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ENO RECONSTRUCTION AND ENO INTERPOLATION ARE STABLE

ULRIK S. FJORDHOLM, SIDDHARTHA MISHRA, AND EITAN TADMOR

ABSTRACT. We prove stability estimates for the ENO reconstruction and ENO interpolation proce-
dures. In particular, we show that the jump of the reconstructed ENO pointvalues at each cell interface
has the same sign as the jump of the underlying cell averages across that interface. We also prove
that the jump of the reconstructed values can be upper-bounded in terms of the jump of the underly-
ing cell averages. Similar sign properties hold for the ENO interpolation procedure. These estimates,
which are shown to hold for ENO reconstruction and interpolation of arbitrary order of accuracy and on
non-uniform meshes, indicate a remarkable rigidity of the piecewise-polynomial ENO procedure.
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1. INTRODUCTION AND STATEMENT OF MAIN RESULTS

The acronym ENO in the title of this paper stands for “Essentially Non-Oscillatory”, and it refers
to a reconstruction procedure, which generates a piecewise polynomial approximation of a function
from a given set of its cell averages. The essence of the ENO procedure, which was introduced by
Harten et. al. in [12], is its ability to accurately recover discontinuous functions. The starting point is
a collection of cell averages {vi}i∈Z over consecutive intervals Ii = [xi−1/2,xi+1/2),

(1.1) vi :=
1
|Ii|

∫

Ii
v(x)dx,
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from which one can form the piecewise constant approximation of the underlying function v(x),

A v(x) := ∑
k

vk Ik(x), Ik(x) =
{

1 if x ∈ Ik,
0 if x /∈ Ik.

But the averaging operator A v(x) is limited to first order accuracy, whether v is smooth or not; for
example, if v has bounded variation then ‖v−A v‖L1 = O(h). The purpose of the ENO procedure
(abbreviated by R) is to reconstruct a higher order approximation of v(x) from its given cell averages,

(1.2) ENO: A v(x) = ∑
k

vk Ik(x) $→ RA v(x) := ∑
k

fk(x) Ik(x).

Here, fk(x) are polynomials of degree p−1 such that the piecewise-polynomial ENO reconstruction
RA v(x) satisfies the following two essential properties.
Accuracy: First, it is an approximation of v(x) of order p in the sense that
(1.3) RA v(x) = v(x)+O(hp),

where h = maxi |Ii|. Typically, the requirement for accuracy is sought whenever v(·) is suffi-
ciently smooth in a neighborhood of x. Here, however, (1.3) is also sought at isolated points
of jump discontinuities. Thus, if we let v(xi+1/2+) and v(xi+1/2−) denote the point-values of
v(x) at the left and right of the interface at xi+1/2, then (1.3) requires that the corresponding re-
constructed point-values, v−i+1/2

:= RA v(xi+1/2−) = fi(xi+1/2) and v+i+1/2
:= RA v(xi+1/2+) =

fi+1(xi+1/2), satisfy

|v−i+1/2 − v(xi+1/2−)|+ |v+i+1/2 − v(xi+1/2+)|= O(hp).

To address this requirement of accuracy, the fi’s are constructed from neighboring cell av-
erages {vi+ j}k+p−1

j=k for some k ∈ {−p+ 1, . . . ,0}. The key point is to choose an adaptive
stencil,

i $→ {vi+k, · · · ,vi, · · · ,vi+k+p−1},
based on a data-dependent shift k = k(i). This enables the essential non-oscillatory property
(1.3), while making the ENO procedure essentially nonlinear.

Conservation: The second property sought in the ENO reconstruction is that the piecewise-polynomial
ENO approximation be conservative, in sense of conserving the original cell averages,

(1.4)
1
|Ii|

∫

Ii
RA v(x)dx = vi.

The conservative property enables us to recast the ENO procedure in an equivalent formula-

tion of nonlinear interpolation. To this end, let V (x) :=
∫ x

−∞
v(s)ds denote the primitive of

v(x). The given cell averages {vi} now give rise to a set of point-values {Vj+1/2} j∈Z,

(1.5) Vj+1/2 :=
∫ x j+1/2

−∞
v(s)ds =

j

∑
k=−∞

∫ xx+1/2

xk−1/2

v(s)ds =
j

∑
k=−∞

|Ik|vk.

A second-order approximation of these point-values is given by the piecewise linear inter-
polant LV (x) := ∑k

1
|Ik|

(
Vk−1/2(xk+1/2 − x)+Vk+1/2(x− xk−1/2)

)
Ik(x). The ENO approxima-

tion, ∑k Fk(x) Ik(x), is a higher-order accurate piecewise-polynomial interpolant,

(1.6) ENO: LV (x) $→ RLV (x) := ∑
k

Fk(x) Ik(x).
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It interpolates the given data at the nodes, Fi(xi±1/2) = Vi±1/2, and it recovers V (x) to high-
order accuracy at the interior of the cells, RLV (x) =V (x)+O(hp+1). Now, let Fi(x) be the
unique p-th order polynomial interpolating the p+ 1 pointvalues Vi+r, . . . ,Vi+r+p for some
shift r which is yet to be determined. Then, it is a simple consequence of (1.5) that f satisfies
(1.3) and (1.4) and that

Fi(x) =Vi−1/2 +
∫ x

xi−1/2

fi(s)ds.

In this manner, ENO reconstruction of cell averages is equivalent to ENO interpolation of the
pointvalues of its primitive. We shall travel back and forth between these two ENO formula-
tions.

