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Abstract

In this paper, using the Newton’s formula of Lagrange interpolation, we present a
new proof of the anisotropic error bounds for Lagrange interpolation of any order
on the triangle, rectangle, tetrahedron and cube in a unified way.
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1 Introduction

It is known that the polynomial interpolations are the foundations of construc-
tion the finite elements and the interpolation error estimates play a key role
in deriving a-priori error estimates of the finite element methods. The main
strategy of the traditional interpolation theory is fairly standard, namely, first
deriving the estimate on the reference element and then an application of a
coordinate transformation between a general element and the reference ele-
ment, see [11, 7] and references therein. For the triangular and rectangular
elements in two dimension and the tetrahedral and cubic elements in three
dimension, the mapping between a general element and the reference element
is an affine mapping, so in the following we call these elements affine elements.
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The classical error estimates of the polynomial interpolation on the affine el-
ements need the regular [11] or nondegenerate [7] condition, i.e., the ratio of
the diameters of the element and the biggest ball contained in the element is
uniformly bounded. This condition restricts the applications of the finite ele-
ments. It is found (see e.g., [6, 15]) a long time ago that this condition is not
necessary for some interpolation error estimates. We call the element does not
satisfy the regular condition the anisotropic element. Recently, the research of
the anisotropic elements is rapidly developed, and there are several different
methods dealing with them. [3, 4] gave one anisotropic form of the interpo-
lation error on the reference element. They got the anisotropic interpolation
error estimates on a general element for some Lagrange and Hermite elements
under the maximal angle and coordinate system conditions. The correspond-
ing appeared derivatives are along the coordinate directions. [9, 10] extend this
method by presenting a simple anisotropic criterion on the reference element
and analyzed some nonconforming elements. [1, 2, 12, 13] got the anisotropic
error estimates for low order Lagrange and R-T interpolations by using of
the average property of the interpolation and the appeared derivatives under
consideration are along the directions of the element boundary. The different
forms of the anisotropic error estimate of the linear triangular Lagrange in-
terpolation are obtained by the decomposition of the transformation matrix
between a general element and the reference element in [14] and by Taylor’s
expansion in [§].

In this paper, the anisotropic interpolation error estimates of Lagrange in-
terpolations with any order on the affine elements (triangle, rectangle, cube
and tetrahedron) are derived in a unified new way. On the reference element
the anisotropic error estimates of the interpolations are proved by Newton’s
formula of the Lagrange interpolation and a special property of the divided
difference, which are different from [4]. The appeared derivatives are along
the directions of the element boundary (as in [2, 13]) and independent length
scales in different directions are extracted (as in [4]). No geometry condition
of the element is needed for rectangular and cubic elements. The sine of the
biggest internal angle of the element and the regular vertex property factor [2]
appear explicitly in the triangular and the tetrahedral elements, respectively,
then standard arguments will lead to the estimates that depend on the biggest
internal angle of the element and the regular vertex property factor.

2 Lagrange Interpolation Remainder Term On Reference Elements

2.1 The property of the divided difference

Let 2y < 1 < --- < x,,, be a uniform partition, d = ;11 —2;,0 <i <m—1.
It is easy to get the following result by inductive method.



Lemma 2.1.

T2 t14d tm—1+d T1 t14d tm—1+d
/ dt, / dty--- / g(tm)dt = / dty / dty - / G(tmtd) dbyp.
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(2.1)
Let f[zo,--- , %] be the usual divided difference (see [5]), then we get the
following lemma.
Lemma 2.2. Suppose f(z) is sufficiently smooth, then
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Proof. We use the inductive method.
When m = 1, flzo, 1] = % [* f'(t1)dt1, (2.2) is evident.
Suppose (2.2) holds for any m > 1, then
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This completes the proof.

Remark 1. Lemma 2.2 is similar to Hermite-Gennochi Theorem ([5, Theorem

3.3)).

