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ADAPTIVE WAVELET METHODS FOR ELLIPTIC PARTIAL

DIFFERENTIAL EQUATIONS WITH RANDOM OPERATORS

CLAUDE JEFFREY GITTELSON

Abstract. We apply adaptive wavelet methods to boundary value problems with
random coefficients, discretized by wavelets or frames in the spatial domain and
tensorized polynomials in the parameter domain. Greedy algorithms control the
approximate application of the fully discretized random operator, and the con-
struction of sparse approximations to this operator. We suggest a power iteration
for estimating errors induced by sparse approximations of linear operators.

Introduction

Uncertain coefficients in boundary value problems can be modeled as random
variables or random fields. Stochastic Galerkin methods approximate the solution
of the resulting random partial differential equation by a Galerkin projection onto
a finite dimensional space of random fields. This requires the solution of a single
coupled system of deterministic equations for the coefficients of the Galerkin pro-
jection with respect to a predefined set of basis functions on the parameter domain,
such as a polynomial chaos basis, see [17, 39, 1, 36, 27, 20, 37, 38].

The primary obstacle in applying these methods is the construction of suitable
spaces in which to compute an approximate solution. Sparse tensor product con-
structions have been shown to be highly effective in [35, 6, 5, 30]. Given sufficient
prior knowledge on the regularity of the solution, these methods can be tuned to
achieve nearly optimal complexity.

An adaptive approach, requiring less prior information, has been studied in
[23, 24, 26]; see also e.g. [11] for complementary regularity results, and [7] for
a similar approach for stochastic loading instead of a random operator. These
methods use techniques from the adaptive wavelet algorithms [9, 10, 21] to select
active polynomial chaos modes. Each of these is a deterministic function, and is
approximated e.g. by adaptive finite elements.

Although these methods perform well in a model problem, the suggested
equidistribution of error tolerances among all active polynomial chaos modes
is only a heuristic. The theoretical analysis of these methods currently does not
guarantee optimal convergence with respect to the full stochastic and spatial dis-
cretization.

In the present work, we apply adaptive wavelet methods simultaneously to the
stochastic and spatial bases, omitting the former semidiscrete approximation stage.
This takes full advantage of the adaptivity in these methods, and in particular their
celebrated optimality properties apply to the fully discretized stochastic equation.

This paper is structured as follows. We define random operator equations in Sec-
tion 1, and derive a weak formulation in the random parameters. In Section 2, we

Date: May 27, 2011.
2010 Mathematics Subject Classification. 35R60,47B80,60H35,65C20,65N12,65N22,65J10,65Y20.
Key words and phrases. partial differential equations with random coefficients, uncertainty quantifi-

cation, stochastic finite element methods, operator equations, adaptive methods.
Research supported in part by the Swiss National Science Foundation grant No. 200021-120290/1.
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2 C. J. GITTELSON

construct a tensorized polynomial basis, and recast the random operator equation
as an equivalent bi-infinite linear system.

In Section 3, we give an overview of adaptive wavelet methods, focusing in
particular on a variant of the algorithm in [21]. Such methods can be used for an
arbitrary bi-infinite linear system, provided that a suitable routine is available for
approximating the action of the linear operator on a vector. If the operator is not
positive, a similar routine for the adjoint operator is also required. In Sections 4 and
5, we present and analyze a generic adaptive application routine, based primarily
on [19]. We use a greedy method to solve an optimization problem within this
method, and provide a brief analysis of greedy methods in Appendix A.

This efficient approximate application hinges on a sequence of sparse approx-
imations to the discrete operator, and uses estimates of their respective errors.
Although convergence rates for such approximations have been shown e.g. in [33],
explicit error bounds do not seem to be available. In Section 6, we consider a
power method for approximating these errors in the operator norm. We provide
an analysis of an idealized method, and suggest a practical variant using some
ideas from adaptive wavelet methods. We note that this is different from [16] and
references therein, where the smallest eigenvalue of e.g. a discretized differential
operator is computed by an inverse iteration, in that we do not assume a discrete
spectrum, and thus do not approximate an eigenvector, and in that we compute
the maximum of the spectrum rather than the minimum.

In Section 7, we construct a sequence of sparse approximations of the discrete
stochastic operator. This again makes use of a greedy algorithm. Section 7 discusses
the abstract properties of s∗-compressibility and s∗-computability for this operator,
which are used in the analysis of the adaptive application routine.

Finally, in Section 9, we present a brief example to illustrate our results. We
compare the expected s∗-compressibility to approximation rates from [11]. The
smaller of these determines the efficiency of adaptive wavelet methods applied to
random boundary value problems.

1. Random operator equations

1.1. Pathwise definition. Let K ∈ {R,C}, and let V and W be separable Hilbert
spaces over K. We denote by W∗ the conjugate dual space of W, i.e. the space
of continuous antilinear functionals on W. Furthermore, we define L(V,W∗) as
the Banach space of bounded linear operators from V to W∗, endowed with the
operator norm ‖·‖V→W∗ , and abbreviateL(V) ! L(V,V).

We consider operator equations depending on a parameter in Γ ! [−1, 1]∞.
Given

A : Γ→ L(V,W∗) and f : Γ→W∗ , (1.1)

we wish to determine

u : Γ→ V , A(y)u(y) = f (y) ∀y ∈ Γ . (1.2)

Let B(Γ) denote the Borel σ-algebra on Γ. Defining a probability measure π on
(Γ,B(Γ)), A, f and u become random variables. Although π is arbitrary in this
section, we assume in Section 2 below that π is a countable product of probability
measures on [−1, 1].

We decompose the operator A into deterministic and random components,

A(y) = D + R(y) ∀y ∈ Γ , (1.3)

with D ∈ L(V,W∗) boundedly invertible and R(y) ∈ L(V,W∗) for all y ∈ Γ. Conse-
quently, we also have the multiplicative decomposition

A(y) = D
(

idV +D−1R(y)
)

, y ∈ Γ . (1.4)
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Under the assumption
∥

∥

∥D−1R(y)
∥

∥

∥

V→V
≤ γ < 1 ∀y ∈ Γ , (1.5)

a Neumann series argument ensures existence and uniqueness of the solution u(y)
of (1.2) for all y ∈ Γ, and

∥

∥

∥A(y)
∥

∥

∥

V→W∗ ≤ ‖D‖V→W∗ (1 + γ) ∀y ∈ Γ , (1.6)
∥

∥

∥A(y)−1
∥

∥

∥

W∗→V
≤

1

1 − γ
∥

∥

∥D−1
∥

∥

∥

W∗→V
∀y ∈ Γ . (1.7)

As in e.g. [5, 6, 11, 35], we consider random components that are linear in y ∈ Γ,

R(y) =
∞

∑

m=1

ymRm ∀y = (ym)∞m=1 ∈ Γ , (1.8)

with Rm ∈ L(V,W∗) for all m. Such operators arise e.g. if A is a differential operator
that depends affinely on a random field and this fields is expanded in a series. We
assume that (Rm)m ∈ %1(N;L(V,W∗)) with

∞
∑

m=1

∥

∥

∥D−1Rm

∥

∥

∥

V→V
≤ γ < 1 , (1.9)

which implies (1.5) since
∣

∣

∣ym

∣

∣

∣ ≤ 1.

1.2. Weak formulation. Let the map Γ ) y *→ A(y)v(y) be measurable for any
measurable v : Γ→ V. Then due to (1.6),

A : L2
π(Γ; V)→ L2

π(Γ; W∗) , v *→ [y *→ A(y)v(y)] , (1.10)

is well-defined and continuous with norm at most (1 + γ) ‖D‖V→W∗ . We assume
also that f ∈ L2

π(Γ; W∗).
We define the multiplication operators

Km : L2
π(Γ)→ L2

π(Γ) , v(y) *→ ymv(y) , m ∈N . (1.11)

Since ym is real and
∣

∣

∣ym

∣

∣

∣ is less than one, Km is symmetric and has norm at most
one.

Identifying the Lebesgue–Bochner space L2
π(Γ; V) with the Hilbert tensor product

L2
π(Γ) ⊗ V, and similarly for W∗ in place of V, we expandA asA = D + R with

D ! idL2
π(Γ) ⊗D and R !

∞
∑

m=1

Km ⊗ Rm . (1.12)

This sum converges in L(L2
π(Γ; V), L2

π(Γ; W∗)) by the assumption that (Rm)∞m=1 is
absolutely summable inL(V,W∗).

Lemma 1.1.
∥

∥

∥D−1R
∥

∥

∥

L2
π(Γ;V)→L2

π(Γ;V)
≤ γ < 1.

Proof. We note that D is invertible with D−1 = idL2
π(Γ) ⊗D−1, and as in (1.10),

(D−1Rv)(y) = D−1R(y)v(y) for all v ∈ L2
π(Γ; V) and y ∈ Γ. Therefore, using (1.5), for

all v ∈ L2
π(Γ; V),

∥

∥

∥D−1Rv
∥

∥

∥

2

L2
π(Γ;V)

=

∫

Γ

∥

∥

∥D−1R(y)v(y)
∥

∥

∥

2

V
dπ(y) ≤

∫

Γ
γ2

∥

∥

∥v(y)
∥

∥

∥

2

V
dπ(y) ≤ γ2 ‖v‖2

L2
π(Γ;V)

.

!

Proposition 1.2. The operator A from (1.10) is boundedly invertible, (A−1g)(y) =
A(y)−1g(y) for any g ∈ L2

π(Γ; W∗), and
∥

∥

∥A−1
∥

∥

∥

L2
π(Γ;W∗)→L2

π(Γ;V)
≤

1

1 − γ
∥

∥

∥D−1
∥

∥

∥

W∗→V
. (1.13)



4 C. J. GITTELSON

Proof. As in (1.4), we have

A = D(idL2
π(Γ;V) +D−1R) .

Therefore, by a Neumann series argument using Lemma 1.1,A is invertible, and
A−1 can be represented as

A−1 =















∞
∑

n=0

(−D−1R)n















D−1 .

Since (D−1g)(y) = D−1g(y) by definition, and (D−1Rv)(y) = D−1R(y)v(y), this is just
the Neumann series representation of A(y)−1. The estimate (1.13) follows from
Lemma 1.1. !

Corollary 1.3. The solution u of (1.2) is in L2
π(Γ; V), and u is the unique element of this

space satisfying
Au = f . (1.14)

The operator equation (1.14) in L2
π(Γ; W∗) can be reformulated as

∫

Γ

〈

A(y)u(y),w(y)
〉

dπ(y) =

∫

Γ

〈

f (y),w(y)
〉

dπ(y) ∀w ∈ L2
π(Γ; W) . (1.15)

2. Discretization of random operator equations

2.1. Orthonormal polynomial basis. In order to construct an orthonormal poly-
nomial basis of L2

π(Γ), we assume that π is a product measure. Let

π =
∞

⊗

m=1

πm (2.1)

for probability measures πm on ([−1, 1],B([−1, 1])); see e.g. [4, Section 9] for a
general construction of infinite products of probability measures. We assume for
simplicity that the support of πm in [−1, 1] has infinite cardinality.

For all m ∈ N, let (Pm
n )∞n=0 be an orthonormal polynomial basis of L2

πm
([−1, 1]),

with deg Pm
n = n. Such a basis is given by the three term recursion Pm

−1 ! 0, Pm
0 ! 1

and
βm

n Pm
n (ξ) ! (ξ − αm

n−1)Pm
n−1(ξ) − βm

n−1Pm
n−2(ξ) , n ∈N , (2.2)

with

αm
n !

∫ 1

−1
ξPm

n (ξ)2 dπm(ξ) and βm
n !

cm
n−1

cm
n
, (2.3)

where cm
n is the leading coefficient of Pm

n , βm
0 ! 1, and Pm

n is chosen as normalized
in L2

πm
([0, 1]). This basis is unique e.g. if cm

n is chosen to be positive.
We define the set of finitely supported sequences inN0 as

Λ !
{

µ ∈NN0 ; # suppµ < ∞
}

, (2.4)

where the support is defined by

suppµ !
{

m ∈N ; µm " 0
}

, µ ∈NN0 . (2.5)

Then countably infinite tensor product polynomials are given by

P !
(

Pµ
)

µ∈Λ
, Pµ !

∞
⊗

m=1

Pm
µm
, µ ∈ Λ . (2.6)

Note that each of these functions depends on only finitely many dimensions,

Pµ(y) =
∞

∏

m=1

Pm
µm

(ym) =
∏

m∈suppµ

Pm
µm

(ym) , µ ∈ Λ , (2.7)
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since Pm
0 = 1 for all m ∈N.

Theorem 2.1. P is an orthonormal basis of L2
π(Γ).

We refer to e.g. [25, Theorem 2.8] for a proof of Theorem 2.1.

2.2. Tensor product frames. Let H be a separable Hilbert space. A frame of H is a
countable sequenceΦ ! (ϕν)ν∈Ξ ⊂ H for which the synthesis operator

TΦΦΦ : %2(Ξ)→ H , c = (cν)ν∈Ξ *→
∑

ν∈Ξ

cνϕν (2.8)

is bounded and surjective. The adjoint of TΦΦΦ is

T∗ΦΦΦ : H∗ → %2(Ξ) , f *→ ( f (ϕν))ν∈Ξ . (2.9)

The upper frame bound ofΦ is BΦΦΦ ! ‖TΦΦΦ‖%2(Ξ)→H. The sequenceΦ is a Riesz basis
of H if TΦΦΦ is injective, and an orthonormal basis if TΦΦΦ is unitary.

The frame operator of a frameΦ in H is the self-adjoint linear map

SΦΦΦ ! TΦΦΦT∗ΦΦΦ : H∗ → H , f *→
∑

ν∈Ξ

f (ϕν)ϕν . (2.10)

It is an isomorphism of Hilbert spaces.
Let Φ be a frame of H as above and let Ψ = (ψλ)λ∈Θ be a frame of a second

separable Hilbert space L. Then the countable sequenceΦ×Ψ ! (ϕν⊗ψλ)(ν,λ)∈Ξ×Θ
is a frame of H ⊗ L. Its synthesis operator is

TΦΦΦ×ΨΨΨ = TΦΦΦ ⊗ TΨΨΨ , (2.11)

and consequently BΦΦΦ×ΨΨΨ = BΦΦΦBΨΨΨ . FurthermoreΦ ×Ψ is a Riesz basis if and only
if bothΦ andΨ are Riesz bases, and an orthonormal basis if and only ifΦ andΨ
are orthonormal bases.

