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The stationary monochromatic radiative transfer equation (RTE) is a
partial differential transport equation stated on a five-dimensional phase
space, the Cartesian product of physical and angular domain.
We solve the RTE with a Galerkin FEM in physical space and collocation

in angle, corresponding to a discrete ordinates method (DOM). To reduce
the complexity of the problem and to avoid the “curse of dimension”, we
adapt the sparse grid combination technique to the solution space of the
RTE and show that we obtain a sparse DOM which uses essentially only
as many degrees of freedom as required for a purely spatial transport prob-
lem. For smooth solutions, the convergence rates deteriorate only by a
logarithmic factor.
We compare the sparse DOM to the standard full DOM and a sparse

tensor product approach developed earlier with Galerkin FEM in physical
space and a spectral method in angle. Numerical experiments confirm our
findings.
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1 Introduction

1.1 Radiative transfer

In this work we solve the stationary monochromatic radiative transfer problem (see
e. g. Modest 2003) without scattering defined on a bounded Lipschitz domain D ⊂ Rd,
where d = 2, 3.

We would like to find the radiative intensity u(x, s), u : D × S → R, S being the
dS-sphere with dS = 1, 2, that satisfies

s ·∇xu(x, s) + κ(x)u(x, s) = κ(x)Ib(x), (x, s) ∈ D × S (1a)

u(x, s) = g(x, s), x ∈ ∂D, s · n(x) < 0 . (1b)

In this problem statement, κ ≥ 0 is the absorption coefficient, Ib ≥ 0 the blackbody
intensity, g ≥ 0 the radiation entering the domain or wall emission, and n(x) the outer
unit normal on the boundary. In the presence of media in the domain, the problem
formulation could include scattering terms (Modest 2003). However, here we neglect
scattering since we investigate a new approach to discretize Eq. (1). Furthermore, we
assume g = 0, i. e. the domain boundaries are non-emissive or “cold”.
An introduction to the topic of radiative heat transfer is given by Modest (2003).

Apart from Monte Carlo methods, standard solution approaches to the radiative trans-
fer problem are the discrete ordinates method and the method of spherical harmonics.
Frank (2007) gives an overview of these numerical methods for radiative transfer.
State-of-the-art methods and applications are compiled by Kanschat et al. (2008).
In the discrete ordinate method (DOM) or SN -approximation, Eq. (1) is solved forN

fixed directions spanning the full range in solid angle. The method is simple to imple-
ment and thus popular, but in order to capture very localized features of the solution
in the s-dependence a fine angular resolution is usually necessary. Also, the method
suffers from so-called ray effects, in which the mesh structure of the discretization is
reflected in the solution (Lathrop 1968).
In the method of spherical harmonics or PN -approximation, the intensity is ex-

panded into a truncated series of spherical harmonics in solid angle, resulting in a
coupled system of PDEs in space. Often used is the P1-approximation, in which
(1a) is reduced to a diffusion equation. In general, though, higher orders lead to a
sharp increase in mathematical complexity when boundary conditions are to be satis-
fied (Modest and Yang 2008). For smooth solutions, the spherical harmonics method
exhibit spectral convergence, which makes them a popular and promising approach
for radiative transfer problems where smoothness in the solution is expected when
absorption or scattering are present.
The system of partial differential equations arising from the SN - or PN -approxima-

tion is discretized with finite differences or a finite element method. Manteuffel et al.
(2000), for instance, solve a least squares formulation with spherical harmonics in solid
angle and finite elements in space. Kanschat (1996) combines the discrete ordinate
method with a stabilized streamline diffusion FEM in the physical domain.
All these methods suffer from the “curse of dimension”, the low rate of convergence

in terms of number of degrees of freedom due to the high dimensionality of the radiative
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transfer problem which is stated in five dimensions for (d, dS) = (3, 2). The accuracy
of the solution does not scale in the same way as the computational complexity so that
accurate discretizations quickly become prohibitively expensive.

Widmer et al. (2007) have developed a method to overcome the curse of dimension
in the context of a wavelet discretization of the angular domain. In their sparse tensor
product method, they discretize physical and angular domain with hierarchical and
wavelet finite elements, respectively, and then select only the most relevant finite ele-
ment product combinations to construct the trial space for the solution. Provided that
the absorption coefficient κ(x) and blackbody intensity Ib(x) are sufficiently smooth,
their method achieves a log-linear complexity in the number of degrees of freedom
while convergence rates deteriorate only by a logarithmic factor. Their method is also
suited for the optically thin regime, i. e. for small κ.

In earlier work (Grella and Schwab 2010), we have shown that the sparse tensor
product method can also be combined with a spectral discretization involving spherical
harmonics, as already suggested by Widmer et al. (2008). The advantages of sparse
tensorization then also carry over to a combination of hierarchical finite elements in
physical space and spectral discretization in solid angle. Together with additional
geometry adapted angular basis functions to satisfy boundary conditions strongly,
the sparse tensor spherical harmonics method makes it possible to include spherical
harmonics of high order in the solution of the radiative transfer problem without
incurring the “curse of dimension”.

In this paper we investigate the application of the sparse grid combination technique
to the popular discrete ordinates method. Ordinarily, the DOM discretizes the angular
space by picking a number of discrete directions. Then a purely physical transport
subproblem is solved for each of the fixed directions and the subproblem solutions are
combined to form a solution of the RTE. With the sparse grid combination technique
(Hegland et al. 2007), or hereafter more generally referred to as the sparse tensor
combination technique, not all the subproblems are solved with the same physical res-
olution. Instead, we compute high resolution solutions only for few directions, while
the resolution is lowered for many other directions in a way to achieve our complexity
and accuracy goal: provided that the exact solution to the RTE is sufficiently smooth,
the convergence rates with respect to the number of degrees of freedom (DoFs) de-
teriorate only by a logarithmic factor, while the problem size is reduced to a purely
physical problem (also up to logarithmic factors).

For the solution of the physical subproblems, we derive a variational formulation
from a least squares ansatz and discretize using a Galerkin FEM with hierarchical
basis. This allows us to simply add up solutions to different subproblems without
interpolation losses.

1.2 Structure and notation of the paper

The paper is organized as follows: In Section 2 we present the discrete ordinates
method for the radiative transfer problem (1).