1.1. ENO reconstruction. When the underlying data is sufficiently smooth, the accuracy require-
ments can be met by interpolating the primitive V on any set of p+1 point-values

{Vi+r, . . . ,Vi−1/2,Vi+1/2, . . . ,Vi+r+p}.
Here, r is the (left) offset of the interpolation stencil, which is indexed at half-integers, to match the
cell interfaces. To satisfy the conservation property (1.4), the stencil of interpolation must include
Vi−1/2 and Vi+1/2. There are p such stencils, ranging from the leftmost stencil corresponding to an
offset r = −p+ 1/2 to the rightmost stencil corresponding to an offset of r = −1/2. Since we are
interested in approximation of piecewise smooth functions, we need to choose a carefully shifted
stencil, in order to avoid spurious oscillations. The main idea behind the ENO procedure is the use
of a stencil with a data-dependent offset, r = r(i), which is adapted to the smoothness of the data.
The choice of ENO stencil is accomplished in an iterative manner, based on divided differences of the
data.

Algorithm 1.1 (ENO reconstruction algorithm: selection of ENO stencil).
Let point values of the primitive Vi−p+1/2, . . . ,Vi+p−1/2 be given, e.g., (1.5).

• Set r1 =−1/2.
• For each j = 1, . . . , p−1, do:
{

if
∣∣V

[
xi+r j−1, . . . ,xi+r j+ j

]∣∣<
∣∣V

[
xi+r j , . . . ,xi+r j+ j+1

]∣∣ $→ set r j+1 = r j −1,
otherwise $→ set r j+1 = r j.

• Set Fi(x) as the interpolant of V over the stencil {Vi+k}
rp+p
k=rp

.
• Compute fi(x) := F ′

i (x).

The divided differences V [xk, . . . ,xk+ j] are a good measure of the jth order of smoothness of V (x).
Thus, the ENO procedure is based on data-dependent stencils which are chosen in the direction of
smoothness, in the sense of preferring the smallest divided differences.

The ENO reconstruction procedure was introduced in 1987 by Harten et. al. [12] in the context of
accurate simulations for piecewise smooth solutions of nonlinear conservation laws. Since then, the
ENO procedure and its extensions, [23, 13, 24, 14, 15, 16], have been used with a considerable success
in Computational Fluid Dynamics; we refer to the review article of Shu [25] and the references therein.
Moreover, ENO and its various extensions, in particular, with subcell resolution scheme (ENO-SR),
[13], have been applied to problems in data compression and image processing in [17, 1, 6, 21, 4, 7,
2, 3] and references therein.

There are only a few rigorous results about the global accuracy of the ENO procedure. In [2],
the authors proved the second-order accuracy of ENO-SR reconstruction of piecewise-smooth C2
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data. Multi-dimensional global accuracy results for the so-called ENO-EA method were obtained in
[3]. Despite the extensive literature on the construction and implementation of ENO method and its
variants for the last 25 years, we are not aware of any global, mesh independent, stability results. This
brings us to the main result of this paper, stating the stability of the ENO reconstruction procedure in
terms of the following sign property.

Theorem 1.1 (The sign property). Fix an integer p > 1. Given the cell averages {vi}, let RA v(x) be
the p-th order ENO reconstruction of these averages, as outlined in Algorithm 1.1,

RA v(x) = ∑
k

fk(x) Ik(x), deg fk(x)≤ p−1.

Let v+i+1/2
:= RA v(xi+1/2+) and v−i+1/2

:= RA v(xi+1/2−) denote left and right reconstructed point-
values at the cell interface xi+1/2. Then the following sign property holds at all interfaces:

(1.7)

{
if vi+1 − vi ≥ 0 then v+i+1/2

− v−i+1/2
≥ 0;

if vi+1 − vi ≤ 0 then v+i+1/2
− v−i+1/2

≤ 0.

In particular, if vi+1 = vi then the ENO reconstruction is continuous across the interface, v+i+1/2
=

v−i+1/2
. Moreover, there is a constant Cp, depending only on p and on the mesh-ratio |I j+1|/|I j| of

neighboring grid cells, such that

(1.8) 0 ≤
v+i+1/2

− v−i+1/2

vi+1 − vi
≤ Cp.

The sign property tells us that at each cell interface, the jump of the reconstructed ENO pointval-
ues cannot have an opposite sign to the jump in the underlying cell averages. The sign property is
illustrated in Figure 1, which shows a third-, fourth- and fifth-order ENO reconstruction of randomly
chosen cell averages. Even though the reconstructed polynomial may have large variations within
each cell, its jumps at cell interfaces always have the same sign as the jumps of the cell averages.
Moreover, the relative size of these jumps is uniformly bounded. We remark that the inequality on
the left-hand side of (1.8) is a direct consequence of the sign property (1.7).
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Figure 1: ENO reconstruction of randomly chosen cell averages.

Remark 1.1. We emphasize that the main Theorem 1.1 is valid for any order of ENO reconstruction
and for any mesh size. It is valid for non-uniform meshes and makes no assumptions on the function
v, other than that the cell averages vi must be well-defined, which is guaranteed if e.g. v ∈ L1

loc(R).
This is a remarkable rigidity property of the piecewise-polynomial interpolation.
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Remark 1.2. The stability asserted in Theorem 1.1 is realized in terms of the reconstructed point-
values at cell interfaces v±i+1/2

. These are precisely the input for the construction of high-order accurate
finite volume schemes for nonlinear conservation laws (see Shu [25]), and the relation between these
values and the cell averages will be the main point of study in this paper. This approach was taken in
[10], where we use the sign property to construct arbitrarily high-order accurate entropy stable ENO
schemes for systems of conservation laws.