We refer to [22, Chapter 2] and the references therein for details and proofs.

2.3. Discrete operator equation. LetΦ = (ϕι)ι∈Ξ be a frame of V andΨ = (ψκ)κ∈Θ
a frame of W. We define the discrete operator

A ! T∗PPP×ΨΨΨATPPP×ΦΦΦ : %2(Λ × Ξ)→ %2(Λ ×Θ) , (2.12)

which can be interpreted as a bi-infinite matrix. Similarly, we define the discretized
operators

D ! T∗ΨΨΨDTΦΦΦ and Rm ! T∗ΨΨΨRmTΦΦΦ , m ∈N , (2.13)

which are bounded linear operators from %2(Ξ) to %2(Θ).

Lemma 2.2. For all m ∈N, Km ! T∗PPPKmTPPP ∈ L(%2(Λ)) has the form

(Kmc)µ = β
m
µm+1cµ+εm + α

m
µm

cµ + β
m
µm

cµ−εm , µ ∈ Λ , (2.14)

for c = (cµ)µ∈Λ ∈ %2(Λ), where cµ ! 0 if µm < 0 for any m ∈ N. Furthermore, K∗m = Km

and
‖Km‖%2(Λ)→%2(Λ) = ‖Km‖L2

π(Γ)→L2
π (Γ) ≤ 1 . (2.15)

Proof. The identity (2.14) follows from the three term recursion (2.2). The rest of
the claim is a consequence of T−1

PPP = T∗PPP since Km is self-adjoint and has norm at
most one. !

Proposition 2.3. The discrete operator A from (2.12) satisfies

A = I ⊗D +
∞
∑

m=1

Km ⊗ Rm (2.16)

with convergence in L(%2(Λ × Ξ), %2(Λ ×Θ)).
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Proof. The claim follows from (1.12) and (2.11), using the definitions (2.13), the
definition of Km in Lemma 2.2, and T∗PPPTPPP = I. !

We define the discrete right hand side

f ! T∗PPP×ΨΨΨ f ∈ %2(Λ ×Θ) . (2.17)

Theorem 2.4. A u ∈ %2(Λ × Ξ) solves the bi-infinite matrix equation

Au = f (2.18)

if and only if it is related to the solution u of (1.2) by

u = TPPP×ΦΦΦu . (2.19)

In particular, a solution u of (2.18) exists, and it is unique up to an element of ker TPPP×ΦΦΦ ⊂
%2(Λ × Ξ).

Proof. Applying T∗PPP×ΨΨΨA to (2.19) and inserting (1.14) and (2.17), it is evident that
(2.18) follows from (2.19).

If u ∈ %2(Λ × Ξ) satisfies (2.18), then applying TPPP×ΨΨΨ leads to

SPPP×ΨΨΨATPPP×ΦΦΦu = TPPP×ΨΨΨAu = TPPP×ΨΨΨ f = SPPP×ΨΨΨ f .

Since SPPP×ΨΨΨ is boundedly invertible, it follows that TPPP×ΦΦΦu satisfies (1.14), and there-
fore (2.19) holds.

Consequently, u is characterized by (2.19). A solution of (2.19) exists since TPPP×ΦΦΦ
is surjective, and it is unique up to an element of kerTPPP×ΦΦΦ. !

By Theorem 2.4, the solution u of (2.18) is unique ifΦ is a Riesz basis of V.

2.4. The discrete adjoint operator. If A is not symmetric positive definite, it is
useful to consider the discrete normal equations

A∗Au = A∗ f . (2.20)

Here, A∗ is the discrete adjoint operator

A∗ = T∗PPP×ΦΦΦA
∗TPPP×ΨΨΨ : %2(Λ ×Θ)→ %2(Λ × Ξ) . (2.21)

Note that A∗ is only injective ifΨ is a Riesz basis of W.

Theorem 2.5. A u ∈ %2(Λ × Ξ) solves (2.20) if and only if it solves (2.18).

Proof. If u ∈ %2(Λ × Ξ) satisfies (2.18), then (2.20) follows by applying A∗. Let
u ∈ %2(Λ × Ξ) solve (2.20). Note that by (2.10),

A∗A = T∗PPP×ΦΦΦA
∗SPPP×ΨΨΨATPPP×ΦΦΦ and A∗ f = T∗PPP×ΦΦΦA

∗ f .

Therefore, applying TPPP×ΦΦΦ to (2.20) leads to

SPPP×ΦΦΦA∗SPPP×ΨΨΨATPPP×ΦΦΦu = SPPP×ΦΦΦA∗SPPP×ΨΨΨ f .

Since SPPP×ΦΦΦ,A∗ and SPPP×ΨΨΨ are all invertible, it follows that TPPP×ΦΦΦu satisfies (1.14), and
the claim follows using Theorem 2.4. !

The discrete adjoint operator A∗ has the same tensor product structure as A,
with D and Rm replaced by their adjoints.

Proposition 2.6. The operator A∗ has the form

A∗ = I ⊗D∗ +
∞

∑

m=1

Km ⊗ R∗m (2.22)

with convergence in L(%2(Λ ×Θ), %2(Λ × Ξ)).

Proof. The claim follows from Theorem 2.3 since I∗ = I and K∗m = Km. !
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3. Adaptive wavelet methods

3.1. An adaptive Galerkin solver. We consider a bounded linear operator A ∈
L(%2), which we interpret also as a bi-infinite matrix. For simplicity, we consider
the index sets in the domain and codomain to beN, although we will later tacitly
substitute other countable sets.

We assume that A is positive symmetric and boundedly invertible, and consider
the equation

Au = f (3.1)

for a f ∈ %2, as in (2.18) or (2.20). Let ‖·‖AAA denote the norm on %2 induced by A,
which we will refer to as the energy norm.

We briefly discuss a variant of the adaptive solver from [9, 21, 19] for (3.1). This
method selects a nested sequence of finite sections of the infinite linear system,
and solves these to appropriate tolerances. In each step, an approximation of the
residual is computed in order to estimate the error and, if necessary, enlarge the
set of active indices. For extensions of this method and alternative approaches, we
refer to Section 3.4 below. We assume that the action of A can be approximated by
a routine

ApplyAAA[v, ε] *→ z , ‖Av − z‖%2 ≤ ε , (3.2)

for finitely supported vectors v. Similarly, we require a routine

RHS fff [ε] *→ g ,
∥

∥

∥ f − g
∥

∥

∥

%2
≤ ε , (3.3)

to approximate the right hand side f of (3.1) to an arbitrary precision ε. These
building blocks are combined in ResidualAAA, fff to compute the residual up to an
arbitrary relative error.

ResidualAAA, fff [ε, v, η0,χ,ω, β] *→ [r, η, ζ]

ζ←− χη0

repeat
r ←− RHS fff [βζ] − ApplyAAA[v, (1 − β)ζ]
η←− ‖r‖%2
if ζ ≤ ωη or η + ζ ≤ ε then break
ζ←− ω 1−ω

1+ω (η + ζ)

Remark 3.1. The loop in ResidualAAA, fff terminates either if the residual is guaranteed
to be smaller than ε, or if the tolerance ζ in the computation of the residual is less
than a constant fraction ω of the approximate residual. If neither criterion is met,
since ζ > ωη, the updated tolerance satisfies

ω(η − ζ) < ω
1 − ω
1 + ω

(η + ζ) < (1 − ω)ζ . (3.4)

This ensures a geometric decrease of ζ while also preventing ζ from becoming
unnecessarily small. Since η+ ζ and η− ζ are upper and lower bounds for the true
residual, the updated tolerance ζ satisfies

ζ ≥ ω
1 − ω
1 + ω

∥

∥

∥ f − Av
∥

∥

∥

%2
≥ ω

1 − ω
1 + ω

(η − ζ) , (3.5)

which implies ζ ≥ ω(1−ω)
1+2ω−ω2η. "

Let ‖A‖ ≤ α̂ and ‖A−1‖ ≤ α̌. Then κAAA ! α̂α̌ is an upper bound for the condition
number ‖A‖‖A−1‖ of A. Furthermore, let ‖ f‖%2 ≤ λ.
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SolveAAA, fff [ε,χ,ϑ,ω, σ, β] *→ [uε, ε̄]

Ξ(0) ←− ∅
ũ(0) ←− 0
δ0 ←− α̌1/2λ
for k = 0, 1, 2, . . . do

if δk ≤ ε then break
[rk, ηk, ζk]←− ResidualAAA, fff [εα̌−1/2, ũ(k), α̂1/2δk,χ,ω, β]
δ̄k ←− α̌1/2(ηk + ζk)
if δ̄k ≤ ε then break

[Ξ(k+1), ;k]←− Refine[Ξ(k), rk,
√

η2
k
− (ζk + ϑ(ηk + ζk))2]

ϑ̄k ←−
(

√

η2
k
− ;2

k
− ζk

)

/(ηk + ζk)

[ũ(k+1), τk+1]←− GalerkinAAA, fff [Ξ(k+1), ũ(k), σmin(δk, δ̄k)]

δk+1 ←− τk+1 +
√

1 − ϑ̄2
k
κ−1

AAA
min(δk, δ̄k)

uε ←− ũ(k)

ε̄←− min(δk, δ̄k)

The method SolveAAA, fff uses approximate residuals computed by ResidualAAA, fff to
adaptively select and iteratively solve a finite section of (3.1). For a finite Ξ ⊂N, a
finitely supported r ∈ %2 and ε > 0, the routine

Refine[Ξ, r, ε] *→ [Ξ̄, ;] (3.6)

constructs a set Ξ̄ ⊃ Ξ such that ; ! ‖r − r|Ξ̄‖%2 ≤ ε, and #Ξ̄ is minimal with this
property, up to a constant factor ĉ. This can be realized with ĉ = 1 by sorting r and
appending the indices i to Ξ for which |ri| is largest. Using an approximate sorting
routine, Refine can be realized in linear complexity with respect to # supp r at the
cost of a constant ĉ > 1.

The function
GalerkinAAA, fff [Ξ, v, ε] *→ [ũ, τ] (3.7)

approximates the solution of (3.1) restricted to the finite index set Ξ ⊂ N up to an
error of at most τ ≤ ε in the energy norm, using as the initial approximation v.
For example, a conjugate gradient or conjugate residual method could be used to
solve this linear system.

Remark 3.2. In the call of GalerkinAAA, fff in SolveAAA, fff , the previous approximate solu-
tion is used as an initial approximation. Alternatively, the approximate residual rk,
which is readily available, may be used to compute one step of a linear iteration,
such as a Richardson method, prior to calling GalerkinAAA, fff . Although this may
have quantitative advantages, we refrain from going into details in order to keep
the presentation and analysis simple. "

3.2. Convergence analysis. The convergence analysis of SolveAAA, fff is based on [9,
Lemma 4.1], which is the following statement. We note that the solution of (3.1)
restricted to a set Ξ ⊂N is the Galerkin projection onto %2(Ξ) ⊂ %2.

Lemma 3.3. Let Ξ ⊂N and v ∈ %2(Ξ) such that, for a ϑ ∈ [0, 1],
∥

∥

∥( f − Av)|Ξ
∥

∥

∥

%2
≥ ϑ

∥

∥

∥ f − Av
∥

∥

∥

%2
, (3.8)

then the Galerkin projection ū of u onto %2(Ξ) satisfies

‖u − ū‖AAA ≤
√

1 − ϑ2κ−1
AAA
‖u − v‖ . (3.9)
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We note that, by construction, if ϑ > 0, ω > 0 and ω + ϑ + ωϑ ≤ 1, then for all k,
Ξ(k+1) in SolveAAA, fff is such that

∥

∥

∥( f − Aũ(k))|Ξ(k+1)

∥

∥

∥

%2
≥ ϑ̄k

∥

∥

∥ f − Aũ(k)
∥

∥

∥

%2
, (3.10)

and ϑ̄k ≥ ϑ. Thus Lemma 3.3 implies an error reduction of at least
√

1 − ϑ2κ−1
AAA

per

step of SolveAAA, fff , up to the error τk in the approximation of the Galerkin projection.

Theorem 3.4. If ε > 0, χ > 0, ϑ > 0, ω > 0, ω + ϑ + ωϑ ≤ 1, 0 < β < 1 and

0 < σ < 1−
√

1 − ϑ2κ−1
AAA

, then SolveAAA, fff [ε,χ,ϑ,ω, σ, β] constructs a finitely supported uε

with
‖u − uε‖AAA ≤ ε̄ ≤ ε . (3.11)

Moreover, for all k ∈N0 reached by the iteration,

κ−1/2
AAA

1 − ω
1 + ω

δ̄k ≤
∥

∥

∥u − ũ(k)
∥

∥

∥

AAA
≤ min(δk, δ̄k) . (3.12)

We refer to [23, Theorem 3.4] for a proof of Theorem 3.4, see also [21, Theo-
rem 2.7].

Remark 3.5. Due to (3.12), in each call of GalerkinAAA, fff , an error reduction of at most a
fixed factor σ is required. Since the condition number of A restricted to any Ξ ⊂N
is at most κAAA, a fixed number of steps of e.g. a conjugate gradient iteration suffice,
with no need for preconditioning. "

3.3. Optimality properties. For v ∈ %2 and N ∈ N0, let PN(v) be a best N-term
approximation of v, that is, PN(v) is an element of %2 that minimizes ‖v − vN‖%2 over
vN ∈ %2 with # supp vN ≤ N. For s ∈ (0,∞), we define

‖v‖As ! sup
N∈N0

(N + 1)s ‖v − PN(v)‖%2 (3.13)

and
As
!

{

v ∈ %2 ; ‖v‖As < ∞
}

. (3.14)

Setting ε = ‖v − PN(v)‖%2 − η with η ≥ 0, it follows that

‖v‖As = sup
ε>0
ε
(

min
{

N ∈N0 ; ‖v − PN(v)‖%2 ≤ ε
})s , (3.15)

so our definition is consistent with that in [19]. If the index setN is replaced by a
countable set Ξ, we will writeAs(Ξ) forAs.

