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Abstract

The Karhunen–Loeve (KL) decomposition and the polynomial chaos (PC)
expansion are elegant and efficient tools for uncertainty propagation in porous
media. Over recent years, KL/PC-based frameworks have successfully been
applied in several contributions for the flow problem in the subsurface con-
text. It was also shown, however, that the accurate solution of the transport
problem with KL/PC techniques is more challenging. We propose a frame-
work that utilizes KL/PC in combination with sparse Smolyak quadrature
for the flow problem only. In a subsequent step, a Lagrangian Monte Carlo
sampling technique is used for transport, where the flow field samples are
calculated very efficiently based on the solutions at relatively few quadrature
points. To increase the computational efficiency of the PC-based flow field
sampling, a new reduction method is applied. Compared to a conventional
full MC method that includes both flow and transport, the proposed PC/MC
method (PCMCM) for flow/transport, respectively, saves on the computa-
tional cost of the flow problem. The applicability of PCMCM is demon-
strated for transport simulations in multivariate Gaussian log-conductivity
fields that are unconditional and conditional on conductivity measurements.
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1. Introduction

Predictions of flow and transport in the subsurface are plagued by uncer-
tainty. Corresponding predictive tools are required for groundwater manage-
ment or more specifically for the design of contamination prevention measures
and remediation actions. Soil parameters that determine flow and trans-
port, e.g., the hydraulic log-conductivity Y (x), are typically heterogeneous
in space x [1]. However, measurements of some of these parameters and
most importantly of Y (x) are only available at points (in a two-dimensional
setting). The resulting uncertainty in the log-conductivity field is quantified
by geostatistical models [2]. A standard model is based on the assumption
that Y (x) = Y (x) + Y ′(x) can be represented by a multivariate Gaussian
random field, which is characterized by a mean distribution Y (x) and a zero-
mean fluctuation Y ′(x). Latter is joint normally distributed at all points in
space and is determined by the covariance function CY (x,y) given at two
spatial locations x and y. In many application examples, the unconditional
(without any measurements) log-conductivity field Y (x) is assumed to have
a constant variance Y ′(x)2 = σ2

Y and correlation length vector η.
With the uncertainty in the transport parameters quantified, it remains

to be determined how the parameter uncertainty propagates through the
flow and transport model and what uncertainty will eventually result in the
hydraulic head, flow field, or concentrations of transported substances. An
obvious approach is to sample realizations of Y (x) from the geostatistical
model and to use a deterministic simulation framework for flow and trans-
port [3, 4]. From the resulting concentration distributions or flow-field re-
alizations, statistics can be compiled that quantify the uncertainty in the
dependent quantities. This so-called Monte Carlo (MC) approach—even
though conceptually simple—is computationally expensive. A large num-
ber of simulations have to be performed to reduce the statistical error to
an acceptable level. Each simulation involves the solution of an elliptic flow
problem followed by a hyperbolic or parabolic transport problem.

Unlike MC, stochastic moment equation (SME) methods approach the
uncertainty propagation problem by analytical means. Low-order approxi-
mations with respect to a small parameter Y ′ are introduced into the flow
and transport equations [5, 6]. The resulting concentration mean and vari-
ances are typically verified with MC or experimental data for two-dimensional
contamination scenarios with point-like contaminant injections, e.g., [7, 4, 8].
Two-dimensional domains are frequently considered to represent shallow con-
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fined aquifers with large horizontal extensions [7]. SME predictions are lim-
ited to small log-conductivity variances σ2

Y or in other words aquifers with
small heterogeneity levels [9].

Ghanem [10, 11, 12] initiated a different class of methods called prob-
abilistic spectral Galerkin. It utilizes Karhunen-Loeve (KL) and polyno-
mial chaos (PC) expansions. For sufficiently large correlation lengthscales of
multivariate Gaussian fields, KL expansions have advantageous convergence
properties. More precisely, only a low number of expansion terms have to be
included and accordingly the Y -probability space can be approximated by a
low N -dimensional space whose coordinates ξn with n = 1 . . . N are standard
normal random variables ([13] and [14] sections 4.2.1 and 2.1, respectively).
In Ghanem’s work, the dependent variables hydraulic head [12, 11] and con-
centration [11] were expressed as PC expansions in terms of P N -dimensional
Hermite polynomials Ψ1(ξ

N), . . . ,ΨP (ξ
N) with ξN = [ξn]Nn=1. The P chaos

expansion coefficients that determine the statistics of the dependent variables
were finally calculated with a Galerkin projection method. In both contri-
butions [11, 12] the structure of chaos expansion coefficients was analyzed.
No validation of the outlined PC method with MC was provided, however.
Compared to MC, Ghanem’s spectral Galerkin method is intrusive in the
sense that the KL/PC expansions with subsequent Galerkin projection lead
to a new system of equations for the P PC coefficients that is no longer
solvable with computer codes commonly applied in MC simulations.

