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Abstract

The numerical approximation of parametric partial differential equations is a computational challenge,

in particular when the number of involved parameter is large. This paper considers a model class of second

order, linear, parametric, elliptic PDEs on a bounded domain D with diffusion coefficients depending

on the parameters in an affine manner. For such models, it was shown in [11, 12] that under very

weak assumptions on the diffusion coefficients, the entire family of solutions to such equations can be

simultaneously approximated in the Hilbert space V = H1
0 (D) by multivariate sparse polynomials in the

parameter vector y with a controlled number N of terms. The convergence rate in terms of N does not

depend on the number of parameters in V , which may be arbitrarily large or countably infinite, thereby

breaking the curse of dimensionality. However, these approximation results do not describe the concrete

construction of these polynomial expansions, and should therefore rather be viewed as benchmark for the

convergence analysis of numerical methods. The present paper presents an adaptive numerical algorithm

for constructing a sequence of sparse polynomials that is proved to converge toward the solution with

the optimal benchmark rate. Numerical experiments are presented in large parameter dimension, which

confirm the effectiveness of the adaptive approach.

1 Introduction

We consider parametric partial differential equations of the general form

D(u, y) = 0

where u "→ D(u, y) is a partial differential operator that depends on a vector of parameters y, and therefore

so does the solution u = u(y). Parametric problems of this type arise in modeling complex systems in various

contexts:
∗This research was supported by the Office of Naval Research Contracts ONR-N00014-08-1-1113, ONR N00014-09-1-0107,

the AFOSR Contract FA95500910500, the ARO/DoD Contracts W911NF-05-1-0227 and W911NF-07-1-0185, the National

Science Foundation Grant DMS 0915231; the excellency chair of the Foundation “Science Mathématiques de Paris” awarded to

Ronald DeVore in 2009. This publication is based on work supported by Award No. KUS-C1-016-04, made by King Abdullah

University of Science and Technology (KAUST). This research is also supported by the Swiss National Science Foundation

under Grant SNF 200021-120290/1 and by the European Research Council under grant ERC AdG247277. CS acknowledges

hospitality by the Hausdorff Institute for Mathematics, Bonn, Germany.
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• Stochastic modelling: the parameters y are realizations of random variables which reflects the fact that

the diffusion coefficient is not known exactly and is therefore modelled as a random field. The user is

interested in the resulting statistical properties of the solution u. This is the point of view adopted

for example in [16, 21, 2, 15, 1, 24, 25]. Here, the parameter y is generally infinite dimensional and

any numerically viable approximation must necessarily address the issue of dimensional reduction, in

addition to that of discretization.

• Deterministic modelling: the parameters y are known or controlled by the user, who is interested in

studying the dependence of u with respect to these parameters for various purposes (for example,

optimizing an output of the equation with respect to y). This is the point of view adopted for example

in [7, 22].

In both of these settings, the main computational challenge is to simultaneously solve the entire parametric

family of equations up to a prescribed accuracy ε, with reasonable computation cost. This task is particularly

difficult when the number of involved parameters is large or if there are countably many parameters, i.e.

when the dimension of the parameter domain is inifinite. In this paper, we place ourselves in this last

situation.

More precisely, we consider the model parametric elliptic boundary value problem

−div(a∇u) = f in D ⊂ Rd, u = 0 on ∂D, (1.1)

where f ∈ H−1(D) and a(x, y) := ā(x)+
∑

j≥1 yjψj(x), for y = (yj)j≥1 ∈ U := [−1, 1]N, where ā and (ψj)j≥1

are functions in L∞(D). In the stochastic context, the series ā+
∑

j≥1 yjψj could result, for example, from

a Karhúnen-Loève expansion of a random field a(x,ω), see [27].

We assume at a minimum that the sequence (‖ψj‖L∞(D))j≥1 is bounded. By rearranging indices, if

necessary, we may assume without loss of generality that ‖ψj‖L∞(D), j = 1, 2, . . ., is a non-increasing

sequence. We work under the (minimal) uniform ellipticity assumptionUEA(r, R) for some 0 < r ≤ R < ∞:

0 < r ≤ ā(x) +
∑

j≥1

yjψj(x) ≤ R, x ∈ D, y ∈ U. (1.2)

Observe that the lower inequality in this assumption is equivalent to
∑

j≥1

|ψj(x)| ≤ ā(x)− r, x ∈ D. (1.3)

Assumption UEA(r, R) ensures existence and uniqueness of the solution u(y) in V = H1
0 (D), for all y ∈ U ,

with the a-priori estimate

‖u(y)‖V ≤ C0 :=
‖f‖V ∗

r
,

where ‖v‖V := ‖∇v‖L2(D). We also introduce the average energy norm

‖v‖ā :=
(

∫

D

ā|∇v|2
)1/2

,

which, under UEA(r, R), is equivalent to the H1
0 (D) norm ‖ · ‖V in the sense that

√
r‖v‖V ≤ ‖v‖ā ≤

√
R‖v‖V , v ∈ V.

We are interested in approximating the map y "→ u(y) by multivariate polynomials in y with coefficients

in V . One way to obtain such an approximation is by truncating in some way the Taylor expansion of u at
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y = 0. As in [11, 12], we denote by F the (countable) set of all sequences of nonnegative integers which are

finitely supported (i.e. those sequence for which only finitely many terms are nonzero), we are thus interested

in the summability properties in V of partial sums of the formal Taylor series
∑

ν∈F tνyν , where for each

ν = (νj)j≥1 ∈ F , we define

yν :=
∏

j≥1

y
νj
j and tν :=

1

ν!
∂νu(0) ∈ V with ν! :=

∏

j≥1

νj ! and 0! := 1.

In [12] we proved the following result (Theorem 1.2 in [12]).

Theorem 1.1 If (‖ψj‖L∞(D))j≥1 ∈ &p(N) for some 0 < p < 1 and if UEA(r, R) holds, then

u(y) =
∑

ν∈F
tνy

ν , (1.4)

in the sense of unconditional convergence in L∞(U, V ) and (‖tν‖V )ν∈F ∈ &p(F).

Analogous results for other types of partial differential equations are available in [19, 20]. Theorems such as

1.1 have important implications concerning the efficient numerical approximation of the parametric solution

map y "→ u(y) which, in turn, opens a perspective for novel computational approaches in parameter identifi-

cation problems [26]. To describe these, for any sequence (aν)ν∈F of real numbers and any k ≥ 1, we define

the sets Λ∗
k := Λ∗

k((aν)ν∈F ) of k largest elements in absolute value. The sets Λ∗
k are generally not unique

because of possible ties in the size of the |aν |. However, if (aν)ν∈F ∈ &p(F) and if Λ∗
k is any of these sets,

then for any q > p

(
∑

ν /∈Λ∗

k

|aν |q)1/q ≤ ‖(aν)‖"p(F)k
− 1

p+
1
q . (1.5)

We refer either to [13] or §3.3 in [12] for a proof of this elementary fact.

Working under the assumptions of the above theorem, for each k = 1, 2, . . ., we denote by Λ∗
k ⊂ F the set

of indices ν ∈ F corresponding to the k largest of the ‖tν‖V , with ties broken in an arbitrary (but consistent)

way. We then have

sup
y∈U

‖u(y)−
∑

ν∈Λ∗

k

tνy
ν‖V ≤

∑

ν /∈Λ∗

k

‖tν‖V ≤ ‖(‖tν‖V )‖"p(F)k
−s, s :=

1

p
− 1 (1.6)

The sparse polynomials
∑

ν∈Λ∗

k
tνyν therefore provide a simultaneous approximation of the family {u(y) ; y ∈

U} at the cost of computing k functions tν ∈ V . Quite remarkably the rate k−s and the constant in (1.6) is

independent of the number of parameters yj which may be countably infinite. Thus, (1.6) implies that one

can in principle overcome the curse of dimensionality in the approximation of u(y).