In Section 3 we describe the sparse grid combination technique with a generalization
to arbitrary tensor product spaces.
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Section 4 explains our sparse DOM and elaborates on complexity and convergence
estimates.

Finally, Section 5 underlines the analytical derivations with results from numerical
experiments. We also compare the performance to the ordinary full DOM and the
sparse/full tensor spherical harmonics approximation developed earlier.

Throughout the present paper, we will use the notation a ! b (a ' b) if there exists
a constant 0 < C < ∞ with a ≤ Cb (a ≤ Cb and a ≥ C−1b). The constants in
the inequalities may depend on additional quantities such as angles in a mesh or the
dimensions d and dS .

2 Discrete ordinates method

2.1 Discretization in angle

As a way of discretization of the radiative transfer problem (1), the discrete ordinates
method first discretizes the angular domain by picking a discrete set of directions
SN = {sj}MS

j=1 ⊂ S for which the parametrized RTE is to be solved:

sj ·∇xu(x, sj) + κ(x)u(x, sj) = κ(x)Ib(x), x ∈ D, sj ∈ SN (2a)

u(x, sj) = g(x, sj), x ∈ ∂D, sj · n(x) < 0 . (2b)

We choose the number of directions to be MS = 2N + 3 for dS = 1 and MS =
(N + 1)2 + 3 for dS = 2 so that the parameter N is comparable to the number of
harmonic functions up to order N on the sphere. Two or three directions for dS = 2,
resp., are added to obtain more than one direction for the case N = 0, too.
Effectively, problem (2) requires the solution of MS purely physical transport prob-

lems for fixed directions. If we set uj(x) := u(x, sj) and gj(x) := g(x, sj), we obtain a
system of partial differential equations in the physical domain which are even uncou-
pled in the case without scattering. We note this system in operator form for compact
formulation by introducing Tjuj := (sj ·∇x + κ(x))uj and f := κ(x)Ib(x):

Tjuj = f, j = 1, . . .MS , (3a)

uj |Γ(j)
−

= gj , Γ(j)
− = {x ∈ ∂D : sj · n(x) < 0}. (3b)

By Γ(j)
− we denote the inflow part of the physical domain boundary which depends on

sj . From here on, we consider the case of gj(x) = 0 for all j.

2.2 Discretization in physical space

As a second step, we discretize the physical domain with a Galerkin FEM. As the phys-
ical problem is a convection-reaction equation of hyperbolic character, the standard
Galerkin approach results in an unstable scheme (e. g. Ávila et al. 2011). Therefore we
stabilize the method by constructing a variational problem based on a least squares
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functional (Manteuffel et al. 2000):

J(uj) :=
1

2
(ε(Tjuj − f), Tjuj − f)L2 , (4)

where

ε(x) =

{
1, κ(x) < κ0,

1
κ(x) , κ(x) ≥ κ0

(5)

with κ0 ≈ 0.134 (for details, see Widmer et al. 2007).
In (4), we used a short-hand notation for the inner product:

(u, v)L2 := (u, v)L2(D) =

∫

D
u v dx. (6)

The associated L2-norm will be denoted by ‖ · ‖L2(D) = ‖ · ‖L2 .
While the solutions u of (1) are in the Hilbert space

V0 := {u ∈ V; u = 0 if s · n(x) < 0} , (7)

with
V := {u ∈ L2(D × S) : s ·∇xu ∈ L2(D × S)}, (8)

the solutions uj of (3) must be in the Hilbert space

V(j) := {u ∈ L2(D) : sj ·∇xu ∈ L2(D)} (9)

or more precisely, under consideration of the boundary conditions, from the subspace

V(j)
0 := {u ∈ V(j); u = 0 on Γ(j)

− }. (10)

The associated norm of V(j) is ‖ · ‖S , defined by

‖u‖2S := ‖sj ·∇xu‖2L2(D) + ‖u‖2L2(D). (11)

Our bilinear form is based on the transport operator part in the least squares func-
tional (4):

aj(u, v) := (εTju, Tjv)L2(D), u, v ∈ V(j). (12)

The source functional accordingly contains the part of the source function from (4):

lj(v) := (εf, Tjv)L2(D) (13)

With these quantities we can state the linear variational problem: For each j =

1, . . . ,MS , find ũ ∈ V(j)
0 such that

aj(ũ, v) = lj(v) ∀v ∈ V(j)
0 . (14)

Continuity and coercivity of aj(·, ·) can be proven analogously to Proposition 3.3
by Widmer et al. (2007) so that together with continuity of the source functional, the
well-posedness of (14) follows readily as long as κ remains bounded in the L∞-norm.
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In the formulation of the variational problem above we obtained a different Hilbert
space for each direction. In principle, the solution uj(x) only needs to have a square-
integrable directional derivative along the transport direction sj . However, in the
end we are looking for a solution u(x, s) for every direction s. For the error analysis
later, we are therefore going to assume that the solution uj(x) is in H1(D). This
enforces a stronger regularity across D on the solution than what would be required
by uj ∈ V(j), e. g. line discontinuities transported into D from discontinuous boundary
data are excluded.

As in the previous work by Widmer et al. (2007), we discretize H1(D) by choosing a
hierarchical sequence of spaces V l

D on dyadically refined meshes T l
D, l = 0, . . . , L over

the physical domain:
V l
D := Sp,1(D, T l

D) ⊂ H1(D). (15)

They consist of piecewise polynomial functions of degree p ≥ 1 on the mesh T l
D which

are continuous in D. Altogether, we obtain a sequence of hierarchic finite dimensional
subspaces

V 0
D ⊂ V 1

D ⊂ . . . ⊂ V L
D ⊂ H1(D),

with the dimension MD := dimV L
D .

