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SHAPE DERIVATIVES IN DIFFERENTIAL FORMS I:
AN INTRINSIC PERSPECTIVE

RALF HIPTMAIR AND JINGZHI LI

Abstract. We treat Zolesio’s velocity method of shape calculus using the formalism of differential forms, in
particular, the notion of Lie derivative. This provides a unified and elegant approach to computing even higher order
shape derivatives of domain and boundary integrals and skirts the tedious manipulations entailed by classical vector
calculus. Hitherto unknown expressions for shape Hessians can be derived with little effort.

The perspective of differential forms perfectly fits second-order boundary value problems. We illustrate its power
by deriving the shape derivatives of solutions to second-order elliptic boundary value problems with Dirichlet, Neu-
mann and Robin boundary conditions. A new dual mixed variational approach is employed in the case of Dirichlet
boundary conditions.

AMS subject classifications. 35B37(PDE in connection with control problems) 49J20(Optimal control prob-
lems involving partial differential equations) 58A10(differential forms)

Key words. Differential forms, Lie derivative, shape derivative, Hadamard structure theorems, dual formulation.

SVN Rev 33462 (20 April 2011)

1. Introduction. Shape calculus, that is the differentiation of functionals and operators
with respect to variations of a spatial domain, is one of the mathematical foundations of shape
sensitivity analysis and shape optimization. Here, the control variable is no longer a set of pa-
rameters or functions but the shape or structure of a geometric object. For a comprehensive
presentation the reader is referred to the monograph [6]. In this work shape calculus is ap-
proached via the velocity method, that is, shape perturbations are governed by flows generated
by spatial vector fields. This paradigm of shape calculus will be adopted throughout the paper.

In this article we derive shape derivatives using the calculus of differential forms as
opposed to classical vector calculus. One might object that no new insights can be expected,
because vector analysis offers a model “isomorphic” to the calculus of differential forms.
Nevertheless, in our opinion adopting differential forms brings a significant reward, for the
following reasons.

• Differential forms facilitate the unified treatment of different spatial dimensions and
different classes of boundary value problems and functional corresponding to differ-
ent orders of forms.

• The velocity method of shape calculus neatly fits the concept of Lie derivative, which
is natural for differential forms.

• The calculus of differential forms can often use compact formulas, where vector
calculus has to resort to complicated expressions.

• Differential forms offer a coordinate independent description of models, whereas
vector calculus will depend on an arbitrary choice of coordinates.

• Differential forms clearly separate terms that are invariant with respect to homeo-
morphic transformations and those that depend on metric.

• The exterior derivative of differential forms is the natural language for expressing
conservation principles underlying many PDE-based models. It is the key differen-
tial operator occurring in second-order boundary value problems. Shape derivatives
of their solutions play a central role in shape optimization.

The aim of this first paper is twofold. Firstly, we use the exterior calculus of differential
forms and the Lie derivative to rederive the renowned Hadamard structure theorem [9], which
essentially states that shape derivatives depend only on the normal component of the defor-
mations on the boundary of the reference domain. We demonstrate how higher order shape
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derivatives can be derived recursively by repeating the argument in the proof of first order
shape gradients.

Secondly, in the case of a second-order PDE with different boundary conditions we illus-
trate how to determine the concrete shape derivatives of solutions of variational problems by
applying our abstract structure theorems. In particular, we find that via a dual formulation the
boundary condition for the shape derivative of the solution to an elliptic PDE with Dirichlet
boundary condition, can be obtained rigorously in the weak sense. This is one of the serveral
new results presented in this article.

The outline of the paper is as follows: Section 2 presents important notations and defi-
nitions connected with differential forms. Section 3 is devoted to the proof of structure the-
orems of shape derivatives by the exterior calculus of differential forms. In particular, the
shape Hessian of domain and boundary integrals are further investigated, with emphasis on
the asymmetry due to the Lie bracket of two velocity fields associated with the transforma-
tions. In Section 4, we reinterpret the abstract theory in Section 3 in terms of vector proxies,
namely scalar functions and vector fields, with emphasis on the shape gradient and Hessian
of domain and boundary integrals, bilinear forms, and normal derivatives. In Section 5, by
a model problem we illustrate the machinery for how to express the abstract structure theo-
rems for second-order elliptic boundary value problems (BVPs) with natural (Neumann and
Robin) boundary conditions. In Section 6, we derive, in particular via variational methods,
the Dirichlet boundary conditions supplementing with the PDE for the shape derivative of the
solution to the Dirichlet problem in the dual formulation.

2. Preliminaries.
2.1. Notations. The interior and closure of a set A ⊂ Rn will be denoted, respectively,

by intA and A. Throughout the paper, the classical Euclidean space Rd (d ∈ N, d ≥ 2) of
dimension d is equipped with the canonical orthonormal bases ej’s, 1 ≤ j ≤ d, and norm
|x| :=

√
x2

1 + · · · + x2
d, if x = (x1, . . . , xd)T ∈ Rd. The canonical orthonormal basis of Rd

corresponds to a dual basis of (Rd)∗, i.e., dx1,dx2, . . . ,dxd with dxi(ej) = 1 if i = j and
zero otherwise.

2.2. Differential forms. In this subsection, we briefly review some important notions
and results about the exterior calculus of differential forms. Readers may refer to [4, 8] for
more details about differential forms and related Sobolev spaces. 1

A differential form ω of degree l, l ∈ N0 = {0} ∪ N, and class Cm, m ∈ N0, in some
domain Ω ⊂ Rd is a mapping with values in the space of alternating l-multilinear forms

∧l:

ω =
∑

I
ωIdxI : x ∈ Ω ⊂ Rd &→ ω(x) ∈

∧l
, (2.1)

where all the components ωI(x) ∈ Cm(Ω), and summation is over all the increasing l-
permutations I = (i1, . . . , il), with 1 ≤ i1 < · · · < il ≤ d, and we denote dxI =
dxi1∧ · · ·∧dxil . Hereafter we write ω ∈ DF l,m(Ω). In an analogous way, we can define
DF l,∞(Ω) if all ωI(x) ∈ C∞(Ω), and DF l,∞

0 (Ω) if all ωI(x) ∈ C∞
0 (Ω). Likewise,

Hs(Ω;
∧l(Rd)) (s ∈ R+

0 ) denotes the space consisting of all differential forms with each
component in Hs(Ω), which can be viewed as the Hilbert space obtained by means of the
completion of DF l,∞(Ω) with respect to the norm

‖ω‖2Hs(Ω;
∧ l(Rd)) :=

∑

I

‖ωI‖2Hs(Ω) . (2.2)

1We adopt the convention that roman letters denote scalar quantities, functions, and their associated spaces etc.,
while boldface letters represent vector-valued quantities, functions, and their associated spaces etc. In particular,
boldface Greek letters, ω, η, ν and ρ etc., are reserved for differential forms.
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Differential forms Related function u / vector field u

l = 0 x &→ ω(x) u(x) := ω(x)

l = 1 x &→ {v &→ ω(x)(v)} 〈u(x),v〉 := ω(x)(v)

l = 2 x &→ {v1,v2 &→ ω(x)(v1,v2)} 〈u(x),v1 × v2〉 := ω(x)(v1,v2)

l = 3 x &→ {v1,v2,v3 &→ ω(x)(v1,v2,v3)} u(x) det(v1,v2,v3) := ω(x)(v1,v2,v3)

Table 2.1: Relationship between differential forms and vector proxies in three-dimensional
Euclidean space v, v1, v2, v3 ∈ R3.