In computation, however, the sets Λ∗
k in (1.6) are not known to us and to find them we would ostensibly

have to compute all of the tν which is infeasible. To obtain computable sequences of index sets, we shall not

insist on optimality: we shall say that a nested sequence (Λn)n≥0 of finite subsets Λn ⊂ F is near optimal

if there is a constant C ≥ 1 such that for s as in (1.6) and for every n ≥ 0

∑

ν /∈Λn

‖tν‖V ≤ C‖(‖tν‖V )‖"p(F)(#(Λn))
−s. (1.7)

The goal of the present paper is to give a concrete algorithm that adaptively builds a near optimal sequence

(Λn)n≥0 and corresponding Taylor coefficients (tν)ν∈Λn at a cost that scales linearly in #(Λn). We should

point out that a similar program was developed when solving a single PDE by either adaptive wavelet
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methods [9, 10, 17] or by adaptive finite element methods [14, 23, 5, 28]. In these papers, it was proved

that certain iterative refinement algorithms based on a-posteriori analysis generate adaptive wavelet sets or

adaptive meshes such that the approximate solution converges with the optimal rate allowed by the exact

solution. A common point between these algorithms and the one that we study in this paper is the use

of a bulk chasing procedure in order to build the set Λn+1 from the set Λn. However, our present setting

is significantly different, since the index sets Λn are picked from the infinite dimensional lattice F and the

coefficients associated to each ν ∈ Λn are functions in V instead of numbers.

Our paper is organized as follows. In §2, we show that the sets Λn may be picked from a restricted class

called monotone sets while retaining the optimal rate.

We show in §3 how the Taylor coefficients associated to a monotone set may be recursively computed by

solving one elliptic boundary value problem at a time per coefficient, and we establish a useful estimate for

the energy of the Taylor coefficients outside a monotone set.

A first adaptive algorithm is proposed in §4 and proved to converge with the optimal rate in the sense

that the sets Λn generated by the algorithm satisfy (1.7). A defect of this algorithm is that the bulk chasing

procedure at step n requires the computation of the ‖tν‖ā for ν in a neighbourhood of Λn which has infinite

cardinality and is therefore not practical.

We remedy this defect in §5 by introducing a second algorithm which operates the bulk search on a finite

set, and which is also proved to converge with the optimal rate s in (1.6).

We study in §6 the additional error which is induced on the approximation of the map y "→ u(y) by

the spatial discretization when solving the boundary value problems that give the Taylor coefficients, for

example by a finite element method on D. We prove that the additional error introduced by the finite

element discretization of the coefficients is independent of the number of computed Taylor coefficients.

Finally, numerical experiments are presented in §7, for a finite but high dimensional test case (y ∈
[−1, 1]64), and using finite element for the spatial discretization. We test the adaptive bulk search strategy,

and compare it with non-adaptive strategies based on a-priori choices of the sets Λn. These experiments

confirm the superiority of the adaptive approach. We also propose alternate adaptive strategies which

are computationally much cheaper than the bulk search and exhibit, in our numerical examples, the same

convergence rate as the approximations obtained by bulk search yet without complete theoretical justification.

In the practically relevant case where the goal of computation is to compute an average in y of the solution

(corresponding to an expectation of the random solution) we show that the results based on our adaptive

algorithm strongly outperform those using the Monte-Carlo method

2 Monotone sets

In this section, we give a finer description of the approximation properties of the Taylor series by introducing

the notion of monotonicity. This notion is based on the following ordering of F : for µ, ν ∈ F , µ ≤ ν if and

only if µj ≤ νj for all j ≥ 1. We will also say that µ < ν if and only if µ ≤ ν and µj < νj for at least one

value of j.

Definition 2.1 A sequence (aν)ν∈F of nonnegative real numbers is said to be monotone decreasing if and

only if for all µ, ν ∈ F
µ ≤ ν ⇒ aν ≤ aµ .

A non empty set Λ ⊂ F is called monotone if and only if ν ∈ Λ and µ ≤ ν ⇒ µ ∈ Λ. For a monotone set
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Λ ⊂ F , we define its margin M = M(Λ) as follows:

M(Λ) := {ν /∈ Λ ; ∃j > 0 : ν − ej ∈ Λ} , (2.1)

where ej ∈ F is the Kronecker sequence: (ej)i = δij for i, j ∈ N.

Notice that the margin M(Λ) is an infinite set even when Λ is finite since there are infinitely many variables.

Any nonempty monotone set contains the null index (0, 0, · · ·), which we will denote in what follows with

slight abuse of notation by 0. Intersections and unions of monotone sets are also monotone. Also, note that

Λ ∪M(Λ) is a monotone set.

For any ν ∈ F , we let |ν| :=
∑

i≥1 νi. We say that ν is maximal in a set Λ ⊂ F if and only if there exists

no µ > ν in Λ. If Λ ⊂ F satisfies N := N(Λ) := maxν∈Λ |ν| < ∞, then any ν ∈ Λ for which |ν| = N is a

maximal element. In particular, any finite set Λ has at least one maximal element. If Λ is monotone and if

ν is maximal in Λ, then Λ− {ν} is monotone.

Remark 2.2 If (aν)ν∈F is a monotone sequence, the set Λ∗
k = Λ∗

k((aν)ν∈F) of indices corresponding to the

k-largest aν in absolute value is always a monotone set whenever it is unique: it is then equivalently given by

Λ∗
k = {ν ∈ F : aν ≥ η} for some threshold η which depends on k. In the case of non-uniqueness, there exists

at least one realization of a Λ∗
k which is monotone. We refer to such a set as a monotone realization of Λ∗

k.

Such a realization may be constructed as follows: consider the largest threshold η such that the monotone set

{ν ∈ F : aν ≥ η} has more than k elements, and trim this set by removing iteratively a maximal ν until it

has exactly k elements.

Remark 2.3 We localize the notion of monotone sequences and monotone sets as follows: if F0 ⊂ F is any

subset, we say that the sequence (aν)ν∈F is monotone on F0 (or that (aν)ν∈F0
is monotone) if and only if

µ, ν ∈ F0 and µ ≤ ν ⇒ aν ≤ aµ.

Clearly, a monotone sequence is monotone on any set F0. Likewise we say that a subset F1 ⊂ F0 is monotone

in F0 if and only if

ν ∈ F1, µ ∈ F0 and µ ≤ ν ⇒ µ ∈ F1.

In the case where F0 is monotone, this is equivalent to saying that F1 is monotone. If (aν) is monotone

on F0, a set of indices corresponding to the k-largest aν in absolute value with ν ∈ F0 is monotone in F0

whenever it is unique. If it is not unique, there exists at least one realization of such a set which is monotone.

This set may be obtained by the same trimming procedure as in Remark 2.2.

The monotone majorant of a bounded sequence (aν)ν∈F is the sequence

aν := max
µ≥ν

|aµ|, ν ∈ F .

We define &pm(F) as the set of all sequences which have their monotone majorant in &p(F). Clearly, &pm(F)

is a linear space with respect to addition of sequences and scalar multiplication. We equip this space with

the norm

‖(aν)‖"pm(F) := ‖(aν)‖"p(F),

Now, if (aν)ν∈F ∈ &pm(F), 0 < p < 1, and Λk is any monotone realization of Λ∗
k((aν)ν∈F ), then the sets Λk

are monotone and satisfy

∑

ν /∈Λk

|aν | ≤
∑

ν /∈Λk

aν ≤ ‖(aν)‖"pm(F)k
−s, s :=

1

p
− 1. (2.2)
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Theorem 2.4 Under the assumptions of Theorem 1.1, the sequence (‖tν‖V )ν∈F belongs to &pm(F).

Proof: The result will follow from the estimates that underpin the proof of Theorem 1.1 given in [12]. A

sequence ρ = (ρj)j≥1 is said to be admissible of order δ if

∑

j≥1

ρj |ψj(x)| ≤ ā(x)− δ, x ∈ D.

We denote by Aδ the set of all δ-admissible sequences ρ for which ρj ≥ 1, for all j. It was shown in [12] that

for any 0 < δ < r

‖tν‖V ≤ ‖f‖V ∗

δ
inf

ρ∈Aδ

ρ−ν . (2.3)

In particular, taking δ = r
2 ,

‖tν‖V ≤ bν := 2C0 inf
ρ∈A r

2

ρ−ν . (2.4)

It was moreover shown that under the assumptions of Theorem 1.1 the sequence (bν)ν∈F belongs to &p(F)

which thus leads to the proof of Theorem 1.1. We now observe that the sequence bν is monotone because

for any ρ ∈ A r
2

µ ≤ ν ⇒ ρ−ν ≤ ρ−µ,

and thus

µ ≤ ν ⇒ bν ≤ bµ.

