coupling between the translation c and m. In this case, it
would be most appropriate to let W = lcm {Wm} and S = lcm {Sm} (least common
multiple), if these numbers are not prohibitively large.

6

Figure 4: The extreme shearlets for j = 1, sx = 4, sy = 2.

(a) j = 1 (b) j = 2

Figure 5: Translation points for the first two levels for sx = 4, sy = 2, W = S = 4. The
blue points are for r = 0 and the red points are for r = 1.

7

j N(j) j N(j)
1 8.10 · 102 · M(1) 1 3.42 · 102 · M(1)
2 7.47 · 103 · M(2) 2 1.05 · 103 · M(2)
3 8.90 · 104 · M(3) 3 3.62 · 103 · M(3)
4 1.22 · 106 · M(4) 4 1.34 · 104 · M(4)
5 1.81 · 107 · M(5) 5 5.13 · 104 · M(5)
6 2.79 · 108 · M(6) 6 2.01 · 105 · M(6)

Table 1: Number of degrees of freedom per level. (sx, sy) = (4, 2) on the left and
(sx, sy) = (2, 1) on the right. In both cases, S(j) = 2 and W (j) = 4.

3.5 Number of degrees of freedom
The exact formula for the number of shearlets on level j ≥ 0 is (assuming sx/sy is
integral):

N(j) = 2M(j)
(
2j+1 + 1

) (
sj

yS(j) + 1
) ((

1 + sj
x + (sx/sy)j

)
W (j) − 1

)
,

where M(j) is the number of mother shearlets at level j, and S(j) and W (j) have
the meaning given in section 3.4.

This leads to an asymptotic growth rate
N(j) ∼ (2sxsy)j · M(j) · W (j) · S(j),

and with the reasonable assumptions that M , W and S are bounded from above as
j → ∞, we have

N(j) ∼ (2sxsy)j .

Still, this can be a very rapid growth rate. For the case sx = 4, sy = 2 we have
N(j) ∼ 16j , and for the more modest choice sx = 2, sy = 1, we have N(j) ∼ 4j .
The exact numbers for levels j = 1, . . . , 6 for these two cases are listed in table 1
(with S(j) = 2, W (j) = 4).

The hope is that the shearlets lend themselves particularly well to an adaptive
approach, which will allow us to avoid this problem altogether.

4 Algorithms
4.1 Numbering
The shearlets are numbered according to a hierarchy of the parameters, as such:

1. m is the least significant parameter. Thus, if Ψj,k
m,c,r is shearlet number N ,

then Ψj,k
m+1,c,r is shearlet number N + 1.

2. k comes next. Let M be the total number of mother shearlets. Then, if Ψj,k
m,c,r

is shearlet number N , then Ψj,k+1
m,c,r is shearlet number N + M .

3. Next is the translation parameter c, with x-axis before y-axis. If there are
K shears on level j, then if shearlet Ψj,k

m,c,r is shearlet number N , then the
corresponding shearlet immediately to the right is shearlet number N + MK,
and the corresponding shearlet immediately above it is number N + MKR,
where R is the total number of translation points in the left-right direction.

8

4. Just before last is the cone parameter r.
5. As the only open-ended parameter j is naturally last.

Algorithm 1 computes the parameters given a shearlet number, and algorithm
2 performs the opposite task. These rely on knowing the values of M(j) and K(j)
(there is no generality lost in allowing M to vary by level), R(j) and so on, which we
have assumed are available in the functions NumMothers, NumShears, NumRight
and NumUp. The function NumAtLevel counts the total number of shearlets at a
level, and is merely a convenient shorthand. Note that the shearlet numbers use
1-base indexing, while the parameters are use 0-based indexing.

NumAtLevel(j) = 2 · NumMothers(j) · NumShears(j) · NumRight(j) · NumUp(j).

Algorithm 1 Computes j, r, c = c(α, β), k and m from a given shearlet number.
Require: Shearlet number n

1: j ← 0
2: while n > NumAtLevel(j) do
3: n ← n − NumAtLevel(j)
4: j ← j + 1
5: end while
6: r ← 0
7: if n > NumAtLevel(j)/2 then
8: r ← 1
9: n ← n/2

10: end if
11: m ← (n − 1) mod NumMothers(j)
12: n ← ,n/NumMothers(j)-
13: k ← ((n − 1) mod NumShears(j)) − (NumShears(j) − 1)/2
14: n ← ,n/NumShears(j)-
15: α ← (n − 1) mod NumRight(j)
16: n ← ,n/NumRight(j)-
17: β ← n − 1
18: return j, r, c = c(α, β), k, m

Both algorithms are useful, and can be used to implement functions to manipu-
late shearlets such as StepRight, StepUp and Shear, details of which we leave out.

In the following, we will describe shearlets in algorithms as a single variable
(usually s or t), which can be assumed to work as a structure, and that subfields
can be accessed by dot-notation such as s.j. We will also speak of s as the shearlet
itself (i.e. the mathematical function). The meaning should in either case be clear
from the context.

4.2 Transformation
For our purposes we need, at least at some point, be able to evaluate shearlets at
arbitrary points in R2. This is done using the transformation technique in (2)-(3).

9

Algorithm 2 Computes the shearlet number given the other parameters.
Require: j, r, c = c(α, β), k and m

1: n ← 0
2: for i ← 0, . . . , j − 1 do
3: n ← n + NumAtLevel(i)
4: end for
5: if r = 1 then
6: n ← n + NumMothers(j) · NumShears(j) · NumRight(j) · NumUp(j)
7: end if
8: n ← n + β · NumMothers(j) · NumShears(j) · NumRight(j)
9: n ← n + α · NumMothers(j) · NumShears(j)

10: n ← n + (k + (NumShears(j) − 1)/2) · NumMothers(j)
11: n ← n + m + 1
12: return n

1 2 3 4

5 6 7 8

(a) Mother shearlet

1 2 3 4

5 6 7 8

(b) r = 0

1

2

3

4

5

6

7

8

(c) r = 1

Figure 6: An example of subdomain numbering, where W = 4 and S = 2. The resulting
shearlets are piecewise polynomial on WS = 8 sections.

A function called BaseTransform takes a shearlet and produces the transformation
matrix A and the translation vector c.

(A, c) ← BaseTransform(s).

The mapping x → A(x−c) is an affine transformation mapping the square [−1/2, 1/2]2
to supp s.

The reason for the name BaseTransform is that it will be useful to have a more
general function called Transform that can produce mappings into subdomains of
supp s. Recall that s is defined as (an affine transformation of) a tensor product of
two piecewise linear functions, so that s is piecewise polynomial with maximal degree
2. By subdomain we mean the “pieces” on which s is polynomial. A numbering of
subdomains is shown in figure 6.

Thus we define a function Transform(s, i) which takes a subdomain number as
a second optional argument. If i is not specified or i = 0, it is assumed that
BaseTransform(s) is meant. See algorithm 3.

10

Algorithm 3 Transform computes A and c for a given shearlet and subdomain number.
Require: Shearlet s and optional subdomain number 0 ≤ i ≤ 8

1: (A, c) ← BaseTransform(s)
2: if i is given and i > 0 then
3: d ←

(
1

W

(
(i − 1 mod W) + 1

2

)
− 1

2 , 1
S

(
. i−1

W / + 1
2

)
− 1

2

)T

4: c ← A−1d + c
5: A ←

(
W

S

)

· A

6: end if
7: return (A, c)

In the following, we will often be concerned with the polygon defined by the
support of a given shearlet, or one of its subdomains. We will consider polygons as a
2×n matrix of vertices (p1, p2, . . . , pn) numbered counterclockwise, where pn 1= p1.
A useful convenience is the function Corners, which computes these vertices by
transforming the corners of the reference square [−1/2, 1/2]2. See algorithm 4. If
no shearlet is given, it returns the corners of the computational domain.

Algorithm 4 Corners computes the vertices of a shearlet support or subdomain.
Require: Optional shearlet s and optional subdomain number 0 ≤ i ≤ 8

1: if s is not given then

2: return
(

0 1 1 0
0 0 1 1

)

3: end if
4: (A, c) ← Transform(s, i)

5: p ← 1
2

(
−1 1 1 −1
−1 −1 1 1

)

6: p ← A−1p + c
7: if s.r = 1 then
8: Reverse the order of p
9: end if

10: return p

4.3 Assembly strategy
4.3.1 Stiffness matrix
Now, given a bilinear form a(·, ·) we want to compute the corresponding stiffness
matrix for a given index set I of shearlets. In an ordinary hierarchical setting
(i.e. with hat functions), one would rely on a refinement relation that expresses a
function as a linear combination of functions on the next level. This would allow us
to compute the stiffness matrix for the highest level only, and then use the refinement

11

relation to either fill out the coarser matrices or to allow fast (O(N)) matrix-vector
multiplication. In the shearlet case, there are several problems with this.

1. The number of shearlets on each level increases very fast, asymptotically (in
our worst case) 16j , compared to the more conventional 4j . Thus, the saved
effort from not having to directly calculate the coarse levels becomes almost
negligible.