Remark 1.3. The proof of both the sign property and the related upper-bound (1.8) depends on the
judicious choice of ENO stencils in Algorithm 1.1, and it may fail for other choices of ENO-based
algorithms. In particular, the popular WENO methods, which are based on upwind or central weighted
ENO stencils, [18, 20, 22], fail to satisfy the sign property, as can be easily confirmed numerically.

1.2. ENO interpolation. The ENO algorithm can be formulated as a nonlinear interpolation proce-
dure. The starting point is a given collection of point-values, {v(xi)}i∈Z. The purpose of the ENO
procedure in this context (abbreviated by I ) is to recover a highly accurate approximation of v(x)
from its point-values vi := v(xi),

ENO: {v(xi)}i $→ I v(x) := ∑
k

fk(x) Ik(x), xk±1/2 :=
xk + xk±1

2
.

Here, fk(x) are polynomials of degree p−1 which interpolate the given data,
I v(xi) = fi(xi) = vi.

Moreover, the ENO interpolant I v(x) is essentially non-oscillatory in the sense of recovering v(x)
to order O(hp). In particular, since v(x) may experience jump discontinuities, we wish to recover the
point-values, v−i+1/2

:= fi(xi+1/2) and v+i+1/2
:= fi+1(xi+1/2), with high-order accuracy,

∣∣∣v−i+1/2 − v(xi+1/2−)
∣∣∣+

∣∣∣v+i+1/2 − v(xi+1/2+)
∣∣∣= O(hp).

This version of the ENO procedure was used for finite difference approximation of nonlinear conser-
vation laws in [23]. The ENO interpolant I v(x) is based on the usual divided differences {v[xi, . . . ,xi+ j]}i,
starting with the grid-values v[xi] = vi and defined recursively for j > 0.

Let {! j}p
j=1 be the offsets of the ENO stencil associated with grid point xi. In this case of ENO

interpolation, these offsets are non-positive integers, corresponding to the integer indices of the pre-
scribed gridpoints x j. These offsets are selected according to the following ENO selection procedure.

Algorithm 1.2 (ENO interpolation: selection of ENO stencil).
Let point values vi−p+1, . . . ,vi+p−1 be given.

• Set !1 = 0.
• For each j = 1, . . . , p−1, do:

{
if |v[xi+! j−1, . . . ,xi+! j+ j−1]|< |v[xi+! j , . . . ,xi+! j+ j]| $→ set ! j+1 = ! j −1,
otherwise $→ set ! j+1 = ! j.

• Set fi(x) as the interpolant of v over the stencil {vi+k}
!p+p−1
k=!p

:

fi(x) =
p−1

∑
j=0

v[xi+! j , . . . ,xi+! j+ j]
j−1

∏
m=0

(
x− xi+! j+m

)
.

In the following theorem we state the main stability result for this version of the ENO interpolation
procedure, analogous to the sign property of the ENO reconstruction procedure from cell averages.
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Theorem 1.2 (The sign property revisited – ENO interpolation). Fix an integer p > 1. Given the
point-values {vi}, let I v(x) be the p-th order ENO interpolant of these point-values, outlined in
Algorithm 1.2,

I v(x) = ∑
k

fk(x) Ik(x), deg fk(x)≤ p−1.

Let v−i+1/2
:= I v(xi+1/2−) and v+i+1/2

:= I v(xi+1/2+) denote left and right reconstructed point-values
at the cell interfaces xi+1/2. Then the following sign property holds at all interfaces:

(1.9)

{
if vi+1 − vi ≥ 0 then v+i+1/2

− v−i+1/2
≥ 0;

if vi+1 − vi ≤ 0 then v+i+1/2
− v−i+1/2

≤ 0.

In particular, if the point-values vi+1 = vi then the ENO interpolation is continuous across their mid-
points, v+i+1/2

= v−i+1/2
. Moreover, there is a constant cp, depending only on p and on the mesh-ratio

|x j+1 − x j|/|x j − x j−1| of neighboring grid cells, such that

(1.10) 0 ≤
v+i+1/2

− v−i+1/2

vi+1 − vi
≤ cp.

The rest of this paper is devoted to proving the stability of the ENO procedure. We begin with the
ENO reconstruction procedure in Theorem 1.1. In Section 2 we prove the sign property (1.7) and in
Section 3 we prove the upper bound (1.8). Similar stability results holds for the ENO interpolation
procedure, dealing with point-values instead of cell averages. In Section 4 we prove the sign property
for the ENO interpolation stated in the main theorem 1.2.
These results were announced earlier in [9].

2. THE SIGN PROPERTY FOR ENO RECONSTRUCTION

The aim of this section is to prove the sign property (1.7). To this end we derive a novel expression
of the interface jump, v+i+1/2

− v−i+1/2
, as a sum of terms which involve (p+ 1)-th divided differences

of V , and we show that each summand in this expression has the same sign as vi+1 − vi.
We recall that at each cell Ii, the ENO reconstruction is based on a particular stencil of p + 1

consecutive gridpoints, {xi+r, . . . ,xi+r+p}, where r = r(i) is the offset of such stencil.