Therefore, if (aν) denotes the monotone majorant of the sequence (‖tν‖V ), we also find that

aν ≤ bν .

It follows that ‖(‖tν‖V )‖"pm(F) ≤ ‖(bν)‖"p(F) < ∞. !

3 Recursive estimates

It was shown in [11] that the Taylor coefficients satisfy a recursion relation obtained by differentiating the

variational formulation ∫

D

a(x, y)∇u(x, y)∇v(x)dx =

∫

D

f(x)v(x)dx v ∈ V,

at y = 0. Namely, we obtain by induction that tν ∈ V is the solution to the elliptic boundary value problem

given in weak form by (see equations (4.6) and (4.10) of [11])

∫

D

ā∇tν∇v = −
∑

j s.t. νj &=0

∫

D

ψj∇tν−ej∇v, v ∈ V. (3.1)

This recurrence allows one to compute all Taylor coefficients from the first coefficient t0 = u(0) corresponding

to ν = 0 which satisfies ∫

D

ā∇t0∇v =

∫

D

fv, v ∈ V. (3.2)

In practice, these boundary value problems can only be solved approximately by space discretization, for

example by the finite element method. We shall deal with this issue in §6 and assume for the moment

that they can be solved exactly. For any monotone set of indices Λ, the recursion (3.1) determines the

6



Taylor coefficients {tν ∈ V : ν ∈ Λ} uniquely; determining them requires the successive numerical solution

of the “nominal” elliptic problems (3.2) with #(Λ) many right hand sides. In particular, then, for comput-

ing numerical approximations of the (tν)ν∈Λ, a discretized single, parameter-independent “nominal” elliptic

problem (3.2) in the domain D must be solved with #(Λ) many load cases. Since our adaptive algorithms will

be based on the norms ‖tν‖ā of Taylor coefficients through the recursion (3.1), we introduce the abbreviated

notation

t̄ν := ‖tν‖ā, ν ∈ F ,

and the following quantities for bounding for the right hand side of (3.1)

dµ,j :=

∫

D

|ψj ||∇tµ|2, µ ∈ F , j ≥ 1.

We observe that UEA(r, R) implies for almost every x ∈ D

∑

j≥1

|ψj(x)| ≤ γā(x) (3.3)

with

γ = 1− r

R
< 1. (3.4)

It follows that for any µ ∈ F , we have
∑

j≥1

dµ,j ≤ γ t̄2µ. (3.5)

Lemma 3.1 Under assumption UEA(r, R), we have for any ν ∈ F ,

t̄2ν ≤ α
∑

j s.t. νj &=0

dν−ej ,j , (3.6)

with

α :=
R

R + r
< 1. (3.7)

Proof: Taking v = tν in (3.1), we find that

t̄2ν = −
∑

j s.t. νj &=0

∫

D

ψj∇tν−ej∇tν , (3.8)

and therefore

t̄2ν ≤ 1

2

∑

j s.t. νj &=0

∫

D

|ψj | |∇tν−ej |2 +
1

2

∑

j s.t. νj &=0

∫

D

|ψj | |∇tν |2. (3.9)

Using (3.3) in the second term of (3.9) gives

(1− γ/2)t̄2ν ≤ 1

2

∑

j s.t. νj &=0

∫

D

|ψj | |∇tν−ej |2,

from which we derive (3.6). !

For any set Λ ⊂ F , we introduce

e(Λ) :=
∑

ν∈Λ

t̄2ν , σ(Λ) :=
∑

ν∈F\Λ

t̄2ν , (3.10)
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which is a measure of the energy of the Taylor coefficients on Λ and the energy on its complement respectively.

Our next lemma shows that if Λ is a monotone set, the energy outside Λ is controlled by the energy on the

margin M = M(Λ).

Lemma 3.2 Under assumption (UEA)(r, R), we have for any monotone set Λ and its margin M,

σ(Λ) ≤ 1

1− δ
e(M), (3.11)

with

δ =
R− r

R+ r
< 1. (3.12)

Proof: We first note that

σ(Λ) = e(M) + σ(Λ̃), (3.13)

where we have set Λ̃ := Λ ∪M. According to Lemma 3.1, we may write

σ(Λ̃) ≤ α
∑

ν∈F\Λ̃

(

∑

j s.t. νj &=0

dν−ej ,j

)

≤ A+B, (3.14)

where

A := α
∑

ν∈F\Λ̃

(

∑

j s.t. ν−ej∈F\Λ̃

dν−ej ,j

)

= α
∑

µ∈F\Λ̃

(

∑

j s.t. µ+ej∈F\Λ̃

dµ,j
)

,

and

B := α
∑

ν∈F\Λ̃

(

∑

j s.t. ν−ej∈Λ̃

dν−ej ,j

)

= α
∑

µ∈M

(

∑

j s.t. µ+ej∈F\Λ̃

dµ,j
)

.

In this splitting, we have used the fact that if ν ∈ F \ Λ̃ and νj 0= 0, we have either ν − ej ∈ F \ Λ̃ or

ν − ej ∈ M. Using (3.5), we may control the first term A by

A ≤ αγ
∑

µ∈F\Λ̃

t̄2µ = αγσ(Λ̃),

and by the same argument we obtain

B ≤ αγe(M).

Combining these estimates with (3.14), it follows that

(1− αγ)σ(Λ̃) ≤ αγe(M),

and thus by (3.13)

σ(Λ) ≤
(

1 +
αγ

1− αγ

)

e(M),

which gives the final result. !

4 A bulk chasing algorithm

In this section, we introduce the notion of bulk chasing and show how this idea can be used to build an

adaptive algorithm for generating a near optimal sequence of sets (Λn) in the sense of (1.7). We shall see

that this algorithm is not numerically feasible but nevertheless will guide us in the construction of more

practical algorithms in the sections that follow.
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To begin the discussion, let us assume that we have a finite monotone set Λ with margin M = M(Λ),

for which we have already computed tν , ν ∈ Λ. From this knowledge we can directly compute certain tν ,

ν ∈ M from the recurrence (3.1). Namely, if I1(M) is the set of ν ∈ M such that each ν− ej ∈ Λ whenever

νj ≥ 1, then we can compute tν for all ν ∈ I1(M) since we already know each of the tν−ej that occur in

(3.1). We can then repeat this process and compute tν for any ν ∈ I2(M) where I2(M) is the set of all

ν ∈ M\I1(M) such that ν − ej ∈ Λ∪ I1(M) whenever νj > 0. Continuing in this way, we can compute all

of the tν ∈ M. Notice that one only needs a finite number of the sets Ij(M) to exhaust M since Λ is finite.

For a fixed 0 < θ < 1, we consider the following (not yet practical) algorithm:

ALGORITHM 1

Define Λ0 := {0} and compute t0 := u(0) and t̄0 := ‖t0‖ā. For n = 0, 1, · · · do the following:

• Given that Λn has been defined and (tν)ν∈Λn have been computed, we define Mn = M(Λn) and

compute tν , ν ∈ Mn, by using the recursion (3.1);

• Compute t̄ν for ν ∈ Mn;

• Find a smallest monotone set Λn+1 such that Λn ⊂ Λn+1 ⊂ Λn ∪Mn and e(Λn+1 ∩Mn) ≥ θe(Mn);

• Go to step n+ 1;

Note that requiring that Λn+1 is monotone is equivalent to requiring that the update set Λn+1 ∩ Mn is

monotone in Mn.

This algorithm is not realistic for several reasons. First, we have already noticed that the margin Mn

has infinite cardinality, and therefore there are infinitely many t̄ν to be computed which requires in principle

solving infinitely many boundary value problems for the corresponding tν . We shall fix this problem in the

next section §5. A second problem is that we can only solve the boundary value problems (3.1) approxi-

mately, for example using a finite element discretization. We analyze the additional error induced by this

discretization in §6.

For the present, we remain with the above algorithm and prove its optimality. We first establish the

following result on the decay of the energy of Taylor coefficients.