Integral of differential forms Integral of related function u / vector field u

l = 0
´

P ω
´

P u dx := u(P )

l = 1
´

E ω
´

E u · d
−→
l :=

´

E u · t dl

l = 2
´

F ω
´

F u · d−→S :=
´

F u · ndS

l = 3
´

V ω
´

V u dV

Table 2.2: Relationship between integrals of differential forms and vector proxies in three-
dimensional Euclidean space. P , E, F , V denotes some point, oriented curve, oriented face
and volume in R3 with t and n being the unit tangential vector along E and the unit normal
vector on F , respectively, and u(P ) means point evaluation of u at P .

In particular we use L2(Ω;
∧l(Rd)) instead of H0(Ω;

∧l(Rd)).
Differential forms can be represented by their coefficient functions, or vector proxies.

Please see Table 2.1 (cf. [12]) for vector proxies of differential forms of different orders
in three-dimensional Euclidean space , and refer to Table 2.2 (cf. [8]) for interpretation of
integral of differential forms in terms of integral of vector proxies.

The exterior product of differential forms ω ∈ DF l,m(Ω) and η ∈ DFk,m(Ω) (cf. [4,
pp. 19]), and contraction of ω ∈ DF l,m(Ω) with a vector field v ∈ Rd (cf. [8, Sect. 2.9.])
are denoted, respectively, as

ω ∧ η ∈ DF l+k,m(Ω), ivω ∈ DF l−1,m(Ω). (2.3)

Please refer to Table 2.3 for contraction for vector proxies in three-dimensional Euclidean
space.

If T : Ω̂ &→ Ω, is a diffeomorphism between two smooth manifolds in Rd, then the
pullback T ∗ : DF l,∞(Ω) &→ DF l,∞(Ω̂) [4, pp. 28] is given by

((T ∗ω)(x̂))(v1, . . . ,vl) = (ω(T (x̂)))(DT (x̂)v1, . . . , DT (x̂)vl), (2.4)

where v1, . . . ,vl ∈ Rd and the linear map DT (x̂) : Rd &→ Rd is the derivative (Jacobian)
of T at x̂.

For a differential l-form ω =
∑

I ωIdxI ∈ DF l,∞(Ω), its exterior derivative dω

3



Contraction of differential forms Contraction of related function u / vector field u

l = 0 x &→ ivω 0 := ivω(x)

l = 1 x &→ ivω(x) (u · v) (x) := ivω(x)

l = 2 x &→ {v &→ ivω(x)(v)} (u× v) (x) := ivω(x)(v)

l = 3 x &→ {v1,v2 &→ ivω(x)(v1,v2)} det(u(x)v,v1,v2) := ivω(x)(v1,v2)

Table 2.3: Contraction for Euclidean vector proxies in R3.

through the exterior differential operator d [4, pp. 20] is defined by

dω :=
d∑

i=1

∑

I

∂ωI

∂xi
dxi ∧ dxI ∈ DF l+1,∞(Ω) , (2.5)

and if l ≥ d, dω = 0 by definition. In terms of vector proxies, the incarnation of d is grad,
curl and div when l = 0, 1 and 2, respectively, in R3.

In addition, we state without proof the transformation formula of pullback

ˆ

T (Ω̂)
ω =

ˆ

Ω̂
T ∗ω, (2.6)

the Stokes theorem

ˆ

∂Ω
ω =

ˆ

Ω
dω, (2.7)

and the first Poincaré lemma, namely

ddω = 0, (2.8)

for all ω (cf. [4]).
We recall (cf. [4]) the fact that the pullback commutes with the exterior derivative, i.e.,

T ∗(dω) = d(T ∗ω), ∀ ω ∈ DF l,∞(Ω), (2.9)

and with the exterior product

T ∗(ω ∧ η) = T ∗ω ∧T ∗η, ∀ ω ∈ DF l,∞(Ω), η ∈ DFk,∞(Ω) . (2.10)

Important Hilbert spaces of differential forms are

Hk(d,Ω,
∧l

(Rd)) :=
{

ω ∈ Hk(Ω;
∧l

(Rd)) | dω ∈ Hk(Ω;
∧l+1

(Rd))
}

, k ∈ N0 ,

(2.11)
with the natural graph norm

‖ω‖2Hk(d,Ω,
∧ l(Rd)) := ‖ω‖2Hk(Ω,

∧ l(Rd)) + ‖dω‖2Hk(Ω,
∧ l+1(Rd)) . (2.12)

Specifically, we simply put H(d,Ω,
∧l(Rd)) when k = 0.
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2.3. Lie derivatives of differential forms. Our approach to shape calculus will be
based on the velocity method (cf. [6, 17]). For a given bounded domain Ω ! D of class
Cm (cf. [1]), (with m sufficiently large and to be specified in different contexts, say, e.g.,
m ≥ 2 in the sequel) with boundary Γ, where D ⊂ Rd is the fixed hold-all domain with
sufficiently smooth boundary, and we may, without loss of generality, take D either as a ball
with sufficiently large radius containing Ω, or the whole space Rd.

Given a Lipschitz continuous velocity field

v : D → Rd

and an initial configuration x(0, X) = X ∈ Rd, the associated flow x(t,X) can be defined
through the differential equation

∂x
∂t

(t,X) = v(X), (2.13)

x(0, X) = X, X ∈ D. (2.14)

For a fixed initial point X , x(·, X) is called the characteristic curve through X . A unique
solution of the problem (2.13)–(2.14) exists when v ∈ Cm(D, Rd) and v ·n = 0 on ∂D. The
flow spawns a family of Cm-diffeomorphism

Tt(v)X := x(t,X) t ≥ 0, X ∈ D. (2.15)

Thus we can define a family of deformed domains

Ωt(v) := Tt(v)(Ω) = {Tt(v)(X) : ∀X ∈ Ω} . (2.16)

parametrized by the pseudo-time t. Since Tt is a diffeomorphism of class Cm, we see that the
normal field nt on the boundary Γt := ∂ (Ωt(v)) belongs to Cm−1(Γt, Rd) [17, pp. 16].