2. In a more traditional setting, such as with triangular elements and hat func-
tions, it is possible to assemble the matrix in time that scales linearly with the
number of elements, as this circumvents the necessity of having to check if the
supports of two functions overlap. No such shortcut is readily available to us
in the shearlet case.1

3. The primary motivation for implementing a shearlet basis/frame is to employ
adaptive methods, which do not easily lend themselves to such a strategy.

Thus, for the time being, we fall back to the primitive loop in algorithm 5. Here,
we have assumed a symmetric a. This is also where parallellization should enter the
picture.

Algorithm 5 Assembly loop.
Require: Shearlet index set I.

1: for i, j ∈ I do
2: A(i, j) ← a(sj , si)
3: A(j, i) ← a(si, sj)
4: end for

How, then, do we go about computing a(si, sj)? The most obvious approach is
straightforward.

1. Identify the corners of the supports of si and sj using Corners.
2. Check if the supports intersect. If they do not, return 0.
3. If the supports intersect, loop over pairs (m, n) of subdomains of supports of

si and sj . Compute the intersection of this pair if it is nonempty.
4. This results in a set of nonempty disjoint poylgons Pk whose union is the

intersection of supports of si and sj , which has the property that both si and
sj are polynomial on any Pk.

5. Further divide each Pk into a set of triangles. On each triangle, form a quadra-
ture rule. Take the union of these quadrature rules as a quadrature rule for
the intersection of the supports of si and sj .

Once the quadrature rule is available, the integrand of the bilinear form a can
be evaluated on the quadrature points and summed up accordingly.

1It is true that there are simple methods that can identify a number of negatives (no intersection),
such as checking the center and diameter of shearlet supports, or cheap intersection checking routines.
However, these cases still have to be tested, and moreover, the shearlet matrix should nevertheless not
be sparse.

12

!1 !0.5 0 0.5 1
!1

!0.8

!0.6

!0.4

!0.2

0

0.2

0.4

0.6

0.8

1

Figure 7: Splitting a polygon (here a regular 11-gon) into triangles.

There should be a basic choice of quadrature rule defined on a reference triangle,
which can then be transformed. This part is essentially identical to triangular La-
grangian FEM. Of course, the basic quadrature rule has to be of order high enough
to resolve the variation in si and sj if there are no variable coefficients. If there are
variable coefficients, the case becomes a little more complicated, which we discuss
in section 4.3.4.

This strategy relies heavily on reliable intersection checking and computing rou-
tines. Initial experiments suggest that most of the processing time is spent doing
operations like these, and care should be taken to implement these properly (see
section 4.3.3).

Thus, we now assume the existence of these functions:

1. A function CheckIntersection(s, t) for checking if the supports of shearlets s
and t intersect at all.

2. A function ComputeIntersection(p, q) for computing intersections between two
convex polygons p and q.

3. A function SplitPolygon(p) for reducing a polygon p to a collection of triangles.
4. A function TransformQuadrule(q, p) for transforming a quadrature rule q de-

fined on a reference triangle onto the triangle p.

The algorithms for checking and computing intersections are discussed further in
section 4.3.3. The SplitPolygon function can be implemented in a myriad of different
ways, one of which is shown in algorithm 6. This algorithm splits a polygon as shown
in figure 7, where the red vertex is vertex number 1. The algorithm alternates
between adding a triangle on the “right” or “left” side, and keeps track of the next
unused vertex on both sides. No new vertices are introduced.

Algorithm 7 contains pseudocode for the BuildDoubleQuadrule function, which
builds a quadrature rule for the intersection of two shearlet supports. and algorithm
8 wraps this code to a function EvalBLF for evaluating bilinear forms.2

2Note that the application of the quadrature rule in algirhtm 8 should be vectorized for faster imple-
mentation. The pseudocode is merely conceptual.

13

Algorithm 6 SplitPolygon divides a polygon p into a collection of triangles.
Require: 2 × N matrix p denoting a polygon

1: start ← 3, end ← 1, right ← false, T ←
{[

p·,1 p·,2 p·,N
]}

2: while start + end ≤ N do
3: if right then
4: T ← T ∪

{[
p·,start−1 p·,start p·,N−end+1

]}

5: right ← true
6: end ← end + 1
7: else
8: T ← T ∪

{[
p·,start−1 p·,N−end p·,N−end+1

]}

9: right ← true
10: end ← end + 1
11: end if
12: end while
13: return T

Algorithm 7 BuildDoubleQuadrule constructs a quadrature rule for the intersection of
the supports of two shearlets s and t.
Require: Shearlets s, t and basic quadrature rule q

1: r ← ∅
2: for i, j ∈ {1, . . . , 8} do
3: p ← Corners(s, i)
4: q ← Corners(t, j)
5: B ← SplitPolygon(ComputeIntersection(p, q))
6: for c ∈ B do
7: r ← r ∪ {TransformQuadrule(q, c)}
8: end for
9: end for

Algorithm 8 EvalBLF evaluates a bilinear form.
Require: Shearlets s, t, basic quadrature rule q and a function f(s, t, x) for evaluating

the integrand of a bilinear form at a point x.
1: if CheckIntersection(s, t) then
2: q ← BuildDoubleQuadrule(s, t, q)
3: r ← 0
4: for quadrature point x with weight w ∈ q do
5: r ← r + w · f(s, t, x)
6: end for
7: return r
8: else
9: return 0

10: end if

14

4.3.2 Load vector
For evaluating the right hand side load vector #(·) the strategy is mostly the same, ex-
cept we can ignore most of the intersection checking. The functions BuildSingleQuadrule
and EvalLF mirror BuildDoubleQuadrule and EvalBLF and their pseudocode is pre-
sented in algorithms 9 and 10.3

Algorithm 9 BuildSingleQuadrule constructs a quadrature rule for the support of a
shearlet s.
Require: Shearlet s and basic quadrature rule q

1: r ← ∅
2: for i ∈ {1, . . . , 8} do
3: p ← Corners(s, i)
4: B ← SplitPolygon(p)
5: for c ∈ B do
6: r ← r ∪ TransformQuadrule(q, c)
7: end for
8: end for

Algorithm 10 EvalLF evaluates a linear form.
Require: Shearlet s, basic quadrature rule q and a function f(s, x) for evaluating the

integrand of a bilinear form at a point x.
1: q ← BuildSingleQuadrule(s, q)
2: r ← 0
3: for quadrature point x with weight w ∈ q do
4: r ← r + w · f(s, x)
5: end for
6: return r

4.3.3 Intersections
Our method relies on computing intersections between many different polygons, or
deciding if polygons are disjoint. There are several algorithms for computing and
detecting intersections, see for example [23], [20] and [6]. These all assume convexity,
which is valid in our case.

For checking disjointness, we rely on the separating axis theorem, which is com-
monly used in game programming for collision detection.

Theorem 1 (Separating Axis Theorem (SAT)). Let A and B be convex sets in R2.
Then A∩B = ∅ if and only if there exists a line that separates A from B. Moreover,
if A and B are polygons with empty intersection, such a separating line can always
be found among the prolongations of the edges of A and B.

3Again, the application of the quadrature rule should be vectorized.

15

!"

#

$

%

&
'

(

Figure 8: The separating axis theorem.

Proof. The first statement is obvious. Now, assume that A and B are disjoint convex
polygons, and let a, b be points of minimal distance between them. If either a or
b is not a vertex, they are points on edges, and the prolongation of either of these
edges yield a separating line.

If both a and b are vertices, consider vertex a and the prolongation of its edges
dividing the space outside of A into three regions as shown in figure 8, two of which
are named U and L. Assume vertex b is not in L. If none of B intersects L, the
edge r will be a separating line. Otherwise, consider the edge from b in direction
of L. It must lie in the wedge between lines g and h. If it lies under g, b will no
longer be closest to A, and if it lies over h, B will not reach the region L. No matter
which, this edge will be a separating line.

If b is in L, it is not in U , and the argument works correspondingly.

The consequence of the SAT is that we can decide if two polygons p and q are
disjoint by looping through the edges of one polygon (say p). If the vertices are
ordered counterclockwise, and we assume that an edge e therefore has a counter-
clockwise “direction”, we already know that p lies on the left side of e, so we need
only check if q lies entirely on the right, which can be done by checking the vertices
of q (again, because of convexity). At this point, if no separating line has been
found, one has to loop through the edges of q in the similar fashion.

This is expressed in algorithm 11. Note that it does not actually check if they
intersect in the computational domain. However, some few false positives are not
worrying.

For actually computing the intersection between two polygons we have employed
the General Polygon Clipper (GPC) library from the University of Manchester [19].

