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Abstract
We investigate a qualitative method for imaging acoustic obstacles in two

and three dimensions by boundary measurements. The imaging scheme makes
use of the hypersingular point sources. Rigorous mathematical justification of
the imaging method is established, and numerical experiments are presented to
illustrate the effectiveness of the proposed imaging scheme.

1 Introduction

In this paper, we shall be concerned with an inverse boundary value problem associated
with the Helmholtz equation. The problem was recently considered in [28], where the
cylindrical Bessel waves are implemented to meet the imaging purpose. The cylindrical
Bessel waves, Jn(|x− y|)einφ̂ with x− y = |x− y|eiφ̂, are standing waves and analytic
in the whole space. For the present study, we shall show that the singular point
sources also fulfill the imaging/reconstruction scheme developed in [28]. The point
sources are spherical wave eik|x−y|/4π|x− y| = ik

4πh(1)
0 (k|x − y|) in three dimensions

and the first kind Hankel function i
4H(1)

0 (k|x − y|) in two dimensions. They are
propagating waves and one of the most common ways in emanating waves. Point
sources are easily realized in acoustics and electromagnetism, and have been widely
used in engineering; see, e.g. [8]. In two dimensions, we actually could use more
general point sources i

4H(1)
m (k|x− y|)eimφ̂ with hypersingularity, where m ∈ N ∪ {0}.

Due to the singularity (or hypersingularity) of the point sources, we need to develop
essentially new techniques to show that the qualitative imaging method in [28] working
for analytic sources remains valid for this singular case. In the following, we shall give
a brief description of the inverse problem under investigation.
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Consider an impenetrable scatterer D, which is the open complement of an un-
bounded domain of C2 class in Rn, n = 2, 3. Without loss of generality, it is assumed
that the origin is contained in D. The time-harmonic acoustic wave propagation in
Rn\D̄ is governed by the Helmholtz equation

(∆ + k2)u = 0 in Rn\D̄, (1.1)

where u represents the wave pressure and k > 0 is the wave number. On the boundary
of the obstacle ∂D, the wave exhibits various behaviors depending on the physical
properties of the underlying obstacle. If D is sound-soft, one has u|∂D = 0; and if D
is sound-hard, one has ∂u/∂ν = 0 on ∂D, where ν is the exterior unit normal to ∂D;
whereas if D is of impedance type, then ∂u/∂ν + iλu = 0 on ∂D, where λ ∈ C1(∂D)
is a positive function. We shall write

B(u) = 0 on ∂D, (1.2)

to denote either of the above mentioned boundary conditions or of more complicated
mixed type. We emphasize that the imaging/reconstruction method developed for the
inverse problem in the present paper is independent of the specific boundary condition.
Actually, no a priori knowledge of the underlying target obstacles would be required.
However, in order to ease the exposition, we stick to the case with Dirichlet boundary
condition in our subsequent discussions.

In non-invasive probing, one intends to image/identify the target obstacle D by
knowledge of the waves away from the object. This inverse problem forms the basis of
many areas of science and technology (see e.g. [12, 24, 25] and the references therein).
Many quantitative and qualitative imaging/reconstruction schemes have been devel-
oped in literature for the inverse obstacle problem; see, e.g. [2, 3, 7, 10, 11, 13, 15, 18,
20–23, 25, 26, 28, 30, 31, 33]. In [28], a qualitative imaging method is proposed follow-
ing the spirit of the linear sampling method originated in [11]. The method makes use
the near-field measurements encoded into the boundary Dirichlet-to-Neumann (DtN)
or Neumann-to-Dirichlet (NtD) operator. A novel indicator function is developed
which exhibits different behaviors depending on whether the sampling point is inside
or outside the obstacle, and thus could be used to identify the shape of the underly-
ing obstacle. It is shown in [28] that the planar or cylindrical waves could meet the
reconstruction purpose. Due to the more practical feasibility, we would show that the
point sources would also fulfill the imaging/reconstruction requirements. Moreover,
by utilizing point sources, we actually could make use of partial wave emissions (see
Section 3 for the description). We next outline the main ingredients of the scheme.
Let Ω ⊂ Rn be a bounded C2 domain containing D such that Ω\D̄ is connected.
For the Helmholtz equation (1.1)–(1.2) confined over Ω\D̄, we impose the following
boundary condition on the exterior boundary

u = f ∈ H1/2(∂Ω) on ∂Ω. (1.3)

It is assumed that 0 is not an eigenvalue to the problem (1.1)–(1.3). Hence, we have
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a well-defined Dirichlet-to-Neumann map ΛD defined as

ΛD(f) =
∂u

∂ν

∣∣∣∣
∂Ω

, (1.4)

where u ∈ H1(Ω\D̄) is the unique solution to (1.1)–(1.3) and ν denotes the exterior
unit normal to ∂Ω. It is noted that knowing ΛD is equivalent to knowing the Cauchy
data set (u|∂Ω, ∂u

∂ν |∂Ω), which encodes the near-field wave measurements. Let Ω̃ ⊂ Rn

be a bounded C2 domain such that Ω ! Ω̃ and Rn\ ¯̃Ω is connected. Consider the
following first kind integral equation

∫

∂Ω̃
(ΛD − Λ0)u(x; y)g(y)ds(y) =

∂G(x, z)
∂ν(x)

, x ∈ ∂Ω, z ∈ Ω (1.5)

where u(x; y) is a class of point sources located at y ∈ ∂Ω̃, Λ0 denotes the DtN
map without the inclusion D, and G(x, y) is the Green’s function for the Helmholtz
equation in Ω with a vanishing Dirichlet boundary value on ∂Ω. The function g(y)
implicitly implied in (1.5) will play the role of an indicator in identifying ∂D.

