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Eidgenössische Technische Hochschule

CH-8092 Zürich
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ARBITRARILY HIGH ORDER ACCURATE ENTROPY STABLE

ESSENTIALLY NON-OSCILLATORY SCHEMES

FOR SYSTEMS OF CONSERVATION LAWS.

U. S. FJORDHOLM, S. MISHRA, AND E. TADMOR

Abstract. We design arbitrarily high-order accurate entropy stable schemes for systems of conservation laws.
The schemes, termed TeCNO schemes, are based on two main ingredients: (i) high-order accurate entropy
conservative fluxes, and (ii) suitable numerical diffusion operators involving ENO reconstructed cell-interface
values of scaled entropy variables. Numerical experiments in one and two space dimensions are presented to
illustrate the robust numerical performance of the TeCNO schemes.

1. Introduction

Systems of conservation laws are ubiquitous in science and engineering. They encompass applications in
oceanography (shallow water equations), aerodynamics (Euler equations), plasma physics (MHD equations)
and structural mechanics (non-linear elasticity). In one space dimension, these PDEs are of the form

ut + f(u)x = 0 ∀ (x, t) ∈ R× R+,

u(x, 0) = u0(x) ∀ x ∈ R.(1.1)

u : R×R+ $→ Rm is the vector of unknowns and f is the (non-linear) flux vector. It is well-known that solutions
of (1.1) contain discontinuities in the form of shock waves, even for smooth initial data [6]. Hence, solutions of
(1.1) are sought in a weak sense. A function u ∈ L∞(R× R+) is a weak solution of (1.1) if

(1.2)

∫

R

∫

R+

uϕt + f(u)ϕx dxdt+

∫

R
u(x, 0)ϕ(x, 0) dx = 0

for all compactly supported smooth test functions ϕ ∈ C1
c (R× R+).

Weak solutions might not be unique and need to be supplemented with extra admissibility criteria, termed
entropy conditions, in order to single out a physically relevant solution [6]. Assume that there exists a convex
function E : Rm → R and a function Q : Rm → R such that ∂uQ(u) = v"∂uf(u), where v := ∂uE(u). The
functions E, Q and v are termed the entropy function, entropy flux function and entropy variables, respectively.
Multiplying (1.1) by the entropy variables v" shows that smooth solutions of (1.1) satisfy the entropy identity

(1.3) E(u)t +Q(u)x = 0.

However, the solutions of (1.1) are not smooth in general and the entropy has to be dissipated at shocks. This
translates into the entropy inequality

(1.4) E(u)t +Q(u)x ≤ 0

(in the sense of distributions). Formally, integrating (1.4) in space and asserting a periodic or no-inflow boundary,
we obtain the bound

(1.5)
d

dt

∫

R
E(u)dx ≤ 0 ⇒

∫

R
E (u(x, T )) dx ≤

∫

R
E(u0(x))dx

for all T > 0. As E is convex, the above entropy bound can be converted into an a priori estimate on the
solution of (1.1) in suitable Lp spaces [6].
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2 ULRIK S. FJORDHOLM, SIDDHARTHA MISHRA, AND EITAN TADMOR

1.1. Numerical schemes. The design of efficient numerical schemes for the approximation of hyperbolic con-
servation laws has undergone extensive development. Finite volume (conservative finite difference) methods are
among the most popular discretization frameworks. We consider a uniform Cartesian mesh {xi}i∈Z in R with
mesh size xi+1 − xi = ∆x. The midpoint values are defined as xi+1/2 :=

xi+xi+1

2 and the domain is partitioned
into intervals Ii = [xi−1/2, xi+1/2]. The conservative finite difference (finite volume) method updates point values
(cell averages in Ii) of the solution u, and has the general form

(1.6)
d

dt
ui(t) = − 1

∆x

(
Fi+1/2(t)− Fi−1/2(t)

)
,

where the numerical flux Fi+1/2 = F(ui(t),ui+1(t)) is computed from an (approximate) solution of the Riemann
problem at the interface xi+1/2 [19].

Second order spatial accuracy can be obtained with non-oscillatory TVD methods [17], and even higher
order of accuracy can be obtained with ENO [12] and WENO [24] piecewise polynomial reconstructions. An
alternative approach to a high order of spatial accuracy is the Discontinuous Galerkin(DG) method of [3]. The
DG method requires TVB limiters to suppress oscillations near discontinuities. Time integration for the semi-
discrete scheme (1.6) is performed with strong stability preserving Runge-Kutta methods [10] or with ADER
schemes [32].

1.2. Accuracy and stability. For scalar conservation laws in one space dimension, monotone (first-order)
schemes were shown to be TVD in [11] and consistent with any entropy condition in [5]. Hence, these schemes
converge to the entropy solution. E-schemes for scalar conservation laws that preserve a discrete version of
the entropy inequality (1.4) were designed by Tadmor [27] and Osher [22]. Convergence results for monotone
schemes for multi-dimensional scalar conservation laws were obtained in [2].

Second-order accurate limiter-based schemes for scalar conservation laws were shown to be stable in BV in
[26]. Second-order entropy stable schemes for scalar conservation laws were presented in [23]. Stability results
in BV for second-order and third-order accurate central schemes in the scalar case were shown in [21] and [20]
respectively.

Very few stability results exist for schemes that approximate scalar conservation laws with even higher
(≥ 3) order of accuracy. We mention [15] in which WENO schemes were shown to converge for smooth
solutions of scalar conservation laws. This result is quite limited as solutions of the conservation law (1.1) have
discontinuities. Convergence results for a streamline diffusion finite element method were shown in [16]. The
arbitrary order Discontinuous Galerkin (DG) methods were shown in [4] to satisfy a global entropy estimate,
i.e, a discrete version of (1.5) for scalar conservation laws. Note that these methods might not satisfy a local
version of the discrete entropy inequality (1.4). DG methods must be limited by a TVD or TVB limiter in order
to obtain BV bounds. Entropy stable limited DG methods are not currently available.

Convergence results for numerical schemes (even first-order schemes) approximating non-linear systems of
conservation laws are difficult to obtain, as a global well-posedness theory for such equations is not currently
available. It is reasonable to require that numerical schemes are entropy stable, i.e, satisfy a discrete version
of the entropy inequality (1.4). In particular, such a scheme satisfies a discrete form of the entropy bound
(1.5) and will be stable in a suitable Lp space. No entropy stability results for high-order numerical schemes
for approximating systems of conservation laws, based on the TVD, ENO, WENO and DG procedures, are
available. Entropy stable streamline diffusion finite element methods were proposed in [13].

1.3. Scope and outline of the paper. In view of the above discussion, it is fair to claim that none of the
currently available high and very high-order schemes for systems of conservation laws have been rigorously
shown to be stable. Given this background, we present a class of schemes in this paper that are

(i) (Formally) arbitrarily order accurate;
(ii) Entropy stable for any system of conservation laws;
(iii) Essentially non-oscillatory around discontinuities;
(iv) Convergent for linear symmetrizable systems;
(v) Computationally efficient.

We recall that entropy stability automatically provides an a priori estimate on the scheme in Lp(R). Our
schemes do not contain any tuning parameters.

Our schemes are based on the following two ingredients:
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Entropy conservative fluxes: The first step in the construction of entropy stable schemes is to use entropy
conservative fluxes, introduced by Tadmor in [28, 29]. More recent developments on entropy conservative fluxes
are described in [7, 8, 14, 30, 31]. These papers construct second-order accurate entropy conservative schemes.
Even higher order accurate entropy conservative fluxes were proposed in [18, 29]. We utilize the procedure of
[18] along with explicit formulas obtained in [7, 14] to construct computationally efficient, arbitrarily high-order
accurate entropy conservative fluxes.

Numerical diffusion operators: Following [7, 29], we add numerical diffusion in terms of entropy variables
to a entropy conservative scheme to obtain an entropy stable scheme. Arbitrary order of accuracy is obtained
by using piecewise polynomial reconstructions. We rely on a subtle non-oscillatory property, the so-called sign
property of the ENO reconstruction procedure, to prove entropy stability. The sign property of the ENO recon-
struction procedure was shown in a recent paper [9].

We term this combination of The Entropy Conservative and ENO reconstruction procedures as TeCNO
schemes and show that they are entropy stable while having a (formally) arbitrarily high order of accuracy. The
TeCNO schemes are easily extended to several space dimensions.

The rest of the paper is organized as follows: in Section 2, we describe the procedure of [18] and the two-
point entropy conservative fluxes of [7, 14], and construct high-order accurate entropy conservative schemes.
The entropy stable numerical diffusion operators of arbitrarily high order of accuracy are proposed in Section
3. The TeCNO schemes are presented in Section 4. Numerical experiments are presented in Section 5 and the
extension to several space dimensions is provided in Section 6.