By definition, the space As contains all v ∈ %2 that can be approximated by
finitely supported vectors with a rate s,

‖v − PN(v)‖%2 ≤ ‖v‖As (N + 1)−s ∀N ∈N0 . (3.16)

The following theorem states that, under some conditions on the parameters of
SolveAAA, fff , this method recovers the optimal rate s whenever u ∈ As, i.e. the ap-

proximate Galerkin projections ũ(k) converge to u at a rate of s with respect to
#Ξ(k).

Theorem 3.6. If the conditions of Theorem 3.4 are fulfilled,

ϑ̂ !
ϑ(1 + ω) + 2ω

1 − ω
< κ−1/2

AAA
, (3.17)

and u ∈ As for an s > 0, then for all k ∈N0 reached by SolveAAA, fff ,
∥

∥

∥u − ũ(k)
∥

∥

∥

%2
≤ 2sĉsκAAAτ

−1;(1 − ;1/s)−s 1 + ω
1 − ω

‖u‖As (#Ξ(k))−s (3.18)

with ; = σ +
√

1 − ϑ2κ−1
AAA

and τ =
√

1 − ϑ̂2κAAA.
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The proof of Theorem 3.6 hinges on the following Lemma. We refer to [23,
Theorem 4.2] and [21, 19] for details. For a proof of Lemma 3.7, we refer to [23,
Lemma 4.1]. See also [21, Lemma 2.1] and [19, Lemma 4.1].

Lemma 3.7. Let Ξ(0) ⊂ N be a finite set and v ∈ %2(Ξ(0)). If 0 < ϑ̂ <κ −1/2
AAA

and

Ξ(0) ⊂ Ξ(1) ⊂N with

#Ξ(1) ≤ c min
{

#Ξ ; Ξ(0) ⊂ Ξ,
∥

∥

∥( f − Av)|Ξ
∥

∥

∥

%2
≥ ϑ̂

∥

∥

∥ f − Av
∥

∥

∥

%2

}

(3.19)

for a c ≥ 1, then

#(Ξ(1) \ Ξ(0)) ≤ c min
{

#Ξ̂ ; Ξ̂ ⊂N, ‖u − û‖AAA ≤ τ ‖u − v‖AAA
}

(3.20)

for τ =
√

1 − ϑ̂2κ1/2
AAA

, where û denotes the Galerkin projection of u onto %2(Ξ̂).

Theorem 3.6 implies that the algorithm SolveAAA, fff is stable inAs. If the conditions
of the theorem are satisfied, then for all k reached in the iteration,

∥

∥

∥ũ(k)
∥

∥

∥

As ≤
(

1 +
21+sĉsκAAA;(1 + ω)

τ(1 − ;1/s)s(1 − ω)

)

‖u‖As , (3.21)

see e.g. [23, Lemma 4.6].

Remark 3.8. The sparsity of approximate solutions is of secondary importance
compared to the computational cost of SolveAAA, fff . Under suitable assumptions, the

number of operations used by a call of SolveAAA, fff is on the order of ε−1/s ‖u‖1/sAs , which
is optimal due to (3.15). Besides the conditions of Theorem 3.6, this presumes that
a call of ApplyAAA[v, ε] has a computational cost on the order of

1 + # supp v + ε−1/s ‖v‖1/sAs , (3.22)

and similarly the cost of RHS fff [ε] is O(ε−1/s ‖v‖1/sAs ). Due to the geometric decrease of
the tolerances ζ in ResidualAAA, fff , the total cost of this routine is equivalent to that

of the last iteration, which is O(ζ−1/s
k
‖u‖1/sAs ), using Theorem 3.6 and (3.21). This

includes the cost of Refine if this is realized by an approximate sorting routine
with linear complexity. Finally, since only a fixed number of steps of a linear
iteration is required in GalerkinAAA, fff by Remark 3.5, and each step can realistically
be performed in at most the same complexity as ApplyAAA, the computational cost

of the k-th iteration in SolveAAA, fff is O(ζ−1/s
k
‖u‖1/sAs ). Equation (3.5) implies that this is

equivalent toO(δ̄−1/s
k
‖u‖1/sAs ), and since the error estimates δ̄k decrease geometrically,

the total cost of SolveAAA, fff is dominated by that of the last iteration of the loop, in
which the error is on the order of ε. "

3.4. Extensions and alternatives. The adaptive wavelet method suggested in [9]
differs from SolveAAA, fff in that an absolute tolerance is used in the approximation of
the residual. In order to achieve optimality properties similar to those in Section 3.3,
[9] requires a coarsening step, which truncates superfluous small entries of the
approximate solution. Requiring a relative accuracy in the approximate residual
overcame the need for explicit coarsening in [21].

A rather different approach is used in [10]. Instead of adaptively constructing
and solving a sequence of finite problems, a linear iteration is applied directly to
the full bi-infinite equation (3.1). Individual applications of A and occurrences of
f are approximated by the routines ApplyAAA and RHS fff with tolerances that ensure
convergence of the iteration. As in [9], a coarsening step ensures optimality prop-
erties of this algorithm. This method has a wider scope of applicability than [9],
which includes indefinite linear systems.
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As noted in [10], the assumptions of positivity and symmetry of A can be
dropped with either approach if (3.1) is replaced by the normal equations A∗Au =
A∗ f . The routines ApplyAAA and ApplyAAA∗ combine to an adaptive multiplication
routine for A∗A,

ApplyAAA∗AAA[v, ε] *→ ApplyAAA∗[ApplyAAA[v, ε/(2α̂)], ε/2] , (3.23)

see e.g. [31, Cor. 4.6]. Similarly, A∗ f can be approximated by

RHSAAA∗ fff [ε] *→ ApplyAAA∗[RHS fff [ε/(2α̂)], ε/2] . (3.24)

This leads to a solverSolveAAA∗AAA,AAA∗ fff which does not require A to be a positive operator.
All of the above methods assume that the operator A is regular. However, if A

arises from a frame discretization of a differential or integral operator, then A is
generally singular. The method from [10] has been generalized to this setting in
[32, 14, 15, 13]. We refer to [34] for a survey of adaptive wavelet methods for linear
operator equations.

4. Adaptive application of s∗-compressible operators

4.1. s∗-compressibility and s∗-computability. A routine ApplyAAA for approximately
applying an operator A ∈ L(%2) to a finitely supported vector constitutes an es-
sential component of the adaptive solvers from Section 3. Such a routine can be
constructed if A can be approximated by sparse operators, as in the following defi-
nition. Again, we interpret A ∈ L(%2) also as a bi-infinite matrix, and restrict to the
index setN only to simplify notation.

Definition 4.1. An operator A ∈ L(%2) is n-sparse if each column contains at most
n nonzero entries. It is s∗-compressible for an s∗ ∈ (0,∞] if there exists a sequence
(A j) j∈N in L(%2) such that A j is nj-sparse with (nj) j∈N ∈NN satisfying

cAAA ! sup
j∈N

nj+1

nj
< ∞ (4.1)

and for every s ∈ (0, s∗),

dAAA,s ! sup
j∈N

ns
j

∥

∥

∥A − A j

∥

∥

∥

%2→%2 < ∞ . (4.2)

The operator A is strictly s∗-compressible if, in addition,

sup
s∈(0,s∗)

dAAA,s < ∞ . (4.3)

"

Remark 4.2. Equation (4.2) states that for all s ∈ (0, s∗), the approximation errors
satisfy

eAAA, j !

∥

∥

∥A − A j

∥

∥

∥

%2→%2 ≤ dAAA,sn
−s
j , j ∈N . (4.4)

If s∗ < ∞, this is equivalent to the condition that (ns∗

j eAAA, j) j∈N grows subalgebraically

in nj, i.e.

ns∗

j eAAA, j ≤ inf
r>0

dAAA,s∗−rn
r
j , j ∈N . (4.5)

Strict s∗-compressibility states that the right hand side of (4.5) is bounded in j, i.e.

dAAA,s∗ = sup
j∈N

ns∗

j eAAA, j = sup
j∈N

sup
s∈(0,s∗)

ns
jeAAA, j = sup

s∈(0,s∗)
dAAA,s < ∞ . (4.6)

Of course, s∗-compressibility implies strict s-compressibility for all s ∈ (0, s∗). "
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Proposition 4.3. Let A ∈ L(%2) be s∗-compressible with an approximating sequence
(A j) j∈N as in Definition 4.1, and set A0 ! 0. There is a map j : [0,∞) → N0 such that
A j(r) is r-sparse for all r ∈ [0,∞) and for all s ∈ (0, s∗),

eAAA, j(r) =
∥

∥

∥A − A j(r)

∥

∥

∥

%2→%2 ≤ max
(

cs
AAAdAAA,s, n

s
1eAAA,0

)

r−s (4.7)

for r > 0, where eAAA,0 ! ‖A‖%2→%2 .

Proof. Set n0 ! 0 and define

j(r) ! max
{

j ∈N0 ; nj ≤ r
}

, r ∈ [0,∞) . (4.8)

Then A j(r) is r-sparse, and if j(r) ≥ 1,

eAAA, j(r) ≤ dAAA,sn
−s
j(r) ≤ dAAA,sc

s
AAAn−s

j(r)+1 ≤ dAAA,sc
s
AAAr−s

by (4.4) and (4.1). If j(r) = 0, then r < n1, and

eAAA, j(r) = eAAA,0 ≤ eAAA,0ns
1r−s . !

In particular, Proposition 4.3 implies that Definition 4.1 coincides with the notion
of s∗-compressibility for example in [21, 31], i.e. one can assume nj = j in the
definition of s∗-compressibility at the cost of increasing the constants (4.2) and
obscuring the discrete structure of the sparse approximating sequence. We denote
the resulting compressibility constants by

d̃AAA,s ! sup
r∈(0,∞)

rs
∥

∥

∥A − A j(r)

∥

∥

∥

%2→%2 ≤ max
(

cs
AAAdAAA,s, n

s
1eAAA,0

)

< ∞ (4.9)

for s ∈ (0, s∗), where j(r) is given by (4.8). Also, it follows using Proposition 4.3
that any s∗-compressible operator A for which A∗ is also s∗-compressible, A is in the
class Bs defined in [9] for all s ∈ [0, s∗).

Although s∗-compressibility is a precise mathematical property, it is only useful
for applications if the sparse approximations to the bi-infinite matrix can be com-
puted efficiently. This is the context of the following, more restrictive definition.

Definition 4.4. An operator A ∈ L(%2) is s∗-computable for an s∗ ∈ (0,∞] if it is
s∗-compressible with an approximating sequence (A j) j∈N as in Definition 4.1 such
that A j is nj-sparse and there exists a routine

BuildAAA[ j, k] *→
[

(li)
nj

i=1, (ai)
nj

i=1

]

(4.10)

such that the k-th column of A j is equal to

nj
∑

i=1

aiεli , (4.11)

where εli is the Kronecker sequence that is 1 at li and 0 elsewhere, and there is a
constant bAAA such that the number of arithmetic operations and storage locations
used by a call of BuildAAA[ j, k] is less than bAAAnj for any j ∈N and k ∈N. "

Note that the indices li in (4.10) are not assumed to be distinct, so a single entry of
A j may be given by a sum of values ai. However, the total number of ai computed
by BuildAAA[ j, k] is at most nj.
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4.2. An adaptive approximate multiplication routine. It was shown in [9, 10] that
s∗-computable operators can be applied efficiently to finitely supported vectors. A
routine with computational advantages was presented in [19]. We extend this
method by using a greedy algorithm to solve the optimization problem at the heart
of the routine.

Let A ∈ L(%2) and for all k ∈N0, let Ak be nk-sparse with n0 = 0 and

‖A − Ak‖%2→%2 ≤ ēAAA,k . (4.12)

We consider a partitioning of a vector v ∈ %2 into v[p] ! v|Ξp , p = 1, . . . ,P, for
disjoint index sets Ξp ⊂ N. This can be approximate in that v[1] + · · · + v[P] only
approximates v in %2. We think of v[1] as containing the largest elements of v, v[2]

the next largest, and so on.
Such a partitioning can be constructed by the approximate sorting algorithm

BucketSort[v, ε] *→
[

(v[p])
P
p=1, (Ξp)P

p=1

]

, (4.13)

which, given a finitely supported v ∈ %2 and a threshold ε > 0, returns index sets

Ξp !

{

µ ∈N ;
∣

∣

∣vµ
∣

∣

∣ ∈ (2−p/2 ‖v‖%∞ , 2−(p−1)/2 ‖v‖%∞]
}

(4.14)

and v[p] ! v|Ξp , see [28, 2, 21, 19]. The integer P is minimal with

2−P/2 ‖v‖%∞
√

# supp v ≤ ε . (4.15)

By [21, Rem. 2.3] or [19, Prop. 4.4], the number of operations and storage locations
required by a call of BucketSort[v, ε] is bounded by

# supp v +max(1, 1log(‖v‖%∞
√

# supp v/ε)2) . (4.16)

This analysis uses that every vµ, µ ∈N, can be mapped to p with µ ∈ Ξp in constant
time by evaluating

p !



















1 + 2 log2

(

‖v‖%∞
∣

∣

∣vµ
∣

∣

∣

)



















. (4.17)

Alternatively, any exact comparison-based sorting algorithm can be used to con-
struct the partitioning of v, albeit with an additional logarithmic factor in the
complexity.

For any k = (kp)%p=1 ∈N
%
0, with % ∈N0 determined as in ApplyAAA[v, ε], define

ζkkk !

%
∑

p=1

ēAAA,kp

∥

∥

∥v[p]

∥

∥

∥

%2(Ξp)
and σkkk !

%
∑

p=1

nkp (# supp v[p]) . (4.18)

ApplyAAA[v, ε] *→ z

(v[p])
P
p=1 ←− BucketSort

[

v,
ε

2ēAAA,0

]

compute the minimal % ∈ {0, 1, . . . ,P} s.t. δ ! ēAAA,0

∥

∥

∥

∥

∥

∥

∥

∥

v −
%

∑

p=1

v[p]

∥

∥

∥

∥

∥

∥

∥

∥

%2

≤
ε
2

k = (kp)%p=1 ←− (0)%p=1

while ζkkk > ε − δ do
k←− NextOpt[k] with objective −ζkkk and cost σkkk

z←−
%

∑

p=1

Akp v[p]
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The algorithm ApplyAAA[v, ε] has three distinct parts. First, the elements of v are
grouped according to their magnitude. Elements smaller than a certain tolerance
are neglected. This truncation of the vector v produces an error of at most δ ≤ ε/2.