Theorem 4.1 Under the assumptions of Theorem 1.1, we have (t̄ν)ν∈F ∈ &pm(F) and the sets Λn satisfy

σ(Λn) ≤ C1‖(t̄ν)‖2"pm(F)(#(Λn))
−2t, t :=

1

p
− 1

2
, (4.1)

where C1 only depends on (r, R, θ, t).

Proof: We have shown in Theorem 2.4 that (‖tν‖V )ν∈F ∈ &pm. Since t̄ν ≤
√
R‖tν‖V for all ν ∈ F , it follows

that (t̄ν)ν∈F ∈ &pm(F) as stated.

To prove (4.1), we first observe that σ(Λn) decreases geometrically. Indeed, we can write

σ(Λn+1) = σ(Λn)− e(Λn+1 ∩Mn) ≤ σ(Λn)− θe(Mn).

Since by (3.11), we have e(Mn) ≥ (1 − δ)σ(Λn), we obtain

σ(Λn+1) ≤ κσ(Λn), (4.2)

with κ := 1− θ(1− δ) = 1− 2θr
R+r < 1.
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We next control the cardinality of the updated set Λn+1 ∩Mn by using the monotone majorants t̄ν of

the t̄ν . Given any τ > 0, we define k as the smallest integer such that

‖(t̄ν)‖"pm(F)(k + 1)−t ≤ τ .

Let Sk ⊂ Mn be a monotone set in Mn corresponding to the k largest t̄ν for ν ∈ Mn (see Remark 2.3).

From (1.5), we have

e(Mn \ Sk) =
∑

ν∈Mn\Sk

t̄2ν ≤
∑

ν∈Mn\Sk

t̄2ν ≤ τ2. (4.3)

From the minimality of k, we also have

#(Sk) = k ≤ ‖(t̄ν)‖1/t"pm(F)
τ−1/t .

We now choose τ2 := (1− θ)e(Mn) so that for this k we have from (4.3)

e(Sk) ≥ e(Mn)− τ2 = θe(Mn) .

Since Sk is a monotone set in Mn, the set

Λ̃n+1 := Λn ∪ Sk, (4.4)

is also monotone and satisfies the bulk property

e(Λ̃n+1 ∩Mn) ≥ θe(Mn).

From the minimality of Λn+1, we thus have

#(Λn+1 ∩Mn) ≤ #(Sk) ≤ ‖(t̄ν)‖1/t"pm(F)
τ−1/t .

Using (3.11), it follows that

#(Λn+1 ∩Mn) ≤ [(1− δ)(1− θ)]−1/2t‖(t̄ν)‖1/t"pm(F)
σ(Λn)

−1/2t. (4.5)

Using the contraction property (4.2), we get σ(Λk) ≥ κn−kσ(Λn). We may now estimate the global cardinality

of #(Λn) by

#(Λn) ≤ #(Λ0) +
∑n−1

k=0 #(Λk+1 ∩Mk)

≤ 1 + [(1− δ)(1− θ)]−1/2t‖(t̄ν)‖1/t"pm(F)

∑n−1
k=0 σ(Λk)−1/2t

≤ 1 + [(1− δ)(1− θ)]−1/2t‖(t̄ν)‖1/t"pm(F)
σ(Λn)−1/2t

∑n−1
k=0 κ

(n−k)/2t

≤ 1 + C‖(t̄ν)‖1/t"pm(F)
σ(Λn)−1/2t

where C := ( κ
(1−δ)(1−θ)

)1/2t
(1− κ1/2t)−1. This last inequality can be rewritten as

σ(Λn) ≤ C2t‖(t̄ν)‖2"pm(F)(#(Λn)− 1)−2t.

If #(Λn) > 1, we have established (4.1) with C1 := (2C)2t. If #(Λn) = 1 then

σ(Λn) ≤ ‖(t̄ν)‖2"2(F) ≤ ‖(t̄ν)‖2"p(F) ≤ ‖(t̄ν)‖2"pm(F),

and (4.1) also holds, with the constant C1 only depending on r, R, θ and t. !

As a corollary, we also obtain the optimal decay of the &1 tail of the t̄ν and therefore of the error between

u and its partial Taylor sum.
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Corollary 4.2 Under the assumptions of Theorem 1.1, we have (t̄ν)ν∈F ∈ &pm(F) and the sets Λn satisfy

∑

ν∈F\Λn

t̄ν ≤ C2‖(t̄ν)‖"pm(F)(#(Λn))
−s, s :=

1

p
− 1, (4.6)

where C2 := 1 +
√
C1 with C1 the constant in (4.1). Consequently we have

sup
y∈U

‖u(y)−
∑

ν∈Λn

tνy
ν‖V ≤

∑

ν /∈Λn

‖tν‖V ≤ 1√
r

∑

ν /∈Λn

t̄ν ≤ C1√
r
‖(t̄ν)‖"pm(F)(#(Λn))

−s. (4.7)

Proof: Let m := #(Λn) ≥ 1 and consider the set Λ∗
m ⊂ F corresponding to the m largest t̄ν , we have

∑

ν /∈Λn
t̄ν =

∑

ν /∈Λ∗

m
t̄ν +

∑

ν∈Λ∗

m\Λn
t̄ν −

∑

ν∈Λn\Λ∗

m
t̄ν

≤
∑

ν /∈Λ∗

m
t̄ν +

∑

ν∈Λ∗

m\Λn
t̄ν

≤ ‖(t̄ν)‖"p(F)(m+ 1)−s +m1/2e(Λ∗
m \ Λn)1/2

≤ (‖(t̄ν)‖"p(F) +
√
C1‖(t̄ν)‖"pm(F))(#(Λn))−s

≤ (1 +
√
C1)‖(t̄ν)‖"pm(F)(#(Λn))−s ,

where we have used both (1.5) and (4.1). This establishes (4.6), which implies (4.7) since ‖ · ‖V ≤ 1√
r
‖ · ‖ā.!

5 A second algorithm

We now want to modify Algorithm 1 in order to restrict the computation of the tν to a finite subset of Mn.

In the modified algorithm, we set a target accuracy ε > 0 and design the procedure in such a way that the

algorithm terminates when σ(Λn) ≤ ε.

In order to restrict the margin Mn to a finite subset, we introduce a procedure SPARSE that has the

following properties : if Λ is a finite monotone set and M is its infinite margin, and if (t̄ν)ν∈Λ are known,

then for any η > 0,

N := SPARSE(Λ, (t̄ν)ν∈Λ, η),

is a finite subset of M which is monotone in M and such that e(M\N ) ≤ η.

There are several possible concrete realizations of this procedure. Here is a simple one. We define

ψ̄j :=
ψj

ā
,

and choose J > 0 large enough such that

‖
∑

j>J

|ψ̄j |‖L∞(D) ≤
( αe(Λ)

1− αγ

)−1
η, (5.1)

where α and γ are given by (3.4)and (3.7), and we define

N := SPARSE(Λ, (t̄ν)ν∈Λ, η) := {ν ∈ M ; ν − ej ∈ Λ ⇒ j ≤ J}.

Clearly N is finite with #(N ) ≤ J#(Λ).

Lemma 5.1 With the above definition of N , one has

e(M\N ) =
∑

ν∈M\N

t̄2ν ≤ η. (5.2)
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Proof: We proceed in a similar way to the proof of Lemma 3.2, by first writing

e(M\N ) ≤ α
∑

ν∈M\N

(

∑

j s.t. νj &=0

dν−ej ,j

)

≤ A+B, (5.3)

where now

A := α
∑

ν∈M\N

(

∑

j s.t. ν−ej∈M\N

dν−ej ,j

)

= α
∑

µ∈M\N

(

∑

j s.t. µ+ej∈M\N

dµ,j
)

,

and

B := α
∑

ν∈M\N

(

∑

j s.t. ν−ej /∈M\N

dν−ej ,j

)

= α
∑

µ∈Λ∪N

(

∑

j s.t. µ+ej∈M\N

dµ,j
)

.

In this splitting, we have used the fact that if ν ∈ M \N and νj 0= 0, we have either ν − ej ∈ M\N or

ν − ej ∈ Λ ∪N . Using (3.5), we can bound A by

A ≤ αγ
∑

µ∈M\N

t̄2µ = αγe(M\N ).