By choosing V L
D as discrete trial and test space, the directional dependence of this

function space would be eliminated again. However, as we also would like to satisfy the
boundary conditions in a strong sense, we have to choose our trial and test space to be

V L,j
D,0 := V L

D ∩ V(j)
0 . The function spaces which comply with the boundary conditions

necessarily depend on the direction sj again because the inflow boundary Γ(j)
− depends

on sj .
Then we write the discretized variational problem for each direction sj as follows:

Find uj,L(x) ∈ V L,j
D,0 such that

a(uj,L, vj,L) = l(vj,L) ∀vj,L ∈ V L,j
D,0 . (16)

Let {αi(x)}MD
i=1 be a basis of V L

D , then a subset {αi(x)}i∈Ij of the basis elements

constitutes a basis for V L,j
D,0 . This subset contains only those physical basis functions

which are zero on the inflow boundary for direction sj . For each j, the discretized
problem (16) then leads to a linear system of equations in the |Ij | unknowns uij . The
unknowns uij , i /∈ Ij , are determined by the boundary conditions.

2.3 Recovery of solution

To recover an approximation uL,N (x, s) for the solution u(x, s) of the original RTE (1),
we first assemble the approximate solutions uj,L for each direction sj as

uj,L(x) =
MD∑

i=1

uijαi(x).

In angular space we interpolate between the directions sj . Let INS : C0(S) → PdS
N be

the interpolation operator from the set of continuous functions on the sphere to the
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set of spherical polynomials of degree at most N . For an f ∈ C0(S) it is given by

INS f(sj) =
∑MS

j=1 vjβj(sj), sj ∈ SN , where βj ∈ PdS
N is a basis for PdS

N and the vj ∈ R
are interpolation coefficients determined from the linear system

B$v = f , (17)

with Bjk = βj(sk), v = (v1, . . . , vMS )
$, f = (f(s1), . . . , f(sMS ))

$ so that in general
each vj depends on the values of f at all directions sk. For the interpolation to be
well-defined, the set of points SN on the sphere must be unisolvent, i. e. if βj(sk) =
0 ∀sk ∈ SN , then necessarily βj ≡ 0.

In our problem, we would like to interpolate the solutions uj,L for different directions
sj at a point x in physical space D. The vector of function values to interpolate is
therefore f = (u1,L(x), . . . , uMS ,L(x))$. Hence, each interpolation coefficient in our
case in general depends on x via all the solutions uj,L. The approximate solution to
(1) can therefore be written as

uL,N (x, s) =
MS∑

j=1

vj({uijαi(x)}MD,MS
i=1,j=1)βj(s). (18)

The evaluation of this function requires the solution of the linear system (17), which
in general is prohibitively expensive at a complexity of O(M3

S).
Remark 1. Note, however, that on the circle S1 the fast Fourier transform provides
an O(MS logMS) solution to the interpolation problem, and on the sphere S2 there
exist fast algorithms which compute the interpolation polynomial in O(M2

S(logMS)2)
(Mohlenkamp 1999).
As usually mostly derived quantities, which include the intensity u in integrals over the
angle, are of interest in applications, we disregard the full solution and calculate e. g.
the net emission, incident radiation, or the heat flux as results of our computations.
In high-temperature simulations, for instance, the radiative intensity enters the energy
equation only as the divergence of the heat flux (Modest 2003, ch. 1).

3 Sparse tensor combination technique

The sparse grid combination technique on a regular tensor product mesh with mesh-
width h as developed by Griebel et al. (1992) combines the solutions of O(log(h−1))
different full grids to obtain a solution equivalent to the one on a sparse grid. The
theoretical advantages of sparse grid solutions also come into effect for the combina-
tion technique: for sufficiently smooth solutions, the number of degrees of freedom
reduces from O(h−2) to O(h−1 log(h−1)) in 2D, which is essentially the complexity of
a one-dimensional problem. At the same time, the accuracy deteriorates only by a
logarithmic factor from O(h2) to O(h2 log(h−1)).

The practical advantages of the combination technique are twofold: First, only full
grid problems have to be solved for which standard full grid solvers can be applied.
No programming of sparse grid solution approaches is required. Second, as all the
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single full grid problems are independent, the technique can be trivially parallelized:
one assigns each subproblem to a computing node. During the solution procedure for
the full subproblems no communication between the nodes is necessary, only in the
end the solutions have to be collected and combined.

Because of these benefits, the sparse grid combination technique seems worth inves-
tigating. In order to apply it to our problem, we adapt and generalize the description
of the sparse grid combination technique in the following.

3.1 Derivation of the technique

We assume that the domain of the problem is a Cartesian product domain D1×D2, on
top of which we approximate the function space V0, e. g. L2(D1 ×D2), by the tensor
product of discrete spaces V L1

1 ⊗ V L2
2 . For our purposes, we assume that the discrete

spaces consist of hierarchic families of spaces V l1
1 , V l2

2 with V 0
i ⊂ V 1

i ⊂ . . . ⊂ V Li
i ,

i = 1, 2. Detail spaces W li
i denote the increment between V li−1

i and V li
i :

V li
i = V li−1

i ⊕W li
i .

The approximate full tensor solution can be represented by contributions from detail
spaces:

uL1,L2 =
L1∑

l1=0

L2∑

l2=0

Ql1,l2u, (19)

where Ql1,l2 : V0 → W l1
1 ⊗W l2

2 is a projection operator on the tensor product of detail
spaces. Then an approximate sparse solution can be given by restricting the range of
indices l1, l2:

ûL1,L2 =
∑

0≤f(l1,l2)≤L1L2

Ql1,l2u, (20)

with a cutoff profile f : [0, L1]× [0, L2] → R.
As the sparse solution is a linear combination of the contributions from the detail

spaces, it can just as well be assembled from addition and subtraction of different full
solutions of smaller index range. As a simple example, we take a look at the case
L1 = L2 = L with a cutoff f(l1, l2) = Ll1 + Ll2. Then a sparse solution can be
expressed by the combination formula

ũL,L =
L∑

i=0

L−i∑

l1=0

i∑

l2=0

ul1,l2 −
L−1∑

i=0

L−1−i∑

l1=0

i∑

l2=0

ul1,l2 . (21)

Instead of solving one sparse problem, one solves 2L+ 1 full problems of smaller size
and adds the solutions. One should note, however, that the combined solution ũL,L

is in general not the same as the original sparse solution ûL,L. It is equivalent in
its convergence and complexity properties, though (Griebel et al. 1992). Only if the
projectors onto V L1

1 , V L2
2 commute, the combination technique solution is exactly the

sparse solution (Hegland et al. 2007).
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Figure 1: A sparse tensor product space determined by a cutoff profile f is represented
by sums and differences of full tensor product spaces of smaller size. Each
detail tensor product space W l1

1 ⊗W l2
2 occurs only once in the sparse tensor

product space. See Eq. (22).