Next, a greedy algorithm is used to assign to each segment v[p] of v a sparse
approximation Akp of A, see Appendix A. Starting with Akp = 0 for all p = 1, . . . , %,
these approximations are refined iteratively until an estimate for the error resulting
from the approximation of A by Akp for all p = 1, . . . , % is bounded by ζkkk ≤ ε − δ.

Finally, the multiplications determined by the previous two steps are performed.
A few elementary properties of this method are summarized in the following
proposition.

Proposition 4.5. For any finitely supported v ∈ %2 and any ε > 0, if ApplyAAA[v, ε]
terminates, its output is a finitely supported z ∈ %2 with

# supp z ≤
%

∑

p=1

nkp (# supp v[p]) (4.19)

and

‖Av − z‖%2 ≤ δ + ζkkk ≤ ε , (4.20)

where k = (kp)%p=1 is the vector constructed by the greedy algorithm in ApplyAAA[v, ε].

Furthermore, the number of arithmetic operations required by the final step of ApplyAAA[v, ε]
is bounded by

%
∑

p=1

nkp (# supp v[p]) (4.21)

if the relevant entries of Akp are precomputed.

Proof. We show (4.20). Since ‖A‖%2→%2 ≤ ēAAA,0,
∥

∥

∥

∥

∥

∥

∥

∥

Av − A
%

∑

p=1

v[p]

∥

∥

∥

∥

∥

∥

∥

∥

%2

≤ ēAAA,0

∥

∥

∥

∥

∥

∥

∥

∥

v −
%

∑

p=1

v[p]

∥

∥

∥

∥

∥

∥

∥

∥

%2

= δ ≤
ε
2
.

By (4.12), if k = (kp)%p=1 is the final value of k,

%
∑

p=1

∥

∥

∥Av[p] − Akp v[p]

∥

∥

∥

%2
≤

%
∑

p=1

ēAAA,kp

∥

∥

∥v[p]

∥

∥

∥

%2(Ξp)
= ζkkk ≤ ε − δ .

!

Let v ∈ %2 be finitely supported and ε > 0. Note that by (4.14) and (4.15),
∥

∥

∥

∥

∥

∥

∥

∥

v −
P

∑

p=1

v[p]

∥

∥

∥

∥

∥

∥

∥

∥

%2

≤ 2−P/2 ‖v‖%∞
√

# supp v ≤
ε

2ēAAA,0
,

so % is well-defined. It is not immediately clear, however, that the greedy algorithm
in ApplyAAA[v, ε] terminates. This requires a few additional mild assumptions. For
all k ∈N0, define

ηk !
ēAAA,k − ēAAA,k+1

nk+1 − nk
. (4.22)

Assumption 4.A. (ēAAA,k)k∈N0 is nonincreasing and converges to 0; n0 = 0 and (nk)k∈N0 is
strictly increasing. Furthermore, the sequence (ηk)k∈N0 is nonincreasing.
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Note that Assumption 4.A implies Assumption A.A from Appendix A. LetM
denote the set of p ∈ {0, . . . ,P} for which supp v[p] " ∅. For all p ∈M, the sequences
of costs and values from Appendix A are given by

c
p

k
! nk(# supp v[p]) and ω

p

k
! −ēAAA,k

∥

∥

∥v[p]

∥

∥

∥

%2
. (4.23)

By Assumption 4.A, c
p
0 = 0, (c

p

k
)k∈N0 is strictly increasing and (ω

p

k
)k∈N0 is nonde-

creasing for all p ∈M. Also,

q
p

k
=
∆ω

p

k

∆c
p

k

= ηk

∥

∥

∥v[p]

∥

∥

∥

%2(Ξp)

# supp v[p]
(4.24)

is nonincreasing in k for all p ∈M.

Proposition 4.6. For any k generated in ApplyAAA[v, ε], if j ∈ N%0 with σjjj ≤ σkkk, then
ζjjj ≥ ζkkk. If j ∈N%0 with ζjjj ≤ ζkkk, then σjjj ≥ σkkk.

Proof. The assertion follows from Theorem A.5 with (4.23) and using Assump-
tion 4.A. Note that σjjj ≥ 0 for all j ∈ N%0, and if σkkk > 0, the second statement in
Theorem A.5 applies. !

Let (ki)i∈N0 denote the sequence of k generated in ApplyAAA[v, ε] if the loop is not
terminated. We abbreviate ζi ! ζkkki

and σi ! σkkki
.

Remark 4.7. In particular, Proposition 4.6 implies convergence of the greedy sub-
routine in ApplyAAA[v, ε]. Since nk+1 ≥ nk + 1 for all k ∈N0 and ki,p = 0 for all i ∈N0 if
# supp v[p] = 0, σi goes to infinity as i→ ∞. Since ζjjj can be made arbitrarily small
for suitable j ∈N%0, it follows that ζi → 0. "

5. Analysis of the adaptive application routine

5.1. Convergence analysis. For the analysis of ApplyAAA, we assume that the values
ēAAA,k are spaced sufficiently regularly, with at most geometric convergence to 0.

Assumption 5.A. r̄AAA ! sup
k∈N0

ēAAA,k

ēAAA,k+1
< ∞.

In particular, ēAAA,k > 0 for all k ∈ N0, i.e. if A is sparse, this is not reflected in the
bounds ēAAA,k. An admissible value is ēAAA,k = dAAA,sn−s

k
since for all k ∈N0,

ēAAA,k

ēAAA,k+1
=

(

nk+1

nk

)s

≤ cs
AAA < ∞ .

Lemma 5.1. For all i ∈N0, ζi ≤ r̄AAAζi+1.

Proof. Let i ∈N0. Note thatζi−ζi+1 = (ēAAA,kqi
−ēAAA,kqi

+1)
∥

∥

∥v[qi]

∥

∥

∥

%2
andζi+1 ≥ ēAAA,kqi

+1

∥

∥

∥v[qi]

∥

∥

∥

%2
.

Therefore,

ζi

ζi+1
= 1 +

ζi − ζi+1

ζi+1
≤ 1 +

ēAAA,kqi
− ēAAA,kqi

+1

ēAAA,kqi
+1

=
ēAAA,kqi

ēAAA,kqi
+1
≤ r̄AAA .

!

The following is adapted from [19, Thm. 4.6]. We emphasize in advance that
knowledge of s and s∗ is not required in ApplyAAA[v, ε]. The algorithm satisfies
Theorem 5.2 with any s∗ for which A is s∗-compressible, provided that the bounds
ēAAA,k from (4.12) decay at the rate implied by s∗-compressibility. We note that the
constant in (5.2) may degenerate as s→ s∗.
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Theorem 5.2. Let v ∈ %2 be finitely supported and ε > 0. A call of ApplyAAA[v, ε] produces
a finitely supported z ∈ %2 with

‖Av − z‖%2 ≤ δ + ζkkk ≤ ε . (5.1)

If A is s∗-compressible for an s∗ ∈ (0,∞] and supk∈N ēAAA,kns
k
< ∞ for all s ∈ (0, s∗), then for

any s ∈ (0, s∗),

# supp z ≤ σkkk # ε
−1/s ‖v‖1/sAs (5.2)

with a constant depending only on s, ēAAA,0, cAAA, n1, (dAAA,s̄)s̄∈(s,s∗) and r̄AAA.

Proof. Convergence of ApplyAAA[v, ε] follows from Proposition 4.6, see Remark 4.7.
Then (5.1) is shown in Proposition 4.5.

Let k = (kp)%
p=1

be the final value of k in ApplyAAA[v, ε], and s ∈ (0, s∗). By Propo-

sition 4.5, to prove (5.2) it suffices to show that there is a j ∈ N%0 with ζjjj ≤ ζkkk # ζ

and σjjj # ε−1/s ‖v‖1/sAs . Then Proposition 4.6 implies

# supp z ≤ σkkk ≤ σjjj # ε
−1/s ‖v‖1/sAs .

The construction of such a j is analogous to the proof of [19, Thm. 4.6] with ζ in
place of ε − δ. We provide it here for completeness.

Let τ ∈ (0, 2) be defined by τ−1 = s + 1
2 , and let s < s̄1 < s̄2 < s∗. Then

# supp v[p] ≤ #
{

µ ∈ Ξ ;
∣

∣

∣vµ
∣

∣

∣ > 2−p/2 ‖v‖%∞
}

# 2pτ/2 ‖v‖−τ%∞ ‖v‖
τ
As ,

see e.g. [18]. In particular,

∥

∥

∥v[p]

∥

∥

∥

%2
≤ 2−p/2 ‖v‖%∞

√

# supp v[p] # 2−psτ/2 ‖v‖1−τ/2
%∞

‖v‖τ/2As .

Let J ≥ % be the smallest integer with
∑%

p=1 2−(J−p)s̄1τ/2
∥

∥

∥v[p]

∥

∥

∥

%2
≤ ζ and let j =

( jp)%p=1 ∈N
%
0 with jp minimal such that ēAAA, jp ≤ 2−(J−p)s̄1τ/2. Then

ζjjj =

%
∑

p=1

ēAAA, jp

∥

∥

∥v[p]

∥

∥

∥

%2
≤

%
∑

p=1

2−(J−p)s̄1τ/2
∥

∥

∥v[p]

∥

∥

∥

%2
≤ ζ .

It remains to be shown that σjjj # ε−1/s ‖v‖1/sAs .

If jp ≥ 2, since ēAAA, jp−1ns̄2

jp−1 # 1,

njp # njp−1 # ē−1/s̄2

AAA, jp−1
≤ 2(J−p)(s̄1/s̄2)τ/2 .

This estimate extends to jp ∈ {0, 1} since p ≤ J. Therefore, using s̄1 < s̄2,

σjjj =

%
∑

p=1

njp (# supp v[p]) #
%

∑

p=1

2(J−p)(s̄1/s̄2)τ/22−psτ/2 ‖v‖−τ%∞ ‖v‖
τ
As

# 2(J−%)(s̄1/s̄2)τ/22−%sτ/2 ‖v‖−τ%∞ ‖v‖
τ
As ≤ 2Jτ/2 ‖v‖−τ%∞ ‖v‖

τ
As .

Thus, the assertion reduces to 2Jτ/2 ‖v‖−τ%∞ ‖v‖
τ
As # ε−1/s ‖v‖1/sAs .

If J = %, by minimality of %,

ε
2
< ēAAA,0

∥

∥

∥

∥

∥

∥

∥

∥

v −
%−1
∑

p=1

v[p]

∥

∥

∥

∥

∥

∥

∥

∥

%2

= ēAAA,0

√

√

√ ∞
∑

p=%

∥

∥

∥v[p]

∥

∥

∥

2

%2
# ēAAA,02−%sτ/2 ‖v‖1−τ/2

%∞
‖v‖τ/2As .
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If J > %, then by minimality of J, using s < s̄1,

ζ <
%

∑

p=1

2−(J−1−p)s̄1τ/2
∥

∥

∥v[p]

∥

∥

∥

%2
#

%
∑

p=1

2−(J−1−p)s̄1τ/22−psτ/2 ‖v‖1−τ/2
%∞

‖v‖τ/2As

# 2−(J−1−%)s̄1τ/22−%sτ/2 ‖v‖1−τ/2
%∞

‖v‖τ/2As ≤ 2−(J−1)sτ/2 ‖v‖1−τ/2
%∞

‖v‖τ/2As .

Lemma 5.1 implies ε ≤ r̄AAAζ. Therefore, in both cases,

ε # 2−Jsτ/2 ‖v‖1−τ/2
%∞

‖v‖τ/2As ,

or equivalently,

2Jτ/2 ‖v‖−τ%∞ ‖v‖
τ
As # ε−1/s ‖v‖1/sAs ,

which completes the proof. !

It is known that s∗-compressible operators A mapAs boundedly intoAs for all
s ∈ (0, s∗), see [9, Proposition 3.8]. Theorem 5.2 implies that this carries over to the
approximate multiplication routine ApplyAAA.

Corollary 5.3. Let A be s∗-compressible for some s∗ ∈ (0,∞], and assume that for all
s ∈ (0, s∗), supk∈N ēAAA,kns

k
< ∞. Then for any s ∈ (0, s∗) there is a constant C depending

only on s, ēAAA,0, cAAA, n1, (dAAA,s̄)s̄∈(s,s∗) and r̄AAA such that for all v ∈ As and all ε > 0, the output
z of ApplyAAA[v, ε] satisfies

‖z‖As ≤ C ‖v‖As . (5.3)

Proof. Let z be the output of ApplyAAA[v, ε] for some v ∈ As and some ε > 0, and
define w ! Av. By [9, Proposition 3.8], w ∈ As, and ‖w‖As # ‖v‖As . Therefore,
it suffices to show ‖z‖As # ‖w‖As . Since z is finitely supported, z ∈ As. Let
N ! # supp z. Theorem 5.2 implies

‖w − z‖%2 # ‖w‖As N−s .

For any n ≥ N, Pn(z) = z, and thus (n + 1)s ‖z − Pn(z)‖%2 = 0. Let n ≤ N − 1 and
zn ∈ %2 with # supp zn ≤ n. Then

(n + 1)s ‖z − zn‖%2 ≤ (n + 1)s ‖w − z‖%2 + (n + 1)s ‖w − zn‖%2 .

The first term is bounded by

(n + 1)s ‖w − z‖%2 # (n + 1)sN−s ‖w‖As # ‖w‖As .

Taking the infimum over zn with # supp zn ≤ n, we have

(n + 1)s ‖z − Pn(z)‖%2 # ‖w‖As + (n + 1)s inf
zzzn

‖w − zn‖%2 # ‖w‖As .

The assertion follows by taking the supremum over n ∈N0. !