In the case of periodic boundary conditions, it is clear that this does not suffice.
Two shearlets that do not intersect in the nonperiodic case can nevertheless intersect
if they are periodically extended. For checking the intersection, it is necessary to
translate the domain of one of the shearlets by (m, n), m, n ∈ {−1, 0, 1}. This range
of m, n can be restricted somewhat if we take into account where the shearlets are
located with respect to one another, and also their diameters. For the smallest
shearlets, it will be possible to reduce the number of translations to be checked to
one. Also note that in this case, there are no false positives, as every possible point

16

Algorithm 11 CheckIntersection checks if the supports of two shearlets s and t are
disjoint or not. Returns true if the supports intersect.
Require: Shearlets s and t

1: p ← Corners(s), q ← Corners(t)
2: for e ∈ Edges(p) do
3: s ← true
4: for v ∈ Vertices(q) do
5: if v is on the left side of e then
6: s ← false
7: break
8: end if
9: end for

10: if s then
11: return false
12: end if
13: end for
14: Repeat loop from line 2 with p switched with q
15: return true

of intersection is “in” the domain.
For computing the intersection in the periodic case, we must construct unions

of polygons. GPC can handle this. Given the support of a shearlet, we intersect
it, and all its relevant translations by (m, n), with the computational domain. This
gives us a union of polygons in [0, 1]2 representing the support of that shearlet. Two
such unions can be intersected with GPC and the result is also a union of polygons.

4.3.4 Error in quadrature
If the bilinear form a does not contain variable coefficients, it will normally be pos-
sible to evaluate the stiffness matrix exactly (up to machine precision) by choosing
a basic quadrature rule which has sufficiently high order. This will also be possible
for the right hand side vector if the function f is simple enough. In most interesting
computations, however, these functions will be general, and so we should consider
the effect of this.

In a traditional setting with hat functions, and the strategy involving the re-
finement relation we discussed in section 4.3, the largest “basic unit” on which we
form quadrature rules are triangles on the finest level. The size of these approach
zero as the levels increase, and so, for smooth integrands, the quadrature error will
automatically approach zero as we refine the finite element space.

In our case, we apply “raw” quadrature to every element, the coarse shearlets
included, and so the quadrature error will not automatically vanish as we refine
our space. In this case it will be necessary to modify BuildDoubleQuadrule and
BuildSingleQuadrule to further subdivide the triangles before transforming the basic
quadrature rule onto them.

To make quadrature errors on two different levels correspond, we must subdivide
the polygons on the coarser level until they corrsepond to the dimensions of the

17

polygons on the finer level. Let s = min{sx, sy}. Thus, on level j, shearlets extend
a maximal linear distance on the order of s−j , and after lj subdivisions, this will be
s−j · 2−lj . For two levels i and j to correspond, we need

sj · 2lj = si · 2li ,

or
lj = li + (i − j) log2(s).

When integrating the intersection between two shearlets s and t it will be prudent
to use j = max(s.j, t.j).

With piecewise linear shearlets, a quadrature rule that can integrate quadratics
exactly is sufficient to capture the constant coefficient case, and for triangles, this
quadrature rule is the equal-weight midpoint quadrature.

4.3.5 Evaluating shearlets and their gradients
Of course, at the end of the day, we need a function for evaluating a shearlet (or its
gradient) at a given point. We transform a point x to the square [−1/2, 1/2]2 using
BaseTransform, whereupon we can use simple linear interpolation to compute the
value of a shearlet at that point (recall that mother shearlets are defined as tensor
products of piecewise linear functions).

For the gradient, this becomes slightly more complicated. First, we note that

Ψ̂m(x1, x2) = ψ(x1)ϕ(x2) =⇒ ∇Ψ̂m(x1, x2) =
[
ψ′(x1)ϕ(x2) ψ(x1)ϕ′(x2)

]T
,

so our problem is reduced to computing the derivative of a piecewise linear function
in one dimension. After that, the gradient of Ψ̂m can be assembled, and transformed
back to “real” space using the matrix A from BaseTransform.

If ψ(x) (say) is given by its values ψi at points xi ordered in increasing order,
we can compute the derivative at some point x by first identifying j such that
xj ≤ x < xj+1. Then

ψ′(x) = ψj+1 − ψj

xj+1 − xj
.

If no such j exists, we can set the derivative to zero (assuming that ψ is defined by
constant extrapolation).

This approach can be vectorized in (say) MATLAB with some intricacies. An
example can be found in section A.3.

Again, some modifications are necessary in the periodic case. Before transforma-
tion, a point x can be translated to any other point on a grid {x + m(1, 0) + n(0, 1)},
and if any of these translates land in the domain of a shearlet, the value of the shear-
let at that point must be taken.

To do this, we transform also the vectors (1, 0) and (0, 1) to the reference square,
yielding η and ξ. Now, the problem is reduced to finding a translate x + mξ + nη
in [−1/2, 1/2]2. The key observation is that due to the nature of the transformation
matrix A (see section 3.1), either η2 or ξ2 will be zero (depending on the cone
parameter r). Assume without loss of generality that ξ2 = 0. Thus, only m can
affect the second coordinate of the translate, and so we can immediately solve for m
(or determine that such an m does not exist). With m fixed, solving for n is equally
simple by considering the equation in the first coordinate. See algorithm 12

This algorithm can also be vectorized.

18

Algorithm 12 PreparePoints transforms a point x to a point y in the reference square
(in case of periodicity, if such a translate can be found).
Require: Shearlet s, point x

1: (A, c) ← BaseTransform(s)
2: y ← A(x − c)
3: if periodic then
4: η ← A(·, 1), ξ ← A(·, 2)
5: if ξ2 1= 0 then
6: swap η and ξ
7: end if
8: nmin ← ,−(x2 + 1/2)/η2-, nmax ← .−(x2 − 1/2)/η2/, n ← nmin
9: mmin ← ,−(x2 + nη1 + 1/2)/ξ1-, nmax ← .−(x2 + nη1 − 1/2)/ξ1/, m ← mmin

10: return y + mξ + nη
11: (will be outside [−1/2, 1/2]2 if nmin > nmax or mmin > mmax)
12: end if

5 Stability

The shearlets are not linearly dependent, and so the stiffness matrices are expected
to have a number of zero eigenvalues. This is not a (major) obstacle to solving the
system, however. Of greater importance is the effective condition number, defined
as the ratio between the greatest and smallest eigenvalues which are not zero, within
machine precision bounds. There will typically be an obvious gap between machine-
precision zero eigenvalues and nonzero ones.

The frame property holds for shearlet systems of various types (such as the
sx = 2, sy = 1 case, see [11]), but all proofs so far apply only to shearlets without
compact support or shearlets with prohibitively large polynomial degree, and for
domains without boundary. Such properties make practical application for PDEs
nigh impossible. It would be most welcome if a piecewise linear compactly supported
shearlet system could be shown to be stable.

In figures 9-14 we present spectra for various cases of our construction. The
machine-precision zero eigenvalues are shown in blue, and the genuinely non-zero
eigenvalues are shown in red. In each plot, the computed effective condition number
is shown in the top left.

In each case, the eigenvalue computation was carried out by MATLAB’s eig.

As can be seen, the prospects are not particularly encouraging. The system
appears asymptotically unstable in all cases, and prohibitively badly conditioned
after only a few levels. This strongly indicates that the frame property does not
hold for the infinite set of piecewise linear, compactly supported shearlets.

It remains an open question whether a viable and stable piecewise polynomial
shearlet frame can be found, and which properties it may have.

19

0 2 4 6 8
10

!20

10
!10

10
0

10
10

9.000000e+00

Mass level 0

0 2 4 6 8
10

!20

10
!10

10
0

10
10

1.500000e+00

Transport level 0

0 200 400 600
10

!20

10
!10

10
0

10
10

2.340394e+05

Mass level 1

0 200 400 600
10

!20

10
!10

10
0

10
10

3.070383e+04

Transport level 1

Figure 9: Eigenvalue plots for sx = 4, sy = 2, periodic with two mother shearlets.

0 5 10 15
10

!20

10
!10

10
0

10
10

9.000000e+00

Mass level 0

0 5 10 15
10

!20

10
!10

10
0

10
10

5.150307e+00

Transport level 0

0 500 1000 1500
10

!20

10
!10

10
0

10
10

1.755835e+06

Mass level 1

0 500 1000 1500
10

!20

10
!10

10
0

10
10

9.650681e+04

Transport level 1

Figure 10: Eigenvalue plots for sx = 4, sy = 2, non-periodic with two mother shearlets.

20

0 2 4 6 8
10

!20

10
!10

10
0

10
10

9.000000e+00

Mass level 0

0 2 4 6 8
10

!20

10
!10

10
0

10
10

1.500000e+00

Transport level 0

0 100 200
10

!20

10
!10

10
0

10
10

3.640541e+03

Mass level 1

0 100 200
10

!20

10
!10

10
0

10
10

4.543899e+02

Transport level 1

0 200 400 600 800
10

!20

10
!10

10
0

10
10

1.020786e+06

Mass level 2

0 200 400 600 800
10

!20

10
!10

10
0

10
10

6.330086e+04

Transport level 2

Figure 11: Eigenvalue plots for sx = 2, sy = 1, periodic with two mother shearlets.