The method could be modified to making use of the NtD map. For the Helmholtz
equation (1.1)–(1.2) confined over Ω\D̄, one imposes the following boundary condition
on the exterior boundary

∂u

∂ν
= h ∈ H−1/2(∂Ω) on ∂Ω. (1.6)

Again it is assumed that 0 is not an eigenvalue to the problem (1.1)–(1.3). The NtD
map ΥD is defined by

ΥD(g) = u|∂Ω, (1.7)

where u ∈ H1(Ω\D̄) is the unique solution to (1.1), (1.2) and (1.6). The counterpart
to (1.5) is given by

∫

∂Ω̃
(ΥD −Υ0)u(x; y)g(y)ds(y) = GN (x, z), x ∈ ∂Ω, z ∈ Ω, (1.8)

where Υ0 is the NtD map without the inclusion D. The function GN (x, z) is the
Green’s function for the Helmholtz equation on Ω with a vanishing Neumann boundary
value on ∂Ω.

The rest of the paper is organized as follows. In Section 2, we develop the imag-
ing/reconstruction method based on the DtN map with point sources. In Section 3,
we show that the imaging/reconstruction scheme developed also works by making use
of partial wave emissions. Also, we show how to modify our imaging scheme to the
case with the NtD map. Section 4 is devoted to the derivation of the explicit forms
of Green’s functions implemented in our method in three dimensions. In Section 5,
we conducted extensive numerical experiments to illustrate the effectiveness of the
proposed method.
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2 Imaging by point sources with DtN map

In this section, we develop the imaging/reconstruction scheme based on the DtN map
with point sources as inputs. The discussion will be addressed for point sources in
three dimensions and hypersingular ones in two dimensions. As mentioned in the
previous section, in three dimensions, the singular source is of the form

ik

4π
h(1)

0 (k|x− y|) = eik|x−y|/4π|x− y|, x ∈ Ω̄, y ∈ ∂Ω̃,

where h(1)
0 (t), t ∈ R, is the first-kind spherical Hankel function of zeroth order; and

in two dimensions,

w(x, y) =
i

4
H(1)

m (k|x− y|)eimφ̂, x− y = |x− y|eiφ̂,

where x = |x|eiφx ∈ Ω̄ and y = |y|eiφy , y ∈ ∂Ω̃, and H(1)
m (t), t ∈ R, is the first-kind

Hankel function of mth order.
We introduce the point-source-Herglotz wave function as follows

(Pg)(x) := wg(x) =
∫

∂Ω̃

ik

4π
h(1)

0 (k|x− y|)g(y)ds(y), g(y) ∈ L2(∂Ω̃), (2.1)

where x ∈ Ω̄ and y ∈ ∂Ω̃. Define

Ups :=
{

wg(x);wg(x) =
∫

∂Ω̃

ik

4π
h(1)

0 (k|x− y|)g(y)ds(y), g(y) ∈ L2(∂Ω̃)
}

. (2.2)

We also need to introduce the Hankel-Herglotz wave function as follows

(Hg)(x) := wg(x) =
∫

∂Ω̃

i

4
H(1)

m (k|x− y|)eimφ̂g(y)ds(y), x ∈ Ω̄. (2.3)

where g(y) ∈ L2(∂Ω̃), and define

Uh :=
{

wg(x);wg(x) =
∫

∂Ω̃

i

4
H(1)

m (k|x− y|)eimφ̂g(y)ds(y), g(y) ∈ L2(∂Ω̃)
}

. (2.4)

Next, in light of the linear superposition for the Helmholtz system, we have the
following two propositions.

Proposition 2.1. Let u(x; y) ∈ H1(Ω\D̄) be the solution to the Helmholtz equation(1.1)-
(1.3) associated with the Dirichlet boundary value f(x, y) = w(x, y)|∂Ω with w(x, y) =
ik

4π
h(1)

0 (k|x − y|) in three dimensions and w(x, y) =
i

4
H(1)

m (k|x − y|)eimφ̂ in two di-
mensions. Let wg be a Herglotz wave function (point-source or Hankel resp.). Then
the solution to {

(∆ + k2)u = 0 in Ω\D̄
u|∂D = 0, u|∂Ω = wg|∂Ω

(2.5)

is given by
ug(x) =

∫

∂Ω̃
u(x; y)g(y)ds(y).
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For Proposition 2.1, we further introduce the following boundary value problem,
{

(∆ + k2)v(x; y) = 0 in Ω\D̄
v|∂D = −f(x, y), v|∂Ω = 0 .

(2.6)

It is straightforward to see that v(x; y) = u(x; y)− w(x, y).

Proposition 2.2. Let v(x; y) ∈ H1(Ω\D̄) be the solution to the Helmholtz equa-
tion (2.6) associated with the Dirichlet boundary value f(x, y) = w(x, y)|∂D with

w(x, y) =
ik

4π
h(1)

0 (k|x− y|) in three dimensions and w(x, y) =
i

4
H(1)

m (k|x− y|)eimφ̂ in
two dimensions. Let wg be a Herglotz wave function (point-source or Hankel resp.).
Then the solution to {

(∆ + k2)v = 0 in Ω\D̄
v|∂D = −wg|∂D, v|∂Ω = 0 .

(2.7)

is given by
vg(x) =

∫

∂Ω̃
v(x; y)g(y)ds(y).

Since v(x; y) = u(x; y) − w(x, y) in Ω\D̄, we note the following relation for our
subsequent study

∂v(x; y)
∂ν(x)

∣∣∣∣
∂Ω

= ΛD(f(x, y)|∂Ω)− Λ0(f(x, y)|∂Ω) (2.8)

We next introduce two function spaces,

H1
∆(Ω\D̄) := {u ∈ H1(Ω\D̄); (∆ + k2)u = 0 in Ω\D̄ and u|∂Ω = 0},

H−1/2
∆ (∂Ω) := {∂u

∂ν
|∂Ω; u ∈ H1

∆(Ω\D̄)},

where the boundary values ∂u
∂ν |∂Ω and u|∂Ω are all understood in the sense of traces.