Notation. We will reserve the indices r and s to denote offsets of ENO reconstruction stencils. We
recall that these offsets measure the shifts to the left of each stencil, and are indexed at negative
half-integers, −p+ 1/2 ≤ r,s ≤−1/2, to match the indexing of cell interfaces at half-integers.

Since this choice of ENO offset depend on the data through the iterative Algorithm 1.1, we need to
trace the hierarchy of ENO stencils which ends with the final offset r = r(i). To simplify notations, we
focus our attention on a typical cell I0, with an initial stencil which consists of the edges at x−1/2 and
x1/2. The stencil is identified by its leftmost index, r1 = −1/2. Next, the stencil is extended, either to
the left, {x−3/2,x−1/2,x1/2} where r2 =−3/2, or to the right, {x−1/2,x1/2,x3/2} with r2 =−1/2. In the next
stage, there are three possible stencils, which are identified by the leftmost offset: r3 = −5/2 corre-
sponding to {x−5/2, . . . ,x1/2}, r3 =−3/2 corresponding to {x−3/2, . . . ,x3/2}, or r3 =−1/2 corresponding
to {x−1/2, . . . ,x5/2}. Stage j of the ENO Algorithm 1.1 involves the stencil of j+1 consecutive points,
{xr j , . . . ,xr j+ j}. The series of offsets of this hierarchy of stencils, r1,r2, . . . ,rp, forms the signature of
the ENO algorithm. Note that by our construction,

r1 =−1/2 ≥ r2 ≥ r3 ≥ · · ·≥ rp ≥−p+ 1/2,
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and whenever needed, we set r−1 = r0 = −1/2. The stability of ENO will be proved by carefully
studying such data-dependent signatures.

The Newton representation of the p-th degree interpolant F0(x), based on point-values
V (xrp),V (xrp+1), . . . ,V (xrp+p), is given by

(2.1) F0(x) =
p

∑
j=0

V
[
xr j , . . . ,xr j+ j

] j−1

∏
m=0

(
x− xr j+m

)
,

where V [xk, . . . ,xk+ j] are the j-th divided difference of V at the specified gridpoints. Observe that
in (2.1), we took the liberty of summing the contributions of stencils in their “order of appearance’
rather than the usual sum of stencils from left to right.

Notation. For notational convenience, we denote the j-th divided difference of the primitive V as

D[r,r+ j] :=V [xr, . . . ,xr+ j], D[r,r+ j] =
D[r+1,r+ j]−D[r,r+ j−1]

xr+ j − xr
, r = . . . ,−3/2,−1/2,1/2.

Thus, for example, by (1.5) we have D[−1/2,3/2] =V [x−1/2,x1/2,x3/2] = (x3/2 − x−1/2)(v1 − v0).

If D[−1/2,3/2] = 0, or in other words, if v0 = v1, then it is easy to see that the ENO procedure will end
up with identical stencils for I0 and I1, which in turn yields v−1/2

= v+1/2
. We may therefore assume that

D[−1/2,3/2] )= 0, and the sign property will be proved by showing that

(2.2) Sign property:

{
if D[−1/2,3/2] > 0 then v+1/2

− v−1/2
≥ 0;

if D[−1/2,3/2] < 0 then v+1/2
− v−1/2

≤ 0.

To verify (2.2), we examine the ENO reconstruction at cell I0, given by f0(x) := F ′
0(x). Differenti-

ation of (2.1) yields

f0(x) =
p

∑
j=1

D[r j,r j+ j]

j−1

∑
l=0

j−1

∏
m=0
m )=l

(
x− xr j+m

)
.

The value of f0 at the cell interface x1/2 is then

(2.3) v−1/2 = f0(x1/2) =
p

∑
j=1

D[r j,r j+ j]

j−1

∑
l=0

j−1

∏
m=0
m )=l

(
x1/2 − xr j+m

)
=

p

∑
j=1

D[r j,r j+ j]

j−1

∏
m=0

m)=−r j+1/2

(
x1/2 − xr j+m

)

The last equality follows from the fact that all but the one term corresponding to l = −r j + 1/2 drop
out.

Notation. To simplify notations, we use !!∏ to denote a product which skips any of its zero factors,
!!∏ j∈J α j := ∏ j∈J:α j )=0 α j.

Thus, for example, a simple shift of indices in (2.3) yields v−1/2 =
p

∑
j=1

D[r j,r j+ j]

j−2

!
!∏

m=−1

(
x1/2 − xr j+m+1

)
.

In an similar fashion, we handle the ENO reconstruction at cell I1. Let s1, . . . ,sp be the signature of
that cell. Note that r j ≤ s j+1, since the ENO reconstruction at stage j in cell I1 cannot select a stencil
further to the left than the one used in cell I0. If r j = s j + 1, then the two interpolation stencils are
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the same, and so v+1/2
− v−1/2

= 0. Hence, we only need to consider the case r j ≤ s j. The reconstructed
value of f1(x) = F ′

1(x) at x = x1/2 is given by

v+1/2 = f1(x1/2) =
p

∑
j=1

D[1+s j,1+s j+ j]

j−1

!
!∏

m=0

(
x1/2 − xs j+m+1

)

The jump in the values reconstructed at x = x1/2 is then given by

(2.4) v+1/2 − v−1/2 =
p

∑
j=1

(
D[1+s j,1+s j+ j]

j−1

!
!∏

m=0

(
x1/2 − xs j+m+1

)
−D[r j,r j+ j]

j−2

!
!∏

m=−1

(
x1/2 − xr j+m+1

)
)
.