2. Entropy conservative fluxes

In this section we review theory on entropy conservative schemes. These are schemes whose computed
solutions satisfy a discrete entropy equality

(2.1)
d

dt
E(ui(t)) = − 1

∆x

(
Q̃i+1/2 − Q̃i−1/2

)

for some numerical entropy flux Q̃i+1/2 consistent with Q. We introduce the following notation:

[[a]]i+1/2 = ai+1 − ai, ai+1/2 =
1

2
(ai + ai+1).

We will also use entropy potential ψ(u) := v(u)"f(u)−Q(u).

Theorem 2.1 (Tadmor [28]). Assume that a consistent numerical flux F̃i+1/2 satisfies

(2.2) [[v]]"i+1/2F̃i+1/2 = [[ψ]]i+1/2.

Then the scheme with numerical flux F̃i+1/2 is second-order accurate and entropy conservative – solutions com-
puted by the scheme satisfy the discrete entropy equality (2.1) with numerical entropy flux

(2.3) Q̃i+1/2 = v"
i+1/2F̃i+1/2 − ψi+1/2.

We note that the condition (2.2) provides a single algebraic equation for m unknowns. In general, it is not
clear whether a solution of (2.2) exists. Furthermore, the solutions of (2.2) will not be unique except in the
case of scalar equations (m = 1).

In [28], Tadmor showed the existence of a solution for the equation (2.2) for a general system of conservation
laws by the following procedure: for ξ ∈ [−1/2, 1/2], define the following straight line in phase space:

(2.4) vi+1/2(ξ) =
1

2
(vi + vi+1) + ξ(vi+1 − vi).

The numerical flux is then defined as the path integral

(2.5) F̃i+1/2 =

∫ 1/2

−1/2
f(vi+1/2(ξ))dξ.

However, it may be very hard to evaluate the path integral (2.5) except in very special cases [7].
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An explicit solution of (2.2) was devised in [29]. Take any orthogonal eigensystem rk, lk for k = 1, 2, . . . ,m.
At an interface xi+1/2, we have the two adjacent entropy variable vectors vi and vi+1. Define

v0 = vi

vk = vk−1 +
(
[[v]]"i+1/2lk

)
rk (k = 1, . . . ,m− 1)

vm = vi+1.

We are replacing the straight line joining the two adjacent states in the flux (2.5) by a piecewise linear path
along basis vectors. The resulting entropy conservative flux is given by

(2.6) F̃i+1/2 =
n∑

k=1

ψ(vk)− ψ(vk−1)

[[v]]"i+1/2lk
lk

This construction is very general and works for any system of conservation laws. However, the computation of
(2.6) may be both expensive and numerically unstable [7]. Therefore, we follow a different approach and find
explicit algebraic solutions of (2.2) for specific systems.

2.1. Examples. We consider specific hyperbolic conservation laws and describe explicit and computationally
inexpensive entropy conservative fluxes satisfying (2.2).

2.1.1. Scalar conservation laws. Consider the scalar version of (1.1) and denote u = u, f = f . Any convex
function E can serve as an entropy function. Let v and ψ be the corresponding entropy variable and potential,
respectively. It is straightforward to compute the unique entropy conservative flux F̃ in this case as

(2.7) F̃ (ui, ui+1) =

{
ψi+1−ψi

vi+1−vi
if ui *= ui+1

f(ui) otherwise.

2.1.2. Linear symmetrizable systems. Let f(u) = Au with A being a (constant) m ×m matrix. Assume that
there exists a symmetric positive definite matrix S such that SA is symmetric. Then

(2.8) E(u) =
1

2
u"Su, Q(u) =

1

2
u"SAu

constitute an entropy-entropy flux pair for the linear system. The entropy variables and -potential are given by

v = Su, ψ(u) =
1

2
u"SAu

Inserting into (2.5), one easily finds the entropy conservative flux

(2.9) F̃i+1/2 =
1

2
(Aui +Aui+1) .

2.1.3. Shallow water equations. The shallow water equations model a body of water under the influence of
gravity, and has conservative variables and flux

(2.10) u =

[
h
hu

]
, f(u) =

[
hu

hu2 + 1
2gh

2

]
.

Here, h and u are the depth and velocity of the water, respectively. The (constant) acceleration due to gravity
is denoted by g. The entropy in this case is the total energy:

(2.11) E(u) =
hu2 + gh2

2
, Q(u) =

hu3

2
+ guh2.

The corresponding entropy variables and potential are given by

(2.12) v =

[
gh− u2

2
u

]
, ψ(u) =

1

2
guh2.

An explicit solution of (2.2) for the shallow water equations was proposed in the recent paper [7]:

(2.13) F̃i+1/2 =

[
hi+1/2ui+1/2

hi+1/2(ui+1/2)
2 + g

2h
2
i+1/2

]
.

The above flux is clearly consistent, very simple to implement and computationally inexpensive.
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2.1.4. Euler equations. Let

(2.14) u =




ρ
ρu
E



 , f(u) =




ρu

ρu2 + p
(E + p)u



 .

Here, ρ, u and p are the density, velocity and pressure of the gas. The total energy E is related to other variables
by the equation of state:

(2.15) E =
p

γ − 1
+

1

2
ρu2,

with γ being the gas constant. Let s = log(p) − γ log(ρ) be the thermodynamic entropy. An entropy-entropy
flux pair for the Euler equations is

(2.16) E =
−ρs

γ − 1
, Q =

−ρus

γ − 1
.

The corresponding entropy variables and -potential are

(2.17) v =





γ−s
γ−1 − ρu2

2p
ρu
p

−ρ
p



 , ψ(u) = ρu.

In a recent paper [14], Ismail and Roe have constructed an explicit solution of (2.2) for the Euler equations.
Defining the parameter vectors z as

(2.18) z =




z1

z2

z3



 =

√
ρ

p




1
u
p



 ,

the entropy conservative flux of [14] is F̃i+1/2 =
[
F̃1

i+1/2 F̃2
i+1/2 F̃3

i+1/2

]"
with

(2.19)

F̃1
i+1/2 = z2i+1/2

(
z3
)ln
i+1/2

F̃2
i+1/2 =

z3i+1/2

z1i+1/2

+
z2i+1/2

z1i+1/2

F̃1
i+1/2

F̃3
i+1/2 =

1

2

z2i+1/2

z1i+1/2



γ + 1

γ − 1

(
z3
)ln
i+1/2

(z1)lni+1/2

+ F̃2
i+1/2





Here, aln is the logarithmic mean, defined as

alni+1/2 =
[[a]]i+1/2

[[log(a)]]i+1/2

.

The above examples show that we can obtain explicit and computationally inexpensive expressions of entropy
conservative fluxes for a large class of systems. In case such explicit formulas are not available, we can use (2.6)
to compute the two point entropy conservative flux.

2.2. High-order entropy conservative fluxes. The entropy conservative fluxes defined above are only
second-order accurate. However, following the procedure of LeFloch, Mercier and Rohde [18], we can use
these fluxes as building blocks to obtain 2p-th order accurate entropy conservative fluxes for any p ∈ N. These
consist of linear combinations of second-order accurate entropy conservative fluxes F̃, and have the form

(2.20) F̃2p
i+1/2 =

p∑

r=1

αp
r

r−1∑

s=0

F̃(ui−s,ui−s+r).

Theorem 2.2. [18, Theorem 4.4] For p ∈ N, assume that αp
1, . . . ,α

p
p solve the p linear equations

2
p∑

r=1

rαp
r = 1,

p∑

i=1

i2s−1αp
r = 0 (s = 2, . . . , p),

and define F̃2p by (2.20). Then the finite difference scheme with flux F̃2p is
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(i) 2p-th order accurate, in the sense that for sufficiently smooth solutions u we have

1

∆x

(
F̃2p (ui−p+1, . . . ,ui+p)− F̃2p (ui−p, . . . ,ui+p−1)

)
= ∂xf(ui) +O

(
∆x2p

)
.

(ii) entropy conservative – it satisfies the discrete entropy identity

d

dt
E(ui(t)) +

1

∆x

(
Q̃2p

i+1/2 − Q̃2p
i−1/2

)
= 0

where

(2.21) Q̃2p
i+1/2 =

p∑

r=1

αp
r

r−1∑

s=0

Q̃(ui−s,ui−s+r)

As an example, the fourth-order (p = 2) version of the entropy conservative flux (2.20) is

(2.22) F̃4
i+1/2 =

4

3
F̃(ui,ui+1)−

1

6

(
F̃(ui−1,ui+1) + F̃(ui,ui+2)

)

and the sixth-order (p = 3) version

F̃6
i+1/2 =

3

2
F̃(ui,ui+1)−

3

10

(
F̃(ui−1,ui+1) + F̃(ui,ui+2)

)

+
1

30

(
F̃(ui−2,ui+1) + F̃(ui−1,ui+2) + F̃(ui,ui+3)

)
.