0 5 10 15
10

!20

10
!10

10
0

10
10

9.000000e+00

Mass level 0

0 5 10 15
10

!20

10
!10

10
0

10
10

5.150307e+00

Transport level 0

0 50 100 150
10

!20

10
!10

10
0

10
10

6.465740e+03

Mass level 1

0 200 400 600
10

!20

10
!10

10
0

10
10

3.924052e+03

Transport level 1

0 1000 2000
10

!20

10
!10

10
0

10
10

9.291128e+06

Mass level 2

0 1000 2000
10

!20

10
!10

10
0

10
10

4.875152e+05

Transport level 2

Figure 12: Eigenvalue plots for sx = 2, sy = 1, non-periodic with mother shearlets.

21

0 2 4 6 8
10

!20

10
!10

10
0

10
10

9.000000e+00

Mass level 0

0 2 4 6 8
10

!20

10
!10

10
0

10
10

1.500000e+00

Transport level 0

0 20 40
10

!20

10
!10

10
0

10
10

2.460933e+03

Mass level 1

0 20 40
10

!20

10
!10

10
0

10
10

9.322645e+01

Transport level 1

0 100 200
10

!20

10
!10

10
0

10
10

5.470399e+04

Mass level 2

0 100 200
10

!20

10
!10

10
0

10
10

1.274906e+03

Transport level 2

Figure 13: Eigenvalue plots for sx = 2, sy = 1, periodic with one mother wavelet (as in
figure 3, but on all levels.)

0 5 10 15
10

!20

10
!10

10
0

10
10

9.000000e+00

Mass level 0

0 5 10 15
10

!20

10
!10

10
0

10
10

5.150307e+00

Transport level 0

0 50 100 150
10

!20

10
!10

10
0

10
10

6.465740e+03

Mass level 1

0 50 100 150
10

!20

10
!10

10
0

10
10

3.095273e+02

Transport level 1

0 200 400 600
10

!20

10
!10

10
0

10
10

5.795411e+05

Mass level 2

0 200 400 600
10

!20

10
!10

10
0

10
10

1.517201e+04

Transport level 2

Figure 14: Eigenvalue plots for sx = 2, sy = 1, non-periodic with one mother wavelet
(as in figure 3, but on all levels.)

22

A Code listings
The following code listings are mostly real MATLAB code equivalents for the al-
gorithms defined earlier. There is usually a one-to-one correspondence between
algorithm and file, but not always. The names also usually carry over.

A.1 Settings
The Settings method holds a persistent struct with various parameters. Due to
issues with parallellization, every function that needs these settings (which is essen-
tially each of them) take the settings struct as an optional last parameter. If it is
not given, the function will call Settings to get them. It is good practice to always
pass this struct explicitly, lest inconsistencies should occur in parallell loops.

The default parameters correspond closely to what has been described in this
paper.

1 function out = Settings (varargin)
2
3 persistent params
4 persistent locked
5
6 i f ~ exist (’params ’) || isempty(params) || ((nargin > 0 &&

strcmp(varargin {1},’clear ’)) && ~ locked)
7
8 params .let = ’shearlet ’;
9 params . interior = 0;

10 params . periodic = 0;
11 params .qr = P7O6 ();
12 params .k = @(x) ones (1, s ize (x ,2));
13 params .f = @(x) ones (1, s ize (x ,2));
14 params .s = @(x) [ones (1, s ize (x ,2));

ones (1, s ize (x ,2))];
15 params . maxlevel = 2;
16 params . numfunctions = 2 * ones (1, params . maxlevel +1);
17 params . numfunctions (1) = 1;
18
19 for l=2: params . maxlevel +1
20 params . wvfunctions (l ,1).xpts = [-.5, -.25, 0,

.25, .5];
21 params . wvfunctions (l ,1).fvals = [0, -.5, 1, -.5,

0];
22 params . wvfunctions (l ,2).xpts = [-.5, -.25, 0,

.25, .5];
23 params . wvfunctions (l ,2).fvals = [0, -sqrt (2) /4,

0, sqrt (2) /4, 0];
24 params . scfunctions (l ,1).xpts = [-.5, 0, .5];
25 params . scfunctions (l ,1).fvals = [0, 1, 0];
26 params . scfunctions (l ,2).xpts = [-.5, 0, .5];
27 params . scfunctions (l ,2).fvals = [0, 1, 0];
28 end
29 params . wvfunctions (1 ,1).xpts = [-.5, 0, .5];
30 params . wvfunctions (1 ,1).fvals = [0, 1, 0];
31 params . scfunctions (1 ,1).xpts = [-.5, 0, .5];

23

32 params . scfunctions (1 ,1).fvals = [0, 1, 0];
33
34 params . xscale = 4;
35 params . yscale = 2;
36
37 params = fixlevels (params);
38
39 params .desc = ’Default ’;
40
41 locked = 0;
42
43 end
44
45 i f nargin > 0 && strcmp(varargin {1}, ’lock ’)
46 locked = 1;
47 disp(’Settings locked ’);
48 e l s e i f nargin > 0 && strcmp(varargin {1}, ’unlock ’)
49 locked = 0;
50 disp(’Settings unlocked ’);
51 e l s e i f locked && nargin > 0
52 disp(’Settings change interrupted ’);
53 else
54
55 for j = 1:2: nargin
56 switch lower(varargin {j})
57 case ’let ’
58 i f strcmp(varargin {j+1} ,’ridgelet ’)
59 params .let = ’ridgelet ’;
60 else
61 params .let = ’shearlet ’;
62 end
63 case ’interior ’
64 i f varargin {j+1} == 1
65 params . interior = 1;
66 else
67 params . interior = 0;
68 end
69 case ’periodic ’
70 i f varargin {j+1} == 1
71 params . periodic = 1;
72 else
73 params . periodic = 0;
74 end
75 params = fixlevels (params);
76 case ’qr’
77 params .qr = varargin {j+1};
78 case ’k’
79 params .k = varargin {j+1};
80 case ’f’
81 params .f = varargin {j+1};
82 case ’s’
83 params .s = varargin {j+1};
84 case ’glob ’

24

85 params .glob = varargin {j+1};
86 case ’globd ’
87 params .globd = varargin {j+1};
88 case ’maxlevel ’
89 params . maxlevel = varargin {j+1};
90 for j =

length(params . numfunctions): params . maxlevel ;
91 params . wvfunctions (end+1 ,:) =

params . wvfunctions (end,:);
92 params . scfunctions (end+1 ,:) =

params . scfunctions (end,:);
93 params . numfunctions (end+1) =

params . numfunctions (end);
94 end
95 params = fixlevels (params);
96 case ’numfunctions ’
97 params . numfunctions = varargin {j+1};
98 params = fixlevels (params);
99 case ’wvfunctions ’

100 params . wvfunctions = varargin {j+1};
101 case ’scfunctions ’
102 params . scfunctions = varargin {j+1};
103 case ’xscale ’
104 params . xscale = varargin {j+1};
105 params = fixlevels (params);
106 case ’yscale ’
107 params . yscale = varargin {j+1};
108 params = fixlevels (params);
109 case ’desc ’
110 params .desc = varargin {j+1};
111 end
112 end
113
114 end
115
116 out = params ;
117
118 function params = fixlevels (params)
119
120 params . rightskip = zeros (1, params . maxlevel +1);
121 params . upskip = zeros (1, params . maxlevel +1);
122 params . leftstart = zeros (1, params . maxlevel +1);
123 params . downstart = zeros (1, params . maxlevel +1);
124 params . numright = zeros (1, params . maxlevel +1);
125 params . numup = zeros (1, params . maxlevel +1);
126 params . numshears = zeros (1, params . maxlevel +1);
127 params . numatlevel = zeros (1, params . maxlevel +1);
128 params . numbelowlevel = zeros (1, params . maxlevel +1);
129
130 for i = 0: params . maxlevel
131 i f i == 0
132 params . rightskip (i+1) = 0.5;
133 params . upskip (i+1) = 0.5;

25

134 params . numshears (i+1) = 1;
135 else
136 params . rightskip (i+1) = params . xscale ^(-i)/4;
137 params . upskip (i+1) = params . yscale ^(-i)/2;
138 params . numshears (i+1) = 2^i + 1;
139 end
140
141 params . downstart (i+1) = 0;
142 i f params . periodic
143 params . leftstart (i+1) = 0;
144 params . numright (i+1) =

1/ params . rightskip (i+1);
145 params .numup(i+1) = 1/ params . upskip (i+1);
146 else
147 i f i == 0
148 params . leftstart (i+1) = 0;
149 else
150 params . leftstart (i+1) =

params . rightskip (i+1) -
0.5*(params . xscale ^(-i) +
params . yscale ^(-i));

151 end
152 params . numright (i+1) =

round((1 -2* params . leftstart (i+1))/ params . rightskip (i+1))
+ 1;

153 params .numup(i+1) =
round((1 -2* params . downstart (i+1))/ params . upskip (i+1))
+ 1;

154 end
155
156 params . numatlevel (i+1) = 2 *

params . numfunctions (i+1) * params .numup(i+1)
* params . numright (i+1) *
params . numshears (i+1);

157 params . numbelowlevel (i+1) =
sum(params . numatlevel);

158 end
159
160 end
161
162 end

A.2 Making and manipulating shearlets
The GetShearlet method is called with a single integer as argument and returns a
struct which defines the shearlet. The Right, Up and Flip methods move shearlets
to the right or upwards or flips the cone. These all rely on the RefreshShearletData
function to fill in the struct with more useful information. Here, we also present our
code for GetTransform and GetShearletCorners.