The same approach can be used for more general cutoffs f , Fig. 1 illustrates this
case. Adaptive sparse grids leading to generalized combination techniques have been
investigated by Hegland (2003) and Garcke (2007), for instance. Let lmax

2 be the index
l2 obtained by solving f(l1, l2) = L1L2 w. r. t. l2 and rounding the result to the next
smallest integer, then a sparse solution can be combined like

ũL1,L2 =
∑

i1∈Ia




i1∑

l1=0

lmax
2 (i1)∑

l2=0

ul1,l2 −
i1∑

l1=0

lmax
2 (i1+1)∑

l2=0

ul1,l2



 . (22)

Ia contains the indices i1 ∈ [0, L1] with unique lmax
2 , as long as lmax

2 (i1) ≥ lmax
2 (L1)

(assumed that lmax
2 (·) is monotonically decreasing). If several indices have the same

lmax
2 , only the largest index is contained in Ia. In the sum above, we adopted the
convention that lmax

2 (i1) = −1 for i1 > L1 so that in this case, the second double sum
is empty.

3.2 Complexity estimates

For the derivation of complexity estimates, we assume that the dimension of the com-
ponent spaces V Li

i grows exponentially with respect to the levels li to a base bi, and
we define the dimension or component complexity as

Mi := dim(V Li
i ) = bLi

i , i = 1, 2. (23)

A full problem solution without sparsification of the solution spaces would therefore
entail a complexity of

M(L1,L2) = M1M2 = bL1
1 bL2

2 (24)
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Each of the full subproblems of reduced resolution, which we solve in the solution
process of the the sparse tensor combination technique, therefore has a complexity of
M(l1,l2), if l1 and l2 are the levels of resolution of the respective subproblem. The

overall complexity M̃(L1,L2) of the sparse tensor combination technique approach for
the simple case of a linear cutoff and L1 = L2 = L is given in the following lemma.

Lemma 3.1. Given the dimension of the component spaces Mi := dim(V Li
i ) = bLi

i ,
bi > 1, Li > 1, i = 1, 2, and lmax

2 = L − l1, the complexity of the solution of all
subproblems calculated in the sparse tensor combination technique is

M̃(L,L) ! Lθ max{b1, b2}L, (25)

where θ = 1 if b1 = b2 and zero otherwise.

Proof. In essence, this lemma is identical to one shown by Bieri (2009, Lemma 4.2.1).
By summing the contributions of the complexities of the full subproblems we obtain

M̃(L,L) =
L∑

l1=0

bl11 b
lmax
2
2 =

L∑

l1=0

bl11 b
L−l1
2 =

L∑

l1=0

bL2

(
b1
b2

)l1

.

If now b1 = b2, we get M̃(L,L) = (L + 1)bL2 . Otherwise, we assume w. l. o. g. b2 > b1
and obtain

M̃(L,L) = bL2

L∑

l1=0

(
b1
b2

)l1

' b1
b2
bL1 − bL2 ! max{bL1 , bL2 }.

These cases can be combined into (25).

4 Sparse discrete ordinates method

In the following, we are going to apply the sparse tensor combination technique to the
discrete ordinates method for the radiative transfer equation.

4.1 Derivation of the method

To begin with, we define the L2 projection operator onto the discrete physical trial
space V l

D as P l
D : V0 → V l

D, with P−1
D = 0 by convention. Also, we recall the definition

of the angular interpolation operator I lS : C0(S) → PdS
l . Based on the interpolation

operator, we can also define a difference operator ∆l
S : C0(S) → PdS

l by

∆0
S := I0S , ∆l

S := I lS − I l−1
S , l = 1, 2, . . . (26)

In operator notation, the approximation uL,N , obtained by the DOM, to the solution
u of the RTE (1), as already stated in (18), can hence be expressed as

uL,N =
L∑

lD=0

N∑

lS=0

∆lS
S ((P lD

D − P lD−1
D )u). (27)
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To sparsify this full solution, we again limit the range of indices by introducing a
summation condition:

ûL,N =
∑

0≤f(lD,lS)≤LN

∆lS
S ((P lD

D − P lD−1
D )u). (28)

With the implicit function lmax
S (lD), which yields the maximum feasible integer lS for

a value of lD so that f(lD, lS) ≤ LN , the sparse solution may also be written as

ûL,N =
L∑

lD=0

lmax
S (lD)∑

lS=0

∆lS
S ((P lD

D − P lD−1
D )u). (29)

In order to calculate the effect of the difference operator ∆lS
S , we have to calculate

the effects of the interpolation operators I lSS and I lS−1
S . However, when the sum over

lS is computed, all the interpolated solutions cancel except for the one with highest
resolution:

ûL,N =
L∑

lD=0

I
lmax
S (lD)
S ((P lD

D − P lD−1
D )u). (30)

Now we could solve the L + 1 full subproblems in the sum in which the degrees of
freedom in W lD

D are determined for a number MS of directions. In angle we would
then interpolate to extend the solution continuously between the directions sj .

However, if we proceed like this, we lose information about the interrelations of the
degrees of freedom from different detail spaces. Instead of solving on the detail spaces
separately, we could solve subproblems on V lD

D and subtract the solution on V lD−1
D :

ûL,N =
L∑

lD=0

I
lmax
S (lD)
S (P lD

D u− P lD−1
D u). (31)

More efficiently, we should only solve and add a subproblem if it is not subtracted
again later. This means we do not solve all problems for lD = 0, . . . , L, but only for
the indices lD in the list

Ia = {l(1)D , l(2)D , . . . , l(na)
D }

= {lD ∈ [0, L] : ∀l′D ∈ [0, L] \ {lD} : (lmax
S (l′D) 2= lmax

S (lD) ∨ (32)

(lmax
S (l′D) = lmax

S (lD) ∧ lD > l′D))}.