To bound B, we first claim that for any µ ∈ Λ ∪N such that µ+ ej ∈ M\N , we must have µ ∈ Λ and

j > J . Indeed, since µ + ej ∈ M\N , the definition of N guarantees that µ + ej = ν̃ + ek for some ν̃ ∈ Λ

and k > J . If j = k we have our claim. If j 0= k then necessarily ν̃− ej ∈ Λ because of the monotonicity of Λ

and therefore µ can be written as the sum of ν̃ − ej ∈ Λ and ek, which means that µ is not in N . Thus, we

have verified our claim. From the claim, it follows that the only j’s that may contribute in the summation

inside B are such that j > J and ν − ej ∈ Λ. Hence,

B ≤ α
∑

µ∈Λ

∑

j>J dµ,j
= α

∑

µ∈Λ

∫

D

(
∑

j>J |ψj |)|∇tν |2

= α
∑

µ∈Λ

∫

D

(
∑

j>J |ψ̄j |)ā|∇tν |2

≤ α‖
∑

j>J |ψ̄j |‖L∞e(Λ) ≤ (1− αγ)η.

Combining the bounds for A and B with (5.3), we obtain

e(M\N ) ≤ B

1− αγ
≤ η,

as desired. !

For a fixed 0 < θ < 1 and target accuracy ε > 0, we now consider the following algorithm:

ALGORITHM 2

Define Λ0 := {0}, compute t0 := u(0) and set η0,0 := t̄0 = ‖t0‖ā;
For n = 0, 1, · · ·

• Given Λn and (tν)ν∈Λn , define Mn := M(Λn);

• For j = 0, 1, · · ·

– Define ηn,j := 2−jηn and Mn,j := SPARSE(Λn, (t̄ν)ν∈Λn , ηn,j);

– Compute t̄ν for ν ∈ Mn,j and compute e(Mn,j);
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– If e(Mn,j) + ηn,j ≤ (1 − δ)ε, with δ as in (3.12), then terminate the Algorithm and output the

set Λ(ε) := Λn;

– Else if e(Mn,j) <
4−2θ
1−θ ηn,j , then go directly to step j + 1;

– Else if e(Mn,j) ≥ 4−2θ
1−θ ηn,j , then terminate the inner loop in j, and define ηn+1 := ηn,j and

Λn+1 := Sn,j ∪ Λn, where Sn,j ⊂ Mn,j is the smallest monotone set in Mn,j such that

∑

ν∈Mn,j\Sn,j

t̄2ν ≤ (1− θ)e(Mn,j)− (2− θ)ηn,j .

• Compute tν for ν ∈ Λn+1 using (3.1);

• Go to step n+ 1;

Theorem 5.2 Under the assumptions of Theorem 1.1 with p ≤ 1, Algorithm 2 terminates for a finite value

n∗ and outputs a set Λ := Λ(ε) := Λn∗ which satisfies

σ(Λ) ≤ ε. (5.4)

Moreover, one has

σ(Λ) ≤ C̄1‖(t̄ν)‖2"pm(F)(#(Λ))−2t, t :=
1

p
− 1

2
, (5.5)

and

sup
y∈U

‖u(y)−
∑

ν∈Λ

tνy
ν‖V ≤ C̄2‖(t̄ν)‖"pm(F)(#(Λ))−s, s :=

1

p
− 1, (5.6)

where the constants C̄1 and C̄2 := 1+
√

C̄1√
r

only depend on (r, R, θ, t).

Proof: We first claim that for each n the inner j loop terminates for some j. To see this, we note that this

loop advances j only when e(Mn,j) <
4−2θ
1−θ ηn,j and e(Mn,j) > (1− δ)ε− ηn,j . This cannot happen when j

is large because the ηn,j tend to zero with increasing j.

Next, we need to check that for the output j of the inner loop, we are able to determine the index set

Sn,j . To see this, we note that for the output j of the inner loop, we must have e(Mn,j) > 4−2θ
1−θ ηn,j and

therefore

(1− θ)e(Mn,j)− (2− θ)ηn,j > (2− θ)ηn,j > 0.

So, we are indeed able to find the smallest monotone Sn,j ⊂ Mn,j such that

ẽ(Mn \ Sn,j) ≤ (1− θ)e(Mn,j)− (2− θ)ηn,j .

Since Mn,j ⊂ Mn, we have

e(Mn \ Sn,j) ≤ (1− θ)e(Mn,j) ≤ (1− θ)e(Mn). (5.7)

Next we have to check that the outer n loop terminates. To see this we note that from (5.7) and the same

reasoning as in the proof of Theorem 4.1, the contraction property

σ(Λn+1) ≤ κσ(Λn), (5.8)

holds whenever the set Λn+1 is created by the algorithm and 0 < κ < 1 is the constant of (4.2). Obviously,

this contraction property shows that for any given c > 0, if the algorithm did not terminate for n large
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enough we must have e(Mn) ≤ c because e(Mn) ≤ σ(Λn). Here we take c = (4−2θ)(1−δ)ε
5−3θ . If such a value of

n has been reached by the algorithm and if Λn is not selected during the inner loop, this means that for the

last value of j in this inner loop, we have

ηn,j ≤
1− θ

4− 2θ
e(Mn,j),

and thus

e(Mn,j) + ηn,j ≤
5− 3θ

4− 2θ
e(Mn,j) ≤

5− 3θ

4− 2θ
e(Mn) ≤ (1− δ)ε.

Therefore, the algorithm terminates.

Let n∗ be the terminal value of n and let j∗ be the terminal value of j for the inner j loop applied to

this value n = n∗. We have e(Mn∗,j∗) + ηn∗,j∗ ≤ (1− δ)ε and thus

σ(Λn∗) ≤ (1− δ)−1e(Mn∗) ≤ (1− δ)−1(e(Mn∗,j∗) + ηn∗,j∗) ≤ ε.

Therefore, (5.4) holds for the generated set Λ = Λn∗ .

We shall next prove (5.5) by using an argument similar to that used in the proof of Theorem 4.1. For

any n < n∗, we will bound the cardinality of the update set Sn,j where j = j(n) is the terminal value of

j for this n. Fix such a pair n, j and define τ2 = τ2n := (1 − θ)e(Mn,j) − (2 − θ)ηn,j . We define k as the

smallest integer such that

‖(̄tν)‖"p(F)(k + 1)−t = ‖(t̄ν)‖"pm(F)(k + 1)−t ≤ τ.

From (1.5), we see that the set Γk ⊂ Mn corresponding to the k largest t̄ν for ν ∈ Mn,j , satisfies

∑

ν∈Mn\Γk

t̄2ν ≤
∑

ν∈Mn\Γk

t̄2ν ≤ τ2 .

From the minimality of k, we also have

#(Γk) = k ≤ ‖(t̄ν)‖1/t"pm(F)
τ−1/t.

The set Γk can be taken monotone in Mn,j (see Remark 2.3), and therefore from the minimality of Sn,j , we

have

#(Sn,j) ≤ #(Γk) ≤ ‖(t̄ν)‖1/t"pm(F)
τ−1/t.

We can now estimate the global cardinality of #(Λ) = #(Λn∗) by

#(Λ) ≤ #(Λ0) +
n∗−1
∑

n=0

#(Sn,j(n)) ≤ 1 + ‖(t̄ν)‖1/t"pm(F)

n∗−1
∑

k=0

τ−1/t
n . (5.9)

We need a lower bound for the τn which is given by

τ2n = (1− θ)e(Mn,j)− (2− θ)ηn,j = 1
3 (1− θ)e(Mn,j) +

2
3 (1− θ)e(Mn,j)− (2− θ)ηn,j

≥ 1
3 (1− θ)e(Mn,j) + 2

3 (4− 2θ)ηn,j − (2 − θ)ηn,j
= 1

3 (1− θ)e(Mn,j) +
1
3 (2− θ)ηn,j

≥ 1−θ
3 (e(Mn,j) + ηn,j)

≥ 1−θ
3 e(Mn) ≥ (1− δ)

(

1−θ
3

)

σ̃(Λn) =: C̄−1
2 σ(Λn).
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Here the last inequality follows from Lemma 3.2 and the next to last inequality follows from the fact that

e(Mn \Mn,j) ≤ ηn,j by virtue of (5.2). If we place this lower bound for τn into (5.9), we obtain

#(Λ) ≤ 1 + C̄1/t
2 ‖(t̄ν)‖1/t"pm(F)

∑n∗−1
n=0 σ(Λn)−1/2t

≤ 1 + C̄1/t
2 ‖(t̄ν)‖1/t"pm(F)σ(Λ)

−1/2t
∑n∗−1

k=0 κ(n∗−k)/2t

≤ 1 + C‖(t̄ν)‖1/t"pm
σ(Λ)−1/2t,

where C := C̄t
2(1− κ1/2t)−1. This last inequality can be rewritten as

σ(Λ) ≤ C̄1‖(t̄ν)‖2"pm(F)(#(Λ))−2t,

in the same way we argued to complete the proof of Theorem 4.1. Hence, we have proved (5.5). Finally,

(5.6) follows from (5.5) in the same way we have derived Corollary 4.2 from Theorem 4.1. !