Obviously, H1
∆(Ω\D̄) and H−1/2

∆ (∂Ω) are both Banach spaces. Now we introduce the
following two operators. Let S : L2(∂Ω̃) → H1

∆(Ω\D̄) be defined as

Sg(x) :=
∫

∂Ω̃
v(x; y)g(y)ds(y). (2.9)

By (2.7), we see Sg(x)|∂D = −wg(x)|∂D and Sg(x)|∂Ω=0. Define L : L2(∂Ω̃) →
H−1/2

∆ (∂Ω) by

Lg(x) :=
∫

∂Ω̃

∂v(x; y)
∂ν(x)

g(y)ds(y). (2.10)

It is easily seen that
∂Sg

∂ν
(x)|∂Ω = Lg(x). We are in a position to present the crucial

first kind integral equation for gz ∈ L2(∂Ω̃):

(Lgz)(x) =
∂G(x, z)
∂ν(x)

, x ∈ ∂Ω, z ∈ Ω, (2.11)
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which by (2.8) is equivalent to (cf. equation (1.5))
∫

∂Ω̃
(ΛD − Λ0)(f(x, y))gz(y)ds(y) =

∂G(x, z)
∂ν(x)

, x ∈ ∂Ω, z ∈ Ω . (2.12)

Here, we give a more specific description of the Green’s function G(x, z), x ∈ Ω̄

and z ∈ Ω, in (2.11) and (2.12). Henceforth, we set Φ(x, y) =
ik

4π
h(1)

0 (k|x − y|) or

Φ(x, y) = i
4H(1)

0 (k|x−y|) be respectively, the three- and two-dimensional fundamental
solutions to −∆−k2. We take G(x, z) = Φ(x, z)−p(x, z), where p(x, z) is the (unique)
solution to

(∆ + k2)p(x, z) = 0 in Ω, p(x, z)|∂Ω = Φ(x, z)|∂Ω, (2.13)

for any fixed z ∈ Ω. It is readily seen that G(x, z) ∈ H1
∆(Ω\D̄) if z ∈ D, and this

implies ∂G(x,z)
∂ν(x) |∂Ω ∈ H−1/2

∆ (∂Ω) if z ∈ D. For the case when the artificial domain Ω
is a central disk of radius R > 0 in R2, an analytic expression of G(x, z) is derived in
Section 4, [28]. By a similar derivation, one has that if Ω is a central ball of radius
R > 0 in R3,

G(x, z) = Φ(x, z)−
∞∑

n=0

n∑

m=−n

ikh(1)
n (kR)jn(k|z|)Y m

n (ẑ)
jn(kR)

jn(k|x|)Y m
n (x̂), (2.14)

for x = |x|x̂ ∈ ∂Ω and z = |z|ẑ ∈ Ω.
The function gz ∈ L2(∂Ω̃) in (2.11) (or equivalently in (2.12)) shall play the key

role as an indictor function in imaging/identifying ∂D, depending on whether z is
inside or outside D. Indeed, we have the following theorem on the behaviors of gz (cf.
Theorem 2.5 and Remark 2.6 in [28]).

Theorem 2.3. For gz in (2.11) or (2.12), we have

(i) If z ∈ D, then for every ε > 0, there exists gz,ε ∈ L2(∂Ω̃) such that

‖Lgz,ε(x)− ∂G(x, z)
∂ν(x)

‖H−1/2(∂Ω) ≤ ε. (2.15)

Moreover, for every z∗ ∈ ∂D and every choice of gz,ε ∈ L2(∂Ω̃) in (2.15),

lim
z→z∗

‖gz,ε‖L2(∂Ω̃) = ∞ and lim
z→z∗

‖vgz,ε‖H1(D) = ∞. (2.16)

(ii) If z ∈ Ω\D̄, one can solve (2.11) by the Tikhonov regularization to have a
regularized solution gz,ε in L2(∂Ω̃), depending on a regularizer ε > 0. That is,
gz,ε is the unique solution to the regularized system

(εI + L∗L) g = L∗
∂G(·, z)

∂ν
. (2.17)
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Moreover, only one of the following two possibilities occurs to the sequence {gz,ε}:
either there exists a sequence εn → 0+ such that

lim
εn→0+

‖Lgz,εn(x)− ∂G(x, z)
∂ν(x)

‖H−1/2(∂Ω) = 0, (2.18)

and
lim

εn→0+
‖gz,εn‖L2(∂Ω̃) = ∞; (2.19)

or, there exists a constant C > 0 such that for all ε > 0,

‖Lgz,ε(x)− ∂G(x, z)
∂ν(x)

‖H−1/2(∂Ω) ≥ C. (2.20)

Theorem 2.3 suggests the following procedure to determine if a point z ∈ Ω lies
in D or not. For two cut-off values c1, c2 > 0, one first finds a Tikhonov regularized
solution gz,ε to (2.11). If ‖gz,ε‖L2(∂Ω̃) > c1, one counts z ∈\D; Otherwise one can
further compute the residual Lgz,ε − ∂G(·, z)/∂ν. If the norm of this residual is less
than c2, one counts z ∈ D, otherwise z ∈\D. The above discussion leads us to
the following numerical imaging/reconstruction scheme (see Fig. 1 for a schematic
illustration).

Figure 1: Schematic illustration of the imaging/reconstruction scheme by making use
of the DtN map.

Numerical Imaging/Reconstruction Scheme (DtN)
Select two cut-off values c1, c2 > 0.