The following lemma provides a much needed simplification for the rather intimidating expression
(2.4), in terms of a key identity, which is interesting in its own right.

Lemma 2.1. The jump of the reconstructed point-values in (2.4) is given by

v+1/2 − v−1/2 =
sp

∑
r=rp

D[r,r+p+1](xr+p+1 − xr)
p−1

!
!∏

m=0

(
x1/2 − xr+m+1

)
.(2.5)

We postpone the proof of Lemma 2.1 to the end of this section, and we turn to use it in order to
conclude the proof of the sign property. To this end, we show that each non-zero summand in (2.5)
has the same sign as v1 − v0. Since

(2.6a) sgn

(
(xr+p+1 − xr)

p−1

!
!∏

m=0

(
x1/2 − xr+m+1

)
)

= (−1)r+p−1/2, r =−p+ 1/2, . . . ,−1/2,

then in view of (2.2), it remains to prove the following.

Lemma 2.2. Let {r j}p
j=1 and {s j}p

j=1 be the signatures of the ENO stencils associated with cells I0
and, respectively, I1. Then the following holds:

if D[−1/2,3/2] > 0 then (−1)r+p−1/2D[r,r+p+1] ≥ 0, r = rp, . . . ,sp,(2.6b)

if D[−1/2,3/2] < 0 then (−1)r+p−1/2D[r,r+p+1] ≤ 0, r = rp, . . . ,sp.(2.6c)

Since r runs over half-integers, (2.6) imply that each non-zero term in the sum (2.5) has the same
sign as D[−1/2,3/2], and Theorem 1.1 follows from the sign property, (2.2).

Proof. We consider the case (2.6b) where D[−1/2,3/2] > 0; the case (2.6c) can be argued similarly. The
result clearly holds for p = 1, where rp = sp =−1/2. Assuming that it holds for some p ≥ 1, namely,
that (−1)r+p−1/2D[r,r+p+1] ≥ 0 for r = rp, . . . ,sp, we will verify that it holds for p+1. Indeed,

(−1)r+p+1/2D[r,r+p+2] ≡ (−1)r+p+1/2
D[r+1,r+1+p+1]−D[r,r+p+1]

xr+p+2 − xr
(2.7)

=
(−1)r+p+1/2D[r+1,r+p+2] + (−1)r+p−1/2D[r,r+p+1]

xr+p+2 − xr
≥ 0

for r = rp, . . . ,sp − 1, by the induction hypothesis. Thus, it remains to examine D[r,r+p+2] when
r = rp+1 < rp and r = sp+1 ≥ sp.
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(a) The case rp+1 = rp is already included in (2.7), so the only other possibility is when rp+1 =
rp − 1. According to the ENO selection principle, this choice of extending the stencil to
the left occurs when |D[rp−1,rp+p]| < |D[rp,rp+p+1]|. Consequently, since (−1)rp+1+p+1/2 =

(−1)rp+p−1/2, and by assumption (−1)rp+p−1/2D[rp,rp+p+1] = |D[rp,rp+p+1]|, we have

(−1)rp+1+p+1/2D[rp+1,rp+1+p+2] ≥
(−1)rp+p−1/2D[rp,rp+p+1]− |D[rp−1,rp+p]|

xrp+p+1 − xrp−1
> 0,

and (2.6b) follows.
(b) The case sp+1 = sp − 1 is already covered in (2.7). The only other possibility is there-

fore sp+1 = sp. By the ENO selection procedure, this extension to the right occurs when
|D[sp+1,sp+p+2]| ≤ |D[sp,sp+p+1]|. But (−1)sp+1+p+1/2 = −(−1)sp+p−1/2 and by assumption,
(−1)sp+p−1/2D[sp,sp+p+1] = |D[sp,sp+p+1]|, hence

(−1)sp+1+p+1/2D[sp+1,sp+1+p+2] ≥
−|D[sp+1,sp+p+2]|+(−1)sp+p−1/2D[sp,sp+p+1]

xsp+p+2 − xsp

≥ 0,

and (2.6b) follows.
!

We close this section with the promised proof of Lemma 2.1.

Proof. We proceed in two steps. In the first step, we consider the special case when the two stencils
that are used by the ENO reconstruction in cells I0 and I1 are only one grid cell apart. Such stencils
must have the same offset, say rp = sp = r and in this case, Lemma 2.1 claims that v+1/2

− v−1/2
equals

(2.8) f1(x1/2)− f0(x1/2) = D[r,r+p+1]
(
xr+p+1 − xr

) p−1

!
!∏

m=0

(
x1/2 − xr+m+1

)
.

Indeed, the interpolant of V (xr+1), . . . ,V (xr+p),V (xr), assembled in the specified order from left to
right and then adding V (xr) at the end, is given by

F0(x) =
p−1

∑
j=0

D[r+1,r+1+ j]

j−1

∏
m=0

(x− xr+1+m)+D[r,r+p]

p−1

∏
m=0

(x− xr+1+m) .