(2.23)

Remark 2.3. Since the high-order entropy conservative fluxes (2.20) are based on linear combinations of two-

point second order fluxes F̃, they are computationally tractable only if computationally inexpensive two-point
fluxes like those described in the previous section are available.

3. Numerical Diffusion operators

The entropy of solutions of hyperbolic conservation laws is only conserved if the solution is smooth. However,
the solutions develop discontinuities where entropy is dissipated, which is reflected in the entropy inequality (1.4).
The entropy conservative schemes described in the previous section will produce high-frequency oscillations near
shocks (see [7] for numerical examples). Consequently, we need to add some dissipative mechanism to ensure
that entropy is dissipated. This is achieved by designing entropy stable schemes – schemes whose computed
solutions satisfy a discrete entropy inequality

(3.1)
d

dt
E(ui) +

1

∆x

(
Q̂i+1/2 − Q̂i−1/2

)
≤ 0

for some numerical entropy flux function Q̂i+1/2 consistent with Q.

3.1. First-order numerical diffusion operator. We begin with the second-order entropy conservative flux
F̃ (2.2) and add a numerical diffusion term to define

(3.2) Fi+1/2 = F̃i+1/2 −
1

2
Di+1/2[[v]]i+1/2.

Here, D is any symmetric positive definite matrix.

Lemma 3.1 (Tadmor [28]). The scheme with flux (3.2) is entropy stable – its solutions satisfy

d

dt
E(ui) +

1

∆x

(
Q̂i+1/2 − Q̂i−1/2

)
= − 1

4∆x

(
[[v]]"i+1/2Di+1/2[[v]]i+1/2 + [[v]]"i−1/2Di−1/2[[v]]i−1/2

)
≤ 0,(3.3)

where

Q̂i+1/2 = Q̃i+1/2 +
1

2
v"
i+1/2Di+1/2[[v]]i+1/2

and Q̃i+1/2 is the numerical entropy flux function of the flux F̃i+1/2.

As a corollary, we can sum (3.3) over all i to obtain the entropy dissipation estimate

d

dt

∑

i

E(ui) = − 1

2∆x

∑

i

[[v]]"i+1/2Di+1/2[[v]]i+1/2 ≤ 0
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Although the above lemma holds for any symmetric positive definite Di+1/2, we will use diffusion matrices
of the form

(3.4) Di+1/2 = RΛR".

Here, R is the matrix of eigenvectors of the flux Jacobian ∂uf and Λ is a positive diagonal matrix that depends
on the eigenvalues of the flux Jacobian. Two examples of the matrix Λ are

Roe type diffusion operator:

(3.5) Λ = diag
(
|λ1|, . . . , |λm|

)
,

where λ1, . . . ,λm are the eigenvalues of ∂uf(ui+1/2);

Rusanov type diffusion operator:

(3.6) Λ = max
(
|λ1|, . . . , |λm|

)
I,

with I being the identity matrix in Rm×m.

As the term [[v]]i+1/2 is of the order of ∆x, the scheme with flux (3.2) is in general only first-order accurate.

This remains true even if we replace the entropy conservative flux F̃ in (3.2) with the very high-order entropy
conservative flux (2.20).

3.2. High-order diffusion operators. In order to obtain a higher order accurate scheme, we need to perform
a suitable reconstruction of the entropy variables v. A k-th order (k ∈ N) reconstruction produces a piecewise
(k − 1)-th degree polynomial function vi(x). Denoting

(3.7) v−
i = vi(xi−1/2), v+

i = vi(xi+1/2), 〈〈v〉〉i+1/2 = v−
i+1 − v+

i ,

we define our higher-order (depending on the order of the reconstruction) numerical flux as

(3.8) Fk
i+1/2 = F̃2p

i+1/2 −
1

2
Di+1/2〈〈v〉〉i+1/2

(compare to (3.2)). The number p ∈ N is chosen as p = k/2 if k is even and p = (k + 1)/2 if k is odd. The flux

F̃2p is the high order entropy conservative flux given by (2.20). The scheme with numerical flux (3.8) is k-th
order accurate – its truncation error is O(∆xk) for smooth solutions. However, the scheme with numerical flux
(3.8) might not be entropy stable. We need to modify the reconstruction procedure to ensure entropy stability.

Lemma 3.2. For each i ∈ Z, let Ri+1/2 ∈ Rm×m be nonsingular, let Λi+1/2 be any nonnegative diagonal matrix
and define the numerical diffusion matrix

(3.9) Di+1/2 = Ri+1/2Λi+1/2R
"
i+1/2.

Let vi(x) be a polynomial reconstruction of the entropy variables in the cell Ii such that for each i, there exists
a diagonal matrix Bi+1/2 ≥ 0 such that

(3.10) 〈〈v〉〉i+1/2 =
(
R"

i+1/2

)−1
Bi+1/2R

"
i+1/2[[v]]i+1/2

Then the scheme with numerical flux (3.8) is entropy stable – its computed solutions satisfy the entropy dissi-
pation estimate

(3.11)
d

dt
E(ui) +

1

∆x

(
Q̂k

i+1/2 − Q̂k
i−1/2

)
≤ 0,

where the numerical entropy flux function Q̂k is defined as

Q̂k
i+1/2 = Q̃2p

i+1/2 −
1

2
v"
i+1/2Di+1/2〈〈v〉〉i+1/2

and Q̃2p is defined in (2.21).
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Proof. Multiplying the finite difference scheme (1.6) by v"
i and imitating the proof of Theorem 2.2 (see [28]),

we obtain

d

dt
E(ui) = − 1

∆x

(
Q̃2p

i+1/2 − Q̃2p
i−1/2

)
+

1

2∆x

(
v"
i Di+1/2〈〈v〉〉i+1/2 − v"

i Di−1/2〈〈v〉〉i−1/2

)

= − 1

∆x

(
Q̂k

i+1/2 − Q̂k
i−1/2

)
− 1

4∆x

(
[[v]]"i+1/2Di+1/2〈〈v〉〉i+1/2 + [[v]]"i−1/2Di−1/2〈〈v〉〉i−1/2

)
.

Suppressing vector and matrix indices i+ 1/2 for the moment, we have by (3.9) and (3.10)

[[v]]"D〈〈v〉〉 = [[v]]"RΛR−1RBR"[[v]] = [[v]]"RΛBR"[[v]] =
(
R"[[v]]

)"
ΛB

(
R"[[v]]

)
≥ 0

(since Bi+1/2 ≥ 0), and so

d

dt
E(ui) ≤ − 1

∆x

(
Q̂k

i+1/2 − Q̂k
i−1/2

)
.

!

Remark 3.3. If the reconstructed variables satisfies (3.10), then the numerical flux (3.8) admits the equivalent
representation

Fk
i+1/2 = F̃2p

i+1/2 −
1

2
Ri+1/2Λi+1/2Bi+1/2R

"
i+1/2[[v]]i+1/2.

This reveals the role of Bi+1/2 as limiting the amount of numerical diffusion: in smooth parts of the flow, we
have Bi+1/2 ≈ 0, and we are left with the entropy conservative flux.

Although any R,Λ in (3.8) gives an entropy stable scheme, we choose Λ to be either the Rusanov (3.6) or
Roe (3.5) matrices. Similarly, R is chosen as the matrix of eigenvectors of the flux Jacobian. The rationale for
doing so is as follows. The Roe diffusion operator has the form R|Λ|R−1[[u]], where R and Λ are evaluated at
the Roe average. In many cases there is some (possible different) intermediate state ui+1/2 such that [[u]]i+1/2 =
vu[[v]]i+1/2, where vu = ∂uv(ui+1/2). Moreover, by a theorem due to Barth [1, Theorem 4], there exists a scaling

of the column vectors of R = R(ui+1/2) such that vu = RR". Then

R|Λ|R−1[[u]] ≈ R|Λ|R−1vu[[v]] = R|Λ|R"[[v]].

This is precisely the form of our diffusion operator.

3.3. Reconstruction procedure. Lemma 3.2 provides sufficient conditions on the reconstruction for the
scheme to be entropy stable. In this section, we will describe reconstruction procedures that satisfy the crucial
condition (3.10). Assume for the moment that vi,vi+1,v

+
i ,v

−
i+1 are given. Define the scaled entropy variables

w±
i = R"

i±1/2vi, w̃±
i = R"

i±1/2v
±
i .

The condition (3.10) now reads

〈〈w̃〉〉i+1/2 = Bi+1/2〈〈w〉〉i+1/2.