Step 1. Collect the measurement data ∂u(x;y)
∂ν on ∂Ω corresponding to the

excitation f(x, y) on ∂Ω for different y ∈ ∂Ω̃ .
Step 2. Select a sampling mesh Th over the domain Ω.
Step 3. For each sampling mesh point z ∈ Th, compute a Tikhonov regu-
larized solution gz,ε to (2.11).
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Step 4. If ‖gz,ε‖L2(∂Ω̃) > c1, we count z ∈\D; otherwise we compute the
residual Lgz,ε − ∂G(·, z)/∂ν. If the norm of this residual is less than c2,
we count z ∈ D; otherwise we count z ∈\D.

The proof of Theorem 2.3 follows a similar argument to that for Theorem 2.5 in
[28], provided we derive the following crucial Theorem in characterizing the operator
L defined in (2.10).

Theorem 2.4. The operator L : L2(∂Ω̃) → H−1/2
∆ (∂Ω) is a linear compact operator.

Under the assumption that k2 is not a Dirichlet eigenvalue for −∆ in Ω\D̄, Ω, and
D. L is injective and has a dense range in H−1/2

∆ (∂Ω).

In order to prove Theorem 2.4, we first show the following lemma.

Lemma 2.5. Assume that k2 is not a Dirichlet eigenvalue for −∆ in Ω. With respect
to H1/2(∂D)-norm, the traces of point-source- or Hankel-Herglotz wave functions are
dense in the space of traces on ∂D to the solutions of Helmholtz equation.

Proof. In the following, we set Φ(x, y) =
ik

4π
h(1)

0 (k|x−y|) or Φ(x, y) = i
4H(1)

0 (k|x−y|)
be respectively, the three- and two-dimensional fundamental solutions to −∆ − k2.
We first prove that Ups|∂Ω and Uh|∂Ω with m = 0 in (2.4) are dense in H1/2(∂Ω). It
suffices to show that if ϕ(x) ∈ H−1/2(∂Ω) such that

∫

∂Ω

∫

∂Ω̃
Φ(x, y)g(y)ds(y)ϕ(x)ds(x) = 0, ∀g ∈ L2(∂Ω̃), (2.21)

then one must have ϕ(x) = 0. By (2.21), together with the use of Fubini’s Theorem,
we see ∫

∂Ω
Φ(x, y)ϕ(x)ds(x) = 0 for y ∈ ∂Ω̃. (2.22)

Set
h(y) =

∫

∂Ω
Φ(x, y)ϕ(x)ds(x). (2.23)

By the mapping properties of the single layer potential operator (cf.[29]), we know
h(y) ∈ H1

loc(Rn\∂Ω). By (2.22), h(y)|∂Ω̃ = 0. Noting h(y) is a radiating solution to
the Helmholtz equation in Rn\ ¯̃Ω, by the uniqueness of solution to the exterior Dirichlet
problem (cf. [12]), we see h(y) = 0 in Rn\ ¯̃Ω. Further, by Unique continuation we have
h(y) = 0 in Rn\Ω̄. In the following, we denote by γ+ and γ− the one-sided trace
operators for Ω and Rn\Ω̄. Again by the mapping properties of single layer potential
operator, we have γ−h(y) = γ+h(y) = 0 on ∂Ω. Since (∆ + k2)h(y) = 0 on Ω, and by
our assumption that k2 is not a Dirichlet eigenvalue for −∆ in Ω, we see h(y) = 0 on
Ω. Finally, by the jump properties of the single layer potential operator (cf. [29]), we
have

ϕ(x) = γ+ ∂h(y)
∂ν

− γ−
∂h(y)
∂ν

= 0 on ∂Ω,

8



which proves the denseness of Ups|∂Ω and Uh|∂Ω in H1/2(∂Ω). Obviously, this implies
that Ups and Uh are dense in the space of H1(Ω)-solutions to the Helmholtz equation,
which in turn implies the result stated in the Lemma.

In like manner, for the case with hypersingular sources in two dimensions, namely
Uh in (2.4) with m ≥ 1, we only need to show that if ϕ(x) ∈ H−1/2(∂Ω) such that

∫

∂Ω

∫

∂Ω̃

i

4
H(1)

m (k|x− y|)eimφ̂g(y)ds(y)ϕ(x)ds(x) = 0, ∀g ∈ L2(∂Ω̃), (2.24)

then one must have ϕ(x) = 0. Set

H(y) =
∫

∂Ω

i

4
H(1)

m (k|x− y|)eimφ̂ϕ(x)ds(x). (2.25)

By (2.24), H(y)|∂Ω̃ = 0. Since H(y) is a radiating solution to the Helmholtz equation
in R2\ ¯̃Ω, we see H(y) = 0 in R2\ ¯̃Ω by the uniqueness of solution to the exterior
Dirichlet problem. Next, let B(0, R1) be a sufficiently large central ball of radius
R1 such that Ω̃ ! B(0, R1) and k2 is not a Dirichlet eigenvalue for −∆ in B(0, R1).
Moreover, we shall make use of the following addition theorem (cf. Appendix D.2, [8]
or Theorem 2.12, [36]),

H(1)
m (k|x− y|)eimφ̂ =

∞∑

n=−∞
Jn−m(k|x|)e−i(n−m)φxH(1)

n (k|y|)einφy , (2.26)

for |y| > |x|. Clearly, we have H(y) = 0 for y ∈ R2\B(0, R1). Substituting the
expansion (2.26) into (2.25), we have

H(y)|∂B(0,R1) =
∞∑

n=−∞

i

4

∫

∂Ω
Jn−m(k|x|)e−i(n−m)φxϕ(x)ds(x)H(1)

n (k|R1|)einφy = 0.