5.2. Complexity analysis. By (4.16), the number of operations and storage loca-
tions required by BucketSort in a call of ApplyAAA[v, ε] is bounded by

# supp v +max(1, 1log(2ēAAA,0 ‖v‖%∞
√

# supp v/ε)2)

# 1 + # supp v + log(ε−1 ‖v‖%∞) . (5.4)

The value of % can be determined with at most # supp v operations. We assume that
the values of

∥

∥

∥v[p]

∥

∥

∥

%2(Ξp)
are known from the computation of %. Then by Proposi-

tion A.6, initialization of the greedy subroutine requiresO(% log %) operations, and
each iteration requires O(1 + log %) operations e.g. if a tree data structure is used
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for N from Section A.3. As ‖k‖%1 iterations are performed if k = (kp)%p=1 is the final

value of k in ApplyAAA[v, ε], the total cost of determining % and k is on the order of

# supp v + % log+ % + (1 + log+ %)
%

∑

p=1

kp , (5.5)

where log+ x ! log(max(x, 1)). Since % ≤ P, (4.15) implies

% # 1 + log+(# supp v) + log+(ε−1 ‖v‖%∞) . (5.6)

Finally, the number of arithmetic operations required by the last step of ApplyAAA[v, ε]
is bounded by

σkkk =

%
∑

p=1

nkp (# supp v[p]) , (5.7)

and this value is optimal in the sense of Proposition 4.6. If A is s∗-computable for
any s∗ ∈ (0,∞], then (5.7) includes the assembly costs of Akp .

Theorem 5.4. Let v ∈ %2 be finitely supported and ε > 0. If A is s∗-computable for an
s∗ ∈ (0,∞] and supk∈N ēAAA,kns

k
< ∞ for all s ∈ (0, s∗), then for any s ∈ (0, s∗), the number of

operations and storage locations required by ApplyAAA[v, ε] is less than a multiple of

1 + # supp v + ε−1/s ‖v‖1/sAs

(

1 + log+ log+
(

# supp v + ε−1 ‖v‖%∞
))

(5.8)

with a constant depending only on s, ēAAA,0, cAAA, n1, (dAAA,s̄)s̄∈(s,s∗), r̄AAA and bAAA. The double
logarithmic term in (5.8) is due only to the greedy subroutine and does not apply to the
storage requirements.1

Proof. We first note that

log(ε−1 ‖v‖%∞) # ε−1/s ‖v‖1/s%∞ ≤ ε
−1/s ‖v‖1/sAs .

Therefore and by (5.4), the cost of BucketSort is less than

1 + # supp v + log(ε−1 ‖v‖%∞) # 1 + # supp v + ε−1/s ‖v‖1/sAs .

The cost of the last step of ApplyAAA[v, ε] is σkkk, which in Theorem 5.2 is bounded by

σkkk # ε
−1/s ‖v‖1/sAs .

The cost of the rest of ApplyAAA[v, ε] is given in (5.5). By (5.6), for χ > 1,

% log % # %χ # 1 + log(# supp v)χ + log(ε−1 ‖v‖%∞)χ

# 1 + # supp v + ε−1/s ‖v‖1/s%∞ ≤ 1 + # supp v + ε−1/s ‖v‖1/sAs .

Since

% # 1 + log(# supp v) + log(ε−1 ‖v‖%∞) # 1 + log(# supp v + ε−1 ‖v‖%∞) ,

we have

log % ≤ C + log(1 + log(# supp v + ε−1 ‖v‖%∞)) # 1 + log log(# supp v + ε−1 ‖v‖%∞) .

Finally, since k ≤ nk for all k ∈N0 and kp = 0 if # supp v[p] = 0,

%
∑

p=1

kp ≤
%

∑

p=1

nkp (# supp v[p]) = σkkk # ε
−1/s ‖v‖1/sAs .

!

1As above, log+ x ! log(max(x, 1)).
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Remark 5.5. The double logarithmic term in (5.8) can be dropped under mild
conditions. If nk $ kα for an α > 1, then by Hölder’s inequality,

%
∑

p=1

kp #

%
∑

p=1

n1/α
kp
≤

( %
∑

p=1

nkp

)1/α

%
α−1
α .

Furthermore, for a χ > 1, as in the proof of Theorem 5.4,

%
α−1
α log % # (%χ)

α−1
α #

(

1 + # supp v + ε−1/s ‖v‖1/sAs

)
α−1
α .

It follows that

log %
%

∑

p=1

kp # σ
1/α
kkk

(

1 + # supp v + ε−1/s ‖v‖1/sAs

)
α−1
α
# 1 + # supp v + ε−1/s ‖v‖1/sAs ,

and (5.8) can be replaced by

1 + # supp v + ε−1/s ‖v‖1/sAs (5.9)

in Theorem 5.4, with a constant that also depends on α. The assumption nk $ kα

is generally not restrictive, since by (4.1), nk may grow exponentially for an s∗-
compressible operator. "

6. Computation of spectral norms by the power method

6.1. Estimation of errors in sparse approximations of s∗-compressible operators.
The routine ApplyAAA in Section 4.2 makes explicit use of bounds ēAAA,k on the errors
‖A − Ak‖%2→%2 , where Ak is an nk-sparse approximation of an operator A ∈ L(%2),
see (4.12). Such bounds are derived e.g. in [33, 3] for a large class of operators in
wavelet bases. However, these estimates only hold up to an unspecified constant.

We suggest a power method for numerically approximating‖A − Ak‖%2→%2 , which
is equal to the square root of the spectral radius of the bounded positive symmetric
operator (A − Ak)∗(A − Ak) on %2.

Remark 6.1. If A is s∗-compressible with a sequence (A j) j∈N of nj-sparse approxi-
mations, then A − Ak is also s∗-compressible with approximations (Ak+ j − Ak) j∈N.
We have

∥

∥

∥(A − Ak) − (Ak+ j − Ak)
∥

∥

∥

%2→%2 =
∥

∥

∥A − Ak+ j

∥

∥

∥

%2→%2 = eAAA,k+ j ≤ dAAA,sn
−s
k+ j . (6.1)

Furthermore, Ak+ j − Ak is at most (nk+ j + nk)-sparse, which implies dAAA−AAAk,s ≤ 2sdAAA,s.
If the nonzero entries of Ak are also nonzero for Ak+ j, then Ak+ j − Ak is nk+ j-sparse,
or even (nk+ j − nk)-sparse if the values of these entries coincide. In either case,
dAAA−AAAk ,s ≤ dAAA,s. Similar considerations lead to cAAA−AAAk

≤ 2c2
AAA
/(cAAA − 1). "

6.2. Analysis of an idealized iteration. Let A ∈ L(%2) be a positive symmetric
operator. The power method successively approximates the spectral radius rAAA of
A by Rayleigh quotients

Rn !

(

An+1v,Anv
)

%2

‖Anv‖2%2
=

(

A2n+1v, v
)

%2

(A2nv, v)%2
, n ∈N , (6.2)

for some starting value v ∈ %2.

Remark 6.2. The classical analysis of the power method in a finite dimensional set-
ting makes use of the gap between the two largest eigenvalues. For real symmetric
matrices, the convergence to the largest eigenvalue is quadratic in the quotient of
the two largest eigenvalues, and the convergence to a corresponding eigenvector
is linear. In our infinite dimensional setting, the spectrum does not have to consist
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of discrete points, and there can be points in the spectrum with no corresponding
eigenvector. Also, it no longer makes sense to consider the difference between the
two largest eigenvalues since the maximum of the spectrum may also be a limit
point of the spectrum. These fundamental differences call for an equally different
analysis. "

Theorem 6.3. For appropriate starting values v ∈ %2 and any ϑ ∈ (0, 1), there is a
constant cvvv,ϑ > 0 such that

rAAA ≥ Rn ≥ ϑrAAA(1 − cvvv,ϑn
−1) ∀n ∈N . (6.3)

In particular, Rn → rAAA.

Proof. We note that Rn ≤ rAAA for all n ∈N by definition. Due to the spectral theorem
for bounded symmetric operators, there is a σ-finite measure µ on some domain S
and a unitary map U : L2

µ(S)→ %2 such that

U∗AUϕ = fϕ ∀ϕ ∈ L2
µ(S) ,

where f ∈ L∞µ (S) with f ≥ 0 and rAAA =
∥

∥

∥ f
∥

∥

∥

L∞µ (S)
. We assume without loss of generality

that ‖v‖%2 = 1 and define ϕ ! U∗v. Then the Rayleigh quotients (6.2) are

Rn =

∫

S
f 2n+1 |ϕ|2 dµ

∫

S
f 2n |ϕ|2 dµ

=

∫

S
f 2n+1 dµϕ

∫

S
f 2n dµϕ

for the probability measure dµϕ ! |ϕ|2 dµ. By Jensen’s inequality,
∥

∥

∥ f
∥

∥

∥

L2n+1
µϕ (S)

≥
∥

∥

∥ f
∥

∥

∥

L2n
µϕ (S)

, and thus

Rn ≥

(

∫

S
f 2n dµϕ

)

2n+1
2n

∫

S
f 2n dµϕ

=

(

∫

S
f 2n dµϕ

)

1
2n

=
∥

∥

∥ f
∥

∥

∥

L2n
µϕ (S)

.

Since
∥

∥

∥ f
∥

∥

∥

L
p
µϕ (S)
→

∥

∥

∥ f
∥

∥

∥

L∞µϕ (S)
as p→∞, convergence of Rn to rAAA follows, provided that

ess sup
x∈suppϕ

f (x) = ess sup
x∈S

f (x) . (6.4)

We estimate
∥

∥

∥ f
∥

∥

∥

L2n
µϕ (S)

from below in order to get a convergence rate. Let ϑ ∈ (0, 1).

Then Markov’s inequality implies

∥

∥

∥ f
∥

∥

∥

L2n
µϕ (S)
≥ ϑ

∥

∥

∥ f
∥

∥

∥

L∞µϕ (S)
κ1/2n for κ ! µϕ

(

{

x ∈ S ; f (x) ≥ ϑ
∥

∥

∥ f
∥

∥

∥

L∞µϕ (S)

}

)

∈ (0, 1] .

Furthermore, by the fundamental theorem of calculus,

κ1/2n ≥ 1 − (1 − κ)
1

2n
κ

1
2n−1 ≥ 1 −

1 − κ
2κ

1

n
. !

The proof of Theorem 6.3 clarifies the conditions on the starting value v: It must
satisfy (6.4) for ϕ = U∗v and f as in the proof. This condition is analogous to
the assumption that the starting vector in a finite dimensional power method is
not orthogonal to the eigenspace associated to the largest eigenvalue. We expect
round-off errors to make this condition irrelevant for numerical computations.
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6.3. A practical algorithm. The Rayleigh quotients (6.2) cannot be computed ex-
actly since the operator A cannot by applied exactly. We suggest an approximate
adaptive procedure for evaluating Av similar to the routineApplyAAA from Section 4.2.
To this end, we assume that for all k ∈ N0, Ak is an nk-sparse approximation of A,
with n0 = 0, nk+1 ≥ nk + 1 for all k ∈N0 and

‖A −Ak‖%2→%2 ≤ CẽAAA,k (6.5)

for a constant C. We emphasize that this assumption is weaker than (4.12) since
the constant C need not be known, and our algorithm does not depend on this
constant. If it is known that A is s∗-compressible, then we may set ẽAAA,k ! n−s

k
for

any s ∈ (0, s∗).
Let v = (vµ)µ∈N be a finitely supported sequence. We consider a sorting routine

Sort[v] *→ (µi)
M
i=1 (6.6)

with M ! # supp v and such that (|vµi |)M
i=1

is a decreasing rearrangement of (|vµ|)µ∈N.
To approximate Av, we apply either Ak or a better approximation of A to the first
mk terms of this decreasing rearrangement, i.e. we apply Ak to v restricted to the set
{µi ; mk+1 + 1 ≤ i ≤ mk}. For any nonincreasing sequence m = (mk)∞

k=1
, the number

of multiplications performed in this approximate application of A is at most

σmmm !

∞
∑

k=1

nk(mk −mk+1) =
∞

∑

k=1

(nk − nk−1)mk , (6.7)

and the error is bounded by

χmmm !

∞
∑

k=1

ẽAAA,k

( mk
∑

i=mk+1+1

∣

∣

∣vµi

∣

∣

∣

2
)1/2

. (6.8)

Even though χmmm is not of the form (A.2), and thus Appendix A does not apply, we
use a greedy algorithm to adaptively select a sequence m. The routine NextOptInf
from Appendix A.3 easily extends to the present setting, and its output m is assured
to be nonincreasing.

NApplyAAA[v,N] *→ z

(µi)
M
i=1 ←− Sort[v]

m = (mk)∞
k=1
←− (0)∞

k=1
m̂ = (m̂k)∞

k=1
←− (0)∞

k=1

while σm̂̂m̂m ≤ N do
m←− m̂
m̂←− NextOptInf[m] with objective −χmmm and cost σmmm

forall k ∈N do Ξk ←− {µi ; mk+1 + 1 ≤ i ≤ mk}

z←−
∞
∑

k=1

Akv|Ξk

The routine NApplyAAA does not ensure a fixed error, contrary to ApplyAAA. This
would not be possible due to the unknown constant in the estimate (6.5). Instead,
NApplyAAA limits the computational cost of the approximate multiplication. It can be
thought of as an adaptively constructed matrix representation of A of size N ×M.

Remark 6.4. By construction, σmmm ≤ N for the final value of m in NApplyAAA. This
implies that no more than N multiplications are performed in the computation of
z in the final step of NApplyAAA, and thus # supp z ≤ N. "



22 C. J. GITTELSON

Remark 6.5. The exact sorting in the first step of NApplyAAA uses O(M log M) oper-
ations. If nk increases exponentially in k and ẽAAA,k decreases exponentially in k,
then at most O(N log N) steps are required in the subsequent greedy algorithm.
By Proposition A.7, these can be realized at a computational cost of O(N(log N)2).
Finally, as noted in Remark 6.4, the actual computation of z uses O(N) operations."

Starting from an arbitrary finitely supported nonzero v ∈ %2, SpecRadAAA itera-
tively uses NApplyAAA to approximate multiplications by A in the Rayleigh quotients
(6.2). As a termination criterion, lacking alternatives, we simply compare two
consecutive approximations of the spectral radius of A.