DEFINITION 2.1. (cf. [8]) If the following limit exists, the Lie derivative Lv of a l-form
ω is defined as:

Lvω|t=0 = lim
t→0

Tt(v)∗ω − ω

t
. (2.17)

By a formula due to Cartan [4], we can represent the Lie derivative as

Lvω = (iv d + d iv) ω. (2.18)

Due to the first Poincaré lemma, one can easily see the commuting property of d and Lv:

dLv = Lvd. (2.19)

3. Shape Calculus in Forms. In this section, we will investigate abstract shape cal-
culus in differential forms and prove Hadamard-style fundamental structure theorems from
the perspective of differential forms for shape derivatives of domain and boundary integrals,
which could be applied for the characterization of shape derivatives associated with a wide
range of PDEs, in particular via variational methods. A new, considerably simplified proof
of the structure theorems for shape derivatives of domain and boundary integrals is provided
by the exterior calculus of differential forms since it avoids the use of local maps and bases.
Thanks to Stokess theorem, the treatment of the shape derivatives of boundary integrals can
be reduced to the special domain integral case. Moreover, higher order shape derivatives will
be derived in a recursive way within the new framework.
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Let us briefly review shape calculus, see [6, 17] for more details. Consider the set
P(D) = {Ω is of class Cm : Ω ! D} of the subsets of D. A real(complex)-valued shape
functional is a map

J : A (D) → K (3.1)

where A (D) is some admissible family of domains in P(D) and K stands for R or C. For
a domain Ω of class Cm transformed by any velocity field v ∈ Cm(D, Rd), A (D) can be
chosen as the set of all possible transformed domain Ωt(v) when t is small enough. For ease
of exposition, we let D to be Rd in the sequel.

DEFINITION 3.1. [Shape derivative of shape functionals] (cf. [6, 17]) Let v be a vector
field v ∈ Cm(Rd, Rd). The shape functional J is said to have a shape derivative at Ω in the
direction v if the following limit exists and it is finite

lim
t→0

J(Tt(v)(Ω))− J(Ω)
t

. (3.2)

It is written as dJ(Ω;v), if it exists.
Next, we will elaborate on the shape derivatives of two special functionals: domain and

boundary integrals, which play important roles in characterizing the shape derivatives of so-
lutions to the variational forms of PDE.

Let Ω ⊂ Rd be a bounded d-dimensional manifold of class Cm. The domain functional
of a density form ω ∈ DFd,m(Rd) defined globally is

J(Ω) =
ˆ

Ω
ω. (3.3)

To define higher order shape derivatives of domain and boundary integrals, we introduce
velocity fields v1, · · · ,vk ∈ Cm(Rd, Rd). Then the multiply transformed domain is

Ωt1,··· ,tk(v1, · · · ,vk) = Tt1(v1) (· · · (Ttk(vk)(Ω))) . (3.4)

Thus the deformed domain integral of the corresponding density form ω is

Jv1,··· ,vk(t1, · · · , tk) =
ˆ

Ωt1,··· ,tk
(v1,··· ,vk)

ω. (3.5)

DEFINITION 3.2. [6, pp. 371] The shape derivatives of domain integrals of different
orders are, under suitable smoothness conditions on the domain and velocity fields v, w,
v1, · · · ,vk, defined as follows:

〈dJ(Ω),v〉 =
d
dt

Jv(t)
∣∣∣∣
t=0

, (3.6)

〈
d2J(Ω);v,w

〉
=

∂

∂s

{
∂

∂t
Jv,w(t, s)

∣∣∣∣
t=0

}∣∣∣∣
s=0

, (3.7)

〈
dkJ(Ω);v1, · · · ,vk

〉
=

∂

∂tk

{
· · · ∂

∂t1
Jvt1,··· ,vk(t1, · · · , tk)

∣∣∣∣
t1=0

· · ·
}∣∣∣∣∣

tk=0

. (3.8)
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3.1. Domain integral. We are now in a position to present the first main result on the
shape derivatives of domain integrals.

THEOREM 3.3 (First fundamental structure theorem). The domain functional J(Ω) in
(3.3) is shape differentiable, with shape gradient

〈dJ(Ω),v〉 =
ˆ

Ω
Lvω =

ˆ

Ω
divω =

ˆ

∂Ω
ivω, (3.9)

shape Hessian
〈
d2J(Ω);v,w

〉
=
ˆ

Ω
LwLvω =

ˆ

Ω
d iw (d ivω) =

ˆ

∂Ω
iw (d ivω) , (3.10)

and higher order shape derivatives k > 2
〈
dkJ(Ω);v1, · · · ,vk

〉
=
ˆ

Ω
(Lvk · · ·Lv1)ω =

ˆ

Ω
d ivk

(
d ivk−1 (· · · (d iv1ω))

)

=
ˆ

∂Ω
ivk

(
d ivk−1 · · · (d iv1ω)

)
. (3.11)

Proof. We first use the pullback to transform from Ωt to Ω and make use of the definition
of the Lie derivative of a density form ω. Then we obtain

〈dJ(Ω),v〉 =
d
dt

Jv(t)
∣∣∣∣
t=0

=

(
d
dt

ˆ

Ωt(v)
ω

)∣∣∣∣∣
t=0

=

(
d
dt

ˆ

Tt(v)(Ω)
ω

)∣∣∣∣∣
t=0

=
(

d
dt

ˆ

Ω
Tt(v)∗ω

)∣∣∣∣
t=0

〈∗〉
=
ˆ

Ω
Lvω

(2.18)=
ˆ

Ω
(d iv + ivd)ω

(2.8)=
ˆ

Ω
d ivω

(2.7)=
ˆ

∂Ω
ivω

where the definition of the Lie derivative is used in step 〈∗〉 and we have used the fact dω = 0
since dω is a (d + 1)-form on a d-dimensional manifold.