(2.27)
Since H(1)

n (kR1) += 0, ∀n ∈ Z, we further have from (2.27) that
∫

∂Ω
Jn(k|x|)einφxϕ(x)ds(x) = 0, ∀n ∈ Z. (2.28)

Using the expansion of H(1)
0 (k|x− y|) (cf. [8]),

H(1)
0 (k|x− y|) =

∞∑

n=−∞
Jn(k|x|)H(1)

n (k|y|)ein(φy−φx) for |y| > |x|, (2.29)

and multiplying H(1)
n (k|y|)einφy to the complex conjugate of equation (2.28) and sum-

ming up for all n ∈ Z, one has

h(y) =
∫

∂Ω

i

4
H(1)

0 (k|x− y|)ϕ(x)ds(x) = 0, y ∈ R2\B(0, R1).

By a similar argument to the first part of the proof, one can show that ϕ(x) = 0.
The proof is completed.
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Proof of Theorem 2.4. With the help of Lemma 2.5, the compactness and denseness of
the operator L can be shown by similar arguments to those for the proof of Theorem 2.3
in [28]. We only need to show the injectivity of L. Suppose g ∈ L2(∂Ω̃) and Lg = 0.
This implies Sg|∂Ω = 0 and ∂Sg

∂ν |∂Ω = Lg = 0. By unique continuation, we know
Sg = 0 in Ω\D̄ and hence wg|∂D = −Sg|∂D = 0 which further gives wg(x) = 0 in D.
By unique continuation again, we know wg = 0 in Ω̃. Next, we divide our discussion
into two cases.

For the case with singular point source Φ(x, y) =
ik

4π
h(1)

0 (k|x− y|) or
i

4
H(1)

0 (k|x−
y|), we set

T (x) = wg(x) =
∫

∂Ω̃
Φ(x, y)g(y)ds(y). (2.30)

By the mapping property of single layer potential operator, we know that T (x) ∈
H1

loc(Rn\∂Ω̃) and is a radiating solution to the Helmholtz equation in Rn\ ¯̃Ω. Since
γ+T (x) = γ−T (x) = 0 on ∂Ω̃, by the uniqueness of the exterior Dirichlet problem of
the Helmholtz equation, we have T (x) = 0 in Rn\Ω̃. Therefore,

g(x) = γ+ ∂T (x)
∂ν

− γ−
∂T (x)

∂ν
= 0 on ∂Ω̃.

For the case with hypersingular point sources in two dimensions, we set

P (x) = wg(x) =
∫

∂Ω̃

i

4
H(1)

m (k|x− y|)eimφ̂g(y)ds(y). (2.31)

Choose a central disk B(0, R2) ! Ω̃ of radius R2 > 0, such that k2 is not a Dirichlet
eigenvalue for −∆ in B(0, R2). Plugging the expansion (2.26) into (2.31), we have

P (x)|∂B(0,R2) =
∞∑

n=−∞

i

4

∫

∂Ω̃
H(1)

n (k|y|)einφyg(y)ds(y)Jn−m(k|R2|)e−i(n−m)φx = 0.

Since Jn(kR2) += 0 for arbitrary n, we readily have from the previous equation that
∫

∂Ω̃
H(1)

n (k|y|)einφyg(y)ds(y) = 0, ∀n ∈ Z. (2.32)

For any x ∈ B(0, R2), multiplying Jn(k|x|)e−inφx to (2.32) and summing them over
all n ∈ Z, along with the use of the following expansion of H(1)

0 (k|x− y|) (see [8])

H(1)
0 (k|x− y|) =

∞∑

n=−∞
Jn(k|x|)H(1)

n (k|y|)ein(φy−φx) for |y| > |x|,

one has ∫

∂Ω̃
Φ(x, y)g(y)ds(y) = 0 for x ∈ B(0, R2), (2.33)

where Φ(x, y) = i/4H(1)
0 (k|x− y|). Finally, by a completely similar argument to that

for the first case, one can verify directly that g = 0.
The proof is completed.

10



3 Imaging by partial wave emissions and the NtD map

In the imaging/reconstruction scheme developed in Section 2, we have basically made
use of the point sources emitted from every point lying on ∂Ω̃; see also the schematic
illustration in Fig. 1. In this section, we first show that it is enough for us to make
use of the point sources emitted from only part of ∂Ω̃ (see Fig. 2 for a schematic
illustration). Actually, we let Γ be an open analytic arc in R2 or an open analytic
surface in R3, which is an open patch of the boundary ∂Ω̃ of a bounded analytic
domain Ω̃ ⊂ Rn. Then, all our study in Section 2 still hold with ∂Ω̃ replaced by Γ.
We shall only outline the modified imaging/reconstruction scheme in the following.

Figure 2: Schematic illustration of the imaging/reconstruction scheme with partial
wave sources.

The modified indicator function gz ∈ L2(Γ) is given by solving the following first-
kind integral equation

∫

Γ
(ΛD − Λ0)(f(x, y))gz(y)ds(y) =

∂G(x, z)
∂ν(x)

, x ∈ ∂Ω, z ∈ Ω, (3.1)

where f(x, y) are the point sources as stated in Propositions 2.1 and 2.2. One can
show that the modified indicator function gz defined in this way would exhibit the
same behaviors as those described in Theorem 2.3 with ∂Ω̃ replaced by Γ. To that
end, it suffices to show that the modified operator L, namely the operator in (2.10)
with ∂Ω̃ replaced by Γ, still possesses those properties listed in Theorem 2.4. The idea
for its proof would be the same as that for Theorem 2.4 in the full emissions case, with
only some slight modification in proving the denseness of the modified operator L as
described in the following. In fact, for the argument of the denseness of the modified
operator L, following the proof of Lemma 2.5, (2.21) becomes

∫

∂Ω

∫

Γ
Φ(x, y)g(y)ds(y)ϕ(x)ds(x) = 0, ∀g ∈ L2(Γ), (3.2)
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which implies ∫

∂Ω
Φ(x, y)ϕ(x)ds(x) = 0 for y ∈ Γ. (3.3)

Setting
h(y) =

∫

∂Ω
Φ(x, y)ϕ(x)ds(x), y ∈ Γ (3.4)

as that in (2.23). Since Γ is an open portion of the analytic boundary ∂Ω̃, we have
by analytic continuation that h(y)|∂Ω̃ = 0, from which one could further show that
ψ = 0, verifying the denseness. For the two-dimensional case with hypersingular point
sources, the modification would be the same.