1 function s = GetShearlet (i, params)
2
3 i f nargin < 2

26

4 params = Settings ;
5 end
6
7 orig = i;
8
9 s.Level = 0;

10 while i > params . numatlevel (s.Level +1)
11 i = i - params . numatlevel (s.Level +1);
12 s.Level = s.Level + 1;
13 end
14
15 s.Cone = 0;
16 i f i > params . numatlevel (s.Level +1) / 2
17 i = i - params . numatlevel (s.Level +1) / 2;
18 s.Cone = 1;
19 end
20
21 s.F = mod(i-1, params . numfunctions (s.Level +1));
22 i = c e i l (i/ params . numfunctions (s.Level +1));
23
24 s.K = mod(i-1, params . numshears (s.Level +1)) -

(params . numshears (s.Level +1) -1) /2;
25 i = c e i l (i/ params . numshears (s.Level +1));
26
27 s.R = mod(i-1, params . numright (s.Level +1));
28 i = c e i l (i/ params . numright (s.Level +1));
29
30 s.U = i -1;
31
32 s = RefreshShearletData (s, params);
33
34 i f s.N ~= orig
35 disp ([’Error in getting shearlet ’ num2str(orig) ’

[GetShearlet .m]’]);
36 end
37
38 end

1 function s = Right(s, n, params)
2
3 i f nargin < 3
4 params = Settings ;
5 end
6
7 i f nargin < 2 || isempty(n)
8 n = 1;
9 end

10
11 s.R = s.R + n;
12 i f s.R >= params . numright (s.Level +1)
13 s.R = params . numright (s.Level +1) - 1;
14 e l s e i f s.R < 0
15 s.R = 0;

27

16 end;
17 s = RefreshShearletData (s, params);
18
19 end

1 function s = Up(s, n, params)
2
3 i f nargin < 3
4 params = Settings ;
5 end
6
7 i f nargin < 2 || isempty(n)
8 n = 1;
9 end

10
11 s.U = s.U + n;
12 i f s.U >= params .numup(s.Level +1)
13 s.U = params .numup(s.Level +1) - 1;
14 e l s e i f s.U < 0
15 s.U = 0;
16 end;
17 s = RefreshShearletData (s, params);
18
19 end

1 function s = Flip(s, params)
2
3 i f nargin < 2
4 params = Settings ;
5 end
6
7 s.Cone = 1 - s.Cone;
8 s = RefreshShearletData (s, params);
9

10 end

1 function s = RefreshShearletData (s, params)
2
3 i f nargin < 2
4 params = Settings ;
5 end
6
7 i f s.Cone == 0,
8 s.X = params . leftstart (s.Level +1) + s.R *

params . rightskip (s.Level +1);
9 s.Y = params . downstart (s.Level +1) + s.U *

params . upskip (s.Level +1);
10 else
11 s.Y = params . leftstart (s.Level +1) + s.R *

params . rightskip (s.Level +1);
12 s.X = params . downstart (s.Level +1) + s.U *

params . upskip (s.Level +1);

28

13 end;
14
15 n = 0;
16 i f s.Level > 0
17 n = params . numbelowlevel (s.Level);
18 end
19 i f s.Cone == 1
20 n = n + params . numfunctions (s.Level +1) *

params .numup(s.Level +1) *
params . numright (s.Level +1) *
params . numshears (s.Level +1);

21 end
22 n = n + s.U * params . numfunctions (s.Level +1) *

params . numright (s.Level +1) *
params . numshears (s.Level +1);

23 n = n + s.R * params . numfunctions (s.Level +1) *
params . numshears (s.Level +1);

24 n = n + params . numfunctions (s.Level +1) * (s.K +
(params . numshears (s.Level +1) -1) /2);

25 n = n + s.F;
26 n = n + 1;
27
28 s.N = n;
29
30 r = GetShearletCorners (s, 0, params);
31 s. Radius = max(sqrt (sum((r- repmat ([s.X;s.Y],1,4)).^2,

1)));
32
33 end

1 function [P, c] = GetTransform (s, i, params)
2
3 i f nargin < 3
4 params = Settings ;
5 end
6
7 c = [s.X; s.Y];
8 i f isfield (s, ’K’)
9 a = params . xscale / params . yscale ;

10 P = [1, a*s.K; 0, 1] * [params . xscale ^s.Level , 0; 0,
params . yscale ^s.Level];

11 else
12 P = [params . xscale ^s.Level , 0; 0,

params . yscale ^s.Level];
13 end;
14 i f s.Cone == 1, P = P * [0 1; 1 0]; end;
15
16 i f nargin > 1 && i > 0
17 XS =

length(params . wvfunctions (s.Level +1,s.F+1).xpts) -1;
18 YS =

length(params . scfunctions (s.Level +1,s.F+1).xpts) -1;
19

29

20 Qi = [XS , 0; 0, YS];
21 ci = [(mod(i-1,XS)+.5)/XS -.5;

(f loor ((i -1)/XS)+.5)/YS -.5];
22 c = P\ci+c;
23 P = Qi*P;
24 end
25
26 end

1 function p = GetShearletCorners (s, i, params)
2
3 i f nargin < 3
4 params = Settings ;
5 end
6
7 i f nargin < 1
8 p = [0, 1, 1, 0; 0, 0, 1, 1];
9 else

10 i f nargin < 2
11 i = 0;
12 end
13 p = [-.5, .5, .5, -.5; -.5, -.5, .5, .5];
14 [P, c] = GetTransform (s, i, params);
15 p = (P\p) + repmat (c, 1, s ize (p ,2));
16 i f (s.Cone == 1), p = f l i p l r (p); end;
17 end
18
19 end

A.3 Evaluating shearlets
The PreparePoints method takes care of all the transforming being done, as well as
some work related to peroidicity. It returns the transformed points as well as a vector
of boolean values denoting whether or not this point falls inside the support (not al-
ways obvious in the periodic case). EvaluateShearlet and EvaluateShearletGradient
use this to do the raw work.

1 function [x, computefor] = PreparePoints (s, x, params)
2
3 i f nargin < 3
4 params = Settings ;
5 end
6
7 [P, c] = GetTransform (s, 0, params);
8 x = P*(x- repmat (c, 1, s ize (x ,2)));
9

10 computefor = 1: s ize (x ,2);
11
12 i f params . periodic
13 dirs = P * [1 0; 0 1];
14 i f s.Cone == 1
15 dirs = f l i p l r (dirs);

30

16 end
17 n_min = c e i l ((-x(2 ,:) -0.5)/dirs (2 ,2));
18 n_max = f loor ((-x(2 ,:) +0.5)/dirs (2 ,2));
19
20 computefor = setdiff (computefor , find (n_min >n_max));
21 n = n_min;
22
23 m_min = c e i l ((-x(1 ,:) -n*dirs (1 ,2) -0.5)/dirs (1 ,1));
24 m_max = f loor ((-x(1 ,:) -n*dirs (1 ,2) +0.5)/dirs (1 ,1));
25
26 computefor = setdiff (computefor , find (m_min >m_max));
27 m = m_min;
28
29 x = x + repmat (m ,2 ,1) .* repmat (dirs (: ,1) ,1, s ize (x ,2))

+ repmat (n ,2 ,1) .* repmat (dirs (: ,2) ,1, s ize (x ,2));
30 end
31
32 end

1 function out = EvaluateShearlet (s, x, params)
2
3 i f nargin < 3
4 params = Settings ;
5 end
6
7 xorig = x;
8 [x, computefor] = PreparePoints (s, x, params);
9

10 wv_xpts = params . wvfunctions (s.Level +1,s.F+1).xpts;
11 wv_fvals = params . wvfunctions (s.Level +1,s.F+1).fvals;
12 gm = @(x) inter(wv_xpts , wv_fvals , x);
13
14 sc_xpts = params . scfunctions (s.Level +1,s.F+1).xpts;
15 sc_fvals = params . scfunctions (s.Level +1,s.F+1).fvals;
16 th = @(x) inter(sc_xpts , sc_fvals , x);
17
18 out = zeros (1, s ize (x ,2));
19 out(computefor) =

th(x(2, computefor)).*gm(x(1, computefor));
20 out = 2^(-3*s.Level /2)*out;
21
22 i f isfield (params , ’glob ’)
23 out = out .* params .glob(xorig (:, computefor));
24 end
25
26 function out = inter(xs , ys , x)
27 out = interp1 ([min([xs ,x]) -1, xs , max([xs ,x])+1], [0,

ys , 0], x);
28 end
29
30 end

1 function out = EvaluateShearletGradient (s, x, params)

31

2
3 i f nargin < 3
4 params = Settings ;
5 end
6
7 xorig = x;
8 [x, computefor] = PreparePoints (s, x, params);
9