Although Algorithm 2 algorithm meets the benchmark of the optimal rate (1.7) under the minimal

assumptions of Theorem 1.1, a closer inspection shows that it is not completely optimal from a computational

point of view. Indeed, consider the number B = B(ε) = Bn∗ of boundary value problems which have actually

been solved in order to compute the functions tν for ν in the final set Λ = Λ(ε) = Λn∗ . Ideally, we would

hope that this number is not much larger than the cardinality of Λ, so that we may actually retrieve the

convergence estimates (5.5) and (5.6) in terms of B instead of #(Λ).

However, the number B involves the size of the restricted margin which is produced by the procedure

SPARSE, and which might in principle be substantially larger than the set that is finally selected by the bulk

search. Retrieving the same convergence rate in terms of B would actually require that when the accuracy η

prescribed in SPARSE is of the same order as the current accuracy e(Λ), then the cardinality of the produced

set N should be bounded by the optimal rate

#(N ) ≤ C‖(t̄ν)‖1/t"pm(F)η
−1/2t. (5.10)

A brief inspection seems to indicate that only a lower rate is achieved by our SPARSE procedure: on the

one hand we know that

#(N ) ≤ J#(Λ),

and that the set Λ has its cardinality optimally controlled by η−1/2t, and on the other hand the number

J that ensures (5.1) is of the order η−1/s where s = 1
p − 1 = t − 1

2 . Therefore η−1/2t in (5.10) is a-priori

replaced by the non-optimal rate η−1/(2t2−t)

In order to remedy this defect, one would need to design more elaborate realizations of SPARSE in order

to obtain a set N of smaller, hopefully optimal, cardinality. One option that could lead to such a SPARSE

procedure would be to make use of the available a-priori bounds on the ‖tν‖V such as such as (2.3) and (2.4)

in order to control the energy outside of the set N . We do not embark in this direction here. Another option

for lowering the CPU cost, which appears to work quite well in practice yet without a complete theoretical

justification, will be proposed in §7.

6 Space discretization

The boundary value problems that recursively give the coefficients eν cannot be solved exactly. Instead, we

would use a Galerkin method in a finite dimensional space Vh ⊂ V , typically a finite element space although

this is not crucial in the present analysis which would also apply to spectral or wavelet discretization. We
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shall show in this section that it is possible to choose the same space Vh to approximate all eν and still retain

the performance of Algorithm 1 and Algorithm 2.

For the purpose of simplicity, we consider here the situation where the same spatial discretization is

used for all ν. Yet, the analysis in §8 of [11] reveals that substantial computational gain may be expected

if the spatial discretization is allowed to vary with ν (typically, coarser discretizations should be used for

the computation of smaller Taylor coefficients). The possibility of adaptively choosing the approximation

space parameter h depending on ν should also be explored but requires a more involved analysis. A future

objective is therefore to design a solution algorithm that adaptively monitors the spatial resolution as new

coefficients are being computed.

We define the Finite Element approximation uh(y) ∈ Vh as the solution to
∫

D

a(x, y)∇uh(y)∇vh =

∫

D

fvh ∀vh ∈ Vh . (6.1)

By assumption UEA(r, R), for any closed subspace Vh ⊂ V the Finite Element approximation is uniquely

defined and the analysis in [11] and [12] and all results of the present paper also apply to the discretized

problem.

In particular, for every h > 0, the Finite Element approximation uh(y) ∈ Vh can be represented as a

convergent Taylor expansion about y = 0 i.e., uh(y) =
∑

ν∈F tν,hyν , where

tν,h :=
1

ν!
∂νuh(0) ∈ Vh .

Moreover, the ‖tν,h‖V can be estimated by the same bound bν := 2C0 infρ∈Ar ρ
−ν as the ‖tν‖V , leading to

a result similar to Theorem 2.4.

Theorem 6.1 Under the assumptions of Theorem 1.1, the sequence (‖tν,h‖V )ν∈F belongs to &pm(F). More-

over ‖(‖tν,h‖V )‖"p(F) is bounded independent of h.

The coefficients tν,h can be computed recursively by solving linear systems corresponding to the space-

discretized boundary value problems
∫

D

ā∇tν,h∇vh = −
∑

j s.t. νj &=0

∫

D

ψj∇tν−ej ,h∇vh ∀vh ∈ Vh. (6.2)

For the approximate Taylor coefficients, we introduce once more their energies as t̄ν,h := ‖tν,h‖ā. We may

define eh(Λ) and σh(Λ) and apply Algorithms 1 or 2 in a similar way, by simply replacing tν and t̄ν by tν,h
and t̄ν,h. For these algorithms, we obtain convergence results by the exact same approach as without space

discretization.

Theorem 6.2 Under the assumptions of Theorem 1.1 with p < 1, the application of each of the Algorithms

1 or 2 in the space discretized setting yields a sequence of sets (Λn) such that

σh(Λn) ≤ C1‖(t̄ν,h)‖"pm(F)(#(Λn))
−2t, t :=

1

p
− 1

2
, (6.3)

and
∑

ν /∈Λn

eν,h ≤ C2‖(t̄ν,h)‖"pm(#(Λn))
−s, s :=

1

p
− 1, (6.4)

where C1 and C2 are as in the continuous setting (depending on r, R, θ and on t, but being independent of

h).
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Consequently we have

sup
y∈U

‖uh(y)−
∑

ν∈Λn

tν,hy
ν‖V ≤

∑

ν /∈Λn

‖tν,h‖V ≤ C1√
r
‖(t̄ν,h)‖"pm(#(Λn))

−s. (6.5)

We finally quantify the space discretization error. The well-known theory of finite elements tells us that the

rate of convergence of ‖u(y) − uh(y)‖V in terms of the decay of h is controlled by the smoothness of u in

the scale of the Hs Sobolev space and the order of the finite element spaces Vh which are employed. For

example, when using Lagrange finite elements of order k, we have

sup
y∈U

‖u(y)− uh(h)‖V ≤ C3h
r sup
y∈U

‖u(y)‖H1+r(D), (6.6)

for all r ≤ k. This leads to the following result.

Corollary 6.3 Under the assumptions of Theorem 1.1 and assuming that supy∈U |u(y)|H1+r < ∞ and that

we use Lagrange finite elements of order k ≥ r, then applying Algorithms 1 or 2 in the space discretized

setting, we obtain

sup
y∈U

‖u(y)−
∑

ν∈Λn

tν,hy
ν‖V ≤ C3h

r sup
y∈U

‖u(y)‖H1+r(D) +
C1√
r
‖(t̄ν,h)‖"pm(F)(#(Λn))

−s. (6.7)

The largest value of r for which supy∈U |u(y)|H1+r < ∞ is determined by

• the smoothness of the right hand side f ,

• the smoothness of the diffusion coefficient a,

• the smoothness of the boundary of D.

As an example, for f ∈ L2(D) and coefficients a(x, y) which satisfy

sup
y∈U

‖a(·, y)‖W 1,∞(D) < ∞, (6.8)

we note that (1.1) implies that the solution u(y) satisfies the Poisson equation

−∆u(y) =
1

a
[f −∇a ·∇u(y)] in D , u(y)|∂D = 0 . (6.9)

Therefore, for every y ∈ U the solution u(y) belongs to the space

W =
{

v ∈ V : ∆v ∈ L2(D)
}

.