In the rest of this section, we briefly mention the necessary modifications for all of
our earlier study with the DtN map to be extended to the case with NtD map. The
counterpart to (2.12) is given by

∫

∂Ω̃
(ΥD −Υ0)(f(x, y))gz(y)ds(y) = GN (x, z), x ∈ ∂Ω, z ∈ Ω , (3.5)

where f(x, y) = ∂w(x, y)/∂ν|∂Ω with w(x, y) being the point-sources as stated in
Propositions 2.1 and 2.2. Here, we take GN (x, z) = Φ(x, z)− q(x, z), where q(x, z) is
the (unique) solution to

(∆ + k2)q(x, z) = 0 in Ω, ∂q(x, z)/∂ν|∂Ω = ∂Φ(x, z)/∂ν|∂Ω, (3.6)

for any fixed z ∈ Ω. For the case when Ω is a central disk of radius R > 0 in
R2, an analytic expression of G(x, z) is constructed in Section 4, [28]. By a similar
construction, one can show directly that if Ω is a central ball of radius R > 0 in R3,

GN (x, z) = Φ(x, z)−
∞∑

n=0

n∑

m=−n

ikh(1)
n
′(kR)jn(k|z|)Y m

n (ẑ)
jn

′(kR)
jn(k|x|)Y m

n (x̂). (3.7)

for x = |x|x̂ ∈ ∂Ω and z = |z|ẑ ∈ Ω. In the following, we set

Ŝgz(x) :=
∫

∂Ω̃
(ΥD −Υ0)(f(x, y))gz(y)ds(y), (3.8)

and hence (3.5) becomes

Ŝgz(x) = GN (x, z), x ∈ ∂Ω, z ∈ Ω. (3.9)

Under the condition that k2 is not a Dirichlet eigenvalue to −∆ in D and Ω, it is
straightforward to modify all the corresponding arguments in Section 2 to show the
following theorem on the behaviors of gz in (3.5), or equivalent in (3.9).

Theorem 3.1. For gz in (3.5) or (3.9), we have
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(i) If z ∈ D, then for every ε > 0 there exists gz,ε to (3.9) such that

‖Ŝgz,ε(x)−GN (x, z)‖H1/2(∂Ω) ≤ ε. (3.10)

Moreover, for every z∗ ∈ ∂D and every choice of gz,ε ∈ L2(∂Ω̃) in (3.10),

lim
z→z∗

‖gz,ε‖L2(∂Ω̃) = ∞ and lim
z→z∗

‖vgz,ε‖H1(D) = ∞. (3.11)

(ii) If z ∈ Ω\D̄, one can solve (3.9) by the Tikhonov regularization to have a regu-
larized solution gz,ε in L2(∂Ω̃), depending on a regularizer ε. That is, gz,ε is the
unique solution to the system

(εI + Ŝ∗Ŝ)g = Ŝ∗GN (·, z). (3.12)

Moreover, only one of the following two possibilities occurs to the sequence {gz,ε}:
either there exists a sequence εn → 0+ such that

lim
εn→0+

‖Ŝgz,εn(x)−GN (x, z)‖H1/2(∂Ω) = 0 (3.13)

and
lim

εn→0+
‖gz,εn‖L2(∂Ω̃) = ∞ ; (3.14)

or, there exists a positive constant C such that for all ε > 0,

‖Ŝgz,ε(x)−GN (x, z)‖H1/2(∂Ω) ≥ C. (3.15)

Based on Theorem 3.1, the imaging/reconstruction scheme using the NtD map is
given as follows.

Numerical Imaging/Reconstruction Scheme (NtD)
Select two cut-off values c1, c2 > 0.

Step 1. Collect the measurement data u(x; y) on ∂Ω corresponding to
∂w(x, y)/∂ν on ∂Ω for different y ∈ ∂Ω̃.
Step 2. Select a sampling mesh Th over the domain Ω.
Step 3. For each sampling point z ∈ Th, compute a Tikhonov regularized
solution gz,ε to the equation (3.9).
Step 4. If ‖gz,ε‖L2(∂Ω̃) > c1, we count z ∈\D; otherwise we compute the
residual Ŝgz,εn(x)−GN (x, z). If the norm of this residual is less than c2,
we count z ∈ D; otherwise we count z ∈\D.

Finally, we would like to mention that the previous study for imaging/reconstruction
with NtD map could be equally extended to the case with only partial wave emissions.
The extension would be the same as that described in the first part of the present
section for the case with DtN map, and we would not repeat it.
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4 Numerical experiments and discussions

In this section, numerical experiments are presented to illustrate applicability and
effectiveness of the new imaging/resonctruction approach developed in the previous
sections for the inverse obstacle scattering by near fields in two and three dimensions.
Some key parameters are fixed as follows: R = 5.5 for the radius of the surrounding
disk Ω, R1 = 6.5 for the radius of fictitious disk Ω̃ in two dimensions (ball in three
dimensions, resp.), k = 1 for the wave number, m = 3 for the order of hypersingular
point sources in two dimensions, δ = 1% for the noise level, and c = (cx, cy)T for the
object shifting with displacements cx and cy from the origin in two dimensions.