10 wv_xpts = params . wvfunctions (s.Level +1,s.F+1).xpts;
11 wv_fvals = params . wvfunctions (s.Level +1,s.F+1).fvals;
12 gm = @(x) inter(wv_xpts , wv_fvals , x);
13 gmd = @(x) interd (wv_xpts , wv_fvals , x);
14
15 sc_xpts = params . scfunctions (s.Level +1,s.F+1).xpts;
16 sc_fvals = params . scfunctions (s.Level +1,s.F+1).fvals;
17 th = @(x) inter(sc_xpts , sc_fvals , x);
18 thd = @(x) interd (sc_xpts , sc_fvals , x);
19
20 [P, c] = GetTransform (s, 0, params);
21 shld = zeros (2, s ize (x ,2));
22 shld (:, computefor) =

[th(x(2, computefor)).* gmd(x(1, computefor));
thd(x(2, computefor)).*gm(x(1, computefor))];

23 shld = 2^(-3*s.Level /2)*P’* shld;
24
25 i f ~ isfield (params , ’glob ’) || ~ isfield (params , ’globd ’)
26 out = shld;
27 else
28 shl = zeros (1, s ize (x ,2));
29 shl(computefor) =

th(x(2, computefor)).*gm(x(1, computefor));
30 shl = 2^(-3*s.Level /2)*shl;
31 out = repmat (shl ,2 ,1) .* params .globd(xorig) +

repmat (params .glob(xorig) ,2,1).* shld;
32 end;
33
34 function out = inter(xs , ys , x)
35 out = interp1 ([min([xs ,x]) -1, xs , max([xs ,x])+1], [0,

ys , 0], x);
36 end
37
38 function out = interd (xs , ys , x)
39 gpts = length(xs);
40 vpts = length(x);
41
42 loc = sum(repmat (x,gpts ,1) > repmat (xs ’,1, vpts), 1);
43 ys = [ys (1) , ys , ys(end)];
44 xs = [xs (1) -1, xs , xs(end)+1];
45
46 out = (ys(loc +2) -ys(loc +1))./(xs(loc +2) -xs(loc +1));
47 end
48
49 end

32

A.4 Linear and bilinear forms
These methods evaluate the integrand of some linear and bilinear forms. They take
one or two shearlets and the points of evaluation as parameters. We have BLFKK,
BLFSS, BLFSK and BLF for the bilinear forms for the reaction term, the transport
term, the cross term, and everything together respectively. For linear forms we have
similarly LFK and LFS.

1 function out = BLFKK(u, v, x, params)
2
3 i f nargin < 4
4 params = Settings ;
5 end
6
7 out = params .k(x).^2 .* EvaluateShearlet (u, x, params) .*

EvaluateShearlet (v, x, params);
8
9 end

1 function out = BLFSS(u, v, x, params)
2
3 i f nargin < 4
4 params = Settings ;
5 end
6
7 out = sum(params .s(x) .* EvaluateShearletGradient (u, x,

params), 1) .* sum(params .s(x) .*
EvaluateShearletGradient (v, x, params), 1);

8
9 end

1 function out = BLFSK(u, v, x, params)
2
3 i f nargin < 4
4 params = Settings ;
5 end
6
7 out = sum(params .s(x) .* EvaluateShearletGradient (u, x,

params), 1) .* params .k(x) .* EvaluateShearlet (v, x,
params);

8
9 end

1 function out = BLF(u, v, x, params)
2
3 i f nargin < 4
4 params = Settings ;
5 end
6
7 ux = EvaluateShearlet (u, x, params);
8 vx = EvaluateShearlet (v, x, params);
9 ud = EvaluateShearletGradient (u, x, params);

10 vd = EvaluateShearletGradient (v, x, params);

33

11
12 p = params ;
13
14 out = p.k(x).^2.* ux.*vx + sum(p.s(x).*ud , 1).*p.k(x).*vx

+ sum(p.s(x).*vd , 1).*p.k(x).*ux + sum(p.s(x).*ud ,
1).*sum(p.s(x).*vd , 1);

15
16 end

1 function out = LFK(v, x, params)
2
3 i f nargin < 3
4 params = Settings ;
5 end
6
7 out = EvaluateShearlet (v, x, params) .* params .f(x) .*

params .k(x);
8
9 end

1 function out = LFS(v, x, params)
2
3 i f nargin < 3
4 params = Settings ;
5 end
6
7 out = sum(params .s(x) .* EvaluateShearletGradient (v, x,

params), 1) .* params .f(x);
8
9 end

A.5 Intersections
Here, we have code for CheckPolygonIntersection, which checks if two convex
polygons are disjoint or not, CheckShearletIntersection, which checks if the sup-
ports of two shearlets are disjoint or not (and relies on the former), and GetIntersecton,
which actually computes the intersection between two shearlet (sub)supports, rely-
ing on the GPC library [19] which is compiled. This method needs the services of
CrossesBoundary, which computes flags denoting if a shearlet crosses parts of the
boundary of the domain (if periodicity is enabled).

1 function out = CheckPolygonIntersecton (p, q)
2
3 i f isempty(p) || isempty(q)
4 out = 0;
5 return;
6 end
7
8 cp = [p(:,end), p];
9 cq = [q(:,end), q];

10

34

11 % Loop through P
12 for i = 2: s ize (cp ,2)
13
14 base_tmp = cp(:,i) - cp(:,i -1);
15 base = [base_tmp (2); -base_tmp (1)];
16
17 separator = 1;
18 for j = 2: s ize (cq ,2)
19 i f dot(cq(:,j) - cp(:,i), base) < 0
20 separator = 0;
21 break;
22 end
23 end
24
25 i f separator
26 out = 0;
27 return;
28 end
29
30 end
31
32 for i = 2: s ize (cq ,2)
33
34 base_tmp = cq(:,i) - cq(:,i -1);
35 base = [base_tmp (2); -base_tmp (1)];
36
37 separator = 1;
38 for j = 2: s ize (cp ,2)
39 i f dot(cp(:,j) - cq(:,i), base) < 0
40 separator = 0;
41 break;
42 end
43 end
44
45 i f separator
46 out = 0;
47 return;
48 end
49
50 end
51
52 out = 1;
53
54 end

1 function out = CheckShearletIntersection (u, v, params)
2
3 i f nargin < 3
4 params = Settings ;
5 end
6
7 p = GetShearletCorners (u, 0, params);
8 q = GetShearletCorners (v, 0, params);

35

9
10 Nvals = 0;
11 Mvals = 0;
12
13 i f params . periodic
14 deltax = v.X - u.X;
15 deltay = v.Y - u.Y;
16 rad = v. Radius + u. Radius ;
17
18 Nvals = c e i l (-rad - deltax): f loor (rad - deltax);
19 Mvals = c e i l (-rad - deltay): f loor (rad - deltay);
20 end
21
22 for N = Nvals
23 for M = Mvals
24 i f CheckPolygonIntersection (p, q +

repmat ([N;M],1, s ize (q ,2)))
25 out = 1;
26 return;
27 end
28 end
29 end
30
31 out = 0;
32
33 end

1 function [np , p] = GetIntersection (u, i, v, j, params)
2
3 i f nargin < 5
4 params = Settings ;
5 end
6
7 i f nargin < 4
8 j = 0;
9 end

10
11 i f nargin < 3
12 v = [];
13 end
14
15 i f nargin < 2
16 i = 0;
17 end
18
19 sp = GetShearletCorners ();
20 S.x = sp (1 ,:); S.y = sp (2 ,:); S.hole = 0;
21 U = BuildPolygon (u, i, params);
22
23 R = PolygonClip (U, S, 1);
24
25 i f length(R) == 0
26 np = 0;

36

27 p = [];
28 return;
29 end
30
31 i f nargin > 2 && ~isempty(v)
32 V = BuildPolygon (v, j, params);
33 R = PolygonClip (R, V, 1);
34
35 i f length(R) == 0
36 np = 0;
37 p = [];
38 return;
39 else
40 np = length(R);
41 for k = 1: length(R)
42 p(k).p = f l i p l r ([R(k).x’; R(k).y ’]);
43 end
44 return;
45 end
46 else
47 np = length(R);
48 for k = 1: length(R)
49 p(k).p = f l i p l r ([R(k).x’; R(k).y ’]);
50 end
51 return;
52 end
53
54 function U = BuildPolygon (u, i, params)
55
56 up = GetShearletCorners (u, i, params);
57 U(1).x = up (1 ,:); U(1).y = up (2 ,:); U(1).hole = 0;
58
59 i f params . periodic
60 [r, l, u, d] = CrossesBoundary (params , u, i);
61
62 U = AddToPol (U, 1, -r, 0);
63 U = AddToPol (U, 1, l, 0);
64 U = AddToPol (U, 1, 0, -u);
65 U = AddToPol (U, 1, 0, d);
66 U = AddToPol (U, 1, -(r&u), -(r&u));
67 U = AddToPol (U, 1, l&u, -(l&u));
68 U = AddToPol (U, 1, -(r&d), r&d);
69 U = AddToPol (U, 1, l&d, l&d);
70 end
71
72 end
73
74 function pol = AddToPol (pol , ref , xadd , yadd)
75 i f (xadd ~= 0) | (yadd ~= 0)
76 k = length(pol) + 1;
77 pol(k).x = pol(ref).x + xadd;
78 pol(k).y = pol(ref).y + yadd;
79 pol(k).hole = pol(ref).hole;

37

80 end
81 end
82
83 end

A.6 Building quadrature rules
Here, we have SplitTriangle, which splits a collection of triangles (defined as a
6×N matrix with vertices stacked in the first dimension) into a collection of smaller
triangles, in the light of the argumentation presented in section 4.3.4. We also
have BuildQuadRuleOnPolygon, which takes a polygon and constructs a quadra-
ture rule on it, also implementing the subdivision routine of algorithm 6, using
TransformQuadRule for transforming a base quadrature rule onto a triangle. This
method is again used by BuildDoubleQuadRule and BuildSingleQuadRule, which
constructs quadrature rules on the intersection of the supports of two shearlets or
the support of one shearlet respectively.