We also assume the indices of the list to be ordered l(1)D < l(2)D < . . . < l(na)
D . In

words, the list Ia contains for each value of lmax
S (lD) ∈ [0, N ] the largest physical level

index lD yielding the respective lmax
S (lD). Effectively, we obtain a sparse version of

the discrete ordinates method:

ũL,N =
na∑

j=1

(
I
lmax
S (l(j)D )
S P

l(j)D
D u− I

lmax
S (l(j)D )
S P

l(j−1)
D

D u

)
, l(j)D ∈ Ia. (33)
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We add the convention l(0)D = −1 so that for j = 1 there is no subproblem being
subtracted. In the last formulation, we again sum over full subproblem solutions

with resolution levels (L,N) = (l(j)D , lmax
S (l(j)D )) with l(j)D in index set Ia, and for each

subproblem except for the first, subtract the solution to the smaller (physically less

finely resolved) subproblem with levels (L,N) = (l(j−1)
D , lmax

S (l(j)D )).

4.2 Complexity estimate

In an earlier article, we showed that the complexity of the sparse tensor Galerkin and
spectral approach is M̂(L,N) = O(2dL+LθNdS ) = O(MD+log(MD)θMS), where θ = 1
if NdS ' 2dL (Grella and Schwab 2010, Lemma 3.2). The sparse tensor combination
technique DOM exhibits the same complexity estimate, as we will see in the following.
Preceding factors will differ from those of ST, though.

Lemma 4.1. Assumed that the number of angular directions is MS = |SN | ' NdS ,
the dimension of the physical component space is MD := dim(V L

D ) ' 2dL, and lmax
2 =

2'log2(N+1)(/L(L−lD), the complexity of the solution of all subproblems calculated in the
sparse tensor combination technique is

M̃(L,N) ! Lθ max{2dL, NdS}, (34)

where θ = 1 if NdS ' 2dL and zero otherwise.

Proof. We reduce the case to the situation in Lemma 3.1. We sum all subproblem
complexities with maximum levels lmax

S for all 0 ≤ lD ≤ L:

M̃(L,N) !
L∑

lD=0

M(lD,lmax
S (lD)) '

L∑

lD=0

(lmax
S )dS2dL (35)

=
L∑

lD=0

(2dS'log2(N+1)(/L
︸ ︷︷ ︸

=:bS

)(L−lD)( 2d︸︷︷︸
=:bD

)lD (36)

From here on, we apply Lemma 3.1 and obtain eventually

M̃(L,N) !
{
(L+ 1)bLS if bS = bD,

max{bD, bS}L else
'

{
LNdS if NdS ' 2dL,

max{2dL, NdS} else.
(37)

In terms of component complexities, we have

M̃(L,N) ! log(MD)θ max{MD,MS}, (38)

with θ = 1 if MD = MS and zero otherwise as before.

4.3 Convergence properties

In this section we take a look at the approximation properties of the sparse DOM and
derive error estimates for the sparse and full DOM approach with Galerkin FEM in
physical space.
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Error estimate in physical and angular domain. In physical space, we know that
for functions v ∈ Hs+1(D), s ∈ [0, p], projected onto V l

D from (15) by the projection
operator P l

D, the following approximation properties hold for l ∈ N0 (see e. g. Nguyen
(2005, Lemma 2.3.1), or Braess (2007, p. 82)):

‖v − P l
Dv‖H1(D) ! 2−ls‖v‖Hs+1(D), s ∈ [0, p]. (39)

Furthermore we require an estimate for the interpolation error on the angular do-
main. To this end, we recall the angular interpolation operator INS : C0(S) → PdS

N ,
a mapping to the space PdS

N of spherical polynomials. PdS
N contains all polynomials

restricted to the dS-sphere S of degree less or equal to N . We can therefore write for
the interpolation error of a function w ∈ C0(S):

‖w − INS w‖C0(S) = ‖(w − p)− INS (w − p)‖C0(S), (40)

with p ∈ PdS
N an arbitrary polynomial. From there, we arrive at the quasi-optimality

condition

‖w − INS w‖C0(S) ! (1 + ‖INS ‖) inf
p∈PdS

N

‖w − p‖C0(S), (41)

in which the operator norm

‖INS ‖ = ‖INS ‖C0(S)→C0(S) = sup
w∈C0(S)\{0}

‖INS w‖C0(S)

‖w‖C0(S)
(42)

occurs as the Lebesgue constant determining the stability of the interpolation operator
INS in angular space.

Despite the fact that polynomial interpolation on the sphere has been studied exten-
sively in the past, the precise behavior of the Lebesgue constant in terms of N remains
unknown for general dS . A theoretical lower bound is given by the optimal growth
rate for all linear projections, the growth of the C0(S) → C0(S) operator norm of the
L2-orthogonal projection as a map from C0(S) to PdS

N , which is O(N (dS−1)/2) (Sloan
and Womersley 2000).

In the same reference, Reimer (1990) is quoted on the theoretical upper bound
‖INS ‖ ! MS ! NdS for the interpolation operator, which holds as long as the system
of interpolation points maximizes | det(B)|, where B is the system matrix from (17).
For the case dS = 2, this estimate reads as ‖INS ‖ ! (N + 1)2.

Also for dS = 2, another estimate for an upper bound due to Reimer (1990) is (N +
1)(λavg/λmin)1/2, with λavg and λmin being the average and minimum, resp., eigenval-

ues of the matrix of the reproducing kernel GN (s, s′) =
∑N

n=0

∑mdS,N

m=1 Y dS
nm(s)Y dS

nm(s′)
evaluated for all combinations of two interpolation points s, s′ ∈ SN . In this, Y dS

nm

are the spherical interpolation polynomials. However, apart from λavg/λmin ≥ 1 for
dS ≥ 2 and N ≥ 3, the dependence of the eigenvalue ratio on N and dS is unclear.

Empirically obtained growth rates of the Lebesgue constant fortunately indicate
that many extremal point systems have better stability properties than the proved

13



bound of (N + 1)2 on the 2-sphere. Womersley and Sloan (2001) obtain points that
yield ‖INS ‖ ≈ 0.7N+1.8 by directly minimizing the norm of the interpolation operator
numerically. Different point systems can be generated from the notion of so-called
spherical designs which possess good qualities for quadrature as well as interpolation,
as the growth of the Lebesgue constant for these systems also seems to be close to
linear with N . An et al. (2010) find ‖INS ‖ ≈ 0.8025(N+1)1.12 for their well-conditioned
spherical designs.