SpecRadAAA[v,N, ε] *→ ;
;←− ∞
v←− v/ ‖v‖%2
repeat
;0 ←− ;
w←− NApplyAAA[v,N]
;←− w · v
v←− w/ ‖w‖%2

until
∣

∣

∣; − ;0

∣

∣

∣ ≤ ε;

Remark 6.6. Since N is held constant throughout SpecRadAAA, assuming # supp v ≤ N
for the starting value of v, each step of SpecRadAAA has a computational cost of
O(N(log N)2) due to Remark 6.5. Consequently, the choice of v is not particularly
important—a poor choice is likely to be compensated by a few steps of the iteration,
and the cost of subsequent steps is not affected. Note that the situation would be
different if ApplyAAA were used in place of NApplyAAA. "

Remark 6.7. In order to compute the spectral radius of A∗A for an operator A ∈ L(%2)
that is not positive, instead of constructing sparse approximations of A∗A, the
algorithm SpecRadAAA∗AAA can be used with NApplyAAA∗AAA[v,N] replaced by

NApplyAAA∗ [NApplyAAA[v,N],N] . (6.9)

All vectors appearing in the iteration are still ensured to have at most N nonzero
entries, and Remark 6.6 still holds. This can be used in the setting of Section 6.1,
with A − Ak in place of A. "

7. Sparse approximations of discrete random operators

7.1. Definition of approximations. We return to the discrete random operator A
defined in (2.12). Let (D j) j∈N0 and (Rm, j) j∈N0 be approximating sequences of D and
Rm, respectively, such that D j is n0, j-sparse and Rm, j is nm, j-sparse, m ∈ N. We
assume nm,0 = 0 and nm, j is strictly increasing in j for all m ∈N0. Furthermore, let

∥

∥

∥D −D j

∥

∥

∥

%2(Ξ)→%2(Θ)
≤ ē0, j and

∥

∥

∥Rm − Rm, j

∥

∥

∥

%2(Ξ)→%2(Θ)
≤ ēm, j (7.1)

for all m ∈N. Such bounds can be computed numerically by a power method, see
Section 6.

For all finitely supported sequences j ! ( jm)m∈N0 inN0, define the operator

Ajjj ! I ⊗D j0 +

∞
∑

m=1

Km ⊗ Rm, jm . (7.2)

Let σm ! 2 if the distribution πm is symmetric, and σm ! 3 otherwise. We set
σ0 ! 1 and define n̄m, j ! σmnm, j for m ∈N0. Then for all j ∈N0, I⊗D j is n̄0, j-sparse
and Km ⊗ Rm, j is n̄m, j-sparse, m ∈N.
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Lemma 7.1. For any finitely supported sequence j = ( jm)m∈N0 inN0, Ajjj is Njjj-sparse for

Njjj !

∞
∑

m=0

n̄m, jm , (7.3)

and
∥

∥

∥A − Ajjj

∥

∥

∥

%2(Λ×Ξ)→%2(Λ×Θ)
≤
∞

∑

m=0

ēm, jm # ēAAA,jjj . (7.4)

Proof. The first part of the assertion follows by construction since I is 1-sparse and
Km is σm-sparse for all m ∈ N. Equation (7.4) is a consequence of Lemma 2.2 and
Proposition 2.3. !

We use the greedy algorithm from Appendix A to select specific j in (7.2). The
cost cjjj and objective ωjjj are given by

cjjj ! Njjj =

∞
∑

m=0

n̄m, jm and ωjjj ! −ēAAA,jjj =

∞
∑

m=0

−ēm, jm . (7.5)

We initialize j0 ! 0 ∈NN0

0 and construct (jk)k∈N0 recursively by

jk+1 ! NextOptInf[ jk] , k ∈N0 , (7.6)

using (7.5). Then

Ak ! Ajjjk , k ∈N0 , (7.7)

defines a sequence of approximations of A. By Lemma 7.1, Ak is Nk ! Njjjk -sparse
and its distance to A is bounded by ēAAA,k ! ēAAA,jjjk .

Under mild assumptions, (7.7) defines the optimal Nk-sparse approximation of
A given the bounds (7.1) and the estimates in Lemma 7.1.

Assumption 7.A. For all m ∈ N, nm,0 = 0 and the (nm, j) j∈N0 is strictly increasing. The
sequence (ēm,0)m∈N is in %1, and (ēm, j) j∈N0 is nonincreasing. Furthermore, if i ≥ j, then

−(ēm,i+1 − ēm,i)

n̄m,i+1 − n̄m,i
≤
−(ēm, j+1 − ēm, j)

n̄m, j+1 − n̄m, j
, (7.8)

and n̄−1
m,1(ēm,1 − ēm,0) is nonincreasing in m.

Corollary 7.2. For all k ∈ N0, jk minimizes the error bound ēAAA,jjj among all finitely
supported sequences j inN0 with sparsity bound Njjj ≤ Nk. Furthermore, if ēAAA,k " 0, then
jk minimizes Njjj among all j with ēAAA,jjj ≤ ēAAA,k.

Proof. The assertion follows from Theorem A.5, see Remark A.1, since Assump-
tion 7.A implies Assumption A.A for (7.5). !

7.2. Numerical computation. We consider the complexity of a routine BuildAAA as
in Def. 4.4 for constructing columns of Ak, interpreted as bi-infinite matrices. To
this end, we assume that such assembly routines are available for D and Rm, m ∈N.
More specifically, the routines

Build0[ j, ι] *→
[

(λi)
n0, j

i=1
, (di)

n0, j

i=1

]

,

Buildm[ j, ι] *→
[

(λi)
nm, j

i=1 , (r
m
i )

nm, j

i=1

]

, m ∈N ,

construct all nonzero elements of the ι-th column of D j and Rm, j, respectively, using
no more than bmnm, j arithmetic operations and storage locations for a constant bm

independent of j and ι.
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BuildAAA[k, (µ, ι)] *→
[

((νi,λi))
Nk

i=1
, (ai)

Nk

i=1

]

[

(λi)
n0, jk,0

i=1 , (di)
n0, jk,0

i=1

]

←− Build0[ jk,0, ι]
for i = 1, . . . , n0, jk,0 do [(νi,λi), ai]←−

[

(µ,λi), di
]

n←− n0, jk,0

for m ∈N ; jk,m ≥ 1 do
[

(λi)
nm, jk,m

i=1 , (rm
i )

nm, jk,m

i=1

]

←− Buildm[ jk,m, ι]
t←− 0
for i = 1, . . . , nm, jk,m do

(νn+t+1,λn+t+1)←− (µ + εm,λi)
an+t+1 ←− βm

µm+1rm
i

if µm ≥ 1 then
(νn+t+2,λn+t+2)←− (µ − εm,λi)
an+t+2 ←− βm

µm
rm

i

if σm = 3 then
(νn+t+3,λn+t+3)←− (µ,λi)
an+t+3 ←− αm

µm
rm

i

t←− t + σm
n←− n + σmnm, jk,m

Lemma 7.3. The number of arithmetic operations and storage locations required by a call
of BuildAAA[k, (µ, ι)] is bounded uniformly in k by

Nk +

∞
∑

m=0

bmnm, jk,m .

Proof. This is a direct consequence of the assumptions on Buildm, m ∈N0. !

Remark 7.4. It is often necessary to construct jk before calling BuildAAA[k, ·], for
example to determine Nk and ēAAA,k. In this case, we can assume jk to be readily
available in BuildAAA[k, ·]. Otherwise, NextOptInf from Appendix A can be used to
compute jk in the first call of BuildAAA[k, ·]. If this is done directly for an arbitrary
k ∈N0, it adds O(k log(k)) to the complexity of BuildAAA[k, ·] even ifN is realized by
a tree data structure, which may dominate e.g. if Nk # k. However, if BuildAAA[k, ·] is
called successively for k ∈N and the values jk,N and M are cached, then the cost
of NextOptInf is negligible even ifN is realized by a simple linked list. "

7.3. Adaptive application of discrete random operators. In this section, we ana-
lyze the structure of the adaptive multiplication routine ApplyAAA from Section 4.2
for a discretized parametric operator A and the approximating sequence (Ak) from
Section 7.1.

By Assumption 7.A and Lemma 7.3, (Nk)k∈N is strictly increasing, and N0 = 0
since j0 = 0. By definition, ( jk,m)k∈N0 is nondecreasing for all m ∈ N0. Therefore,
Assumption 7.A implies that (ēAAA,k)k∈N0 is nondecreasing. If ēm, j → 0 as j → ∞ for
all m ∈ N0, since (ēm,0)m∈N0 ∈ %1 by Assumption 7.A, Corollary 7.2 implies that
ēAAA,k → 0 as k→ ∞. We note that

ηk =
ēAAA,k − ēAAA,k+1

Nk+1 −Nk
=

ēmk , jk,mk
− ēmk , jk,mk

+1

n̄mk , jk,mk
+1 − n̄mk , jk,mk

, (7.9)

which is nonincreasing in k by construction of (jk)k∈N0 , see Lemma A.4. Conse-
quently, Assumption 4.A is satisfied under the sole additional requirement that
ēm, j → 0 as j→∞ for all m ∈N0.



ADAPTIVE WAVELET METHODS FOR ELLIPTICE PDE WITH RANDOM OPERATORS 25

Also, since
ēAAA,k

ēAAA,k+1
=

ēAAA,k

ēAAA,k + ēmk , jk,mk
+1 − ēmk , jk,mk

≤
ēmk , jk,mk

ēmk , jk,mk
+1
,

Assumption 5.A is satisfied if

sup
m∈N0

sup
j∈N0

ēm, j

ēm, j+1
< ∞ . (7.10)

Assuming the sequences (jk) and (mk) are known, the first two parts ofApplyAAA[v, ε]
can be used to partition the vector v into (v[p])%p=1 and a negligible remainder term,

and to assign to each of these a kp ∈N0.
The final step of ApplyAAA[v, ε] performs the multiplications

z !
%

∑

p=1

Akp v[p] . (7.11)

Using the tensor product structure from Proposition 2.3, (7.11) can be decomposed
into multiplications with the coefficient operators D j and Rm, j, m ∈N.

Let v[p],µ denote the µ-th coefficient of v[p], i.e. v[p],µ = (vµι)ι for ι ∈ Ξ such that
(µ, ι) ∈ Ξp. Then assuming πm is symmetric for all m ∈N, z = (zµ)µ∈Λ with

zµ =
%

∑

p=1

















D jkp ,0
v[p],µ +

Mp
∑

m=1

βm
µm+1Rm, jkp ,m

v[p],µ+εm + β
m
µm

Rm, jkp ,m
v[p],µ−εm

















, (7.12)

where Mp ! max{m ∈N0 ; jkp,m " 0}. This does not, however, represent an efficient
way to construct z. It is not clear which zµ are nonzero, and many multiplications
with Rm, j are done twice. The routine MultiplyAAA does the same computation
efficiently, for arbitrary πm, by looping over p and the support of v[p].

MultiplyAAA[(v[p])%p=1, (kp)%p=1] *→ z

z←− 0
for p = 1, . . . , % do

forall µ ∈ Λ with v[p],µ " 0 do
zµ ←− zµ +D jkp ,0

v[p],µ

for m = 1, . . . ,Mp do
w←− Rm, jkp ,m

v[p],µ

zµ+εm ←− zµ+εm + β
m
µm+1w

if µm ≥ 1 then zµ−εm ←− zµ−εm + β
m
µm

w
if σm = 3 then zµ ←− zµ + αm

µm
w

Remark 7.5. In MultiplyAAA[(v[p])%p=1, (kp)%p=1], each multiplication with Rm, j is per-

formed only once, and copied to σm components of z. This suggests defining
n̄m ! nRRRm for m ∈N, without the factor of σm from the original definition. "

Remark 7.6. By Proposition 2.6, the discrete adjoint A∗ of a discretized parametric
operator A has the same tensor product structure as A. Therefore, sparse approxi-
mations of A∗ can be constructed as in Section 7.1, with D and Rm, m ∈N, replaced
by their adjoints. Theorem 8.4 below carries over to show s∗-compressibility of A∗

under suitable assumptions, and s∗-computability follows as a corollary. In particu-
lar, ApplyAAA∗ has the same structure as described above. An adaptive multiplication
routine for A∗A can be constructed as in (3.23). "
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8. s∗-compressibility of discrete random operators

8.1. Preliminary estimates. For an s > 0, assume for the moment that D and Rm,
m ∈ N, are strictly s-compressible. By Proposition 4.3, there is a map j0 : [0,∞)→
N0 such that the sparse approximation D j0(r) is r-sparse and

∥

∥

∥D −D j0(r)

∥

∥

∥

%2(Ξ)→%2(Θ)
≤ ē0, j0(r) ≤ d̃0,sr

−s , r > 0 , (8.1)

with d̃0,s ! d̃DDD,s.
2 Similarly, for all m ∈ N there is a map jm : [0,∞)→ N0 such that

the sparse approximation Rm, jm(r) is rσ−1
m -sparse and

∥

∥

∥Rm − Rm, jm(r)

∥

∥

∥

%2(Ξ)→%2(Θ)
≤ ēm, jm(r) ≤ d̃m,sr

−s , r > 0 , (8.2)

with d̃m,s ! σs
md̃RRRm ,s.

Lemma 8.1. If (d̃m,s)m ∈ %
1

s+1 (N0), then for all r > 0 there is a finitely supported sequence
j(r) inN0 such that Njjj(r) ≤ r and

ēAAA,jjj(r) ≤















∞
∑

m=0

d̃
1

s+1
m,s















s+1

r−s . (8.3)

Proof. Let t > 0 and define rm ! d̃
1

s+1
m,st for all m ∈ N0. Set j ! ( jm(rm))m∈N0 . This

sequence is finitely supported since rm < 1 for all but finitely many m ∈ N0. By
Lemma 7.1,

Njjj =

∞
∑

m=0

n̄m, jm(rm) ≤
∞

∑

m=0

rm =

∞
∑

m=0

d̃
1

s+1
m,st # r

and

ēAAA,jjj =

∞
∑

m=0

ēm, jm(rm) ≤
∞

∑

m=0

d̃m,sr
−s
m =

∞
∑

m=0

d̃
1

s+1
m,st
−s =















∞
∑

m=0

d̃
1

s+1
m,s















s+1

r−s .

!