It is quite natural to extend the first order derivative to a second-order shape derivative,
the shape Hessian,

〈
d2J(Ω),v,w

〉
=

∂

∂s

{
∂

∂t
Jv,w(t, s)

∣∣∣∣
t=0

}∣∣∣∣
s=0

=
∂

∂s

((
∂

∂t

ˆ

Ωt,s(v,w)
ω

)∣∣∣∣∣
t=0

)∣∣∣∣∣
s=0

=
∂

∂s

((
∂

∂t

ˆ

Ω
Ts(w)∗Tt(v)∗ω

)∣∣∣∣
t=0

)∣∣∣∣
s=0

〈∗〉
=
ˆ

Ω
Lw (Lvω) (2.18)=

ˆ

Ω
(d iw + iwd)(d iv + ivd)ω

(2.8)=
ˆ

Ω
d iw (d ivω) (2.7)=

ˆ

∂Ω
iw (d ivω)

Furthermore, for higher order shape derivatives, we arrive at the last conclusion (3.11)
by recursively repeating the previous arguments.

In particular, regarding the structure of the shape Hessian, due to the composition of
consecutive transformations of Ω along velocity fields v and w, the Lie bracket comes into
play. Observing (3.10), we have

〈
d2J(Ω),v,w

〉
=
ˆ

Ω
LwLvω and

〈
d2J(Ω),w,v

〉
=
ˆ

Ω
LvLwω, (3.12)

7



and in light of the Lie derivative identity [4, 7, 14]

LwLvω −LvLwω = L[w,v]ω, (3.13)

where for two differentiable velocity fields, the Lie bracket is defined by [8, Sect. 4]

[w,v] = (Dv)w − (Dw)v, (3.14)

where Dv, Dw are the Jacobians of the vector fields v and w, respectively. Thus we arrive
at the following symmetry condition, which was also found in [3, 5, 6] via vector calculus.

COROLLARY 3.4. A sufficient condition for the symmetry of the shape Hessian of the
domain integral (3.3), namely

〈
d2J(Ω),v,w

〉
=

〈
d2J(Ω),w,v

〉
, (3.15)

is
ˆ

Ω
L[w,v]ω = 0. (3.16)

3.2. Boundary integrals. The boundary functional of a surface density form η ∈
DFd−1,m(Rd) globally defined on the boundary Γ := ∂Ω, a manifold without boundary
in Rd of codimension one, is

I(Γ) =
ˆ

∂Ω
η. (3.17)

Thanks to the Stokes theorem, we see that I(Γ) =
´

Ω dη. Thus the structure theorem for
boundary integrals immediately follows from Theorem 3.3 via the Stokes theorem and the
fact that the exterior derivative and Lie derivative commute.

COROLLARY 3.5 (Second fundamental structure theorem). The boundary functional
I(Γ) is shape differentiable under suitable smoothness conditions on the domain and the
velocity fields v1, · · · ,vk, with shape derivatives for k ≥ 1

〈
dkI(Γ),v1, · · · ,vk

〉
=
ˆ

Γ
ivk

d
(
ivk−1d · · · (iv1d (η))

)
. (3.18)

As regards the structure of the shape Hessian of the boundary integral (3.17), a result
similar to Corollary 3.4 involving the Lie bracket holds. Observe

〈
d2I(Γ),v,w

〉
=
ˆ

Γ
LwLvdη and

〈
d2I(Γ),w,v

〉
=
ˆ

Γ
LvLwdη. (3.19)

Therefore the symmetry condition for the shape Hessian of boundary integrals is
ˆ

Γ
L[w,v]dη = 0, (3.20)

which is the same as in Corollary 3.4 except for the domain of integration Γ.
8



3.3. Shape derivative for bilinear forms. For PDE-constrained shape optimization
problems, bilinear forms often arise in the variational formulation of the PDE constraints,
which have to be differentiated with respect to small domain variations. This is the reason
why we single out this particular functional for case study.

LEMMA 3.6. For two l-forms, ω, η ∈ DF l,m(Ω) (0 ≤ l ≤ d − 1), the bilinear form
given by

J(Ω) =
ˆ

Ω
∗dω ∧ dη, (3.21)

where ∗ is the Hodge star operator (cf. [4, 7, 8]), has the following shape derivative:

〈dJ(Ω),v〉 =
ˆ

Ω
Lv (∗dω ∧ dη) =

ˆ

Γ
iv (∗dω ∧ dη) . (3.22)

Proof. Understanding ∗dω ∧ dη as a density form, the assertion follows directly from
Theorem 3.3.

4. Shape Calculus in Vector Proxies. In this section, we will express the abstract the-
ory in Section 3 in terms of vector proxies in d-dimensional Euclidean space (cf. Table 2.1).

For later use, we introduce surface differential operators as follows: Let ũ (resp. ṽ) be
the classical extension of some scalar function u (resp. vector fields v) on the surface Γ to the
whole space Rd by means of the signed smooth distance function within some neighborhood
of Γ [6, 15, 18]. Then two key surface differential operator can be defined,

Surface gradient : gradΓ u= grad ũ|Γ − (grad ũ · n)n|Γ,

Surface divergence : divΓv = div ṽ −Dṽn · n.

The tangential Stokes and Green Formulae on the hypersurface Γ of codimension one
without boundary in Rd are stated for reference in the following (cf. [6, Eqs. (5.26) and
(5.27) on pp. 367]). For a function f ∈ C1(Γ) and a vector v ∈

(
C1(Γ)

)d, we have the
tangential Stokes formula

ˆ

Γ
divΓv ds =

ˆ

Γ
Hv · nds, (4.1)

and the tangential Green formula
ˆ

Γ
fdivΓv + gradΓ f · v ds =

ˆ

Γ
Hfv · nds, (4.2)

where H = (d− 1)H is the additive curvature and H is the mean curvature of the surface Γ.

4.1. Domain Integrals. Given a sufficiently smooth function f and a smooth domain Ω
of class Cm with boundary Γ, the domain integral functional is

J(Ω) =
ˆ

Ω
f dx. (4.3)

In terms of vector proxies in the Euclidean space in Table 2.1 and understanding f as a d-
dimensional volume form ω ∈ DFd,m(Ω), the formulae in Theorem 3.3 can be recast as
follows:
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LEMMA 4.1. Under suitable smoothness conditions on f , Ω and the velocity fields v and
w, the shape gradient exists and can be written as:

〈dJ(Ω),v〉 =
ˆ

Γ
(f v) · nds.

The shape Hessian is

〈
d2J(Ω),v,w

〉
= −
ˆ

Γ
f (S(vΓ,wΓ)−wΓ gradΓ (v · n)− vΓ gradΓ (w · n)) ds

+
ˆ

Γ

(
∂f

∂n
+ κf

)
v · n (w · n) ds +

ˆ

Γ
f (Dvw) · nds, (4.4)

where S = Dn is the second fundamental form (or Weingarten map or shape operator
[8, 16]) of the surface Γ and n is the outward unit normal field on Γ.