Similarly, the interpolant of V (xr+1), . . . ,V (xr+p+1), assembled in the specified order from left to
right, is given by

F1(x) =
p−1

∑
j=0

D[r+1,r+ j+1]

j−1

∏
m=0

(x− xr+1+m)+D[r+1,r+p+1]

p−1

∏
m=0

(x− xr+1+m)

(cf. (2.1)). Thus, their difference amounts to

F1(x)−F0(x) =
(
D[r+1,r+p+1]−D[r,r+p]

) p−1

∏
m=0

(x− xr+1+m)

= D[r,r+p+1]
(
xr+p+1 − xr

) p−1

∏
m=0

(x− xr+1+m) ,
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which reflects the fact that F0 and F1 coincide at the p points xr+1, . . . ,xr+p. Differentiation yields

f1(x)− f0(x) = D[r,r+p+1]
(
xr+p+1 − xr

) p−1

∑
l=0

p−1

∏
m=0
m)=l

(x− xr+1+m) .

At x = x1/2, all product terms on the right vanish except for l = −r− 1/2, since x1/2 belongs to both
stencils. We end up with

f1(x1/2)− f0(x1/2) = D[r,r+p+1]
(
xr+p+1 − xr

) p−1

!
!∏

m=0

(
x1/2 − xr+m+1

)
.

This shows that (2.8) holds, verifying Lemma 2.1 in the case that the stencils associated with I0 and
I1 are separated by just one cell.

In step two, we extend this result for arbitrary stencils, where I0 and I1 are associated with arbitrary
offsets, rp ≤ sp. Denote by F{ j} the interpolant at points x j, . . . ,x j+p, so that F0 = F{rp} and F1 =
F{sp+1}. Using the representation from the first step for the difference of one-cell shifted stencils,(

f {r+1}− f {r})(x1/2), we can write the jump at the cell interface as a telescoping sum,

( f1 − f0)(x1/2) =
(

f {sp+1}− f {rp}
)
(x1/2)

=
sp

∑
r=rp

(
f {r+1}− f {r}

)
(x1/2)

=
sp

∑
r=rp

D[r,r+p+1](xr+p+1 − xr)
p−1

!
!∏

m=0

(
x1/2 − xr+m+1

)
,

and (2.5) follows. !

3. THE RELATIVE JUMPS IN ENO RECONSTRUCTION IS BOUNDED

In this section, we will prove (1.8), which establishes an upper bound on the size of the jump in
reconstructed values in terms of the jump in the underlying cell averages. We need the following
lemma.

Lemma 3.1. Let rp,sp be the (half-integer) offsets of the ENO stencils associated with cell I0 and,
respectively, I1. Then

(3.1a)
D[r,r+p+1]

D[−1/2,3/2]
(−1)r+p−1/2 ≤Cr,p, r = rp, . . . ,sp,

where the constants Cr,p are defined recursively, starting with Cr,1 = 1, and

(3.1b) Cr,p+1 =
2

xr+p+2 − xr
max

(
Cr,p,Cr+1,p

)
∀ r.

The quantity on the left in (3.1a) was shown to be bounded from below by zero in Lemma 2.2; here
we prove an upper bound. The constants Cr,p only depend on the grid sizes |I j|.

Proof. The result clearly holds for p= 1. We prove the general induction step passing from p $→ p+1.
Using the recursion relation

D[r,r+p+2] =
D[r+1,r+p+2]−D[r,r+p+1]

∆x
, ∆x := xr+p+2 − xr,
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we have

0 ≤
D[r,r+p+2]

D[−1/2,3/2]
(−1)r+p+1/2 =

1
∆x

(
D[r+1,(r+1)+p+1]

D[−1/2,3/2]
(−1)r+p+1/2 +

D[r,r+p+1]

D[−1/2,3/2]
(−1)r+p−1/2

)

≤
Cr+1,p +Cr,p

∆x
≤Cr,p+1, r = rp, . . . ,sp −1.

(3.2)

We turn to the remaining cases.
(a) As in Lemma 2.2, if rp+1 = rp then the induction step is already covered in (3.2), so the

only remaining case is r = rp+1 = rp − 1, corresponding to Lemma 2.2(a). In this case,
|D[r,r+p+1]|≤ |D[r+1,r+p+2]|, hence

D[r,r+p+2]

D[−1/2,3/2]
(−1)r+p+1/2 =

1
∆x

D[r+1,r+p+2]−D[r,r+p+1]

D[−1/2,3/2]
(−1)r+p+1/2

≤ 2
∆x

D[r+1,r+p+2]

D[−1/2,3/2]
(−1)r+p+1/2 ≤

2Cr+1,p

∆x
≤Cr,p+1.

(b) If sp+1 = sp−1 then the induction step is already covered in (3.2), so the only remaining case
is r = sp+1 = sp, corresponding to Lemma 2.2(b). In this case, |D[r+1,r+p+2]| ≤| D[r,r+p+1]|,
hence

D[r,r+p+2]

D[−1/2,3/2]
(−1)r+p+1/2 =

1
∆x

D[r+1,r+p+2]−D[r,r+p+1]

D[−1/2,3/2]
(−1)r+p+1/2

≤ 2
∆x

D[r,r+p+1]

D[−1/2,3/2]
(−1)r+p−1/2 ≤

2Cr,p

∆x
≤Cr,p+1.

!
Using the explicit form (2.5) of the jump v+1/2

− v−1/2
, we get the following explicit expression of the

upper-bound asserted in (1.8).

Theorem 3.2. Let v+1/2
and v−1/2

be the point-values reconstructed by the ENO algorithm 1.1 at the cell
interface x = x1/2+ and, respectively, x = x1/2−. Then

v+1/2
− v−1/2

v1 − v0
≤ Cp :=

1
x3/2 − x−1/2

−1/2

∑
r=−p+1/2

Cr,p

∣∣∣∣∣(xr+p+1 − xr)
p−1

!
!∏

m=0

(
x1/2 − xr+m+1

)
∣∣∣∣∣ .