In the sequel, all the synthetic near-field data of the direct problems are gener-
ated by solving the variational equation corresponding to the system (1.1)-(1.2) with
isoparametric quadratic finite elements and encoded as the NtD map, which measure
the potential data u given the exact known Neumann input data, does not require
approximate differentiation of the potential data u for the Neumann data on the
boundary in the DtN map case and thus avoid possible instability due to the syn-
thetic data. We solve the discrete system over a family of increasingly finer meshes
over the computational domain Ω \ D until the relative error is small, e.g., less than
10−3, which, compared with the noise level we added, is negligible and viewed as
noise-free measurement data. The near-field data generated on the boundary ∂Ω are
then subjected pointwise to certain uniform random noise. The uniform random noise
in magnitude as well as in direction is added according to the following formula,

U = U + δ r1|U | exp(iπ r2) , (4.1)

where U may be the measurement data from u or ∂u
∂ν , r1 and r2 are two uniform

random numbers, both ranging from -1 to 1, and δ represents the noise level. For each
mesh point z, the corresponding integral equation is discretized through the mid-
point quadrature rule at the equidistantly distributed collocation points along the
boundary ∂Ω in two dimensions, or transformed in the spherical coordinate system
for spherical quadrature with equally spaced nodes in both latitudinal and longitudinal
directions in three dimensions. Afterward, the linear system is solved by using the
Tikhonov regularization technique, with the corresponding regularization parameters
determined by the generalized Morozov discrepancy principle.

For obstacle imaging in two dimensions, we shall test three different scatterers:
a unit disk of radius 1, a kite-shaped object, which are denoted by Di and K, re-
spectively, and a combination of Di and K (possibly at different locations). These
scatterers can be parameterized as follows:

Disk: x(t) = (cos t, sin t), 0 ≤ t ≤ 2π, (4.2)
Kite: x(t) = (cos t + 0.65 cos 2t− 0.65, 1.5 sin t), 0 ≤ t ≤ 2π. (4.3)

In two dimensions, the measurement data depend on two variables: the observation
location x on the medium boundary Γ and the incident direction d from the unit
circle in R2, where we write x = (R cos(φ), R sin(φ)) with φ ∈ [−π, π], and d =
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Figure 3: Contour plots of the real part (a) and imaginary part (b) of the observation
data u with the hypersingular wave with no noise in Example 1.

(cos(θ), sin(θ)) with θ ∈ [−π, π]. We compute the near-field measurement data at 100
equidistantly distributed observation points xj = (R cos φj , R sinφj), φj = 2jπ/100−
π, j = 1, 2, . . . , 100, corresponding to 100 equidistantly distributed incident directions
dj = (cos θj , sin θj), θj = 2jπ/100 − π, j = 1, 2, . . . , 100, around the surrounding
medium circle. We may identify the observation points and incident directions with
the index sequence {1, 2, . . . , 100} and illustrate the measurement data by the contour
plots of the corresponding 100 × 100 matrices as shown in the following examples.
Hereafter, the norms of the indicator function gz and the residual of the integral
equation ∂G(x,z)

∂ν(x) − Lgz in the NtD case are denoted by g-norm and the res-norm,
respectively. Furthermore, these norms are plotted by transformation via 10-based
logarithm for better visualization.

Example 1 . Unit disk obstacle with c = (−1.5,−1.5)T .
Figure 3 shows the contour plots of the real and imaginary parts, respectively, of

the near-field potential data u. In both plot, we see that the matrices have signifi-
cantly larger entries around their anti-diagonal. which is due to the highly localized
hypersingular source term. Except very few clues like anti-diagonal dominant pattern,
it is very hard to envisage the shape of the obstacle. The imaging problem we are con-
fronted with is to reconstruct the unknown obstacle from those elusive measurement
data.

We show the contour plot of the g-norm indicator function in Figure 4(a) and
the buried unit disk can be approximately reconstructed with the cut-off value Vcut

chosen to be −0.127 as shown in Figure 4(b). For the res-norm case, the contour plot
and the identified object with the cut-off value Vcut chosen to be −2.03 are shown
in Figure 4(c) and (d), respectively. It is interesting that both indicator functions
(g-norm or res-norm) work well for this example and the unknown object can soundly
detected with correct location and approximate shape and size. The blow-up behavior
of the g-norm, predicted by our theoretical result, is clearly shown in Figure 4(a) . The
res-norm indicator function also reveals a pattern of blow-up, which has never been
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Figure 4: Example 1. Contour plots of the g-norm indicator (a) and res-norm indicator
(c). Reconstructed obstacles from the g-norm (b) and res-norm (d) with the reference
obstacle in the red line and reconstructed one in the blue line.

investigated before and and make a distinct difference for obstacle imaging problems
between using near-field and far-field data. More precisely, one has two groups of
indicator functions which can be both used for imaging/reconstruction.

It is pointed out that the choice of the cut-off value is crucial for the reconstruction.
The same idea from [27] can be extended here for the determination of cut-off values
for obstacle imaging/resonctruction problems by taking advantage of the mutual in-
teraction between obstacle components. We will further demonstrate the effectiveness
of such choice scheme with the multi-component obstacle case in Example 3.

Example 2. Kite obstacle with c = (0, 0)T .
We test a non-convex kite-shaped obstacle in this example. Figure 5 shows the

contour plots of the real and imaginary parts, respectively, of the near-field potential
data u. From the contour plots of the g-norm and res-norm indicator functions in Fig-
ure 6(a) and (c), respectively, the obstacle can be imaged/reconstructed by choosing
the cut-off values Vcut to be 0.159 and −1.91, respectively, as shown in Figure 6(b)
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Figure 5: Contour plots of the real part (a) and imaginary part (b) of the observation
data u with the hypersingular wave with no noise in Example 2.

and (d), respectively. In particular the non-convex part is approximated very well,
which shows that our reconstruction algorithm is a promising imaging scheme for even
non-convex obstacles. We see again that the res-norm reconstruction performs better
than the g-norm one, which is exaggerated to the left tip part.