Using the inductive method again, we can get:

Lemma 2.3. For all 0 <1 <m, f[zg,---,x;,] can be expressed by
m—I
flxo, - xp] = Z ciflwi, - T, (2.3)
i=0

where ¢; (0 <47 <m —1) is only dependent on [ and d.
The interpolation polynomial If(x) of f(z) satisfying If(z;) = f(x;)(0 < i <
m) can be expressed in the following two forms, where (2.4) is called Lagrange’s
formula and (2.5) is called Newton’s formula (see [5]):

i f(@i)pi(x (2.4)
=0



where p;(z) (0 <i <m) € P, (the polynomial space of degree less or equal
to m) and p;(x;) = 0;5, 0 <1,5 < m.

If(x):i)faro, 1:[ r — xj). (2.5)

2.2 Rectangular Elements

Let the reference element K = [0,1]%, d = 1/k, k is a positive integer,
Z; = y; =id, i = 0,--- , k. Suppose u(z, Q) C(K) then bi-k-interpolation
polynomial Tt of @ satisfying Tu(z,7;) = a(;,9,)(0 < 4,5 < k) has the
following expression (cf. [11])

kE k
= a(@, 4;)pi(2)p;(9),
i=0 j=0

where p;(t) € Pu(K), pi(@1) = pi(5i) = 62,0 < i,1 < k. Obviously

~
~

o =a, Va e Qy, (2.6)

where @) is the polynomial space of the degree < k with respect to each
variable.
Similar as one dimension case, L4 can be expressed as the following Newton’s
formula,

kK k — r—1
I Zzaan 7a?i;.7j07" H H _yAS)7 (27)
1=0r=0 : s=0
where @[Zg, -+ , ;5 Yo, - -+, Yr] 18 the i-order divided difference with respect to

i—1
2 and r-order divided difference with respect to y of u(z,9), I (2 — ;) =1
j=0
. r—1
fori=0and ] (y—vys) =1 for r = 0.
s=0
Let us consider a simple example before treating the general case. Taking
k =1 and % as an example, then it is easy to check that the interpolation
function can be written as

A
~ ~

L = a[2o; go] + @[To; Yo, Y1)(¥ — o) + w[Zo, T1; o) (T — Zo)

+ﬁ’[f xlv y07 yl](‘r - xO)(y - ?/0)

So .
olu

0 = 0|20, Z1; Yo| + U[To, Z1; Yo, Y1 (¥ — Yo)-



Then it can be checked easily with (2.3) and (2.2) that

e “ 94|z, go]
U[Q/'O’xl?y()] = /A ai,
o

and

@[fo,:fl;zfo,%] = /
X

0

70Ul o, %
0%

dz

dz.

Let us consider the general case and set @ = (o, a9),q and ay are non-

negative integers, |a| = a; + ag, then

k k
Dela =Y % aldy,

1= T=Q2

where

Gi(@) = - ([1 (2 = 2), Br(9) =

J=0

y Lis Yo, *

dez r—1 . .
dgjaz (s];[](y - ys))' (29>

Obviously G;(2), R,(9) € Qk,%k,az, here an is a polynomial space of the
degrees of & and ¢ less or equal to m and n, respectively.
By (2.3) and (2.2) we have
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A A
= L(D*w),
(2.10)
A Fag fTOATZ d +dy g d
where L) = £ 5215 0y (5 ey 1t U s
]:

sy [ ]
It is easy to see that 7}, 41], [ti, tira) (1 <1< aq—1), and [Ys, Yst1], [Sis Stz
(1 <l <ag—1)areallin [0, 1], the above integration is on K or aside of K
or a fixed line lies in K, hence by the Sobolev trace theorems we can obtain

L(@)] < ell@llwrngz), 2<p < 0.
Substituting (2.10) into (2.8) results
(2.11)

where

(2.12)



Obviously,

S é”dj”wl,p(f(yv m 2 07 1 S q S 0, 2 < b S o,

T(@) |y,
(@) e < o1y
T(A) = (.:J, Vwe Qkfal,kfay
In fact V& € Qk—ay.k—ay, 30 € Q such that Dop = w, then
2.11) -~ (2.6)