Proof. Let rp,sp be the offsets of the ENO stencils associated with cell I0 and, respectively, I1. By
Lemmas 2.1 and 3.1, we have

v+1/2
− v−1/2

v1 − v0
=

1
x3/2 − x−1/2

sp

∑
r=rp

D[r,r+p+1]

D[−1/2,3/2]
(−1)r+p−1/2

∣∣∣∣∣(xr+p+1 − xr)
p−1

!
!∏

m=0

(
x1/2 − xr+m+1

)
∣∣∣∣∣

≤ 1
x3/2 − x−1/2

sp

∑
r=rp

Cr,p

∣∣∣∣∣(xr+p+1 − x)
p−1

!
!∏

m=0

(
x1/2 − xr+m+1

)
∣∣∣∣∣

≤ 1
x3/2 − x−1/2

−1/2

∑
r=−p+1/2

Cr,p

∣∣∣∣∣(xr+p+1 − xr)
p−1

!
!∏

m=0

(
x1/2 − xr+m+1

)
∣∣∣∣∣ .

!
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When the mesh is uniform, |Ii|≡ h, the expression for the upper bound C can be calculated explic-

itly. The recursion relation (3.1b) yields Cr,p =
2p

hp−1(p+1)!
, and the coefficient of the (p+ 1)-th

order divided differences in (2.5) is
∣∣∣∣∣(xr+p+1 − xr)

p−1

!
!∏

m=0

(
x1/2 − xr+m+1

)
∣∣∣∣∣= hp(p+1)(−r− 1/2)!(p+ r− 1/2)!.

Thus, we arrive at the following bound on the jump in reconstructed values.

Corollary 3.3. Let v+1/2
and v−1/2

be the pointvalues reconstructed at the cell interface x = x1/2+ and,
respectively, x = x1/2−, by the p-th order ENO Algorithm 1.1, based on equi-spaced cell averages
{vk}k. Then

v+1/2
− v−1/2

v1 − v0
≤ Cp = 2p−1 1

p!

p−1

∑
k=0

k!(p− k−1)!.(3.3)

Table 1 shows the upper bound (3.3) on (v+1/2
− v−1/2

)/(v1 − v0) for some values of p. Returning to
Figure 1, we see that although the jumps at the cell interfaces can get large, they cannot exceed Cp
times the size of the jump in cell averages, regardless of the values in neighboring cell averages.

p Upper bound Cp
1 1
2 2
3 10/3 = 3.333 . . .
4 16/3 = 5.333 . . .
5 128/15 = 8.533 . . .
6 208/15 = 13.866 . . .

TABLE 1

It can be shown that the bound Cp given in Theorem 3.2 is sharp. Indeed, the worst-case scenarios
for orders of accuracy p = 2,3,4,5 are shown in Figure 2. The mesh in this figure is xi+1/2 = i, and
the cell averages are chosen as

vi =






0 if i is odd
1 if i is even and i ≤ 4
1−10−10 if i is even and i > 4.

The number 10−10 is chosen at random; any small perturbation will give the same effect. This pertur-
bation ensures that cells Ii for i ≤ 4 interpolate over a stencil to the left of the cell interface x = x4+1/2,
and cells with i > 4 to the right of it. We see that for each p, the jump at x = 4 is precisely the bound
Cp as given in Table 1.

4. ENO INTERPOLATION

The stability proof of ENO interpolation stated in Theorem 1.2 can be argued along the lines of
those argued in Sections 2 and 3. We therefore only sketch the arguments without details.
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Figure 2: Worst case cell interface jumps for p = 2,3,4,5.

4.1. The sign property for ENO interpolant. We focus on the jump across the interface at x = x1/2.
Let {! j}p

j=1 and {n j}p
j=1 be the ENO stencils associated with gridpoints x0 and, respectively, x1.

Recall that in this case of ENO interpolation, these offsets are non-positive integers, −p+1≤ ! j,n j ≤
0. Our first key step is to compute the jump at the interface point x1/2 in the case where the ENO
procedure are separated by just one point, namely, !p = np. We let d[ i,i+ j] abbreviate the divided
differences v[xi, . . . ,xi+ j]. As before, we denote the reconstructed values at the interface x = x1/2 by
v−1/2

= I v(x1/2−) and v+1/2
= I v(x1/2+).

Lemma 4.1. If !p = np = ! for some ! ∈ −N0, then

v+1/2 − v−1/2 = d[!,!+p+1](x!+p+1 − x!)
p−1

∏
m=1

(x1/2 − x!+m).

By assembling a telescoping sum of several such stencils we obtain

Corollary 4.2. For general !p ≤ np, we have

(4.1) v+i+1/2 − v−i+1/2 =
np

∑
!=!p

d[!,!+p+1](x!+p+1 − x!)
p−1

∏
m=1

(x1/2 − x!+m).