Remark 2. For dS = 1, which is the setting of our numerical experiments later on,
the situation is much clearer. It is known that equidistant points on the circle are
optimal for trigonometric interpolation as they yield the smallest Lebesgue constant,
and that the Lebesgue constant grows like O(log(N)) (Dzyadyk et al. 1981, p. 554).
Equidistant points also lead to exponential convergence for quadrature of periodic
integrands if the trapezoidal rule is used for integration.

To summarize and to continue estimating the convergence properties of the method,
we will assume

‖INS ‖ ! NdS−α (43)

in the following, where α ∈ R may still depend on the dimension dS and the set of
interpolation points. For dS = 2, we expect α ≈ 1 or slightly smaller, based on the
reported results above. For dS = 1, we can assume α ≈ 1/2 or even smaller according
to Remark 2.

If moreover w ∈ Ht(S), t > 1, we can estimate the best N -term approximation by

inf
p∈PdS

N

‖w − p‖L2(S) ! N−t‖w‖Ht(S), (44)

see e. g. Grella and Schwab (2010, Lemma 3.3). To connect this estimate and the
quasi-optimality condition on the sphere (41) we make use of

Theorem 4.2 (Sobolev embedding theorem). (Adams 1975, p. 97, case C) Let dS be
the dimension of the domain S, let j and m be nonnegative integers and let p satisfy
1 ≤ p < ∞. W j+m,p(S) is the Sobolev space of functions with Lp-integrable (j+m)-th
weak derivatives, and Cj(S) the space of functions with continuous j-th derivatives.
Suppose mp > dS. Then there exists a constant K > 0 so that

‖ · ‖Cj(S) ≤ K‖ · ‖W j+m,p(S),

we say W j+m,p(S) is continously embedded into Cj(S).

Here we apply this theorem with p = 2, dS = 1, 2, j = 0, which yields

‖ · ‖C0(S) ! ‖ · ‖H1(S) for dS = 1, (45)

‖ · ‖C0(S) ! ‖ · ‖H2(S) for dS = 2, (46)

to (41). In total, we obtain the estimate for the interpolation error in angular space

‖w − INS w‖HdS (S) ! N−t+(dS−α)‖w‖Ht+dS (S). (47)
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Error estimate for full DOM. In this method, we solve a physical transport problem
with Galerkin FEM of MD degrees of freedom for each of the MS transport directions.
To recover an approximation of the original solution, we would interpolate between
the directions. Below, we estimate the error of this approximative solution in the
full method. However, in practice we are more interested in computing quantities
depending on integrals over the angle because these occur in energy balance equations
of simulations and because we can avoid the cost of interpolation.

Theorem 4.3. The full discrete ordinates approximation uL,N = INS PL
Du of a function

u ∈ Hs+1,dS+t(D × S), s ∈ [0, p], t ∈ N0, satisfies the asymptotic error estimate

‖u− INS PL
Du‖H1,dS (D×S) ! max{2−sL, N−t+(dS−α)}‖u‖H1+s,dS+t(D×S). (48)

Proof. We begin by splitting the error in two parts and summing the contributions
from the detail spaces (the domain D × S is omitted from the norms for brevity):

‖u− INS PL
Du‖H1,dS ≤ ‖

L∑

lD=0

∞∑

lS=N+1

∆lS
S (P lD

D − P lD−1
D )u‖H1,dS +

‖
∞∑

lD=L+1

∞∑

lS=0

∆lS
S (P lD

D − P lD−1
D )u‖H1,dS

≤
L∑

lD=0

‖(IdS −INS )(IdD −P lD
D )u‖H1,dS +

L∑

lD=0

‖(IdS −INS )(IdD −P lD−1
D )u‖H1,dS +

‖ IdS(IdD −PL
D)u‖H1,dS

We drop the middle term as it does not result in leading order terms in the estimate,
and use the estimates on physical domain (39) and angular domain (47):

‖u− INS PL
Du‖H1,dS ! N−t+(dS−α)(2s + 2−sL)‖u‖Hs+1,dS+t + 2−sL‖u‖Hs+1,dS

! max{2−sL, N−t+(dS−α)}‖u‖Hs+1,dS+t ,

which is the statement of the theorem.

Error estimate for sparse DOM. Here we split the problem of resolution levels L
and N into subproblems of coarser resolution, solve them and combine these solutions
to a sparse approximation of the original RTE solution.

Theorem 4.4. Given a sparse cutoff f resulting in lmax
2 = 2'log2(N+1)(/L(L−lD), the

sparse discrete ordinates approximation ũL,N of a function u ∈ Hs+1,dS+t(D × S),
s ∈ [0, p], t ∈ N0, satisfies the asymptotic error estimate

‖u− ũL,N‖H1,dS (D×S) ! Lmax{2−sL, N−t+(dS−α)}‖u‖H1+s,dS+t(D×S). (49)
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Proof. We begin the same way as for the full DOM estimate, only the summation
indices now run within different limits:

‖u− ũL,N‖H1,dS ≤ ‖
L∑

lD=0

∞∑

lS=lmax
S +1

∆lS
S (P lD

D − P lD−1
D )u‖H1,dS +

‖
∞∑

lD=L+1

∞∑

lS=0

∆lS
S (P lD

D − P lD−1
D )u‖H1,dS

≤
L∑

lD=0

‖(IdS −I
lmax
S
S )(IdD −P lD

D )u‖H1,dS +

L∑

lD=0

‖(IdS −I
lmax
S
S )(IdD −P lD−1

D )u‖H1,dS +

‖ IdS(IdD −PL
D)u‖H1,dS

We drop the middle term again, use (39) and (47), and insert lmax
S :

‖u− ũL,N‖H1,dS !
L∑

lD=0

(lmax
S )−t+(dS−α)2−slD )‖u‖Hs+1,dS+t + 2−sL‖u‖Hs+1,dS

=
L∑

lD=0

(2'log2(N+1)(/L(L−lD))−t+(dS−α)2−slD )‖u‖Hs+1,dS+t +

2−sL‖u‖Hs+1,dS .