Proof. The scalar smooth function f can be viewed as a vector proxy of a density form.
Since the contraction with a velocity field amounts to a simple product of a scalar function f
and a vector field (see Table 2.3), and the exterior derivative d is nothing but the div operator
in this case, following (3.9) in Theorem 3.3, the shape gradient of (4.3) reads:

〈dJ(Ω),v〉 =
ˆ

Ω
div(fv) dx =

ˆ

Γ
(f v) · nds.

This formula agrees with [17, Proposition 2.4.6 on pp. 77] or [6, Theorem 4.2, pp. 353].
The shape Hessian can be derived from (3.10) in a similar way, we obtain

〈
d2J(Ω),v,w

〉

=
ˆ

Ω
div (w div(fv)) dx =

ˆ

Γ
div(fv) (w · n) dx

=
ˆ

Γ
(grad f · v + f div v) (w · n) ds

〈4〉
=
ˆ

Γ

(
gradΓ f · vΓ +

∂f

∂n
v · n + f (Dvn · n + divΓv)

)
(w · n) ds

〈5〉
=
ˆ

Γ

(
gradΓ f · vΓ +

(
∂f

∂n
+ Hf

)
v · n + fDvn · n + f divΓ vΓ

)
(w · n) ds

〈6〉
=
ˆ

Γ

((
∂f

∂n
+ Hf

)
v · n + fDvn · n

)
(w · n)− fvΓ gradΓ (w · n) ds (4.5)

Here we have used the decomposition

v = (v · n)n + vΓ, (4.6)

where (·)Γ denotes the tangential component of a vector field on Γ, and the definition of
surface divergence

div v = Dvn · n + divΓv (4.7)

(cf. [17, Def. 2.52, pp. 82] or [6, Eq. (5.19), pp. 366]) in the fourth equality 〈4〉. The fifth
equality 〈5〉 follows from an identity

divΓv = divΓvΓ + Hv · n, (4.8)
10



(cf. [17, Prop. 2.57, pp. 86] or [6, Eq. (5.22), pp. 366]). And the last equality 〈6〉 follows from
the tangential Green formula (4.2) applied to vΓ and (w · n) f :

ˆ

Γ
gradΓ ((w · n) f) · vΓ + (w · n) f divΓ vΓ ds = 0. (4.9)

Note that the formula (4.5) is exactly the same as [6, Eq.(6.3) on pp. 373]. However we avoid
a lot of complicated intermediate steps and need not introduce some auxiliary distance func-
tions and surface calculus. Moreover, in light of [6, Eq. (5.23) on pp. 366], one may further
symmetrize the shape Hessian in (4.5) as [6, Eq. (6.4) on pp. 373] to derive a symmetric
principal part plus the first half of the Lie bracket of two velocity fields to yield (4.4). This
completes the proof.

In terms of a vector proxy f of a density form, the sufficient condition of symmetry of
the shape Hessian is equivalent to
ˆ

Ω
div (f [w,v]) dx =

ˆ

∂Ω
(f [w,v]) · nds =

ˆ

∂Ω
f ((Dv)w − (Dw)v) · nds = 0,

which agrees with the observation [6, Eq. (6.5) on pp. 373]. Two excellent references about
the structure of the shape Hessian of domain integrals can be found in [3, 5]. Through the
perspective of differential forms, we have more insight and clearly concise derivation.
Remark 1. In particular for shape optimization problems, only normal variations (still pertur-
bation of infinite dimension ) are taken into account, namely v and w are chosen to be along
the normal direction of the surface Γ. In such a case, the symmetry of the shape Hessian is
still not guaranteed from the velocity method, which is quite opposite to our intuition of finite
dimensional calculus. So one should be very cautious about assuming the symmetry of the
shape Hessian in shape optimization problems.
Remark 2. A detailed theoretical analysis of higher order shape derivatives for domain inte-
grals (k > 2) is still possible but extremely tedious. Structure of higher order shape deriva-
tives can be derived as before. Yet they are seldom used in theoretical analysis and numerical
methods due to their rather low regularity. One can formally derive higher order shape deriva-
tives given the necessary regularity of the functions and domain, but the interpretation of the
resulting expressions is very difficult and their numerical approximation is even harder.

4.2. Boundary integrals. Given a scalar smooth function f globally defined in Rd, the
boundary integral on the boundary Γ := ∂Ω is

I(Γ) =
ˆ

Γ
f ds. (4.10)

Observe that

I(Γ) =
ˆ

Γ
f ds =

ˆ

Γ
fn · nds , (4.11)

where fn can be understood as inω, with f being the vector proxy of some volume density
form ω ∈ DFd,m(Ω). It must be pointed out that once Γ is given, we can extend the outward
unit normal n to be a globally defined velocity field such that inω is a (d − 1)-form which
does not depend on Ωt.

LEMMA 4.2. Under suitable smoothness conditions on f , Ω and the velocity fields v and
w, the shape gradient of the boundary integral (4.10) reads:

〈dI(Γ),v〉 =
ˆ

Γ
(v · n)

(
∂f

∂n
+ Hf

)
ds.
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The shape Hessian is

〈
d2I(Γ),v,w

〉
=
ˆ

Γ

((
D2fn · n + 2H

∂f

∂n
+

(
H2 − 1

2
trace(S2)

)
f

)
(v · n) (w · n)

+
(

∂f

∂n
+ Hf

)
(S(vΓ,wΓ)−wΓ gradΓ (v · n)− vΓ gradΓ (w · n))

+
(

∂f

∂n
+ Hf

)
((Dv)w) · n

)
ds.

Proof. In light of the observation (4.11), the integrand fnt(v) after deformation can
be understood as a surface density form depending on the boundary since nt(v), being the
normal field on ∂Ωt(v)) transformed along the velocity field v, changes along the pseudo-
time t.

Now interpreting d as div and contraction as simple multiplication, we have

〈dI(Γ),v〉 =
ˆ

Γ
div(fn)(v · n) ds

︸ ︷︷ ︸
I

+ 2
ˆ

Γ
f(n

′

t(v)|t=0) · nds

︸ ︷︷ ︸
II

=
ˆ

Γ
(grad f · n + f div(n)) (v · n) ds

=
ˆ

Γ
(v · n)

(
∂f

∂n
+ Hf

)
ds.

where we have to apply the product rule of differentiation to the boundary integral (4.11).
The first term (I) follows from Corollary 3.5 through freezing n = nt(v)|t=0 and extending
it unitarily to the global domain by the signed distance technique, while the second one (II)
is a temporal derivative of the integrand fnt(v) · nt(v) evaluating at t = 0. Notice that

n
′

t(v)|t=0 = − gradΓ(v · n), (4.12)

which is a tangential vector on the surface Γ (please refer to details in [6, Eq. (4.38) on pp.
360 and pp. 370]. Therefore we see immediately that (II) vanishes.