If (d̃m,s)m is not in %
1

s+1 (N0), a similar property still holds if we replace the infinite
sum by a partial sum. We define the operators

A[M] ! I ⊗D +
M
∑

m=1

Km ⊗ Rm ∈ L(%2(Λ × Ξ) , %2(Λ ×Θ)) . (8.4)

Let
‖D‖%2(Ξ)→%2(Θ) ≤ ē0,0 and ‖Rm‖%2(Ξ)→%2(Θ) ≤ ēm,0 , m ∈N . (8.5)

Then by Lemma 2.2 and Proposition 2.3,

∥

∥

∥A − A[M]

∥

∥

∥

%2(Λ×Ξ)→%2(Λ×Θ)
≤

∞
∑

m=M+1

ēm,0 . (8.6)

For any s > 0, if either

ēm,0 ≤ sδAAA,s(m + 1)−s−1 ∀m ∈N (8.7)

or














∞
∑

m=1

ē
1

s+1

m,0















s+1

≤ δAAA,s , (8.8)

2Proposition 4.3 initially only implies that the first term in (8.1) is bounded by the third. However,
if (8.1) does not hold, we can replace ē0, j0(r) by d̃0,sr−s in (7.1).
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then it follows as in [23, Prop. 4.4] that

∞
∑

m=M+1

ēm,0 ≤ δAAA,s(M + 1)−s ∀M ∈N0 . (8.9)

We define

ēAAA[M],jjj !

M
∑

m=0

ēm, jm . (8.10)

Then for all sequences j inN0 with support in {0, 1, . . . ,M},

ēAAA,jjj = ēAAA[M],jjj +

∞
∑

m=M+1

ēm,0 . (8.11)

Lemma 8.2. For all M ∈N0 and all r > 0, there is a sequence j(r) inN0 with support in
{0, 1, . . . ,M} such that Njjj(r) ≤ r and

ēAAA[M],jjj(r) ≤















M
∑

m=0

d̃
1

s+1
m,s















s+1

r−s . (8.12)

Proof. The proof is analogous to the proof of Lemma 8.1. !

Proposition 8.3. Let (8.7) or (8.8) be satisfied for an sσ > 0 and














M
∑

m=0

d̃
1

s+1
m,s















s+1

≤ d̂sM
ts , M ∈N , (8.13)

with d̂s > 0 and ts ≥ 0. Then for all r ∈ [1,∞) there is a finitely supported sequence j(r)
inN0 such that Njjj(r) ≤ r and

ēAAA,jjj(r) ≤
(

d̂s + δAAA,sσ
)

r
−s

1+ts/sσ . (8.14)

Proof. Let r ∈ [1,∞) and set M ! 3r
s

sσ+ts 4. Then for the sequence j(r) from
Lemma 8.2,

ēAAA[M],jjj(r) ≤ d̂sM
ts r−s ≤ d̂sr

−ssσ
sσ+ts .

Equation (8.9) implies

∞
∑

m=M+1

ēm,0 ≤ δAAA,sσ(M + 1)−sσ ≤ δAAA,sσr
−ssσ
sσ+ts .

Then the assertion follows using (8.11). !

8.2. s∗-compressibility. The above estimates combine with Corollary 7.2 to show
s∗-compressibility of A with the approximating sequence (Ak)k∈N from Section 7.1.
Define the constants

c̃m ! max













n̄m,1, sup
j∈N

n̄m, j+1

n̄m, j













< ∞ , m ∈N0 . (8.15)

Note that cDDD ≤ c̃0 and cRRRm ≤ σmc̃m for m ∈N.

Theorem 8.4. Let s∗δ, s∗σ ∈ (0,∞] and assume

c̃ ! sup
m∈N0

c̃m < ∞ . (8.16)

(1) If (d̃m,s)m ∈ %
1

s+1 (N0) for all s ∈ (0, s∗δ), then A is s∗-compressible for s∗ = s∗δ.
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(2) If (8.7) or (8.8) holds for all s ∈ (0, s∗σ) and (8.13) holds for all s ∈ (0, s∗δ) with
ts ≤ t̂ < ∞, then A is s∗-compressible for

s∗ =
s∗δ

1 + t̂/s∗σ
. (8.17)

In both cases, (Ak)k∈N is a valid approximating sequence with cAAA ≤ c̃,

dAAA,s ≤
∥

∥

∥(d̃m,s)m

∥

∥

∥

%
1

s+1 (N0)
, s ∈ (0, s∗) (8.18)

in the first case and

dAAA,s ≤ inf
st̂

s∗
δ
−s
<sσ<s∗σ

(

d̂s(1+t̂/sσ) + δAAA,sσ
)

, s ∈ (0, s∗) (8.19)

in the second case.

Proof. Condition (8.16) ensures (4.1) for (Ak)k∈N since for k ∈ N and j ! jk,mk
, if

j ≥ 1,
Nk+1

Nk
=

Nk + n̄mk , j+1 − n̄mk , j

Nk
=

n + n̄mk , j+1

n + n̄mk , j
≤

n̄mk , j+1

n̄mk , j
≤ c̃mk ,

where n = Nk − n̄mk , j ≥ 0, and if j = 0,

Nk+1

Nk
=

Nk + n̄mk ,1

Nk
≤ n̄mk ,1 ≤ c̃mk .

Let s ∈ (0, s∗). In case 1, Corollary 7.2 and Lemma 8.1 with r = Nk imply

ēAAA,k ≤ ēAAA,jjj(Nk) ≤















∞
∑

m=0

d̃
1

s+1
m,s















s+1

N−s
k .

In case 2, select sδ ∈ (0, s∗δ) and sσ ∈ (0, s∗σ) such that

s =
sδ

1 + t̂/sσ
.

This is possible since the right hand side is increasing in sδ and sσ. By monotonicity,
(8.13) holds with ts = t̂. Then Corollary 7.2 and Proposition 8.3 with r = Nk imply

ēAAA,k ≤ ēAAA,jjj(Nk) ≤
(

d̂sδ + δAAA,sσ
)

N−s
k .

Equation (8.19) follows since sδ = s(1 + t̂/sσ). !

8.3. s∗-computability. Under the assumption that the sequence (jk)k∈N0 is avail-
able, s∗-computability of A follows from Theorem 8.4 as a corollary.

Corollary 8.5. In the setting of Theorem 8.4, if

sup
m∈N0

bm < ∞ (8.20)

for bm from Section 7.2 and the sequences jk are given as in Remark A.9, then A is
s∗-computable and BuildAAA is a valid assembly routine.

Proof. s∗-compressibility follows from Theorem 8.4. By Lemma 7.3, (8.20) and
Remark A.9, the number of arithmetic operations and storage locations required
by a call of BuildAAA[k, ·] is O(Nk). !

If jk are not readily available, Proposition A.7 implies that recursive application
of NextOptInf from Appendix A can construct jk in O(k log(k)) time. Thus A is
still s∗-computable if k log(k) # Nk. As discussed in Remark 7.4, the cost of com-
puting jk from jk−1 using NextOptInf is only O(log(k)). Therefore, if NextOptInf
is used to construct jk in the first call of BuildAAA[k, ·], then BuildAAA[k, ·] requires
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O(Nk) operations provided that jk−1 is known, for example from a previous call of
BuildAAA[k − 1, ·].

9. An illustrative example

9.1. An elliptic boundary value problem. As a model problem, we consider the
isotropic diffusion equation on a bounded Lipschitz domain G ⊂ Rd with homo-
geneous Dirichlet boundary conditions. For any uniformly positive a ∈ L∞(G) and
any f ∈ L2(G), we have

−∇ · (a(x)∇u(x)) = f (x) , x ∈ G ,

u(x) = 0 , x ∈ ∂G .
(9.1)

We view f as deterministic, but model the coefficient a as a series

a(y, x)! ā(x) +
∞
∑

m=1

ymam(x) , (9.2)

with ym ∈ [−1, 1] for all m ∈ N. Hence a depends on a parameter y = (ym)∞m=1 in
Γ = [−1, 1]∞.

We define the parametric operator

A(y) : H1
0(G)→ H−1(G) , v *→ −∇ ·

(

a(y)∇v
)

, (9.3)

for y ∈ Γ. Due to the linear dependence of A on a,

A(y) = D + R(y) , R(y) !
∞

∑

m=1

ymRm ∀y ∈ Γ (9.4)

with convergence inL(H1
0(G),H−1(G)), as assumed in (1.3) and (1.8), for

D : H1
0(G)→ H−1(G) , v *→ −∇ · (ā∇v) ,

Rm : H1
0(G)→ H−1(G) , v *→ −∇ · (am∇v) , m ∈N .

To ensure bounded invertibility of D, we assume there is a constant δ > 0 such that

ess inf
x∈G

ā(x) ≥ δ−1 . (9.5)

Since ‖Rm‖H1
0(G)→H−1(G) ≤ ‖am‖L∞(G), (1.9) follows from

δ
∞

∑

m=1

‖am‖L∞(G) ≤ γ < 1 . (9.6)

This condition can be loosened by defining 〈D·, ·〉 as the inner product of H1
0(G), in

which case the factor δ in (9.6) vanishes, and ‖am‖L∞(G) is replaced by ‖am/ā‖L∞(G).
We refer to e.g. [25, 22, 30] for further extensions that still ensure (1.5).

9.2. Optimal finite element discretization. Approximation results for the solution
u of (9.1) have been shown in [11] for the case that ym are uniformly distributed.
In this setting, the orthogonal polynomials Pm

n from Section 2.1 are Legendre poly-
nomials, normalized with respect to the uniform probability measure on [−1, 1].

Let (Vj)∞j=0 be a sequence of finite element spaces in H1
0(G) with geometrically

increasing dimensions Mj ! dim Vj, satisfying

inf
vj∈Vj

∥

∥

∥v − vj

∥

∥

∥

H1
0(G)
≤ CM−t

j |v|Z ∀v ∈ Z , (9.7)

where Z ⊂ H1
0(G) with norm (‖·‖2

H1
0(G)
+ |·|2Z)1/2. We consider approximations to u in

which, for some finite set Ξ ⊂ Λ, each coefficient uµ for µ ∈ Ξ is approximated in
some finite element space Vµ ! Vj(µ), and the remaining uµ are set to zero.
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If u ∈ %p(Λ; H1
0(G)) for some p ∈ (0, 2), then Stechkin’s lemma implies that if ΞN

contains the first N − 1 indices µ in a decreasing rearrangement of ‖uµ‖H1
0 (G), the

truncation error satisfies
















∑

µ∈Λ\ΞN

∥

∥

∥uµ
∥

∥

∥

2

H1
0(G)

















1/2

≤ ‖u‖%p(Λ;H1
0 (G)) N−s , s =

1

p
−

1

2
. (9.8)

Following [11], we select spaces Vµ, µ ∈ ΞN, to match this rate. To this end,
suppose u ∈ %q(Λ; Z) for a q ∈ [p,∞]. Using a Lagrange multiplier to minimize the
total dimension Ndof !

∑

µ∈ΞN
Mµ, with Mµ = dim Vµ, under the condition that

the total error is equivalent to N−s, leads to a choice of Mµ proportional to |uµ|
2

2t+1

Z .

This approximation has a convergence rate of t with respect to Ndof if t ≤ 1
q −

1
2 ,

which coincides with the rate for a single finite element approximation, see (9.7).
If t ≥ 1

q −
1
2 , the resulting approximation rate is

s
t

t + 1
p −

1
q

. (9.9)

This is generally less than the semidiscrete approximation rate s, with equality if
q = p; this last case is considered in [11, Theorem 5.5].

The above summability assumptions are proven in [11] for the case that |v|Z =
‖∆v‖L2(G). Then u ∈ %p(Λ; H1

0(G)) if (am) ∈ %p(N; L∞(G)), and u ∈ %q(Λ; Z) holds under
the condition (am) ∈ %q(N; W1,∞(G)). In this setting, t has a maximal value of 1/d.

Remark 9.1. A similar analysis can be performed if, instead of choosing Mµ by a
continuous optimization problem, the finite element spaces are selected to equidis-
tribute the error among all coefficients uµ, as in the heuristic from [23, 24].3 Due to
(9.7), this is achieved for Mt

µ ∼ |uµ|Z. The resulting convergence rate with respect
to Ndof is

2s

2s + 1
t (9.10)

if t ≤ 1/q, and coincides with (9.9) if t ≥ 1/q. In the former case, the approximation
rate is slightly less than the optimal value t; the rate in the second case is optimal,
but it only sets in for t ≥ 1/q instead of t ≥ 1

q −
1
2 . "

9.3. Application of the adaptive stochastic Galerkin method. In Section 2.3, D
and Rm are discretized by a wavelet basis or frame of H1

0(G), leading to operators
D and Rm on %2, which can be interpreted as bi-infinite matrices. Although these
matrices are generally not sparse, they can be approximated by sparse matrices,and
these approximations are pivotal in the efficient adaptive application of the discrete
random operator A. We refer to [29] and references therein for constructions of
wavelet bases.

It is shown in [33] that for wavelets of order n, i.e. if the dual wavelets have n
vanishing moments, D and Rm can be s∗δ-compressible with s∗δ = (n−1)/d. This is the
highest rate of compressibility that adaptive wavelet methods can take advantage
of since the order of the wavelets limits the solution of a generic discrete deter-
ministic problem to the spaceAs for s < s∗δ, see [18, 8]. For higher compressibility,
the sparsity of the exact solution becomes the limiting factor in the convergence of
adaptive wavelet algorithms.

We consider the example G ! (0, 1) and

am(x) ! Cm−k sin(mπx) , m ∈N , (9.11)

3This heuristic is actually used to distribute tolerances for a subproblem in [23, 24]; it is not clear
whether the resulting error in the approximation of u is distributed evenly among all active coefficients.
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with C sufficiently small such that (9.6) holds. Since trigonometric functions often
appear in Karhunen–Loève expansions of random fields, this academic example
is quite representative. We note that (am) ∈ %p(N; L∞(G)) and (am) ∈ %q(N; W1,∞(G))
for any p > 1/k and q > 1/(k− 1). Thus u ∈ %p(Λ; H1

0(G)) and u ∈ %q(Λ; H2(G)) for the
same ranges of p and q by [11]. The resulting approximation rates from Section 9.2
are 1 for k ≥ 5/2 and 1

2 (k − 1
2 ) ≤ 1 for k ≤ 5/2.

As mentioned above, it is realistic to assume that the operators D and Rm,
m ∈N, are s∗δ-compressible with s∗δ ≥ 1. In order to derive s∗-compressibility of the
discrete stochastic operator A, Theorem 8.4 requires a degree of summability of the
compressibility constants of these operators. Entries in the matrix representations
of these operators are zero for basis functions with disjoint supports, and they
generally also become insignificant if the supports overlap, but the wavelets have
sufficiently different length scales. In this example, the latter effect only sets in
once the smaller length scale is below 1/m. Consequently, we are left with O(m)
significant entries in columns of Rm corresponding to coarse-scale basis functions.