If the domain D is convex, it is well known W = H2(D) ∩H1
0 (D). For more general Lipschitz domains, it

is also known that W = H1+r(D) ∩H1
0 (D) for some 1

2 ≤ r ≤ 1. We refer to [18] for a general treatment of

elliptic problems on non-smooth domains.

In the numerical experiment that follow, we actually deal with coefficients a(x, y) which are piecewise

constant on a partition of D = [0, 1]2 into fixed sub-squares independent of y. Such coefficients obviously

do not satisfy (6.8), however regularity results are also known in this setting and give that the solution u(y)

belong to H1+r(D)∩H1
0 (D) for some 0 < r ≤ 1

2 that depends on the maximal contrast R/r, see for example

[3].

17



7 Numerical Experiments

In this section, we study the numerical performance of the algorithm proposed in this paper. In this

algorithm, the choice of Λn is made adaptively and it is based on a bulk search procedure. In particular,

we want to compare this choice of Λn, with non-adaptive choices. We also study some variants using other

adaptive strategies.

The algorithms that we analyzed in the previous sections were formulated regardless of wether the

dimension of y is finite or infinite. In the present numerical test, we use a parameter vector y = (yj)j=1,···,d,

of dimension 64, i.e. y ∈ [−1, 1]64. More precisely, we consider the following numerical test on the unit

square D := [0, 1]× [0, 1]:

−div(a∇u) = f in D, u = 0 on ∂D,

where for illustration purposes we take f(x1, x2) := x1x2. We partition D into 64 squares Dj of equal shape

and consider a diffusion coefficient that is piecewise constant on each subdomain:

a(x, y) = ā+
64
∑

j=1

yjψj , where ā = 1 and ψj = αjχDj
. (7.1)

Since in this case the ψj have disjoint supports, the uniform ellipticity assumption simply means that the

weights αj = ‖ψj‖L∞(D) are all strictly less than 1. To study the consistency of the numerical results with

our theory, we also need that the sequence αj has some decay, since in the case of an infinite sequence we

require that (‖ψj‖L∞(D))j≥1 is summable. In our numerical test we take in (7.1)

αj =
0.9

j3
. (7.2)

The uniform ellipticity assumption UEA(r, R) therefore holds with r = 0.1.

As mentioned above, we use one fixed finite element space for the spatial discretization of all active Taylor

coefficients. Therefore, for the different strategies of building the coefficients sets Λn, we actually study the

decay of Taylor expansion error for the finite element solution

sup
y∈U

‖uh(y)−
∑

ν∈Λn

tν,hy
ν‖V , (7.3)

as #(Λn) grows, bearing in mind that the finite element discretization induces an additional source of error

supy∈U ‖u(y)− uh(y)‖V which can be bounded according to (6.6).

For the generation of the sets Λn of “active” Taylor coefficients, we compare three non-adaptive strategies

that are based on a-priori choices of the sets Λn, and three adaptive strategies (in particular Algorithm 1)

that exploit the results of earlier computations. For the sake of notational simplicity, we describe these al-

gorithms without the additional finite element discretization setting, therefore using the notation tν instead

of tν,h. Their adaptation in the finite element setting is of course straightforward.

Non-adaptive strategies:

• Algorithm QN: For n ≥ 0, we take Λn = {ν ∈ F , s.t max(νj) ≤ n}. Therefore Span{y "→ yν ; ν ∈
Λn} is the space Qn of polynomials of degree at most n in each variable. The dimension of this space

#Λn = (n+ 1)d grows exponentially with the dimension d of y, reflecting the curse of dimensionality.

• Algorithm PN: For n ≥ 0, we take Λn = {ν ∈ F , s.t |ν| ≤ n}. Therefore Span{y "→ yν ; ν ∈ Λn}
is the space Pn of polynomials of total degree at most n. The dimension of this space #Λn =

(

n+d
n

)

,

although smaller than that of Qn by an order d! still grows exponentially with d.
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• Algorithm LE (Largest Estimates): as explained in the proof of Theorem 2.4, there are available

estimates such as (2.3) and (2.4) for ‖tν‖V . It is therefore natural to choose for Λn the set of indices

corresponding to the n largest of these estimates, for example the n largest

eν :=
‖f‖V ∗

δ
inf

ρ∈Aδ

ρ−ν ,

for some given 0 < δ < r. As already explained, such sets are monotone by construction. In practice, it

is not always simple to compute the exact value of the infimum in the above definition of eν . However,

this problem has a simple solution in the case where the ψj ’s have disjoint supports since all ρj can be

optimized separately. For our problem this easily leads to the solution

ρ∗j =
1− δ

αj
,

and therefore

eν :=
‖f‖V ∗

δ

d
∏

j=1

( αj

1− δ

)νj
.

The set Λn may also be viewed as the set of those ν such that eν exceeds a certain threshold t = t(n) > 0

that decreases with n, and are therefore of the form

Λn :=







ν ;
d

∑

j=1

ajνj ≤ Θ(n)







with aj := − log
( αj

1− δ

)

and Θ(n) = − log
( t(n)δ

‖f‖V ∗

)

.

Note that if all αj - and therefore aj - were equal, then this would give the same a-priori choice as the

previously described Algorithm PN. In our case, the aj decrease with j, resulting in some anisotropy

in the sets Λn: higher polynomial degrees are expected for small values of j which represent the most

“active” variables. A similar choice of polynomial space was studied in [25] for collocation methods.

In our numerical tests, we have used the value δ = r
2 = 0.05. One could use an even sharper a-priori

estimate on the ‖tν‖V by taking the infimum of eν also over all δ ∈]0, r[. This leads to a similar

estimate but now with δ depending on ν according to δ = min(r, 1
1+|ν| ).

Adaptive strategies:

• Algorithm BS (Bulk Search): This is simply Algorithm 1 based on the bulk search procedure

as proposed in §4, and applied under the given finite element discretization. Since we work in finite

dimension, it is in theory possible to apply this algorithm without the need to restrict the margin as

it is done in Algorithm 2. In our numerical tests, we have built the new set Λn+1 by calculating the

monotone majorant of the sequence t̄ν := ‖tν‖ā for ν ∈ Mn (extended by 0 outside of Mn), and then

by adding to Λn the smallest set Sk corresponding to the k largest t̄ν for which e(Sk) ≥ θe(Mn). The

new set Λn+1 is monotone by construction. However, it is not exactly the smallest monotone set such

that e(Mn ∩ Λn+1) ≥ θe(Mn). The construction of this optimal monotone set by a fast algorithm

is still an open problem to us. In our numerical test, we have used the value θ = 0.2 for the bulk

parameter (we observed that the error curves are almost identical when θ ranges in [0.05, 0.95]).

• Algorithm LN (Largest Neighbor): Although Algorithm 1 may be performed in the finite dimen-

sional context, the size of the current margin Mn relative to the size of the current set Λn becomes a
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source of computational slow-down as d grows. An alternate strategy is to only consider the reduced

margin

I1(Λn) := {ν /∈ Λn ; νj 0= 0 ⇒ ν − ej ∈ Λn},

which are the indices in Mn for which the Taylor coefficients tν can directly be computed from those

indexed by Λn. We then define

Λn+1 = Λn ∪ {ν∗},

where

ν∗ := Argmaxν∈I1(Λn)t̄ν .

The intuition for considering such a strategy is that if the sequence (t̄ν)ν∈F were monotone, then this

would select the t̄ν in decreasing order. The potential pay-off is that the reduced margin is much

smaller than Mn (in particular, it is easy to check that at most d boundary value problems need to

be solved at each iteration). As we shall see, this strategy gives excellent results, although we have no

proof similar to Algorithm 1 that it performs optimally in the sense of convergence rates.

• Algorithm LNE (Largest Neighbor Estimate): In order to save further computational cost, we

can use majorants of t̄ν in order to decide on the new set Λn+1. From (3.7), one straightforward upper

estimate for t̄ν is

t̄ν ≤ Nν :=
(

α
∑

j s.t. νj &=0

‖ψ̄j‖L∞(D)t̄
2
ν−ej

)
1
2

(7.4)

One can then construct the new set Λn+1 as in the previous Algorithm LN, by using Nν instead of t̄ν .

The saving comes from the fact that computing Nν is much cheaper than computing tν .