The sum can be estimated by its largest summand and we get:

‖u− ũL,N‖H1,dS ! (L+ 1)max{N−t+(dS−α), 2−sL}‖u‖Hs+1,dS+t +

2−sL‖u‖Hs+1,dS

! Lmax{N−t+(dS−α), 2−sL}‖u‖Hs+1,dS+t ,

which concludes this proof.

5 Numerical experiments

We conduct a number of numerical experiments for (d, dS) = (2, 1) to compare the
performance of the sparse combination (SC) discrete ordinates method to a full col-
location (FC) method in which we solve the physical subproblem for each discrete
direction with the highest physical resolution. Additionally, we also compare to a
sparse tensor (ST) spherical harmonics approximation and its full tensor (FT) version
developed earlier (Grella and Schwab 2010). In these last two approaches we use a
Galerkin least squares FEM in physical space and a spectral method in angle.
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5.1 Algorithm

Our method has been implemented in an algorithm in MATLAB which has not been
optimized for performance yet.

First, we calculate the physical stiffness matrices and load vector entries by quadra-
ture of the integrals over the physical domain that arise out of the bilinear form (12).
For the quadrature in D, we use a Gauss-Legendre rule in 2D which integrates the
terms of the bilinear form involving product combinations of linear physical basis func-
tions exactly up to rounding errors if the absorption coefficient κ(x) is constant. In
the load vector integration, we iteratively increase the number of quadrature nodes to
achieve a relative error tolerance of 10−13.

The directions sj are equispaced in the angular domain and chosen in a way to
avoid collisions with boundaries of coherent inflow or outflow regions of the faces of
the physical domain. Integration in angle is performed by the trapezoidal rule.

For each direction sj , the linear system to determine the coefficients of the physical
basis functions is solved by a conjugate gradient method with Jacobi preconditioning.
We terminate the CG method if the (2-norm of the dof (degrees of freedom) residual
vector is less than 10−16.

5.2 Quantities of interest

As the radiative intensity is a function of several variables, we are going to inspect
derived quantities of reduced dimensionality to simplify visualization and error anal-
ysis. Such quantities are the incident radiation G(x), the heat flux q(x), and the net
emission ∇ · q(x), which are defined and related by

G(x) =

∫

S
u(x, s)ds (50)

q(x) =

∫

S
u(x, s)sds (51)

∇ · q(x) = κ(x)(

{
4π if dS = 2

2π if dS = 1

}
Ib(x)−G(x)). (52)

In simulations of high-temperature situations, the radiative intensity enters the calcu-
lations in the energy equation as the divergence of the heat flux (Modest 2003, ch. 1),
hence the interest in the net emission. As the net emission can be expressed by the
incident radiation, we focus on the results of the latter quantity.
In experiments without known solution, we compute a reference solution with a

discrete ordinates (DO) method with line integration and use this solution to estimate
the error in the incident radiation GL,N (x) of the numerical solution uL,N (x, s). In
the DO method, the angular domain is discretized into 256 directions, along which we
calculate the solution by the method of lines with a standard non-stiff integrator in
MATLAB. The line integrals are then interpolated to the FEM mesh in the physical
domain corresponding to a resolution of L = 7. We compute the relative error in the
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Figure 2: Experiment 1: Incident radiation (left FC, right SC) for L = 4/N = 16.

incident radiation as

err(GL,N )X = ‖G−GL,N‖X/‖G‖X ,

where G is the reference solution of the incident radiation and X stands for the L2(D)-
or H1(D)-norm, respectively.

5.3 Experiments

All experiments have been conducted on the physical domain D = [0, 1]2, the unit
square, with zero inflow boundary conditions. The absorption coefficient function is
constant κ(x) = 1. In the collocation methods SC and FC, we use hierarchical hat
functions on a square mesh with mesh size h = 2−L as basis in the physical domain.
In angular space, we choose 2N + 3 directions sj to discretize the domain so that in
the sparse collocation method, each physical subproblem is solved in at least three
different directions.
In order to compare the convergence rates to the ones of the sparse tensor spher-

ical harmonics approximation, we use some of the same experiments that have been
conducted before (Grella and Schwab 2010). To isolate the convergence rates over the
domains D and S, we refine in physical resolution only by incrementing L by 1 and
fixing the angular order or vice versa, then N is doubled in each refinement step and
L is constant. However, in normal operation one would rather use an equilibration
relation to increase the resolution in D and S in a combined manner. Experiments 2
and 3 are examples for combined refinement.
In the SC method, the reported numbers of degrees of freedom represent the sum

of all the degrees of freedom of the solved full physical subproblems.
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5.3.1 Experiment 1

This example is an application with a degenerate Gaussian on the right hand side:

Ib(x) = exp

(
−8(x−

(
0.5
0.5

)
)$

(
4 −2
−2 1

)
(x−

(
0.5
0.5

)
)

)
.

In Fig. 2 we see a good overall qualitative agreement between the FC and SC solutions
for the incident radiation for L = 4 and N = 16. Of course, the SC solution is
noticeably rougher than the FC solution, but we have to keep in mind that it has been
computed with less than a quarter of the dofs of the FC solution.

Fig. 3 shows that the estimated convergence rates of 1/2 for the H1-error in re-
finement of the physical resolution are actually achieved for all four methods. Best
in terms of efficiency, i. e. error per employed degrees of freedom, is the ST method,
followed by the SC method. Both full methods perform very similar with a larger error
per dofs ratio.

For refinement in angular space, the convergence rates start out very high, but
decrease quickly (cf. Fig. 4), even to zero for the full methods. This may be due to a
saturation of the error from the physical contribution. The resolution in angle is large
enough to accurately resolve the exact solution, but the error from the physical domain
remains the same as L is not increased. This is in line with our error estimates as
stated in Thms. 4.3 and 4.4: the convergence rate is always determined by the slower
rate of physical and angular domain.

5.3.2 Experiment 2

We use a compactly supported C∞(D) bump function on the right hand side:

Ib(x) =

{
104 exp

(
−1

0.25−(x1−0.5)2 + −1
0.25−(x2−0.5)2

)
if 0.25 < x1, x2 < 0.75,

0 else.

In this experiment, we refine in a combined manner: L is increased from 0 to 5 and
N = min{2L+2, 32}.