This is a component-wise condition; denoting the l-th component of wi and w̃i by wl
i and w̃l

i, respectively, the
above condition is equivalent to

if 〈〈wl〉〉i+1/2 > 0 then 〈〈w̃l〉〉i+1/2 ≥ 0

if 〈〈wl〉〉i+1/2 < 0 then 〈〈w̃l〉〉i+1/2 ≤ 0

if 〈〈wl〉〉i+1/2 = 0 then 〈〈w̃l〉〉i+1/2 = 0.

(3.12)

We abbreviate this by writing

(3.13) sign〈〈w̃l〉〉i+1/2 = sign〈〈wl〉〉i+1/2.

We term this highly non-linear structural property of the reconstruction the sign property. Reconstruction
procedures that satisfy the sign property are presented following sections.
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3.4. 2nd order TVD reconstruction. We begin with the second-order case, which involves reconstruction
with piecewise linear functions. For a fixed l, we denote the l-th component of the scaled entropy variable as w
and define the undivided differences

(3.14) δi+1/2 = 〈〈w〉〉i+1/2.

Let φ be some slope limiter with the symmetry property φ(θ−1) = φ(θ)θ−1 (see [19]). Define the quotients

θ−i =
δi+1/2

δi−1/2
and θ+i =

δi−1/2

δi+1/2
.

We denote the “slope” in grid cell Ii by

σi =
1

∆x
φ(θ−i )δi−1/2 =

1

∆x
φ(θ+i )δi+1/2.

(The second equality follows from the symmetry of φ.) Hence, the reconstructed values at the left and right
cell interfaces of grid cell Ii are given by w̃−

i = w−
i − 1

2φ(θ
−
i )δi−1/2 and, respectively, w̃+

i = w+
i + 1

2φ(θ
+
i )δi+1/2.

We obtain

〈〈w̃〉〉i+1/2 = w−
i+1 − w+

i − 1

2

(
φ(θ+i ) + φ(θ−i+1)

)
δi+1/2 =

(
1− 1

2

(
φ(θ+i ) + φ(θ−i+1)

))
δi+1/2.

Recalling the definition of δ (3.14), we find that the sign property (3.12) is satisfied if and only if φ(θ) ≤ 1 for
all θ ∈ R. It is easily seen that the minmod limiter, given by

(3.15) φmm(θ) =






0 if θ < 0

θ if 0 ≤ θ ≤ 1

1 otherwise

satisfies φ(θ) ≤ 1. In fact, the minmod limiter is the only symmetric TVD limiter that satisfies the sign property.
However, non-TVD limiters might satisfy this condition. One example is the second-order version of the ENO
reconstruction procedure [12], which can be expressed in terms of the flux limiter

(3.16) φ(θ) =

{
θ if − 1 ≤ θ ≤ 1

1 else,

This limiter is both symmetric and satisfies φ(θ) ≤ 1, thus ensuring the sign property. Indeed, the ENO limiter
may be viewed as a symmetric extension of the minmod limiter (3.15) into the negative θ-axis.

3.5. ENO reconstruction procedure. The above discussion reveals that the second-order version of the ENO
reconstruction procedure satisfies the sign property, encouraging us to investigate whether the sign property
holds for higher-order versions of the ENO procedure.

As described in [12], the ENO procedure for k-th order accurate reconstructions point values wi amounts to
selecting a stencil of k points {xi−ri , . . . , xi−1−ri+k}. The integer ri ∈ {0, . . . , k−1} is the left shift index of the
stencil. We may determine the left-displacement index ri for the grid cell Ii by using values of the undivided
differences {δj+1/2}i+k−1

j=i−k+1 of wi.
The question of whether the ENO procedure satisfies the sign property was answered in the recent paper [9].

Theorem 3.4 (Fjordholm, Mishra, Tadmor [9]). Let k ∈ N and let ω+
i ,ω

−
i+1 be the left and right values at the

cell interface xi+1/2, obtained through a k-th order ENO reconstruction of the point values ωi of a function ω.
Then the reconstruction satisfies the sign property:

(3.17) sign
(
ω−
i+1 − ω+

i

)
= sign

(
ωi+1 − ωi

)
.

Furthermore, we have

(3.18)
ω−
i+1 − ω+

i

ωi+1 − ωi
≤ Ck

for a constant Ck that only depends on k.
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As the values we are reconstructing, the scaled entropy variables, are centered at cell interfaces, we must
modify the reconstruction method somewhat. Given the interface values of each component w of the scaled
entropy variables w for a fixed grid cell Ii, define the point value µi

i = w−
i , and inductively

µi
j+1 = µi

j + δj+1/2 (j = i, i+ 1, . . . )

µi
j−1 = µi

j − δj−1/2 (j = i, i− 1, . . . ).

Similarly, we define νii = w+
i and

νij+1 = νij + δj+1/2 (j = i, i+ 1, . . . )

νij−1 = νij − δj−1/2 (j = i, i− 1, . . . ).

Then µ and ν retain the cell interface jumps of w,

(3.19) [[µi]]j+1/2 = [[νi]]j+1/2 = δj+1/2 = 〈〈w〉〉j+1/2 for all j.

As ν and µ have the same jump at a cell interface, we have

(3.20) µi+1
j = νij for all j.

Since the divided differences of µ and ν coincide with those obtained with δj+1/2 as described above, the
ENO stencil selection procedure will yield exactly the same stencil (in other words, the same left-displacement
index ri) whether µ or ν is provided as input data for the procedure. Let pi(x) and qi(x), respectively, be the
unique (k − 1)-th order polynomial interpolations for the values µi and νi on the above stencil. Since

µi
j = νij + (µi

i − νii) for all j,

we have
pi(x) = qi(x) + (µi

i − νii) for all x.

Hence, the interpolation polynomial need only be computed once for both the left and the right interfaces.
Finally, we obtain left and right reconstructed values:

w̃−
i = pi(xi−1/2) and w̃+

i = qi(xi+1/2).

This process is repeated in each grid cell Ii and for each component of w±
i .

Corollary 3.5. The reconstructed values w̃±
i satisfy the sign property (3.12).

Proof. Fix i ∈ Z and denote the (standard) ENO reconstructed polynomial of point values {µi+1
j }j∈Z in grid

cell j by hj(x). Because of (3.20), the polynomial qi is precisely equal to hj . Obviously, pi+1 = hi+1. Hence,

〈〈w̃〉〉i+1/2 = pi+1(xi+1/2)− qi(xi+1/2) = hi+1(xi+1/2)− hi(xi+1/2),

which by Theorem 3.4 has the same sign as µi+1
i+1 − µi+1

i , which by definition equals 〈〈w〉〉i+1/2. !

4. Arbitrarily high order accurate entropy stable schemes.

We combine the high-order accurate entropy conservative fluxes (2.20) with a numerical diffusion operator
based on ENO reconstruction of the scaled entropy variables. This defines an arbitrarily high-order accurate
entropy stable scheme.

Theorem 4.1. For any k ≥ 1, let 2p = k (if k is even) or 2p = k + 1 (if k is odd). Define the entropy

conservative flux F̃2p by (2.20). Let 〈〈v〉〉 in (3.8) be defined by the k-th order accurate ENO reconstruction
procedure (as outlined in Section 3.5). Then the finite difference scheme with numerical flux (3.8) is

(i) (k − 1)-th order accurate for smooth solutions.
(ii) entropy stable – computed solutions satisfy the discrete entropy inequality (3.11).

Proof. The proof of (i) is delayed to Appendix A. (ii) is a direct consequence of Lemma 3.2; condition (3.10) of
that lemma follows from Corollary 3.5. !

Remark 4.2. Note that we are only able to prove that the scheme is (k − 1)-th order accurate – there is
a nonzero term of order ∆xk−1 in the diffusion operator that does not vanish. However, in practice we see
behavior of order ∆xk, and therefore chose not to alter our scheme.
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Our scheme combines entropy conservative flux (2.20) with ENO based numerical diffusion operator in (3.8);
hence, we term them as TeCNO schemes.

We have the following convergence result for TeCNO schemes approximating linear symmetrizable systems.

Theorem 4.3. Consider a linear system, i.e, f(u) = Au for a constant m×m matrix A, and assume that there
exists a symmetric positive definite matrix S such that SA is symmetric. Let ui(t) be the solution computed with
the scheme with flux (3.8), based on the two-point entropy conservative flux (2.9), and define u∆x(x, t) = ui(t)
for x ∈ Ii. Then u∆x ⇀ u (up to a subsequence) in L2([0, T ], L2(R)) as ∆x → 0, where u is the unique weak
solution of the linear system.

The proof of this theorem is given in Appendix B. Note that this convergence result holds even when
the solution of the linear system is discontinuous. It is straightforward to generalize this result to linear
symmetrizable systems with variable (but smooth) coefficients.