We have compared the various strategies using 4 choices of finite element spaces based on uniform triangu-

lations of D obtained by splitting each element of a square mesh into two triangles: (i) 8 × 8 squares and

P1 finite elements (dim(Vh) = 49), (ii) 16× 16 squares and P1 finite elements (dim(Vh) = 225) (iii) 16× 16

squares and P2 finite elements (dim(Vh) = 961), (iv) 32×32 squares and P1 finite elements (dim(Vh) = 961).

We display on Figure 7.1 the error curves for the six strategies described above for the generation of the

sets Λn. These error curves represent the supremum error (7.3) (estimated by taking the supremum over a

random choice of 100 values of y) as a function of #(Λn)). Note that for certain strategies, such as PN, QN

and BS, the number #(Λn) does not grow by 1 at each iteration and therefore only takes a few integer values.

In such cases, we obtain all intermediate values for the error curves by filling the intermediates indices in

Λn+1 \ Λn by lexicographic order.

We also indicate for each choice of finite element space an estimate of the FE error supy∈U ‖u(y)−uh(y)‖V .
This estimate is done by replacing u(y) by a finite element solution on a very fine mesh obtained from 256×256

squares and taking the supremum over the same random choice of 100 values of y.

We record three major observations about the error curves.

• First, not much difference in the error curves is observed as we modify the spatial discretization, once

it is finer than 8× 8. In fact, a closer inspection also show that the sets Λn selected by the adaptive

algorithms change very little as we modify the spatial discretization. This suggest that the same sets

and error curves would be obtained if there there were no spatial discretization at all, i.e. if we were

computing the tν by exactly solving the boundary value problems (3.1). In particular, the portion of

the error curves which is below the value of the finite element error is still relevant to us, since this

portion does not seem to change as this error is diminished.
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QN PN LE BS LN LNE Finite element error

Figure 7.1: Comparison the different strategies for finite element spaces (i) (upper left), (ii) (upper right),

(iii) (lower left) and (iv) (lower right).

• Second, we observe that the adaptive strategies BS and LN outperform all non adaptive strategies.

They give almost identical error curves, which indicates that the LN strategy is preferable since it is

has lower computational cost. In contrast, a loss in performance is observed if we instead use LNE. As

to the non-adaptive strategies, LE outperforms PN and QN which do not produce any anisotropy in

the coefficient sets. It is interesting to note that with 100 coefficients, the Taylor approximation error

of the adaptive strategies is dominated by the finite element error, while it is still above it with 104

coefficients when using PN and QN.

• Finally, we observe a stagnation of order 10−9 in the supremum error. We interpret this by the fact

that our algorithm computes once and for all the Taylor coefficients and that small numerical error

resulting from linear system inversion accumulate in such computations. In turn the computed Taylor

development converges towards a limit which slightly differs from uh(y).

In order to obtain a fair comparison between the different algorithms, we also show on Figure 7.2 their

error curves in terms of the total number of boundary value problems which have been solved, and which is

a better reflection of the CPU time (here we only consider the spatial discretization by 16× 16 squares P1

finite elements). For non-adaptive strategies and for LNE, this number is the same as #(Λ), but it exceeds

it moderately for LN and more strongly for BS. In this new comparison, we observe that the algorithm LN

gives the best performance, followed by LNE and LE.
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Remark 7.1 Since we have observed that the error curves and selected adaptive sets do not depend much

on the finite element space discretization, an interesting perspective for gaining CPU time is to first use a

coarse grid finite element space to find the adaptive coefficients sets Λn. One may then use a finer grid

for the computation of the coefficients in such sets, therefore avoiding the overhead caused by solving more

boundary value problems than #(Λn) with the fine discretization. We may also use the coarse grid error

curves to estimate the number of Taylor coefficients that we need to compute with the fine discretization in

order to reach a prescribed accuracy.

Remark 7.2 Our analysis shows that we can set a stopping criterion for our adaptive algorithm based on

the accuracy of the Taylor approximation to uh(y): the algorithm terminates at some step n such that

sup
y∈U

‖uh(y)−
∑

ν∈Λn

tν,hy
ν‖V ≤ ε,

where ε > 0 is a prescribed tolerance. A natural choice is to choose ε of the same order as the finite element

error

sup
y∈U

‖uh(y)− u(y)‖V .

While this last quantity is not exactly known to us, it can be bounded by above according to a-priori estimate

(6.6) based on our knowledge of the maximal Sobolev smoothness of u(y), or estimated in a finer way based

on a-posteriori analysis.

Remark 7.3 In all six adaptive approaches, the specific choice of numbering coordinates yj might influence

the selection of the approximations once ties in certain quantities occur. In the present numerical experi-

ments, the 64 coordinates were enumerated in lexicographic order according to the location of the support

of the ψj in D. We performed the same experiments with several random reshufflings of the indexation (so

that the most significant parameter yj does not appear as first coordinate) which rendered indistinguishable

results from the ones reported here; although this finding is, to some extent, implementation dependent, it

strong suggests that the presented algorithms will perform well also for more general parameter dependences,

where the most significant coordinate appears only in high dimension.

In order to have an idea of the geometry of the coefficients sets Λ produced by the different strategies,

we plot the projection on the two first variables, i.e. the sets

{(ν1, ν2) ; ν ∈ Λ}.

Note that ν1 and ν2 correspond to the most “active” variables y1 and y2 in view of the choice of the ψj . We

compare these sets on Figure 7.3, when #(Λ) = 200 for the various strategies. As expected, the sets obtained

for the non-adaptive choices QN and PN do not reach a high degree due to the curse of dimensionality: when

d = 64 the dimension of the spaces Q1 and P2 clearly exceeds 200 and therefore no degree higher than 1

and 2 can be reached for any variable when using these two methods respectively. In contrast, the adaptive

strategies capture the anisotropic feature of the problem and reach a high polynomial degrees in the active

variables. As already mentionned, the sets obtained by BS and LN are quite similar. It is interesting to note

that the geometry of the sets obtained by BS, LN and LNE significantly differs from the anisotropic simplex

shape obtained with the LE strategy based on the a-priori estimates on the ‖tν‖V .
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Figure 7.2: Comparison of the different strategies in term of total number of solved bvp

Finally, we have also investigated the convergence of the mean value solution ū = E(u) when the yj are

i.i.d. random variables which are uniformly distributed in [−1, 1]. Given a Taylor approximation uΛ(y) :=
∑

ν∈Λ tνyν computed for a certain set Λ by one of the proposed strategies, this mean value may thus be

approximated by

ūΛ :=
∑

ν∈Λ

tνE(y
ν),

with

E(yν) =
d
∏

j=1

E(y
νj
j ) =

d
∏

j=1

(

1
∫

−1

tνj
dt

2

)

=
d
∏

j=1

1 + (−1)νj

2 + 2νj
.

We are ensured that the difference between the averages ū and ūΛ does not exceed the supremum error

in y between u(y) and uΛ(y) which was previously estimated for the various methods. Since we do not

know the exact value of ū for the computation of the error, we replace it by the value ūΛ obtained with BS

algorithm when #(Λ) = 10000, which is thus accurate up to an error of order 10−10. This allows us to make

the comparison between performance of the various strategies for approximating ū by the error curves in

terms of the number of coefficients. In addition we may compare this with the accuracy of the Monte-Carlo

method, which consists in computing the empirical average

ūn :=
1

n

n
∑

i=1

u(yi),

where y1, · · · , yn are independent random draws of the vector y. Since the MC method requires solving

n boundary value problems, we compare its performance to the previous methods when the total number

of solved boundary value problem is n, as n varies. The results are displayed on Figure 7.4. For the MC

method, we display the average of the error curves for 6 independant realizations in order to illustrate the
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Figure 7.3: Comparison the index sets projected on (ν1, ν2) when #(Λ) = 200 (from top to bottom: QN,

PN, LE, BS, LN and LNE)
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expected error E(‖ū − ūn‖V ) rather than the error ‖ū − ūn‖V for a particular realization (which is more

oscillatory). The n−1/2 rate of decay of the MC method is clearly outperformed by the Taylor approximation

methods based on the adaptive selection of Λ, which is rather striking in view of the large dimension d = 64.

Note however, that in contrast to the Taylor approximation method, the MC approach allows us to solve all

boundary value problems in parallel.
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Figure 7.4: Comparison of the different strategies with Monte Carlo method.
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