For any r > 0, let em,r denote the error in an r-sparse approximation of Rm. Then
the sparsity required to achieve an error of em,r ∼ m−ke1,; in the approximation of
Rm is r ∼ ;m. This implies

d̃m,s ∼ sup
r>0

rsem,r ∼ sup
;>0
;smsm−ke1,; = m−(k−s)d̃1,s . (9.12)

In this setting, the condition (d̃m,s)m ∈ %
1

s+1 (N0) of Theorem 8.4 is equivalent to
k − s > s + 1, i.e. s < (k − 1)/2. Hence we can realistically expect s∗-compressibility
of A for s∗ = (k − 1)/2, provided s∗δ ≥ s∗.

For k ≤ 3, the compression rate s∗ is less than or equal to the approximation
rate, and thus s∗-compressibility is the limiting factor in the complexity of adaptive
wavelet methods for our model problem. For k ≥ 3, the limited spatial regularity
shown in [11] becomes the main obstacle, and the compression rate is larger than
the approximation rate given here.

Despite the slightly suboptimal complexity of adaptive wavelet methods due
to the compression rate s∗ being smaller than the approximation rate, the direct
application of these methods to the fully discrete problem improves on the heuristic
used in [23, 24]. For example, if k = 3, then A is s∗-compressible for s∗ = 1, and
u ∈ As(Λ × Ξ) for all s < 1. However, if u is approximated by finite elements
with the same approximation error in each active coefficient, then the optimal
approximation rate is only 5/6, see Remark 9.1. A similar property holds for

any k ≥ (3 +
√

5)/2 since the approximation rate with equidistributed errors is
essentially 1 − 1

2k for k ≥ 2.

Appendix A. Greedy algorithms

A.1. A generalized knapsack problem. We consider a discrete optimization prob-
lem in which both the objective and the constraints are given by sums over an
arbitrary setM ⊂N0. For each m ∈M, we have two increasing sequences (cm

j ) j∈N0

and (ωm
j ) j∈N0 , which we interpret as costs and values. We define the total cost of a

j = ( jm)m∈M ∈NM0 as

cjjj !

∑

m∈M

cm
jm

(A.1)

and the total value of j as

ωjjj !

∑

m∈M

ωm
jm
. (A.2)
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Our goal is to maximize ωjjj under a constraint on cjjj, or to minimize cjjj under a
constraint on ωjjj.

Remark A.1. The above two goals are essentially equivalent. If j ∈ NM0 such that

for all i ∈ NM0 , ciii ≤ cjjj implies ωiii ≤ ωjjj, then by contraposition, ωiii > ωjjj implies
ciii > cjjj. Similarly, if ciii < cjjj implies ωiii < ωjjj, then also ωiii ≥ ωjjj implies ciii ≥ cjjj. In both
cases, the two statements are equivalent. "

Remark A.2. The classical knapsack problem is equivalent to the above optimization
problem in the case thatM is finite, and for all m ∈M, ωm

0 = 0 and ωm
j = ω

m
1 for

all j ≥ 1. Then without loss of generality, we can set cm
0 ! 0 for all m ∈M, and the

values cm
j for j ≥ 2 are irrelevant due to the assumption that (cm

j ) j∈N0 is increasing.

Optimal sequences j ∈ NM0 will only take the values 0 and 1, and can thus be
interpreted as subsets ofM.

We note that greedy methods only construct a sequence of optimal solutions.
They do not maximizeωjjj under an arbitrary constraint on cjjj, and thus do not solve
an NP-hard problem. "

Remark A.3. We are particularly interested in minimizing an error underconstraints
on the computational cost of an approximation with this error tolerance. Given
sequences (em

j ) j∈N0 and (cm
j ) j∈N0 of errors and corresponding costs, we define a se-

quence of values byωm
j ! −em

j . If (em
j ) j∈N0 is decreasing, then (ωm

j ) j∈N0 is increasing.

Typically, as j→ ∞, we have em
j → 0 and cm

j → ∞. Then, although it is increasing,

(ωm
j ) j∈N0 remains bounded. In particular, it is reasonable to assume that (ωm

j ) j∈N0

increases more slowly than (cm
j ) j∈N0 , in a sense that is made precise below. "

A.2. A sequence of optimal solutions. We iteratively construct a sequence (jk)k∈N0

in NM0 such that, under some assumptions, each jk is optimal in the sense of
Remark A.1. For all m ∈M and all j ∈N0, let

∆cm
j ! cm

j+1 − cm
j and ∆ωm

j ! ω
m
j+1 − ω

m
j . (A.3)

Furthermore, let qm
j denote the quotient of these two increments,

qm
j !

∆ωm
j

∆cm
j

, j ∈N0 , (A.4)

which can be interpreted as the value to cost ratio of passing from j to j + 1 in the
index m ∈M.

Let j0
! 0 ∈ NM0 . For all k ∈ N0, we construct jk+1 from jk as follows. Let

mk = m ∈ N0 maximize qm
jkm

. Existence of such maxima is ensured by the last

statement in Assumption A.A. If the maximum is not unique, select mk to be
minimal among all maxima. Then define jk+1

mk
! jkmk

+ 1, and set jk+1
m ! jkm for all

m " mk. For this sequence, we abbreviate ck ! cjjjk and ωk ! ωjjjk .

Assumption A.A. For all m ∈M,

cm
0 = 0 and ∆cm

j > 0 ∀ j ∈N0 , (A.5)

i.e. (cm
j ) j∈N0 is strictly increasing. Also, (ωm

0 )m∈M ∈ %1(M) and (ωm
j ) j∈N0 is nondecreasing

for all m ∈M, i.e. ∆ωm
j ≥ 0 for all j ∈ N0. Furthermore, for each m ∈M, the sequence

(qm
j ) j∈N0 is nonincreasing, i.e. if i ≥ j, then qm

i ≤ qm
j . Finally, for any ε > 0, there are only

finitely many m ∈M for which qm
0 ≥ ε.



ADAPTIVE WAVELET METHODS FOR ELLIPTICE PDE WITH RANDOM OPERATORS 33

The assumption that (qm
j ) j∈N0 is nonincreasing is equivalent to

∆ωm
i

∆ωm
j

≤
∆cm

i

∆cm
j

if i ≥ j (A.6)

if ∆ωm
j > 0. In this sense, (ωm

j ) j∈N0 increases more slowly than (cm
j ) j∈N0 . Also, this

assumption implies that if ∆ωm
j = 0, then ωm

i = ω
m
j for all i ≥ j.

We define a total order onM ×N0 by

(m, j) ≺ (n, i) if























qm
j > qn

i or

qm
j = qn

i and m < n or

qm
j = qn

i and m = n and j < i .

(A.7)

To any sequence j = ( jm)m∈M inN0, we associate the set

{{j}} !
{

(m, j) ∈M ×N0 ; j < jm
}

. (A.8)

Lemma A.4. For all k ∈ N0, {{k}} ! {{jk}} consists of the first k terms ofM ×N0 with
respect to the order ≺.

Proof. The assertion is trivial for k = 0. Assume it holds for some k ∈ N0. By
definition,

{{k + 1}} = {{k}} ∪ {(mk, j
k
mk

)} ,
and (mk, jkmk

) is the ≺-minimal element of the set {(m, jkm) ; m ∈M}. For each m ∈M,
Assumption A.A implies qm

i ≤ qm
jkm

for all i ≥ jkm + 1. Therefore, (m, jkm) ≺ (m, i) for all

i ≥ jkm+1, and consequently (mk, jkmk
) is the≺-minimal element of (M×N0)\{{k}}. !

Theorem A.5. For all k ∈N0, the sequence jk maximizesωjjj among all finitely supported
sequence j = ( jm)m∈M inN0 with cjjj ≤ ck. Furthermore, if cjjj < ck and there exist k pairs
(m, i) ∈M ×N0 with ∆ωm

i > 0, then ωjjj < ωk.

Proof. Let k ∈ N and let j = ( jm)m∈M be a finitely supported sequence inN0 with
cjjj ≤ ck. By definition,

ωjjj =
∑

m∈M

ωm
0 +

∑

m∈M

jm−1
∑

i=0

qm
i ∆cm

i = ωjjj0 +
∑

(m,i)∈{{jjj}}

qm
i ∆cm

i .

Therefore, the assertion reduces to
∑

(m,i)∈{{jjj}}\{{k}}

qm
i ∆cm

i ≤
∑

(m,i)∈{{k}}\{{jjj}}

qm
i ∆cm

i .

Note that by (A.1) and (A.3),
∑

(m,i)∈{{jjj}}\{{k}}

∆cm
i = cjjj − c′ for c′ !

∑

(m,i)∈{{jjj}}∩{{k}}

∆cm
i .

By Lemma A.4 and (A.7), q ! qmk−1

jk−1
mk−1

satisfies q ≤ qm
i for all (m, i) ∈ {{k}}, and qm

i ≤ q for

all (m, i) ∈ (M ×N0) \ {{k}}. In particular, q > 0 if there exist k pairs (m, i) ∈M ×N0

with qm
i > 0 since #{{k}} = k. Consequently,

∑

(m,i)∈{{jjj}}\{{k}}

qm
i ∆cm

i ≤ q
∑

(m,i)∈{{jjj}}\{{k}}

∆cm
i = q(cjjj − c′)

≤ q(ck − c′) ≤
∑

(m,i)∈{{k}}\{{jjj}}

qm
i ∆cm

i ,

and this inequality is strict if q > 0 and ck > cjjj. !
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The optimality property in Theorem A.5 can be reinterpreted as in Remark A.1,
i.e. jk also minimizes cjjj among j with ωjjj ≥ ωk.

A.3. Numerical construction. We consider numerical methods for constructing
the sequence (jk)k∈N0 from Section A.2. To this end, we assume that, for each
m ∈M, the sequences (cm

j ) j∈N0 and (ωm
j ) j∈N0 are stored as linked lists.

Initially, we consider the case that M is finite with #M # M. To construct
( jk)k∈N0 , we use a list N of the triples (m, jkm, q

m
jkm

), sorted in ascending order with

respect to≺. This list may be realized as a linked list or as a tree. The data structure
must provide functions PopMin for removing the minimal element from the list,
and Insert for inserting a new element into the list.

NextOpt[ j,N] *→ [ j,m,N]

m←− PopMin(N)
jm ←− jm + 1
q←− (ωm

jm+1 − ω
m
jm

)/(cm
jm+1 − cm

jm
)

N ←− Insert(N , (m, jm, q))

Proposition A.6. LetN0 be initialized as {(m, 0, qm
0 ) ; m ∈M} and j0

! 0 ∈NM0 . Then
the recursive application of

NextOpt[ jk,Nk] *→ [ jk+1,mk,Nk+1] (A.9)

constructs the sequence ( jk)k∈N0 as defined above. Initialization of the data structure N0

requires O(M log M) operations and O(M) memory. One step of (A.9) requires O(M)
operations if N is realized as a linked list, and O(log M) operations if N is realized as a
tree. The total number of operations required by the first k steps is O(kM) in the former
case and O(k log M) in the latter. In both cases, the total memory requirement for the first
k steps is O(M + k).

Proof. Recursive application of NextOpt as in (A.9) constructs the sequence (jk)k∈N0

by Lemma A.4 and the definition of ≺. In the k-th step, the element mk is removed
fromN and reinserted in a new position. Therefore, the size ofN remains constant
at M. The computational cost of (A.9) is dominated by the insert operation on N ,
which has the complexity stated above. !

We turn to the case thatM is countably infinite. By enumerating the elements
of M, it suffices to consider M = N. We assume in this case that the sequence
(qm

0 )m∈M is nonincreasing.

As above, we use a listN of triples (m, jkm, q
m
jkm

) to construct the sequence (jk)k∈N0 .

However,N should only store triples for which m is a candidate for the next value
of mk, i.e. all m with jkm " 0 and the smallest m with jkm = 0. As in the finite case,
N can be realized as a linked list or a tree. The data structure should provide
functions for removing the smallest element with respect to the ordering ≺, and
for inserting a new element.

Proposition A.7. Let N0 be initialized as {(1, 0, q1)}, M0 ! 1 and j0
! 0 ∈ NM0 . Then

the recursion
NextOptInf[ jk,Nk,Mk] *→ [ jk+1,mk,Nk+1,Mk+1] (A.10)

constructs the sequence ( jk)k∈N0 as defined above. For all k ∈ N0, the ordered set Nk

contains exactly Mk elements, and Mk ≤ k. The k-th step of (A.10) requiresO(k) operations
ifN is realized as a linked list, and O(log k) operations ifN is realized as a tree. The total
number of operations required by the first k steps isO(k2) in the former case andO(k log k)
in the latter. In both cases, the total memory requirement for the first k steps is O(k).
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NextOptInf[ j,N ,M] *→ [ j,m,N ,M]

m←− PopMin(N)
jm ←− jm + 1
q←− (ωm

jm+1 − ω
m
jm

)/(cm
jm+1 − cm

jm
)

N ←− Insert(N , (m, jm, q))
if m =M then

M←−M + 1
q←− (ωM

1
− ωM

0 )/cM
1

N ←− Insert(N , (M, 1, q))

Proof. It follows from the definitions that recursive application of NextOptInf as in
(A.10) constructs the sequence (jk)k∈N0 . In the k-th step, the element mk is removed
from N and reinserted in a new position. If mk = M, an additional element is
inserted, and M is incremented. Therefore, the number of elements inN is M, and
M ≤ k. The computational cost of (A.10) is dominated by the insert operation on
N , which has the complexity stated above, see e.g. [12]. !

Remark A.8. As mentioned above, (cm
j ) j∈N0 and (ωm

j ) j∈N0 are assumed to be stored

in a linked list for each m ∈M. By removing the first element from theMk-th list in
the k-th step of (A.9) or (A.10), NextOpt and NextOptInf only ever access the first
two elements of one of these lists, which takesO(1) time. The memory locations of
the lists can be stored in a hash table for efficient access. "

Remark A.9. An appropriate way to store (jk)k∈N0 is to collect (mk)k∈N0 in a linked list.
Then jk can be reconstructed by reading the first k elements of this list, which takes
O(k) time independently of the size of the list. Also, the total memory requirement
is O(k̄) if the first k̄ elements are stored. "
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