At the time of writing, we are unable to obtain a similar convergence result for scalar non-linear conservation
laws (except for first-order schemes) due to technical complications. However, using a specific entropy function,
we obtain an L∞ bound. Let u = u denote the computed solution, and let a, b ∈ R be such that a < u0(x) < b
for all x ∈ R. Then
(4.1) E(u) = − log(b− u)− log(u− a)

is convex and hence serves as an entropy function. The corresponding entropy conservative flux is easily found
with the formula (2.2).

Lemma 4.4. Solutions computed with the TeCNO flux (3.8) for the entropy (4.1) satisfy the L∞ estimate

(4.2) a < ui(T ) < b ∀ i ∈ Z, T ≥ 0.

Proof. Integrating the entropy inequality (3.11) over i ∈ Z and t ∈ [0, T ] gives∆x
∑

i E(ui(T )) ≤ ∆x
∑

i E(u0(xi)).
In particular, since E(u) ≥ −2 log

(
b−a
2

)
for all u ∈ (a, b), we have E(ui(T )) ≤ C for all i ∈ Z. Since E(u) → ∞

as u → a, b, there must necessarily be some C2 > 0 such that ui(T ) ≤ C2 for all i ∈ Z. !

5. Numerical experiments

We test the following schemes:

ENOk: k-th order accurate standard ENO scheme in the MUSCL formulation [12].
TeCNOk: k-th order accurate entropy stable scheme with numerical flux (3.8)

for k = 2, 3, 4 and 5 on a suite of numerical experiments involving scalar equations as well as systems. The
ENO-MUSCL and TeCNO schemes are semi-discrete and are integrated in time with a 2nd, 3rd or 4th order
explicit Runge-Kutta method. In all experiments we use a CFL number of 0.45.

5.1. Linear advection equation. We consider the linear advection equation

(5.1) ut + aux = 0,

with wavespeed a = 1 in the domain [−1, 1] with periodic boundary conditions. The initial data is u0(x) =
sin(πx). The entropy function in this case is the total energy E(u) = u2/2 and the entropy variable is v = u.
The entropy conservative flux F̃ is the average flux (2.9). We use the advection velocity a as the coefficient of
diffusion by setting D ≡ a in (3.8). The 4th and 5th order ENO and TeCNO schemes are compared in Figure
1. To illustrate the differences between the schemes, the solutions are computed on a very coarse mesh of 20
points and the simulation is performed for a large time T = 10. The results show that the fifth order schemes
are more accurate than the fourth order schemes. Furthermore, the TeCNO scheme is clearly more accurate
than the corresponding standard ENO scheme of the same order.

5.2. Burgers’ equation. Next we consider Burgers’ equation

(5.2) ut +

(
u2

2

)

x

= 0.

The computational domain is [−1, 1] with periodic boundary conditions, and we use the initial data u0(x) =

1+
1

2
sin(πx). We choose to use the logarithmic entropy function E(U) = − log(b−u)− log(u−a) with constants
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Figure 1. Solution at t = 10 computed with fourth- and fifth-order accurate ENO and TeCNO
schemes for the linear advection equation.
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Figure 2. Approximate solutions computed with third, fourth and fifth order accurate ENO
and TeCNO schemes for Burgers’ equation at time t = 1.2 on a mesh of 100 points.

a = 0 and b = 2 in order to bound the initial data. The entropy conservative flux is given by

(5.3) F̃i+1/2 =
uiui+1

2
+

b

(b− u)lni+1/2

− a

(u− a)lni+1/2

− 2

1

(b− ui+1)(b− ui)
+

1

(ui+1 − a)(ui − a)

.

Numerical results are shown in Figure 2. The initial sine wave breaks down into a shock and a rarefaction
wave. In this example, the ENO and TeCNO schemes show comparable resolution at the discontinuities. There
is no visible gain in using a higher order scheme at this mesh size.

5.3. The wave equation. We consider the one-dimensional wave equation

(5.4)
ht + cmx = 0

mt + chx = 0

and let c = 1. The wave equation is a linear symmetric system and has the energy E(u) = 1
2

(
h2 +m2

)
as

entropy function, with entropy variables v = u. The resulting entropy conservative flux is the average flux
(2.9). We use the diffusion matrix

D =

[
c 0
0 c

]
,

in the numerical diffusion operator in (3.8). The ENO-MUSCL scheme uses reconstruction along characteristics.

5.3.1. Smooth waves. Consider the wave equation (5.4) with initial data h(x, 0) = sin(4πx) and m(x, 0) ≡ 0 in
the domain x ∈ [−1, 1] with periodic boundary conditions. We compute L1 errors for all the schemes (computed
with respect to the exact solution) at time t = 1 and show the convergence plot in Figure 3. The figures show
that both the ENO and TeCNO schemes converge at the claimed orders of accuracy. The TeCNO schemes have
consistently lower error amplitudes than the ENO schemes at the same order.
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Figure 3. L1 errors in h for the wave equation with third, fourth and fifth order ENO and
TeCNO schemes for the wave equation with sine initial data.

5.3.2. Contact discontinuities. We consider the wave equation (5.4) with initial data

h(x, 0) =

{
x− 1 if x < 0

1− x if x > 0
m(x, 0) = 0

on the domain x ∈ [−1, 1] with periodic boundary conditions. The solution features an initial jump discontinuity
at x = 0 which breaks into two linear (contact) discontinuities. Computed solutions at time t = 1.5 for each
scheme, on a mesh of 100 points, is displayed in Figure 4. The two methods resolve the flow with a comparable
level of accuracy.
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Figure 4. The height for the wave equation with discontinuous initial data, computed with
the third, fourth and fifth order ENO and TeCNO schemes at time t = 1.5 on a mesh of 100
points.

5.4. The shallow water equations. We consider the shallow water equations (2.10) with entropy function,
entropy flux and entropy variables given in (2.11), (2.12). For the TeCNO schemes we use the two-point entropy
conservative flux (2.13). The numerical diffusion operator in (3.8) is of the Roe type (3.5) with eigenvalues and
eigenvectors of the Jacobian evaluated at the arithmetic average of the left and right states. The ENO schemes
use a MUSCL approach with the Rusanov numerical flux. The gravitational constant is set to g = 1.

5.4.1. A dambreak problem. We consider a dambreak problem for the shallow water equations with initial data

h(x, 0) =

{
1.5 if |x| < 0.2

1 if |x| > 0.2
hu(x, 0) = 0

for x ∈ [−1, 1] with periodic boundary conditions The exact solution consists of two shocks separated by
two rarefactions. We display computed heights in Figure 5. The figure reveals that the TeCNO schemes are
comparable to the ENO schemes of corresponding order: the TeCNO schemes approximate the shocks more
sharply than the ENO schemes, whereas the ENO schemes resolve the rarefactions more accurately, albeit with
small oscillations. The TeCNO schemes resolve the rarefactions without any noticeable oscillations.

5.5. Euler equations. We consider the Euler equations, as described in Section 2.1.4. We define the TeCNO
scheme with entropy conservative flux given by (2.19) and diffusion matrix being of the Roe type (3.5). The
eigenvalues and eigenvectors of the Jacobian are computed at the arithmetic average of the left and right states.
The ENO-MUSCL schemes use the standard Roe numerical flux.
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Figure 5. Computed heights for the shallow water dam break problem with third, fourth and
fifth order ENO and TeCNO schemes at t = 0.4 on a mesh of 100 points.
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Figure 6. Comparing ENO (blue circles) and TeCNO (red circles) with the reference solution
(black line) for the Sod shock tube. Density at t = 1.3 on a mesh of 100 points is plotted.

5.5.1. Sod shock tube. The Sod shock tube experiment is the Riemann problem

(5.5) u(x, 0) =

{
uL if x < 0

uR otherwise,

with 


ρL
uL

pL



 =




1
0
1



 ,




ρR
uR

pR



 =




0.125
0
0.1





in the computational domain x ∈ [−5, 5]. The initial discontinuity breaks into a left-going rarefaction wave, a
right-going shock wave and a right-going contact discontinuity. The computed density with the ENO3, ENO4,
TeCNO3 and TeCNO4 schemes at time t = 1.3 on a mesh of 100 points is shown in Figure 6. The results
show that the ENO and TeCNO schemes are quite good at resolving the waves. The ENO4 scheme is slightly
oscillatory behind the contact whereas the TeCNO3 and TeCNO4 schemes resolve all the waves without any
noticeable oscillations.
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Figure 7. Comparing ENO (blue circles) and TeCNO (red circles) with exact solution (black
line) for the Lax shock tube. The density at time t = 1.3 on a mesh of 100 points is plotted.

5.5.2. Lax shock tube. We consider the Euler equations in the computational domain [−5, 5] with Riemann
initial data (5.5) given by




ρL
uL

pL



 =




0.445
0.698
3.528



 ,




ρR
uR

pR



 =




0.5
0

0.571



 .