1 function out = SplitTriangle (trs , L)
2
3 i f L > 0
4
5 out = zeros (6, 4* s ize (trs ,2));
6 i = 1;
7
8 for tr = trs
9 q = reshape(tr , 2, 3);

10 out (:, i:i+3) = [reshape([q(: ,1) ,
avg(q(: ,1) ,q(: ,2)), avg(q(: ,1) ,q(: ,3))], 6,
1),...

11 reshape([q(: ,2) ,
avg(q(: ,2) ,q(: ,3)),
avg(q(: ,2) ,q(: ,1))], 6, 1),...

12 reshape([q(: ,3) ,
avg(q(: ,3) ,q(: ,1)),
avg(q(: ,3) ,q(: ,2))], 6, 1),...

13 reshape([avg(q(: ,1) ,q(: ,2)),
avg(q(: ,3) ,q(: ,2)),
avg(q(: ,3) ,q(: ,1))], 6, 1)];

14 i = i + 4;
15 end
16
17 out = SplitTriangle (out , L -1);
18
19 else
20
21 out = trs;
22
23 end
24
25 function out = avg(a, b)
26 out = 0.5 * (a+b);
27 end

38

28
29 end

1 function r = BuildQuadRuleOnPolygon (p, L, params)
2
3 i f nargin < 3
4 params = Settings ;
5 end
6
7 r.x = [];
8 r.w = [];
9

10 i f isempty(p)
11 return;
12 end
13
14 idxs = [1, 2, s ize (p ,2)];
15 sw = 2; endidx = 1; startidx = 3;
16
17 while true
18 trs = SplitTriangle (reshape(p(:, idxs), 6, 1), L);
19
20 for tr = trs
21 temp = TransformQuadRule (params .qr, reshape(tr ,

2, 3));
22 i f sum(temp.w) > 0
23 r.x = [r.x, temp.x];
24 r.w = [r.w, temp.w];
25 end;
26 end
27
28 i f (sw == 2)
29 idxs = [idxs (2) , s ize (p ,2) -endidx , idxs (3)];
30 endidx = endidx + 1;
31 sw = 1;
32 e l s e i f (sw == 1)
33 idxs = [idxs (1) , startidx , idxs (2)];
34 startidx = startidx + 1;
35 sw = 2;
36 end;
37
38 i f length(unique (idxs)) < 3,
39 break;
40 end;
41 end;
42
43 end

1 function r = BuildDoubleQuadRule (u, v, params)
2
3 i f nargin < 3
4 params = Settings ;
5 end

39

6
7 i f u.N == v.N
8 r = BuildSingleQuadRule (u, 0, params);
9 else

10 r.x = [];
11 r.w = [];
12
13 numSectionsU =

(length(params . wvfunctions (u.Level +1,u.F+1).xpts) -1)
*
(length(params . scfunctions (u.Level +1,u.F+1).xpts) -1);

14 numSectionsV =
(length(params . wvfunctions (v.Level +1,v.F+1).xpts) -1)
*
(length(params . scfunctions (v.Level +1,v.F+1).xpts) -1);

15
16 for i = 1: numSectionsU
17 for j = 1: numSectionsV
18
19 [np ,p] = GetIntersection (u, i, v, j, params);
20
21 for k = 1:np
22 rule = BuildQuadRuleOnPolygon (p(k).p, 0,

params);
23 r.x = [r.x, rule.x];
24 r.w = [r.w, rule.w];
25 end
26
27 end; end;
28
29 end
30
31 end

1 function r = BuildSingleQuadRule (v, L, params)
2
3 i f nargin < 3
4 params = Settings ;
5 end
6
7 r.x = [];
8 r.w = [];
9

10 i f nargin < 2 || isempty(L)
11 L = params . maxlevel - v.Level;
12 end
13
14 numSections =

(length(params . wvfunctions (v.Level +1,v.F+1).xpts) -1)
*
(length(params . scfunctions (v.Level +1,v.F+1).xpts) -1);

15
16 for i = 1: numSections

40

17
18 [np ,p] = GetIntersection (v, i, [], 0, params);
19
20 for k = 1:np
21 rule = BuildQuadRuleOnPolygon (p(k).p, L, params);
22 r.x = [r.x, rule.x];
23 r.w = [r.w, rule.w];
24 end
25
26 end
27
28 end

A.7 Tying it all together
The methods IntegrateBLF and EvaluateBLF (along with their LF namesakes for
linear forms) take care of the actual integration (using a quadrature rule) in the
former case, and orchestrating the whole affair of checking intersections and building
quadrature rules (and then integrating) in the second case.

1 function out = IntegrateBLF (blf , u, v, qr, params)
2
3 i f nargin < 5
4 params = Settings ;
5 end
6
7 out = sum(qr.w .* blf(u, v, qr.x, params));
8
9 end

1 function out = IntegrateLF (lf , v, qr, params)
2
3 i f nargin < 4
4 params = Settings ;
5 end
6
7 out = sum(qr.w .* lf(v, qr.x, params));
8
9 end

1 function out = EvaluateBLF (blf , u, v, params)
2
3 i f nargin < 4
4 params = Settings ;
5 end
6
7 i f CheckShearletIntersection (u, v, params);
8
9 [np ,p] = GetIntersection (u, 0, v, 0, params);

10
11 i f np == 0
12 out = 0;

41

13 return;
14 else
15 qr = BuildDoubleQuadRule (u, v, params);
16 i f s ize (qr.x ,2) > 0
17 out = IntegrateBLF (blf , u, v, qr, params);
18 else
19 out = 0;
20 end
21 end
22
23 else
24 out = 0;
25 end
26
27 end

1 function out = EvaluateLF (lf , v, params)
2
3 i f nargin < 3
4 params = Settings ;
5 end
6
7 i f CheckPolygonIntersection (GetShearletCorners (),

GetShearletCorners (v, 0, params))
8
9 [np ,p] = GetIntersection (v, 0, [], 0, params);

10
11 i f np == 0
12 out = 0;
13 return;
14 else
15 qr = BuildSingleQuadRule (v, [], params);
16 i f s ize (qr.x ,2) > 0
17 out = IntegrateLF (lf , v, qr, params);
18 else
19 out = 0;
20 end
21 end
22
23 else
24 out = 0;
25 end
26
27 end

A.8 Matrices and vectors
On the top of the food chain, we find the functions Stiffness and Load, which store
the stiffness matrices and load vectors in persistent variables. This is also where the
parallellization takes place.

Stiffness takes as arguments a matrix identifier, two index sets denoting a
submatrix of the global stiffness matrix, a bilinear form and a boolean denoting

42

whether or not the matrix should be symmetric. It then looks up the matrix in
memory, determines which (if any) new elements need to be computed, computes
them, and then returns the desired submatrix. Load works in a similar manner.