T(w) = (D) "2
2.3 Cubic Elements

We can extend the results from rectangular elements to cubic elements in
a straightforward way. let K = 0,1, d=1/k, 2; =v; = %; =id, 0 <i <k,
then the interpolation polynomial Ia of w(z, 9, 2) satisfying iﬂ(fi,gjr,él) =
w(Zi, Yy 21), 1 <id,r, 1 < k+ 1, has the following expression

k k k — r—1 -1
T =S50 afdo, - &3 di0, -+ i For - H ) [T—9) T1(:—20)-
i=07=0 =0 j=0 5=0 =0
(2.14)
Let a = (aq, ag, as), then
D°Ta = T(D*4), (2.15)

here

T@) =3 > > Lin(@)Gi(&) R (5) Hu(2) (2.16)

=1 T=02 =3

with G;(z), R,(9) is as (2.9) and

da3 -1
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The above integration is on K or on a face (or a fixed internal face) of K or
on an edge (or a fixed internal edge) of K , similar to the rectangular case, by
trace theorem and Cauchy-Schwarz inequality, we have

< éH@HWLp(K),Vm >0,3<p<oo,1<qg< o0,

T<o;>||ww 219

I K)
T(@) =@, VO € Qronbaskos-

2.4 Triangular Elements

Let K = {(2,9); @ >0, §>0, &+¢ <1}, d = 1/k, & =id, j, =
rd, 0 <i+r <k, then the Lagrange interpolation polynomial Iu of degree
k of u(z,y), satisfying 1a(2;, 9,) = @w(Z;,9r), 0 < i+ 1 < k can be expressed
byl1o!

k
Iio="% i@, §)pi(2) 4 (9),

=0
where pi(2) € P(K), 0 <i <k, pi(d;) = i, 4:(9) € Paci(K), 0 <7 <
k— i, gr(?js) - 5rs‘

The following expression is the Newton’s formula of Ia,

k k—i — r—1
li =" o, -, & Yo, - - H 7)) [T — 9s). (2.20)
=0 r=0 j=0 s=0

Let o = (a1, ), then in the same way as in the rectangular case,

k
DMa= Y 3 aldo, -+, % g0, -G Gi(@) R (9) = T(Da),  (2.21)

Lin(D*0) = [0, -+, 5350, 14 Z Z CJS//DO‘udxdgj

and
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Proceeding as before, we have

2.5 Tetrahedral Element

Let K = {(&,§,2); 2>0,§>0,2>0, &¢+§+2<1}, d=1/k, & =
id, y, =rd, 2 =1d, 0 <1+ 1+ <k, then the interpolation polynomial I
of degree k of u(z, g, 2) satisfying ia(@,g)h Z2) =z, Uy 21), 0<i+r+1<k
has the following form,

k k—ik—i- - r—1 -1
la ZZ Z o, -+, Ei; 0, - Ui Zo, - H ) [1(0—4s) TT(3—2)-
i=07r=0 1=0 j=0 5=0 t=0

Let a = (a1, g, a3), it is easy to see that Deli can be expressed as (2.21),

here
k—i k—i—r

Z S S Ll@)Gi(#) R (9) Hi(2), (2.23)

1=a1 T=02 [=qj

where L, (&) is as (2.18) and Gi(z), R.(9), Hy(%) are as (2.9) and (2.17).

Similar to (2.19), we have

nﬂmqu < @llyrrgy, Ym20,3<p<o0,1<qg< oo,

) (2.24)
( ) \V/ WS Qk—a1,k—a2,k—a3~

2.6 Interpolation Remainders

Let K be the reference element (K = [0,1]", n = 2 for rectangular element
and n = 3 for cubic element; and K = {(i,7); # >0, § >0, & +¢ < 1} for
triangular element and K = {(2,9,2); 220, §>0,2>0, 2+ +2 <1}
for tetrahedron element) I:C%K) — P is the above Lagrange interpolation
operator, here P = @}, for rectangular and cubic element, P = P, for trian-
gular and tetrahedral element. Then we have
Theorem 2.4. Supposethatn <p < oo,1 < ¢ <o00,0<m <k, W“l’p(f() —



Wma(K), Wktr(K) < C°(K), a is an index, || = m, then there exists a
constant ¢ > 0 such that

1D% (@ = 1) || gy < Dl ygnss-mn(iy- (2.25)
Proof. By (2.11), (2.15) and (2.20) we have
Dt —1a) = D6 — T(D4).