The computed density at t = 1.3 on a mesh of 100 points is shown in Figure 7. The results for ENO and
TeCNO schemes are very similar in this experiment. There are slight oscillations behind the shock for the
TeCNO schemes.

5.5.3. Shock-Entropy wave interaction. This numerical example was proposed by Shu and Osher in [24] and is
a good test of a scheme’s ability to resolve a complex solution with both strong and weak shocks and highly
oscillatory but smooth waves. The computational domain is [−5, 5] and we use with initial data

u(x, 0) =

{
uL if x < −4

uR otherwise,

with 


ρL
uL

pL



 =




3.857143
2.629369
10.33333



 ,




ρR
uR

pR



 =




1 + ε sin(5x)

0
1



 .

As a reference solution, we compute with the ENO3 scheme on a mesh of 1600 grid points. The approximate
solutions are computed on a mesh of 200 grid points, corresponding to about 7 grid points for each period of
the entropy waves. The solution computed by the ENO and TeCNO schemes are displayed in Figure 8. There
are very minor differences between the ENO and TeCNO schemes of the same order. The test also illustrates
that the higher order schemes perform better than the low order schemes.
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Figure 8. Comparing ENO (blue circles) and TeCNO (red circles) with a reference solution
(black line) on the Shu-Osher shock-entropy wave interaction problem. The plotted quantity
is the density at time t = 1.8 on a mesh of 200 points.

5.6. Conclusions. The numerical experiments show that the TeCNO schemes achieve the claimed orders of
accuracy for smooth solutions and resolve shocks and other waves robustly. They are comparable to the standard
ENO schemes of the same order.

6. Multi-dimensional problems

The arbitrary-order entropy stable TeCNO schemes can easily be extended to rectangular meshes in several
space dimensions. We present a brief description of such schemes and omit details as they are very similar to
the one-dimensional case.

6.1. Continuous setting. For simplicity, we concentrate on systems of conservation laws in two space dimen-
sions:

ut + f(u)x + g(u)y = 0 ∀ (x, y, t) ∈ R× R× R+,

u(x, y, 0) = u0(x, y) ∀ (x, y) ∈ R× R.(6.1)

Here, u : R × R × R+ → Rm is the vector of unknowns and f ,g are flux vectors in the x- and y-directions,
respectively. We assume that there exists a convex function E : Rm → R and functions Qx, Qy : Rm → R such
that

(6.2) ∂uQ
x(u) = v"∂uf(u), ∂uQ

y(u) = v"∂ug(u).

Again, the entropy variables are defined as v = ∂uE(u). Entropy solutions of (6.1) satisfy the entropy inequality

(6.3) E(u)t +Qx(u)x +Qy(u)y ≤ 0

(in the sense of distributions). We will design arbitrary-order accurate finite difference schemes that satisfy a
discrete version of (6.3).
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6.2. Entropy stable finite difference schemes. We consider a (uniform) Cartesian mesh in R2 consisting
of mesh points (xi, yj) = (i∆x, j∆y) for i, j ∈ Z and ∆x,∆y > 0. Denoting the midpoints as

xi+1/2,j =
xi + xi+1

2
, yi,j+1/2 =

yj + yj+1

2
,

a semi-discrete conservative finite difference scheme for (6.1) solves for point values ui,j ≈ u(xi, yj), and can be
written as

(6.4)
d

dt
ui,j(t) +

1

∆x

(
Fi+1/2,j(t)− Fi−1/2,j(t)

)
+

1

∆y

(
Gi,j+1/2(t)−Gi,j−1/2(t)

)
= 0.

Here, F,G are numerical flux functions that are consistent with f and g, respectively. We suppress the t
dependence of all quantities below for notational convenience. We will use the notation

[[a]]i+1/2,j = ai+1,j − ai,j , [[a]]i,j+1/2 = ai,j+1 − ai,j ,

ai+1/2,j =
ai,j + ai+1,j

2
, ai,j+1/2 =

ai,j + ai,j+1

2
.

For any integer k ≥ 1, the k-th order accurate TeCNO numerical fluxes are defined as

(6.5) Fi+1/2,j = F̃2p
i+1/2,j −

1

2
Dx

i+1/2,j〈〈v〉〉i+1/2,j , Gi,j+1/2 = G̃2p
i,j+1/2 −

1

2
Dy

i,j+1/2〈〈v〉〉i,j+1/2.

The fluxes F̃2p, G̃2p, matrices Dx,Dy and vectors 〈〈v〉〉i+1/2,j , 〈〈v〉〉i,j+1/2 are described below.

6.2.1. High-order entropy conservative fluxes. The setting of entropy conservative schemes is completely anal-
ogous to the one-dimensional case [28]. Two-point entropy conservative fluxes F̃, G̃ are chosen so that they
satisfy

(6.6) [[v]]"i+1/2,jF̃i+1/2,j = [[ψx]]i+1/2,j , [[v]]"i,j+1/2G̃i,j+1/2 = [[ψy]]i,j+1/2

for all i, j, where the entropy potentials are defined as

(6.7) ψx = v"f −Qx, ψy = v"g −Qy.

Analogously to the one-dimensional case, solutions computed with the entropy conservative fluxes (6.6) satisfy
the entropy equality

d

dt
E(ui,j) +

1

∆x

(
Q̃x

i+1/2,j − Q̃x
i−1/2,j

)
+

1

∆y

(
Q̃y

i,j+1/2 − Q̃y
i−1/2,j

)
= 0,

where

Q̃x
i+1/2,j = Q̃x(ui,j ,ui+1,j) =

1

2
(ui,j + ui+1,j)

" F̃(ui,j ,ui+1,j)−
1

2
(ψx

i,j + ψx
i+1,j),

Q̃y
i,j+1/2 = Q̃y(ui,j ,ui,j+1) =

1

2
(ui,j + ui,j+1)

" G̃(ui,j ,ui,j+1)−
1

2
(ψy

i,j + ψy
i,j+1).

The relations (6.6) are identical to the relation (2.2) in one space dimension. Hence, two-point entropy conser-
vative fluxes like (2.5) and (2.6) can be easily adapted to this setting. We can obtain explicit and algebraically
simple solutions of (6.6) in a manner similar to Section 2.

Given an integer k ≥ 1, let 2p = k if k is even and 2p = k+1 if k is odd. The high-order entropy conservative
fluxes F̃2p, G̃2p are

(6.8) F̃2p
i+1/2,j =

p∑

r=1

αp
r

r−1∑

s=0

F̃(ui−s,j ,ui−s+r,j), G̃2p
i,j+1/2 =

p∑

r=1

αp
r

r−1∑

s=0

G̃(ui,j−s,ui,j−s+r),

where the constants αp
r are the same as in (2.20). Solutions computed with these fluxes satisfy an entropy

equality with numerical entropy fluxes

Q̃x,2p
i+1/2,j =

p∑

r=1

αp
r

r−1∑

s=0

Q̃x(ui−s,j ,ui−s+r,j), Q̃y,2p
i+1/2,j =

p∑

r=1

αp
r

r−1∑

s=0

Q̃y(ui,j−s,ui,j−s+r).
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6.2.2. ENO-based numerical diffusion operators. The multidimensional reconstruction procedure is performed
precisely as in the one-dimensional case, dimension by dimension. For each pair (i, j), let Rx

i+1/2,j , R
y
i,j+1/2 be

the eigenvector matrices of ∂uf(ui+1/2,j), ∂ug(ui,j+1/2), where ui+1/2,j and ui,j+1/2 are any intermediate states.
For each fixed j, we reconstruct entropy variables {vi,j}i∈Z along Rx

i+1/2,j as in Section 3.5, obtaining jumps

in reconstructed values 〈〈v〉〉i+1/2,j . Next, i is kept fixed, and {vi,j}j∈Z is reconstructed along Ry
i,j+1/2 to obtain

jumps 〈〈v〉〉i,j+1/2. This completes the description of the TeCNO numerical fluxes (6.5).

Theorem 6.1. The TeCNO scheme (6.4), (6.5) is

(i) k-th order accurate for smooth solutions.
(ii) entropy stable – computed solutions satisfy

(6.9)
d

dt
E(ui,j) +

1

∆x

(
Q̂x,2p

i+1/2,j − Q̂x,2p
i−1/2,j

)
+

1

∆y

(
Q̂y,2p

i,j+1/2 − Q̂y,2p
i−1/2,j

)
≤ 0,

with

Q̂x,2p
i+1/2,j = Q̃x,2p

i+1/2,j −
1

2
v"
i+1/2,jD̂

x
i+1/2,j〈〈v〉〉i+1/2,j ,

Q̂y,2p
i,j+1/2 = Q̃y,2p

i,j+1/2 −
1

2
v"
i,j+1/2D̂

y
i,j+1/2〈〈v〉〉i,j+1/2.