With a smooth right hand side, we observe in Fig. 5 that the expected convergence
rate of 1/2 for the H1-error is again achieved for the full methods FC and FT. The
FC method is slightly more efficient with a lower error per employed dofs ratio. The
sparse methods SC and ST almost attain a rate of 1/2 in the H1 error, the difference
to 1/2 can be attributed to the log-factor in our estimate (49) stated in Thm. 4.4.
In terms of efficiency, both sparse methods are approximately equal, but outperform
the full methods. The H1-error of the SC method is up to 20% lower than the one of
the FC method, for the Galerkin FEM/spectral methods ST and FT, the reduction is
even slightly greater.
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Figure 5: Experiment 2: Error in incident radiation G for combined refinement L =
0, 1, . . . , 5 and N = min{2L+2, 32}.
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Figure 6: Experiment 3: Error in incident radiation G for combined refinement L =
0, 1, . . . , 5 and N = min{2L+2, 32}.
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5.3.3 Experiment 3

In this experiment, the blackbody intensity is the characteristic function of a circle in
the physical domain:

Ib(x) =

{
1 if (x1 − 0.5)2 + (x2 − 0.5)2 < 1

42 ,

0 else.

We again perform combined refinement with L = 0, . . . , 5 and N = min{2L+2, 32}.
Due to the lower smoothness of the right hand side, the approximation rates of all

methods and in all errors are lower than in the previous experiment. We achieve a rate
of about 1/3 or slightly less in the H1-error for both full and sparse methods. Again,
for the same number of dofs, the ST method yields the smallest error, followed closely
by the SC method. With a gap, the FC and FT methods follow. While the convergence
of the SC method runs more irregularly, for the finest resolution, the H1-error even
increases slightly, it is still noteworthy that also in this setting of lower smoothness,
the sparse methods maintain an advantage in efficiency over the full methods.

6 Conclusion

We investigated a sparsification of the popular discrete ordinates method for radiative
transfer in order to alleviate the curse of dimension for this problem. We have shown
that the convergence rate in the H1,0-error for the sparse tensor combination technique
discrete ordinates method is the same as the rate for the full discrete ordinates method
(1/2 for d = 2) up to logarithmic factors, while asymptotically the number of employed
degrees of freedom grows only as fast as in a purely physical problem, again up to
logarithmic factors.
Numerical experiments have indicated that we are capable of solving the same ra-

diative transfer problems as with a sparse/full Galerkin FE and spectral method with
similar approximation properties and that we achieve the estimated convergence rates
as long as the solutions are sufficiently smooth.
While the sparse Galerkin FE and spectral method gave an even slightly larger ben-

efit in terms of error per employed degrees of freedom over its full tensor version than
the sparse discrete ordinates method, the discrete ordinates method has a big advan-
tage in another respect: as only independent full physical subproblems are solved and
combined, implementation of the sparse combination technique can rely on standard
full solvers for the physical subproblems. Furthermore, straightforward parallelization
via the ordinates opens the door to the solution of large scale applications with HPC.
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tober 2010. URL http://www.sam.math.ethz.ch/reports/2010/33.

M. Griebel, M. Schneider, and C. Zenger. Iterative Methods in Linear Algebra, chapter
A combination technique for the solution of sparse grid problems, page 263–281.
North-Holland, Amsterdam, 1992.

Markus Hegland. Adaptive sparse grids. In K. Burrage and Roger B. Sidje, edi-
tors, Proc. of 10th Computational Techniques and Applications Conference CTAC-
2001, volume 44 of ANZIAM J., pages C335–C353, 2003.

Markus Hegland, Jochen Garcke, and Vivien Challis. The combination technique and
some generalisations. Linear Algebra and its Applications, 420(2-3):249–275, 2007.
ISSN 0024-3795. doi: 10.1016/j.laa.2006.07.014.

Guido Kanschat. Parallel and adaptive Galerkin methods for radiative transfer prob-
lems. PhD thesis, University of Heidelberg, 1996. URL http://archiv.ub.
uni-heidelberg.de/volltextserver/volltexte/2006/6331/.

23



Guido Kanschat, Wilhelm von Waldenfels, Christian Y. Cardall, Stephen Wright,
Simon Arridge, Martin Schweiger, Erik Meinköhn, Maarten Baes, A. Hujeirat,
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Mat́ıas Ávila, Ramon Codina, and Javier Principe. Spatial approximation of the
radiation transport equation using a subgrid-scale finite element method. Com-
puter Methods in Applied Mechanics and Engineering, 200:425–438, 2011. doi:
10.1016/j.cma.2010.11.003.

25



Research Reports

No. Authors/Title

11-46 K. Grella and Ch. Schwab
Sparse discrete ordinates method in radiative transfer

11-45 X. Claeys and R. Hiptmair
Boundary integral formulation of the first kind for acoustic scattering by
composite structures

11-44 A. Chkifa, A. Cohen, R. DeVore and Ch. Schwab
Sparse adaptive Taylor approximation algorithms for parametric and
stochastic elliptic PDEs

11-43 S. Chen and S. Mao
Anisotropic error bounds of Lagrange interpolation with any order in two
and three dimensions

11-42 R. Hiptmair and J. Li
Shape derivatives in differential forms I: An intrinsic perspective

11-41 Ph. Grohs and Ch. Schwab
Sparse twisted tensor frame discretization of parametric transport
operators

11-40 J. Li, H. Liu, H. Sun and J. Zou
Imaging acoustic obstacles by hypersingular point sources

11-39 U.S. Fjordholm, S. Mishra and E. Tadmor
Arbitrarily high order accurate entropy stable essentially non-oscillatory
schemes for systems of conservation laws

11-38 U.S. Fjordholm, S. Mishra and E. Tadmor
ENO reconstruction and ENO interpolation are stable

11-37 C.J. Gittelson
Adaptive wavelet methods for elliptic partial differential equations with
random operators

11-36 A. Barth and A. Lang
Milstein approximation for advection–diffusion equations driven by mul-
tiplicative noncontinuous martingale noises

11-35 A. Lang
Almost sure convergence of a Galerkin approximation for SPDEs of Zakai
type driven by square integrable martingales

11-34 F. Müller, D.W. Meyer and P. Jenny
Probabilistic collocation and Lagrangian sampling for tracer transport in
randomly heterogeneous porous media