1 function ret = Stiffness (k, I, J, blf , sym , params)
2
3 N = 10000;
4 NNZ = 1000*N;
5
6 persistent A;
7 persistent nodes;
8 persistent defined ;
9

10 i f isa(k, ’char ’)
11 i f strcmp(k, ’clear ’)
12 disp(’Clearing ... ’);
13 clear A;
14 clear nodes;
15 clear defined ;
16 ret = 0;
17 return;
18 end
19 end
20
21 i f ~ exist (’defined ’)
22 defined = [];
23 end
24
25 i f (length(defined) < k) || (defined (k) == 0)
26 disp(’Allocating ... ’);
27 A{k} = spal loc (N, N, NNZ);
28 nodes{k} = zeros (1, N);
29 defined (k) = 1;
30 end
31
32 i f nargin < 6
33 params = Settings ();
34 end
35
36 maxidx = max(max(I),max(J));
37 i f maxidx > length(nodes{k})
38 nodes{k} = [nodes{k}, zeros (1,

maxidx - length(nodes{k}))];
39 end
40
41 newI = find (nodes{k}(I) == 0);
42 newJ = find (nodes{k}(J) == 0);
43 newnodes = unique ([I(newI), J(newJ)]);
44 oldnodes = find (nodes{k} == 1);
45
46 i f s ize (newnodes , 1) == 0
47 newnodes = [];
48 end
49

43

50 nums = 0;
51 N = length(newnodes);
52 tots = length(oldnodes)*N + N*(N+1) /2;
53 disp(’ ’);
54 i f tots > 0
55 progmeter (0, [’Computing ’ num2str(tots) ’ new

elements of matrix ’ num2str(k)]);
56 end
57
58 for i = newnodes ,
59 temph = zeros (1, length(oldnodes));
60 tempv = zeros (length(oldnodes) ,1);
61 parfor j = 1: length(oldnodes)
62 temph(j) = EvaluateBLF (blf ,

GetShearlet (oldnodes (j), params),
GetShearlet (i, params), params);

63 i f sym ,
64 tempv(j) = temph(j);
65 else
66 tempv(j) = EvaluateBLF (blf , GetShearlet (i,

params), GetShearlet (oldnodes (j),
params), params);

67 end
68 end
69
70 A{k}(i, oldnodes) = temph;
71 A{k}(oldnodes ,i) = tempv;
72
73 A{k}(i,i) = EvaluateBLF (blf , GetShearlet (i, params),

GetShearlet (i, params), params);
74 nums = nums + length(oldnodes) + 1;

progmeter (nums/tots);
75
76 nodes{k}(i) = 1;
77 oldnodes = [oldnodes , i];
78 end
79
80 ret = A{k}(I,J);
81
82 i f tots > 0
83 progmeter done
84 end
85
86 end

1 function ret = Load(k, I, lf , params)
2
3 N = 10000;
4
5 persistent L;
6 persistent nodes;
7 persistent defined ;
8

44

9 i f isa(k, ’char ’)
10 i f strcmp(k, ’clear ’)
11 disp(’Clearing ... ’);
12 clear L;
13 clear nodes;
14 clear defined ;
15 ret = 0;
16 return;
17 end
18 end
19
20 i f ~ exist (’defined ’)
21 defined = [];
22 end
23
24 i f (length(defined) < k) || (defined (k) == 0)
25 disp(’Allocating ... ’);
26 L{k} = zeros (N, 1);
27 nodes{k} = zeros (1, N);
28 defined (k) = 1;
29 end
30
31 i f nargin < 4
32 params = Settings ();
33 end
34
35 newI = find (nodes{k}(I) == 0);
36 newnodes = I(newI);
37
38 i f s ize (newnodes , 1) == 0
39 newnodes = [];
40 end
41
42 nums = 0;
43 tempLk = L{k};
44 tempnodesk = nodes{k};
45 parfor i = newnodes ,
46 tempLk (i) = EvaluateLF (lf , GetShearlet (i), params);
47 %nums = nums + 1;
48 %progmeter(nums/length(newnodes));
49
50 tempnodesk (i) = 1;
51 end
52 nodes{k} = tempnodesk ;
53 L{k} = tempLk ;
54
55 ret = L{k}(I);
56
57 end

45

References
[1] J. P. Antoine, R. Murenzi, and P. Vandergheynst. Directional wavelets revis-

ited: Cauchy wavelets and symmetry detection in patterns. Appl. Computat.
Harmon. Anal., 6:314–345, 1999.

[2] I. Babuška and J. M. Melenk. The partition of unity method. International
Journal for Numerical Methods in Engineering, 40:727–758, 1997.

[3] E. Candes and L. Demanet. The curvelet representation of wave propagators is
optimally sparse. Communications in Pure and Applied Mathematics, 58:1472–
1528, 2004.

[4] E. Candes and D. Donoho. New tight frames of curvelets and optimal repre-
sentations of objects with piecewise c2 singularities. Communications in Pure
and Applied Mathematics, 57:219–266, 2002.

[5] E. Candès and D. Donoho. Curvelets: a surprising effective nonadaptive repre-
sentation for objects with edges. In in Curve and Surface Fitting: Saint-Malo.
University Press, 2000.

[6] B. Chazelle and D. P. Dobkin. Detection is easier than computation (extended
abstract). In Proceedings of the twelfth annual ACM symposium on Theory of
computing, STOC ’80, pages 146–153, New York, NY, USA, 1980. ACM.

[7] S. Dahlke, M. Fornasier, M. Primbs, T. Raasch, and M. Werner. Nonlinear and
adaptive frame approximation schemes for elliptic pdes: Theory and numerical
experiments. Numerical Methods for Partial Differential Equations, 25:1366–
1401, 2009.

[8] S. Dahlke, M. Fornasier, and T. Raasch. Adaptive frame methods for elliptic
operator equations. Advances in Computational Mathematics, 27:27–63, 2007.

[9] S. Dahlke, T. Raasch, M. Werner, M. Fornasier, and R. Stevenson. Adaptive
frame methods for elliptic operator equations: the steepest descent approach.
IMA Journal of Numerical Analysis, 27:717–740, 2007.

[10] M. N. Do and M. Vetterli. The contourlet transform: an efficient directional
multiresolutoin image representation. IEEE Transactions on Image Processing,
14:2091–2106, 2005.

[11] P. Grohs. Ridgelet-type frame decompositions for sololev spaces related to
linear transport. Technical report, SAM, ETH Zurich, 2010.

[12] K. Guo and D. Labate. Optimally sparse multidimensional representation using
shearlets. SIAM J. Math. Anal., 39:298–318, 2007.

[13] K. Guo and D. Labate. Representation of fourier integral operators using shear-
lets. Journal of Fourier Analysis and Applications, 14(3):327–371, 2008.

[14] P. Kittipoom, G. Kutyniok, and W.-Q Lim. Construction of compactly sup-
ported shearlet frames. Technical report, 2010.

[15] G. Kutyniok and T. Saurer. Adaptive directional subdivision schemes and
shearlet multiresolution analysis. SIAM J. Math. Anal., 41:1436–1471, 2009.

[16] D. Labate, W.-Q Lim, G. Kutyniok, and G. Weiss. Sparse multidimensional
representation using shearlets. SPIE Proc., 5914:254–262, 2005.

46

[17] T. A. Manteuffel, K. J. Ressel, and G. Starke. A boundary functional for the
least-squares finite-element solution of neutron transport problems. SIAM J.
Numer. Anal., 37(2):556–586, 2000.

[18] J. M. Melenk and I. Babuška. The partition of unity finite element method:
Basic theory and applications. Comput. Methods Appl. Mech. Engrg., 139:289–
314, 1996.

[19] A. Murta and T. Howard. See http://www.cs.man.ac.uk/~toby/alan/software/.
[20] J. O’Rourke, C.-B. Chien, T. Olson, and D. Naddor. A new linear algorithm

for intersecting convex polygons. Computer Graphics and Image Processing,
19:384–391, 1982.

[21] H. Smith. A parametrix construction for wave equations with c1, 1-coefficients.
Annales de l’Institut Fourier, 48:797–835, 1998.

[22] R. Stevenson. Adaptive solution of operator equations using wavelet frames.
SIAM J. Numer. Anal., 41:1074–1100, 2003.

[23] G. T. Toussaint. A simple linear algorithm for intersecting convex polygons.
The Visual Computer, 1:118–123, 1985.

[24] S. Yi, D. Labate, G. R. Easley, and H. Krim. A shearlet approach to edge
analysis and detection. IEEE Trans. Image Process., 18:929–941, 2009.

47

Research Reports

No. Authors/Title

11-50 E. Fonn
Shearlet Galerkin for transport equations: implementation and stability

11-49 M.J. Castro, U.S. Fjordholm, S. Mishra and C. Parés
Entropy conservative and entropy stable schemes for non-conservative
hyperbolic systems

11-48 D. Kressner and Ch. Tobler
Preconditioned low-rank methods for high-dimensional elliptic PDE
eigenvalue problems

11-47 H. Heumann and R. Hiptmair
Convergence of lowest order semi-Lagrangian schemes

11-46 K. Grella and Ch. Schwab
Sparse discrete ordinates method in radiative transfer

11-45 X. Claeys and R. Hiptmair
Boundary integral formulation of the first kind for acoustic scattering by
composite structures

11-44 A. Chkifa, A. Cohen, R. DeVore and Ch. Schwab
Sparse adaptive Taylor approximation algorithms for parametric and
stochastic elliptic PDEs

11-43 S. Chen and S. Mao
Anisotropic error bounds of Lagrange interpolation with any order in two
and three dimensions

11-42 R. Hiptmair and J. Li
Shape derivatives in differential forms I: An intrinsic perspective

11-41 Ph. Grohs and Ch. Schwab
Sparse twisted tensor frame discretization of parametric transport
operators

11-40 J. Li, H. Liu, H. Sun and J. Zou
Imaging acoustic obstacles by hypersingular point sources

11-39 U.S. Fjordholm, S. Mishra and E. Tadmor
Arbitrarily high order accurate entropy stable essentially non-oscillatory
schemes for systems of conservation laws

11-38 U.S. Fjordholm, S. Mishra and E. Tadmor
ENO reconstruction and ENO interpolation are stable