The proof follows analogously to that of Theorem 4.1.
We term the scheme with fluxes (6.8) as the two-dimensional k-th order TeCNO scheme. It is straightforward

to extend the TeCNO schemes to three dimensions on Cartesian meshes.

6.3. Numerical experiments for two dimensional Euler equations. We test the TeCNO schemes for the
two dimensional Euler equations

(6.10)

ρt + (ρu)x + (ρv)y = 0

(ρu)t + (ρu2 + p)x + (ρuv)y = 0

(ρv)t + (ρuv)x + (ρv2 + p)y = 0

Et + ((E + p)u)x + ((E + p)v)y = 0.

Here, the density ρ, velocity field (u, v), pressure p and total energy E are related by the equation of state

E =
p

γ − 1
+

ρ(u2 + v2)

2
.

The entropy function, fluxes, variables and potentials are given by

E(u) =
−ρs

γ − 1
, Qx(u) =

−ρus

γ − 1
, Qy(u) =

−ρvs

γ − 1
,

v =





γ−s
γ−1 − ρ(u2+v2)

2p
ρu
p , ρv

p

−ρ
p



 , ψx(u) = ρu, ψy(u) = ρv,

with s being the thermodynamic entropy.
Defining the parameter vectors

(6.11) z =





√
ρ
p√
ρ
pu√
ρ
pv√
ρp




,
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entropy conservative fluxes for the Euler equations are given by F̃i+1/2 =
[
F̃1

i+1/2 F̃2
i+1/2 F̃3

i+1/2 F̃4
i+1/2

]"

and G̃i+1/2 =
[
G̃1

i+1/2 G̃2
i+1/2 G̃3

i+1/2 G̃4
i+1/2

]"
with

F̃1
i+1/2,j = (z2)i+1/2,j(z4)

ln
i+1/2,j

F̃2
i+1/2,j =

(z4)i+1/2,j

(z1)i+1/2,j

+
(z2)i+1/2,j

(z1)i+1/2,j

F̃1
i+1/2,j

F̃3
i+1/2,j =

(z3)i+1/2,j

(z1)i+1/2,j

F̃1
i+1/2,j

F̃4
i+1/2,j =

1

2(z1)i+1/2,j

(
γ + 1

γ − 1

F̃1
i+1/2,j

(z1)lni+1/2,j

+ (z2)i+1/2,jF̃
2
i+1/2,j + (z3)i+1/2,jF̃

3
i+1/2,j

)

and

G̃1
i,j+1/2 = (z3)i,j+1/2(z4)

ln
i,j+1/2

G̃2
i,j+1/2 =

(z2)i,j+1/2

(z1)i,j+1/2

G̃1
i,j+1/2

G̃3
i,j+1/2 =

(z4)i,j+1/2

(z1)i,j+1/2

+
(z3)i,j+1/2

(z1)i,j+1/2

G̃1
i,j+1/2

G̃4
i,j+1/2 =

1

2(z1)i,j+1/2

(
γ + 1

γ − 1

G̃1
i,j+1/2

(z1)lni,j+1/2

+ (z2)i,j+1/2G̃
2
i,j+1/2 + (z3)i,j+1/2G̃

3
i,j+1/2

)
.

We use Roe-type diffusion matrices Λx and Λy in the TeCNO diffusion operator.

6.3.1. Long-time vortex advection. We start by testing the TeCNO schemes on a smooth test case for the
two-dimensional Euler equations, taken from Shu [25]. The initial data is set in terms of velocity u and v,
temperature θ = p

ρ and thermodynamic entropy s = log p− γ log ρ:

u = 1− (y − yc)φ(r), v = 1 + (x− xc)φ(r), θ = 1− γ − 1

2γ
φ(r)2, s = 0,

where (xc, yc) is the initial center of the vortex, r :=
√
(x− xc)2 + (y − yc)2 and

φ(r) := εeα(1−τ2), τ :=
r

rc
.

We set the parameters ε = 5
2π , α = 1/2, rc = 1 and (xc, yc) = (5, 5). The exact solution to this initial value

problem is simply

u(x, y, t) = u(x− t, y − t, 0).

In other words, the initial vortex, centered at (xc, yc) is advected diagonally with a velocity of 1 in the x- and
y-directions.

The computational domain is set to be [0, 10]× [0, 10] and we use periodic boundary conditions to simulate
the flow over the entire plane. We compute up to t = 100, During which time the vortex will have traversed
through the domain 10 times and should end up exactly where it started. Figure 9 shows the computed density
at the final time step on a mesh of 200×200 points. Clearly, there is a significant gain in accuracy with increased
order of convergence, and the 3rd and 4th order TeCNO schemes deviate only by a few percent from the exact
solution. This experiment illustrates the robust performance of high-order TeCNO schemes in resolving smooth
solutions.
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Figure 9. TeCNO schemes on the long-time vortex advection problem. Top: ρ at t = 100.
Bottom: A slice in x-direction at y = 5 of TeCNO (circles) and the exact solution (line).

6.3.2. Vortex-shock interaction. This problem consists of a single left-moving shock which interacts with a
right-moving vortex, and has been taken from [25]. The initial shock has the values

u(x, 0) =

{
uL if x < 0.5

uR otherwise,

with (ρL, pL, uL, vL) = (1, 1,
√
γ, 0) and

ρR = ρL

(
1 + βpR
β + pR

)
, pR = 1.3

uR =
√
γ +

√
2

(
1− pR√

γ − 1 + p(γ + 1)

)
, vR = 0.

The left state uL is then perturbed slightly by adding a vortex. The exact values are specified by the perturbation
in velocity, temperature and entropy:

ũ =
y − yc
rc

φ(r), ṽ = −x− xc

rc
φ(r), θ̃ = −γ − 1

4αγ
φ(r)2, s̃ = 0.

Here, r and φ are exactly as in the previous experiments. We set the free parameters to be ε = 0.3, (xc, yc) =
(0.25, 0.5), rc = 0.05 and α = 0.204. With these parameters, the jump in pressure across the shock wave is
about twice as big as the magnitude of the vortex.

We compute on the domain [0, 1]× [0, 1] up to time t = 0.35. The domain is partitioned into 200× 200 grid
points. The computed densities are plotted in Figure 10. The results show that the TeCNO schemes resolve
both the shock as well as the smooth vortex well. There is a gain in resolution as higher order accurate schemes
are employed. The results are comparable to those obtained with standard ENO and WENO schemes in [25].

6.3.3. Cloud-shock interaction: The initial data for this test case is set to be

ρ =






3.86859 if x < 0.05

10 if r < 0.15

1 otherwise

p =

{
167.345 if x < 0.05

10 otherwise
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Figure 10. TeCNO schemes on the shock-vortex interaction problem. The density is plotted
at time t = 0.35 on a mesh of 200× 200 points.

u =

{
11.2536 if x < 0.05

1 otherwise
v ≡ 0.

The computational domain is [0, 1]× [0, 1] with Neumann type non-reflecting boundary conditions. The exact
solution in this case consists of the interaction of a right moving shock with a high density bubble, resulting
in a complicated pattern that includes both bow and tail shocks as well as smooth regions in the center of the
domain. The computed densities on an mesh of 200 × 200 points at time t = 0.06 are shown in Figure 11.
For the sake of comparison, a reference solution computed with the TeCNO3 scheme on a mesh of 1400× 1400
points is also shown. The results illustrate that the TeCNO schemes are stable and resolve the complex solution
quite well. There is a clear gain in accuracy with the TeCNO3 and TeCNO4 schemes compared to the TeCNO2
scheme.

7. Conclusions

We construct TeCNO finite difference schemes for systems of conservation laws. The schemes do not involve
any tuning parameters, and are

(i) arbitrarily high-order accurate for smooth solutions of (1.1).
(ii) entropy stable – they satisfy a discrete entropy inequality (3.11).
(iii) essentially non-oscillatory near discontinuities.

Entropy stability implies that the approximate solutions are bounded in Lp for some p.
The TeCNO schemes combine high-order accurate entropy conservative fluxes with suitable numerical dif-

fusion operators. The high-order entropy conservative fluxes are constructed by taking linear combinations of
two-point entropy conservative fluxes. Computationally inexpensive two-point entropy conservative fluxes are
described for several well-known conservation laws. Numerical diffusion operators of arbitrary order of accuracy
are designed by performing an ENO reconstruction in scaled entropy variables. Entropy stability follows as a
consequence of the sign property of the ENO reconstruction, shown in a recent paper [9]. We also prove that
the TeCNO schemes converge for linear symmetrizable systems.
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(a) Reference (b) TeCNO2

(c) TeCNO3 (d) TeCNO4

Figure 11. TeCNO schemes on the cloud-shock interaction problem. The density at time
t = 0.06 is plotted on a mesh of 200 × 200 points. A reference solution is also plotted for
comparison.