In the derivation of the previous formula (4.12), we have used the facts

div(fn) = grad(f) · n + f div(n)

and div(n) = Trace(Dn) = H. This formula agrees with [6, Theorem 4.3 on pp. 355], but
we could arrive at it much more easily.

As for the shape Hessian, we may repeat the argument as in deriving the shape gradient
recursively and thus obtain from Corollary 3.5

〈
d2I(Γ),v,w

〉
=
ˆ

Γ
div (v div(fn)) (w · n) ds

=
ˆ

Γ
div (v (grad(f) · n + f div(n))) (w · n) ds

=
ˆ

Γ
(div v (grad(f) · n + f div(n)) + grad (grad(f) · n + Hf) · v) (w · n) ds

It is pointed out that we have used the product rule of differentiation and the orthogonality
(4.12) twice in pseudo-time s and t consecutively in deriving the shape Hessian for boundary
integrals. To the best knowledge of the authors, this is a new result.
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We can further symmetrize the formula into a symmetric principal part plus the first half
of the Lie bracket:
〈
d2I(Γ),v,w

〉
=
ˆ

Γ

(
div v

(
∂f

∂n
+ Hf

)
+ v · grad

(
∂f

∂n
+ Hf

))
(w · n) ds

〈2〉
=
ˆ

Γ

(
(divΓvΓ + Hv · n + Dvn · n)

(
∂f

∂n
+ Hf

)

+vΓ · gradΓ

(
∂f

∂n
+ Hf

)
+ (v · n) · ∂

∂n

(
∂f

∂n
+ Hf

))
(w · n) ds

〈3〉
=
ˆ

Γ

((
D2fn · n + 2H

∂f

∂n
+

(
H2 − 1

2
trace(S2)

)
f

)
(v · n) (w · n)

+ (divΓvΓ + Dvn · n)
(

∂f

∂n
+ Hf

)
(w · n)

+vΓ · gradΓ

(
∂f

∂n
+ Hf

)
(w · n)

)
ds

〈4〉
=
ˆ

Γ

((
D2fn · n + 2H

∂f

∂n
+

(
H2 − 1

2
trace(S2)

)
f

)
(v · n) (w · n)

+
(

∂f

∂n
+ Hf

)
(Dvn · n) (w · n)

−
(

∂f

∂n
+ Hf

)
vΓ · gradΓ(w · n)

)
ds

〈5〉
=
ˆ

Γ

((
D2fn · n + 2H

∂f

∂n
+

(
H2 − 1

2
trace(S2)

)
f

)
(v · n) (w · n)

+
(

∂f

∂n
+ Hf

)
(S(vΓ,wΓ)−wΓ gradΓ (v · n)− vΓ gradΓ (w · n))

+
(

∂f

∂n
+ Hf

)
(Dvw) · n

)
ds

Here we have used the decomposition identities [6, Eqs. (5.19) and (5.22), pp. 366] in the
second equality 〈2〉, [15, Eq. (2.5.155)] in the third equality 〈3〉, the surface Green formula
in the fourth equality 〈4〉. In the last equality 〈5〉, we decompose ((Dv)n · n) (w · n) as
in the discussion of the shape Hessian of the domain integral by using [6, Eqs. (5.23) pp.
366 and (6.3) on pp. 373]. Apparently This formula is new. Very tedious and complicated
manipulations will be necessary if one uses vector calculus.

In terms of a scalar function f , the sufficient condition for the symmetry of the shape
Hessian of the boundary integral is equivalent to

ˆ

Γ

(
∂f

∂n
+ Hf

)
[w,v] · nds

=
ˆ

Γ

(
∂f

∂n
+ Hf

)
((Dv)w − (Dw)v) · nds = 0. (4.13)

Again, in terms of normal variations, this term will not necessarily drop out. This sufficient
condition is also new to the shape optimization community.

4.3. Shape derivative for bilinear forms . The formula in (3.22) holds true for grad,
curl and div, respectively, in three dimensions. These specifications can be summarized in
the following lemma from Lemma 3.6.
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LEMMA 4.3. Under suitable smoothness conditions on Ω and the velocity field v, the
shape derivatives of the bilinear form on H(D ,Ω)

J(Ω) =
ˆ

Ω
κDu · Dv dx, (4.14)

is

〈dJ(Ω),v〉 =
ˆ

Γ
(κDu · Dv)v · nds, (4.15)

with D being replaced with grad, curl and div, respectively, u and v vector fields for the lat-
ter two cases, and κ some constitutive modulus which could be any constant, smooth function
or tensor field.

Note that those formulae for curl and div operators are new to the shape community
and of particular importance in deriving shape derivatives for Maxwell solutions arising in
electromagnetic phenomena, and for the Stokes system arising in fluid dynamics, respectively.
There is no need to resort to special transformation in vector calculus to keep important
properties of physical quantities like div-free electromagnetic fields.

It is worth pointing out that in the perspective of differential forms, these bilinear forms
give elegant shape derivatives in a uniform way and independent of transformations.

4.4. Normal derivative. Since normal derivatives are often encountered, we would like
to discuss this special case with an auxiliary lemma. Let Γ be the boundary of a bounded
domain Ω of class Cm and f ∈ H2

loc(Rm) be given. Consider the shape cost functional

I(Γ) =
ˆ

Γ

∂f

∂n
ds =

ˆ

Γ
grad f · nds. (4.16)

In this case, f is understood as a 0-form ω and grad is the incarnation of d : DF0,m(Ω) &→
DF1,m(Ω), thus

´

Γ grad f ·nds may be expressed by
´

Γ ∗dω, where dω is a 1-form, which
is mapped by the Euclidean Hodge to ∗dω, a (d − 1)-form (or grad f in the vector proxy).
Now Corollary 3.5 is applicable for this case.