Then (2.24) is followed by (2.13), (2.19), (2.22) and (2.24).

Remark 2. Apel has proved (2.25) in [4], but our method is different from
Apel’s. Our main arguments are using the Newton’s formula of Lagrange in-
terpolation and the special property of the divided difference, which admit us
to prove (2.25) for rectangular, cubic, triangular and tetrahedral elements in
a unified way .

3 Lagrange Interpolation Errors In General Elements
3.1  Rectangular and Cubic Elements

We denote a general rectangular element by K = [z, xo+ h1] X [0, Yo + h2]
and a general cubic element by [zg, zo + h1] X [yo, Yo + ha] X [20, 20 + hs], here
ao(To,yo) or ao(xo, Yo, z0) is a vertex of K and hy, hy or hy, hy, hs are edge
lengths of K. Let X = FK(X) be the affine mapping from K to K, then

X = BX + ay, (3.1)

where B = diag(hy, hy) for the rectangular element and B = diag(hi, hs, h3)
for the cubic element . Obviously

DO = hepe, Do = he e, (3.2)

where h® = h91 RS2 or h® = hO1h92 p03
Lemma 3.1. Suppose a; >0, 1 <i< N, ¢>1, 1/g+1/¢ =1, then

1 N N 1 1 N
N 7Y a; <D al)s <N a. (3.3)
i=1 i=1 i=1
Let Tu = Lo Fic' (X), Tis defined by (2.7) or (2.14), then I is affine equivalent
[11]. Furthermore, we have the following interpolation error estimate.
Theorem 3.2. Under the same assumptions as Theorem 2.4, then for rectan-
gular and cubic elements, we have

D=

N 1_1
| = Tulwmagr) < é(detB)a v (3" hPIDulf ) (3.4)

|Bl=h+1—m



where ¢ is independent of K, detB is the Jacobian of B.
Proof.

1
q
= Tulwmay = | D [1D%(w—Tu)| 7o )

la=m

1
=Y n anetBllDa(u—IU)lqu(K)

lal=m

Q=

> hTdetB - c|D°‘u|Wk+1 mp(K))
laf=m
1 .

= ¢(detB)a

oy HD“*%HLPK))Z]

laj=m |B|=k+1—m

(3.2) . 1_1 o q.1
= é(detB)aw[ > (> WPIDul[ly )]
lo|=m |B|=k+1-m

< é(detB)ar 30 Y0 WDl )
lal=m |8|=k+1-m

< odetB)i (Y. Y WDl )
|o<| m |Bl=k+1—m

= c(detB)a " ( Z hﬂp’DﬂU’meK)) #

|Bl=k+1-m

hSA

B =

3.2 Triangular and Tetrahedral Elements

Let K be a triangle (a tetrahedron) with the vertexes Py, Py, P, (P, P1, Py, P3),
v1,v9 (v1,v9,v3) be the unit vectors along edges Py Py, PyPs (Po Py, Py P, PyP3)

with l; = [[PoPi||, £Fy be the maximum angle of the triangle K.
The affine mapping F : K — K is

X =F(X)=BX + R (3.5)

where
B = ByA, (3.6)
By = (vl,vg) A = diag(ly,ly) for the triangular and By = (qil,zi?,vs,) A=
diag(ly, 1y, Is) for the tetrahedron. Let V = (& ,gy)T, (V= (&, (% 2)7), V=
(BB (7 = (20, 1 = G (% = G T by

simple computations we have

V,=BIV, V=ABIV, V =AV, (3.7)

10



Let

Iu =T o F'(X), (3.8)
where I is defined by (2.20) or (2.23). It is well known that (cf. [11]) I is affine
equivalent.