A large number of numerical examples in one and two space dimensions are presented. They show that
the TeCNO schemes are robust. Their numerical performance is comparable to and in some cases superior to
standard ENO schemes. The computational cost of TeCNO schemes is also comparable to the ENO schemes
with reconstruction in characteristic variables. The main difference between TeCNO schemes and other existing
very high order schemes lies in the fact that the TeCNO are rigorously proved to be stable. Hence, we advocate
the use of TeCNO schemes on realistic computations of systems of conservation laws.

The extension of TeCNO schemes to several space dimensions require Cartesian meshes. We plan to present
TeCNO schemes on unstructured meshes in a forthcoming paper.
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Appendix A. Order of accuracy

Our aim is to show that the scheme with numerical flux (3.8) chosen such that either 2p = k for even k or
2p = k + 1 for odd k, is (k − 1)-th order accurate. As the entropy conservative fluxes have the desired order of
accuracy by the arguments of [18], we need to show that

Di+1/2(v
−
i+1 − v+

i )−Di−1/2(v
−
i − v+

i−1) = O(∆xk).

for (1.6) to be (k − 1)-th order accurate. We will assume that Di+1/2 is continuous with respect to its two
parameters ui,ui+1.

For simplicity, we concentrate on the scalar case, denote v = v, and assume for the remainder that v ∈ Ck.
Let pki (x) be the interpolant over the point values vi−ri , . . . , vi−ri+k−1, with ri being left shift in cell Ii. By a
Taylor expansion, the polynomial approximation has error

v(x)− pki (x) =
v(k)(ξ)

k!

k−1∏

m=0

(x− xi−ri+m)
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for some ξ ∈ (xi−r, xi−r+k−1) dependent on x. Assume for simplicity that the grid is uniform, xi+1 − xi ≡ ∆x.
The error at the interface xi+1/2 is then

v(xi+1/2)− pki (xi+1/2) =
v(k)(ξ+i )

k!

k−1∏

m=0

(xi+1/2 − xi−ri+m) =
∆xkv(k)(ξ+i )

k!

k−1∏

m=0

(1/2 + ri −m).

Thus, the difference term 〈〈v〉〉i+1/2 is

〈〈v〉〉i+1/2 =
∆xk

k!

(
v(k)(ξ+i )

k−1∏

m=0

(1/2 + ri −m)− v(k)(ξ−i+1)
k−1∏

m=0

(1/2 + ri+1 −m)

)

=
∆xk

k!
v(k)(ξ+i )

(
k−1∏

m=0

(1/2 + ri −m)−
k−1∏

m=0

(1/2 + ri+1 −m)

)
+O(∆xk+1)

(as v(k)(ξ−i+1)− v(k)(ξ+i ) = O(∆x)). Similarly,

〈〈v〉〉i−1/2 =
∆xk

k!
v(k)(ξ+i )

(
k−1∏

m=0

(1/2 + ri−1 −m)−
k−1∏

m=0

(1/2 + ri −m)

)
+O(∆xk+1).

This proves the claim.

Appendix B. Proof of Theorem 4.3(i)

In this section we prove Theorem 4.3(i), which states that the TeCNO method converges weakly, subsequen-
tially when applied to the system

(B.1) ut +Aux = 0,

for some symmetrizable A ∈ Rm×m. Assume for simplicity that A is symmetric. An entropy/entropy flux pair
for (B.1) is then E(u) = 1

2u
"u, Q(u) = 1

2u
"Au, with corresponding entropy variables v(u) = E′(u) = u and

entropy potential ψ(u) = 1
2u

"Au. The simplest entropy conservative flux for this entropy is the second-order
accurate central scheme (2.9). To this flux we add a diffusion operator to obtain entropy stability. A simple
choice would be a Lax-Friedrichs type operator of the form Di+1/2 =

1
2aI, where I is the identity matrix and a

is any number ∆x
2∆t ≤ a ≤ ∆x

∆t . The resulting flux is then

Fi+1/2 =
1

2
A(ui + ui+1)−

a

2
[[u]]i+1/2

(recall that vi = ui). Higher-order reconstruction of v = u would give the flux

(B.2) Fi+1/2 = F̃2k
i+1/2 −

a

2
〈〈u〉〉i+1/2,

where k is chosen so that 2k ≥ p. We remark that since the diffusion matrix is a constant, diagonal matrix,
the ENO-type reconstruction procedure described in Section 3.5 reduce to a standard componentwise ENO
reconstruction of u. In particular, each component of the reconstructed values satisfy the sign property (3.17)
and the upper jump bound (3.18).

For the remainder, let ∆x > 0 and denote the computed solution by u∆(x, t) :=
∑

i ui(t) Ii(x).

Lemma B.1. For all T > 0 we have

(B.3) ‖u∆(T )‖L2(R) ≤ ‖u0‖L2(R)

and

(B.4)

∫ T

0

∑

i

〈〈u∆〉〉2i+1/2 ≤ C.

Proof. From the proof of Lemma 3.2 one obtains the explicit entropy decay rate

d

dt

(
(u∆

i )
2

2

)
+

1

∆x

(
Q̂2k

i+1/2 − Q̂2k
i−1/2

)
= − a

4∆x

(
[[u∆]]

"
i+1/2〈〈u

∆〉〉i+1/2 + [[u∆]]
"
i−1/2〈〈u

∆〉〉i−1/2

)
,
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or integrating over i ∈ Z, t ∈ [0, T ],

‖u∆(T )‖2L2 = ‖u∆(0)‖2L2 −
a

2

∫ T

0

∑

i

[[u∆]]
"
i+1/2〈〈u

∆〉〉i+1/2.

By the sign property (3.17), the second term on the right-hand side is nonnegative, which gives (B.3). In
particular, because the left-hand side is nonnegative, this second term is bounded from above by ‖u∆(0)‖2L2 .
As each component of 〈〈u∆〉〉i+1/2 satisfy the upper bound (3.18), we get (B.4). !
Proof of Theorem 4.3(i). By the L2 bound (B.3), the sequence {u∆} is uniformly bounded in L2

(
[0, T ], L2(R)

)

by T‖u0‖L2 . Hence, it converges weakly, subsequentially to some u ∈ L2
(
[0, T ], L2(R)

)
. We claim that the

limit u is a weak solution of (B.1). Indeed, letting φ ∈ C1
0 (R× (0, T )), multiplying the finite difference scheme

by φi(t) = φ(x, t) and integrating by parts, we get

0 =

∫ T

0
∆x

∑

i

φi
d

dt
u∆
i + φi

1

∆x

(
F̃2k

i+1/2 − F̃2k
i−1/2

)
− φi

a

2∆x

(
〈〈u∆〉〉i+1/2 − 〈〈u∆〉〉i−1/2

)
dt

= −
∫ T

0
∆x

∑

i

u∆
i ∂tφi + F̃2k

i+1/2

φi+1 − φi

∆x
− a〈〈u∆〉〉i+1/2

φi+1 − φi

∆x
dt.

By a standard Lax-Wendroff type argument the first two terms converge to
∫ T
0

∫
R uφt +Auφx, while the third

term vanishes:∣∣∣∣∣

∫ T

0
∆x

∑

i∈Z
a〈〈u∆〉〉i+1/2

φi+1 − φi

∆x
dt

∣∣∣∣∣ ≤ a‖φx‖L∞

∣∣∣∣∣

∫ T

0
∆x

∑

i∈S

〈〈u〉〉i+1/2dt

∣∣∣∣∣

≤ a‖φx‖L∞
√
T
√
|S|∆x

(∫ T

0

∑

i∈S

〈〈u〉〉2i+1/2dt

)1/2

≤ C
√
∆x → 0

(where S = {i ∈ Z : xi ∈ supp(φ)}) by Cauchy-Schwarz and (B.4). !
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11-31 C.J. Gittelson, J. Könnö, Ch. Schwab and R. Stenberg
The multi-level Monte Carlo Finite Element Method for a stochastic
Brinkman problem

11-30 A. Barth, A. Lang and Ch. Schwab
Multi-level Monte Carlo Finite Element method for parabolic stochastic
partial differential equations

11-29 M. Hansen and Ch. Schwab
Analytic regularity and nonlinear approximation of a class of parametric
semilinear elliptic PDEs

11-28 R. Hiptmair and S. Mao
Stable multilevel splittings of boundary edge element spaces

11-27 Ph. Grohs
Shearlets and microlocal analysis

11-26 H. Kumar
Implicit-explicit Runge-Kutta methods for the two-fluid MHD equations