LEMMA 4.4. Under suitable smoothness conditions on Ω and the velocity fields v, the
shape derivative of (4.16) exists and it holds that

〈
d
ˆ

Γ
grad f · n,v

〉
(4.17)

=
ˆ

Γ

(
divΓ gradΓ f + D2fn · n + H grad f · n

)
(v · n) ds. (4.18)

Proof. By Corollary 3.5, we have
〈

d
ˆ

Γ
grad f · n,v

〉
=
ˆ

Γ
div(grad f) (v · n) ds

=
ˆ

Γ

(
divΓ gradΓ f + D2fn · n + H grad f · n

)
(v · n) ds.

where we have used the decomposition of the div operator as in (4.7) and (4.8) in the second
equality.
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5. Application: Shape Derivative of Solutions of Second-order BVPs. In this section,
we will study a model elliptic BVP and express the shape derivatives of solutions of boundary
value problems (BVP) via shape calculus of domain and boundary integrals in a variational
way.

Given a bounded domain Ω ⊂ Rd of class Cm, consider an elliptic BVP for an l-form
ω,

(−1)d−ld ∗α dω + ∗γω = ψ inΩ, (5.1)
Tr (∗αdω) = (−1)d−lTr (∗βω + φ) on Γ. (5.2)

where where ∗α, ∗γ and ∗β are fixed Hodge operators in Ω and on Γ, respectively, Tr is the
trace operator on the boundary [2], and ψ ((d− l)-form) and φ ((d− l − 1)-form) are two
smooth differential forms globally defined. (5.2) corresponds to the Robin boundary condi-
tion, which reduces to the Neumann case when ∗β = 0.

The weak form of (5.1)–(5.2) is obtained through the integration by parts formula [12,
Eq. (2.23)] and reads as: Seek ω ∈ H(d,Ω,

∧l(Rd)) ∩ H1(d,Ω,
∧l(Rd)) and Trω ∈

L2(Γ,
∧l(Rd)) such that for all smooth test forms η it holds

ˆ

Ω
(∗αdω ∧ dη + ∗γω ∧ η) +

ˆ

Γ
Tr (∗βω ∧ η) =

ˆ

Ω
ψ ∧ η −

ˆ

Γ
Tr (φ ∧ η) . (5.3)

DEFINITION 5.1. [Shape derivatives of forms] Given a velocity field v ∈ Cm(Rd, Rd)
and the corresponding perturbed domain Ωt := Tt(v)(Ω), the shape derivatives of a solution
ω of (5.1)–(5.2), which depends on the domain Ωt, in the direction of v, denoted by δω, is
defined by (cf. [6, 17])

δω :=
d
dt

ω(Ωt)
∣∣∣∣
t=0

. (5.4)

In an abstract way, we can characterize the corresponding shape derivative of the solution
to (5.1)–(5.2) by differentiating (5.3) with respect to t, but with Ω and ω(Ω) replaced by Ωt

and ω(Ωt) in (5.3), respectively. To that end, by straightforward application of Theorem 3.3,
Corollary 3.5 and Definition 5.1, we have the following lemma with the shape derivative
expressed in the variational way:

LEMMA 5.2. The shape derivative, δω ∈ H(d,Ω,
∧l(Rd)) with Trδω ∈

L2(Γ,
∧l(Rd)), of the solution ω to the variational problem (5.3) is the unique solution to

the following variational problem:
ˆ

Ω
(∗αd(δω) ∧ dη + ∗γδω ∧ η) +

ˆ

Γ
Tr (∗βδω) ∧ η.

=
ˆ

Γ
iv (ψ ∧ η)−

ˆ

Γ
iv (∗αdω ∧ dη + ∗γω ∧ η)

−
ˆ

Γ
ivdTr ((∗βω + φ) ∧ η) , (5.5)

for all smooth test forms η ∈ DF l,∞(Rd).
The weak form (5.3) corresponds to H1(Ω)-, H(curl;Ω)- and H(div; Ω)-elliptic vari-

ational problems when d = 3, l = 0, 1 and 2, respectively. In terms of vector proxies, we
can incarnate the Hodge operators as multiplication with coefficient functions denoted by α,
β and γ. We’d like to point out the connection when l = 0 (for l > 0, please refer to [13]),
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and interpret forms ψ and φ in (5.3) as scalar functions f ∈ L2(Ω) and g ∈ H2(Ω), which
was once studied in different contexts (see e.g., [10, 11, 17]).

COROLLARY 5.3. The shape derivative, δu ∈
{
w ∈ H1(Ω) : w|∂Ω ∈ H1(Γ)

}
, of the

solution u to (5.3) when l = 0 is the unique solution to the following variational problem:
ˆ

Ω
(α grad δu · grad v + γδuv) +

ˆ

Γ
βδuv

=
ˆ

Γ
fvv · n−

ˆ

Γ
(α gradΓ u · gradΓ v + γuv)v · n

−
ˆ

Γ
v · n

(
∂

∂n
(βu + g) + H(βu + g)

)
v, (5.6)

for all v ∈ C∞(Rd).
Proof. A simple translation from differential forms to scalar functions (0-forms) with

Lemmas 4.1 and 4.2 yields the vector proxy of the right hand side of (5.5)
ˆ

Γ
fvv·n−

ˆ

Γ
(α gradu · grad v + γuv)v·n−

ˆ

Γ
v·n

(
∂

∂n
((βu + g)v) + H(βu + g)v

)
.

(5.7)
Notice that

∂

∂n
((βu + g)v) =

∂

∂n
(βu + g) v + (βu + g)

∂v

∂n
, (5.8)

and

α gradu · grad v = α gradΓ u · gradΓ v + α
∂u

∂n
· ∂v

∂n
. (5.9)

In view of the Robin boundary condition α ∂u
∂n + (βu + g) = 0, the last terms in the previous

two equations cancel each other and the proof is done.
Once we arrive at the variational characterization of the shape derivative, we can re-

formulate the strong form of the PDE for the shape derivative δu under suitable regularity
conditions by testing (5.6) with smooth functions v with vanishing trace and, subsequently,
with nontrivial trace. The strong form of (5.6) follows from (4.2):

−div (α grad δu) + γδu = 0 in Ω, (5.10)

α
∂ (δu)

∂n
+ βδu = divΓ ((v · n)α gradΓ u)

−v · n
(

∂(βu + g)
∂n

+ H(βu + g)
)

+ (f − γu)v · n onΓ. (5.11)

Thus, we obtain the elliptic BVP for the shape derivative δu and its associated Robin bound-
ary condition or its Neumann counterpart when β = 0.