Since v1 − v0 = (x1 − x0)d[0,1], we wish to show that the jump in reconstructed values at the cell
interface has the same sign as d[0,1]. To this end we show that each summand in (4.1) has the same
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sign as d[0,1]. Indeed, since

sgn

(
(x!+p − x!)

p−1

∏
m=1

(x1/2 − x!+m)

)
= (−1)!+p+1, −p+1 ≤ !≤ 0,

it suffices to prove the following:

Lemma 4.3. If !p,np are selected according to the ENO stencil selection procedure, then
{

if d[0,1] ≥ 0 then (−1)!+p+1d[!,!+p+1] ≥ 0;
if d[0,1] ≤ 0 then (−1)!+p+1d[!,!+p+1] ≤ 0,

!= !p, . . . ,np.

4.2. Upper bounds on the relative jumps for ENO interpolant. Next, we show the corresponding
upper bound on v+1/2

− v−1/2
for ENO reconstruction with point values.

Lemma 4.4. If !p,np are selected according to the ENO stencil selection procedure, then

0 ≤
d[!,!+p+1]

d[0,1]
(−1)!+p+1 ≤ cr,p != !p, . . . ,np,

where cr,p are defined recursively, starting with cr,1 = 1, and

c!,p+1 =
2

x!+p − x!
max(c!,p,c!+1,p).

p Upper bound cp
1 1
2 2
3 3.5
4 6
5 10.375
6 18.25

TABLE 2

For simplicity we assume that the mesh is uniform with mesh width x j+1 − x j ≡ h. It is straight-
forward to show that c!,p ≡ (2/h)p−1 1/p!. Moreover, the coefficient of the (p+1)-th order divided
differences in (4.1) is ∣∣∣∣∣(x!+p − x!)

p−1

∏
m=1

(x1/2 − x!+m)

∣∣∣∣∣= hp p

∣∣∣∣∣

p−1

∏
m=1

(1/2− !−m)

∣∣∣∣∣ .

Thus, we arrive at the following bound on the jump in reconstructed values.

Theorem 4.5. Let !p,np be selected according to the ENO stencil selection procedure, and assume
that the mesh is uniform. Then

v+1/2
− v−1/2

v1 − v0
≤ cp := 2p−1 1

(p−1)!

p−1

∑
!=0

∣∣∣∣∣

p−1

∏
m=1

(1/2− !−m)

∣∣∣∣∣ .

Table 2 shows the upper bound on (v+1/2
− v−1/2

)/(v1 − v0) for p ≤ 6. As for the ENO reconstruction
procedure in Section 3, it may be shown that these bounds are sharp.
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5. CONCLUSIONS

We show that the ENO reconstruction procedure (from cell averages or point values) is stable via
the sign property, namely the jump in reconstructed values at each cell interface have the same sign
as the jump in the underlying cell averages (point values). Furthermore, we obtain an upper bound
on the size of the jump of reconstructed values in terms of the underlying cell averages (point values)
at each interface. Both results hold for any mesh {xi+1/2}i. In particular, the results hold for non-
uniform meshes. In addition, both results hold for any order of the reconstruction, i.e, any degree for
the polynomial interpolation. No extra regularity assumptions on the underlying L1

loc function v are
needed.

The proof of both the sign property and the upper jump bound depended heavily on the formula
(2.5), which gives the cell interface jump in terms of rp, sp and the (p+ 1)-th divided differences
of V . This formula is completely independent of the ENO stencil selection procedure, and hence
holds for all interpolation stencils. On the other hand, Lemma 2.2 (and Lemma 3.1 for the upper
bound) is a direct consequence of the ENO stencil procedure. Therefore, we cannot expect that other
reconstruction methods satisfies a similar sign property. In particular, the WENO method, using the
stencil weights proposed in [18, 22], will in general not satisfy such a property, a fact that is easily
confirmed numerically. This leaves open the question of the existence of stencil weights that make
the method satisfy the sign property. Of the second-order TVD reconstruction methods (see [26]),
only the minmod limiter satisfies the sign property.

The stability estimates presented in this paper do not suffice to conclude that the ENO reconstruc-
tion procedure is total variation bounded (TVB). In particular, the jump in the interior of a cell can
be large. However, the sign property enables us to construct arbitrarily high-order entropy stable
schemes for any system of conservation laws. Furthermore, the sign property together with the upper
bound allow us to prove that these entropy stable scheme converge for linear equations. Both results
are announced in [9] and presented in a forthcoming paper [10].
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E-mail address: smishra@sam.math.ethz.ch

(Eitan Tadmor)
DEPARTMENT OF MATHEMATICS
CENTER OF SCIENTIFIC COMPUTATION AND MATHEMATICAL MODELING (CSCAMM)
INSTITUTE FOR PHYSICAL SCIENCES AND TECHNOLOGY (IPST)
UNIVERSITY OF MARYLAND
MD 20742-4015, USA

E-mail address: tadmor@cscamm.umd.edu



Research Reports

No. Authors/Title

11-38 U.S. Fjordholm, S. Mishra and E. Tadmor
ENO reconstruction and ENO interpolation are stable

11-37 C.J. Gittelson
Adaptive wavelet methods for elliptic partial differential equations with
random operators

11-36 A. Barth and A. Lang
Milstein approximation for advection–diffusion equations driven by mul-
tiplicative noncontinuous martingale noises

11-35 A. Lang
Almost sure convergence of a Galerkin approximation for SPDEs of Zakai
type driven by square integrable martingales

11-34 F. Müller, D.W. Meyer and P. Jenny
Probabilistic collocation and Lagrangian sampling for tracer transport in
randomly heterogeneous porous media

11-33 R. Bourquin, V. Gradinaru and G.A. Hagedorn
Non-adiabatic transitions near avoided crossings: theory and numerics
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