Theorem 3.3.Under the same assumptions as Theorem 2.4, then for trian-
gular and the tetrahedral elements,

1_1 1
|u — IU‘W[""’(K) S 6(d€tB)q P( Z lﬁp’DBU’p k+1 p(K))p7 (3-9>
|B|=k+1-m
Where é is independent Of K, DZX = % (Dl W), |U|Wlm’q(K) =
(> > 1DF 0L g7, 1 = E1152 (1 = 19152157).
Proof.
1
lu — IU|W[”’q Z 1D (u — Tu)|| 7 K))"
lor|=m
(37

Qe

(detB)a( S 1729 D*(a — 1a)|

jal=m b

(2.25) 1
< é(detB)a( > 1- aa| Do |? Pkl
laf=m

l £ —« a (e} 4
&(detB)i v | DR (Y [HOR | DI, ()]
la|=m |Bl=k+1—m

Q=

(K))

(3.7)

Q=

(3.3) 11 1

< ¢(detB)av Z( Z lﬂp||Da+ﬂU||Lp K))p
lajl=m |B|=k+1—m

< e(detBys (S D ull )
|8|=k-+1-m :

From (3.7) we can get
Lemma 3.4.
[olwmagy < By ™ [olwyma ey, (3.10)
where || By 7| is the matrix norm.
From Theorem 3.3 and Lemma 3.4, we get
Theorem 3.5. Under the same assumptions as Theorem 2.4, then for trian-

gular and the tetrahedral elements,

1_1 1
lu — Tulwma) < €| By " ||™(detB)s v (Y lﬂp|Dfu|€Vm,p(K))P, (3.11)
|B|=k-+1—m :
where ¢ is independent of K.
Now we estimate || By ||™.
1)Triangular element

11



Let v; = (cos;,sinp;)T, ¢; be the angle between v; and z-axis, 1 < i < 2,

and 6 be the angle between v; and v, then

det By = sin(ps — 1) = sin 6,

_ _ 1 Sl py  —sing 2
18571 = on02) "l = | < (312
N~ |detBo| ™\ — cos gy cos S
2) Tetrahedral element
Similarly we have
6
BT < ——. 3.13
155711 < oo (313)

Let J = {Jn}no be a family of decompositions of € into tetrahedra. There
are three geometry conditions for tetrahedron elements.

1. Regular condition (cf. [11]).

J is said to be regular if there exists a constant ¢y > 0 such that for any
Jn € J and any K € J), we have

cohkx < prk,

where hx = diamK and px = diamSk, here Sk is the biggest ball contained
in K.

2. Regular vertex property (cf. [2]).

J is said to have the regular vertex property if there exists a constant ¢; > 0
such that for any 7, € J and any K € J,,, K has a vertex P, such that

|d€tB()’ > C1,
where By see (3.6).
3. Maximum angle condition (cf. [17]).

J is said to satisfy the maximum angle condition if there exists a constant
0 < ¢o < 7 such that for any J, € J and any K € J;, the angles inside the
faces and the angles between faces are all bounded above by .

It is well known that (see [17]) the regular vertex property is stronger than the
maximum angle condition and weaker than the regular condition. Obviously
detBy in (3.11) is corresponding to the regular vertex property which can
degenerate to flat or needle meshes.

12



Meanwhile detB, can be expressed by the angles of K at Fy. In fact let
T = PyQ1Q2Q3 be tetrahedron generated by the unit vectors v;, 1 < i < 3

(see Fig.1), |T'| be the volume of T'. Obviously the angles inside the faces and
interfacial angles of T" are also K'’s ones at F.

@3

Fig. 1

Denote by H = |Q30| the length of spatial altitude perpendicular to v; and
vg. Denote by r; = |@Q3R1| and o = |Q3Rs| the altitudes perpendicular to vy
and vq, respectively. Then ¢; = ZQ3R10, py = LQ3R,0 are the interfacial

angles between faces PyQ3Q)1 and PyQ2Q)1, PyQ2Q3 and FPy(Q)2(Q)1, respectively.
Let oo = 4Q1P0Q27 oy = AQZ'P[)Qg, 1= 1,2 Then

|detBy| = 6|T| = 2|APyQ1Q2| - H = |v1||ve|sinayg - ;sing;

= sinayg - |vs|sina; - sing; = sinagsina;sing;, 1= 1,2.
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