6. Dual Formulation. For PDEs with Neumann or Robin boundary conditions, it is
natural to derive the corresponding Neumann or Robin boundary conditions of the shape
gradient of solutions to the PDEs from its primal variational formulation. In this section,
we will rigorously derive the shape derivative for BVPs with Dirichlet boundary condition
from the dual variational formulation. The aforementioned elliptic BVP (5.1) for general l-
forms will be further discussed from the dual perspective, but equipped with some Dirichlet
boundary condition

ω = φ onΓ. (6.1)
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To derive the dual formulation, we introduce a (d− l − 1)-form

ρ = ∗αdω, (6.2)

or

∗α−1ρ = (−1)(l+1)(d−l−1)dω. (6.3)

where ∗α−1 is the inverse of the Hodge operator ∗α, and ∗α−1∗α = (−1)(l+1)(d−l−1) Id for
the ordinary Euclidean space with positive orientation (cf. [4]).

Then the PDE (5.1) can be rewritten as

(−1)d−ldρ + ∗γω = ψ inΩ. (6.4)

Now the dual mixed formulation of (6.3) and (6.4) is as follows:
ˆ

Ω
∗α−1ρ ∧ τ + (−1)(l+1)(d−l)ω ∧ dτ + (−1)(l+1)(d−l−1)

ˆ

Γ
Trφ ∧ Trτ = 0, (6.5)

ˆ

Ω
(−1)(d−l)dρ ∧ ν +

ˆ

Ω
∗γω ∧ ν =

ˆ

Ω
ψ ∧ ν, (6.6)

for all smooth τ ∈ DFd−l−1,∞(Rd) and ν ∈ DFd−l,∞(Rd). Taking the shape derivative of
the mixed formulation, namely differentiating the above formulation in the perturbed domain
Ωt with respect to the pseudo-time t, yields from Theorem 3.3 and Corollary 3.5,
ˆ

Ω
∗α−1δρ ∧ τ + (−1)(l+1)(d−l)δω ∧ dτ + (−1)(l+1)(d−l−1)

ˆ

Γ
ivd (Trφ ∧ Trτ )

ˆ

Γ
ivTr

(
∗α−1ρ ∧ τ + (−1)(l+1)(d−l)ω ∧ dτ

)
= 0, (6.7)

ˆ

Ω
(−1)(d−l)dδρ ∧ ν +

ˆ

Ω
∗γδω ∧ ν

+
ˆ

Γ
ivTr

(
(−1)(d−l)dρ ∧ ν + ∗γω ∧ ν −ψ ∧ ν

)
= 0. (6.8)

Up to here, we have characterized the shape derivatives δω and δρ of the primal form ω
and dual form ρ in the variational sense, which is now amenable for further investigation for
concrete settings.

Without loss of generality, in terms of vector proxies and incarnating those Hodge opera-
tors by the associated constant coefficients α = 1 and γ = 0, i.e. ∗γ vanishes, we can discuss
the special case l = 0 by interpreting differential forms ψ and φ in (5.1) and (5.3) as scalar
functions f ∈ L2(Rd) and g ∈ H2(Rd). This yields the Dirichlet problem

−∆u = f onΩ, (6.9)
u = g inΓ, (6.10)

which can be formulated in the dual weak form as follows by letting

q = gradu. (6.11)

Seek u ∈ L2(Ω) and q ∈ H(div; Ω) such that
{
´

Ω q · pdx +
´

Ω u div pdx =
´

Γ gp · n, ∀p ∈ H(div; Ω),
´

Ω div qv dx =
´

Ω fv dx, ∀ v ∈ L2(Ω).
(6.12)
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Assume u ∈ H2(Ω) and q ∈ H1(div; Ω) which will follow from the suitable smooth-
ness on the domain and data. Write δq and δu as the shape derivatives of q and u, respectively,
in the direction of some velocity field v. Understanding q and u as a (d − 1)-form and a 0-
form, respectively, in Rd, and reinterpreting (6.7) and (6.8) in terms of vector proxies, we
have the variational equation for shape derivatives:

Seek δq ∈ H(div; Ω) and δu ∈ L2(Ω) such that it holds for all p ∈ H(div; Ω) and
v ∈ L2(Ω)






´

Ω δq · pdx +
´

Ω δu div pdx

+
´

Γ v · n (q · p + u div p) ds =
´

Γ v · n
(

∂(gp·n)
∂n + Hgp · n

)
ds,

´

Ω div δqv dx +
´

Γ v · n (div q− f) v dx = 0.

(6.13)

The loss of regularity in δq and δu compared with q and u follows from differentiation
with respect to the domain, in particular due to the weaker regularity of the boundary data.

The boundary condition of the shape derivative δu can be concluded in the following
way. First of all, testing the first equation of (6.13) with p ∈ (C∞

0 (Ω))d and v ∈ C∞
0 (Ω)

implies that

δq = grad δu. (6.14)

Therefore, δu ∈ L2(Ω) and δq ∈ L2(Ω) implies δu ∈ H1(Ω). Next, testing the first equation
of (6.13) with p ∈

(
C∞(Ω)

)d
and splitting the third term there in normal and tangential

directions, we see that

q · p + u div p = (q · n) (p · n) + qΓ · pΓ

+uDpn · n + udivΓpΓ + Hup · n. (6.15)

in light of [6, Eqs. (5.19) and (5.22), pp. 366]. Noticing by the chain rule that

∂(gp · n)
∂n

=
∂g

∂n
p · n + gDpn · n + gDnp · n. (6.16)

Since Dnp = Sp is a tangential vector, then gDnp · n = 0 due to orthogonality of the
Weingarten map S (cf. [16]). Now straightforward calculation combined with u = g on Γ,
(6.11) and (4.2) for qΓ · pΓ and udivΓpΓ yields

ˆ

Γ

(
δu + v · n

(
∂u

∂n
− ∂g

∂n

))
p · nds = 0. (6.17)

As p is arbitrary, we immediately have

δu = −
(

∂u

∂n
− ∂g

∂n

)
v · n onΓ (6.18)

in the trace space H
1
2 (Ω), since u and g ∈ H2(Ω).

7. Conclusion. In the present paper, we have presented shape derivatives from the per-
spective of differential forms and shape calculus via exterior calculus of differential forms.
This approach is in particular amenable for deriving shape derivatives of solutions to second-
order BVPs in both primal and dual variational formulation. This gives more insight to the
essential structure of shape derivatives in terms of recursive composition of Lie derivatives.
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Moreover, a sufficient condition for the symmetry of the second order shape Hessian is re-
vealed to depend on a vanishing Lie bracket. We have demonstrated the power of this per-
spective by illustrating some typical examples like, boundary and domain integrals, bilinear
forms and normal derivatives, etc. We have also shown a concrete example, a model Dirich-
let problem which covers all kinds of boundary conditions. For the first time we show how
to derive the boundary condition to the shape derivative of the solution to the PDE with a
non-homogeneous Dirichlet boundary condition via the dual mixed formulation.
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