For this kite example, we investigate the possibility of using partial point source
emission waves for imaging purpose. The emission angle is reduced from the full range
[−π, π) (full circle) to [−π, 0] (lower half circle in the third and fourth quadrants), and
then further to [−π/2, 0] (lower right quarter circle in the fourth quadrant). For partial
emission waves from lower half circle, we see in Figure 7 that the lower part of the kite
is better reconstructed than its upper part, in particular in the lower left wing tip of
the kite. Compared with full-range emission case, the obstacle is more deformed due
to the lack of full data while the shape of the kite is still identifiable using half of the
measurement data. When the emission range is further restricted on the lower right
quarter circle in the fourth quadrant, Figure 8 tells us that only the rough location of
the kite and the lower part facing the emission angles can be reasonably approximated,
and the upper left part of the kite cannot be imaged well due to the severe lack of
very limited data and the fast decay properties of hypersingular point sources. This
example verifies our claim in Section 3 and endows practitioners with the chance to
obtain rough image information based on limited emission waves, for instance, in case
that only location and crude shape are preferred, such as mine detection..

Example 3. A combination of disk and kite obstacles with cdisk = (−2,−2) and
ckite = (2, 2)T .

In this example, we test the multi-component obstacle case with a combination of
a unit disk and a kite with some displacement. Figure 9 shows the contour plots of
the real and imaginary parts, respectively, of the near-field potential data u.

On the one hand, due to strong interaction from the close distance, those parts of
different objects facing each other are attracted to a certain degree, which causes those
parts looks a bit deformed. Nevertheless, the identified object is still a reasonable ap-
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Figure 6: Example 2. Contour plots of the g-norm indicator (a) and res-norm indicator
(c). Reconstructed obstacles from the g-norm (b) and res-norm (d) with the reference
obstacle in the red line and reconstructed one in the blue line.
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Figure 7: Example 2 with partial emission waves from lower half circle in the third and
fourth quadrants. Contour plots of the g-norm indicator (a) and res-norm indicator
(c). Reconstructed obstacles from the g-norm (b) and res-norm (d) with the reference
obstacle in the red line and reconstructed one in the blue line.
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Figure 8: Example 2 with partial emission waves from lower left quarter circle in the
fourth quadrant. Contour plots of the g-norm indicator (a) and res-norm indicator
(c). Reconstructed obstacles from the g-norm (b) and res-norm (d) with the reference
obstacle in the red line and reconstructed one in the blue line.
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Figure 9: Contour plots of the real part (a) and imaginary part (b) of the observation
data u with no noise in Example 3.

proximation of the original multi-component unknown obstacle. We show the contour
plot of the g-norm indicator function in Figure 10(a) and the multi-component obsta-
cle can be approximately reconstructed with the cut-off value Vcut chosen to be 0.182
as shown in Figure 10(b). For the res-norm case, the contour plot and the identified
object with the cut-off value Vcut chosen to be −2.47 are shown in in Figure 10(c) and
(d), respectively. In this example, the reconstruction based on the g-norm indicator
seems better than that based on the res-norm, particularly for those parts facing each
other.

On the other hand, this example can be explained in an alternative way, namely it
provides a similar reference idea as in [27] to choose the cut-off value in the near-field
obstacle imaging problems, which is in light of the mutual interaction between the
components of the objects. In this example, the unit disk can be used as a reference
object a priori known, we may read out the cut-off value from the isoline which matches
best the known component, and then use it to plot the isoline with the same cut-off
value to recover the unknown kite component, and vice verse. We see clearly that
the cut-off values of the two objects are correlated with each other due to the mutual
interaction of wave between the objects. Furthermore, those parts of objects facing
each other are slightly attracted due to much stronger interaction effects with smaller
distance between those parts.

Lastly, for obstacle imaging in three dimensions, we test two examples in the three-
dimensional case. The scatterers are chosen, respectively, a unit ball centered at the
origin and an acorn parametrized by ρ2(θ) = 9

25(17
4 + 2 cos(3θ)) evolving around the

z-axis [12, 14], as shown in Figures 11(a) and 12(a). For three-dimensional problems,
the observed data are measured in 41× 41 pairs of equally-spaced latitudinal and lon-
gitudinal coordinates on the surrounding sphere ∂Ω with point source waves emitted
from 41× 41 pairs of equally-spaced latitudinal and longitudinal directions.

Example 4. Unit ball obstacle centered at the origin.
The computational region is approximated by triangulation in Figures 11(b). Fig-
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Figure 10: Example 3. Contour plots of the g-norm indicator (a) and res-norm in-
dicator (c). Reconstructed obstacles from the g-norm (b) and res-norm (d) with the
reference obstacle in the red line and reconstructed one in the blue line.
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ures 11(c) and (d) illustrate one sample of the observed data u for the unit ball
scatterer when the singular source point is located at y = (−R1, 0, 0). The unit ball
serves as a calibration of the method. To that end, we extract an isosurface with the
cutoff value 0.142 from the g-norm indicator in Figure 11(e) and the other isosurface
with the cutoff value −0.8157 from the res-norm indicator in Figure 11(f).

Example 5. Acorn obstacle.
The last example is a three-dimensional nonconvex scatterer, and the computa-

tional region is approximated by triangulation in Figures 12(b). Figures 12(c) and
12(d) illustrate a sample image of the real and imaginary parts of the observed data
u for the acorn scatterer when the source point is located at y = (−R1, 0, 0). Fig-
ures 12(e) and 12(f) show the reconstructed shapes for the acorn with the g-norm
and res-norm indicators, respectively, with cut-off value being 0.098 and −0.632. The
location, shape and size of the reconstructed object are all well approximated if noise
is taken into account. Once again, this example demonstrate the applicability of the
indicators to determine an reasonably approximated unknown obstacle for practical
use in three dimensions.
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