Zhang and Lu [15] proposed a KL-based moment equation (KLME) method,
where a KL expansion for Y (x) was combined with a low-order approx-
imation with respect to Y ′ for the hydraulic head. Mean and variances
of the hydraulic head were successfully validated with MC data for σ2

Y up
to 2. A generalization of [15] was provided in [16], where KLME simula-
tions that included conductivity measurements were validated and also flow
field statistics were verified. Lu and Zhang [17] performed three-dimensional
time-dependent flow simulations with a KLME-based method and discussed
the relation between PC-based techniques and the KLME approach. Liu,
Lu, and Zhang [18] validated the KLME approach for transport simula-
tions of a passive tracer successfully with MC data for σ2

Y up to 0.5. For
larger log-conductivity variances, i.e., σ2

Y = 1, the KLME method starts
to produce noticeable errors compared to MC. Compared to the previously
discussed Galerkin-projection-based methods, the KLME approach is non-
intrusive meaning that codes from an existing MC simulation framework are
applicable. KLME is, however, by construction limited to rather small σ2

Y
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similar to conventional SME-based approaches.
Xiu and Hesthaven [19] have introduced a probabilistic collocation method

(PCM) as a non-intrusive alternative to the spectral Galerkin-projection
method of Ghanem [10]. They used a collocation grid in the parameter
probability space (spanned by ξN) in combination with a deterministic sim-
ulation framework also applicable for MC to determine the solutions of the
dependent variables at the collocation points. Based on the results at the col-
location points, the overall probabilistic solution can be estimated by using
Lagrange polynomials for interpolation in random space. As an alternative
to interpolation, however, statistical means of the dependent variables can be
estimated with a quadrature formula if the collocation points are chosen ac-
cordingly (equation 3.12 in [19]). For the selection of the collocation points,
full tensor products of one-dimensional nodal sets and Smolyak sparse grids
were discussed. Full tensor products have the disadvantage that the number
of points grows exponentially with N , i.e., the dimensionality of the parame-
ter probability space. Li and Zhang [20] applied a KL/PC/PCM method for
uncertainty quantification of the hydraulic head. The KL expansion was used
to represent the parameter uncertainty of the log-conductivity. A Hermite
PC expansion was applied to approximate the hydraulic head in terms of
the independent KL variables ξN . To determine the P coefficients of the PC
expansion, it is postulated that the PC expansion at P given points is equiv-
alent to the solution at these points which leads to a PCM. The collocation
points were sequentially selected from a full tensor product. Li and Zhang
mention that their outlined point selection procedure can become compu-
tationally demanding for increasing N . Recently, Lin and Tartakovsky [21]
have applied a KL/PCM-based method for passive tracer transport. For the
log-conductivity Y (x), a KL expansion with the random variable vector ξN

and N = 4 was applied. To numerically evaluate concentration moments,
which involves integration over the ξN -probability-space, Gauss quadrature
was used in combination with a Smolyak sparse grid to keep the number of
quadrature points at an acceptable level. In the work of Lin and Tartakovsky,
however, it is questionable whether four terms in the KL expansion are suf-
ficient for their three-dimensional domain with Y -correlation lengths being
one third of the domain or smaller. For the largest heterogeneity level con-
sidered, a large number of quadrature points were required (one fourth of
the number of MC runs) to obtain acceptable agreement with the MC ref-
erence. Together with the KLME results reported in [18] this indicates that
the accurate probabilistic solution of the transport problem seems to pose an
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additional challenge besides the flow problem.
In the present study, the KL expansion is used to parametrize the log-

conductivity process by scalar random variables ξn. The generally infinite
number of random variables involved is truncated, leading to an approxi-
mated log-conductivity process based on a finite, N -dimensional vector ξN

of random variables (section 3). The dependence of the hydraulic head on the
log-conductivity is represented by a Hermite PC expansion in terms of ξN

(section 5.1). After exploiting the orthonormality of the Hermite basis func-
tions, the resulting N -dimensional integral over the ξN -probability space
is numerically approximated with Smolyak quadrature (section 5.3). This
approach is computationally more efficient compared to the tensor-product-
based PCM used in the work of Li and Zhang [20]. Moreover, no intrinsic
limitation with respect to σ2

Y (like in KLME-based methods) is involved.
With the PC expansion determined, moments of the hydraulic head field are
readily available and sampling the hydraulic head or the flow field is compu-
tationally inexpensive. To further increase the sampling efficiency, we outline
in section 5.5 a new reduction technique for the PC expansion. For a classical
point-injection transport scenario (section 6) without pore-scale dispersion
(PSD), we present an accurate Lagrangian solution method, which is compu-
tationally efficient (section 7) and less error-prone compared to the previously
discussed transport approaches. For validation of the new method with MC,
a spatially two-dimensional setting is considered. Results of both uncondi-
tional and conditional simulations including conductivity measurements are
reported in section 8.

2. Problem Formulation

In this work, we focus on a two-dimensional confined aquifer with un-
certain hydraulic conductivity distribution. For incompressible steady state
flow in a saturated porous medium, the elliptic partial differential equation
(PDE)

−∇ · (K(x,ω)∇h(x,ω)) = 0 (1)

determines together with suitably chosen boundary conditions the hydraulic
head h(x,ω). K(x,ω) represents the hydraulic conductivity and ω is a ran-
dom event coordinate that reflects the randomness of K and of variables that
depend on K like h. x is a spatial coordinate vector with components x1
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and x2. The average pore velocity is given by Darcy’s law, i.e.

v(x,ω) = −1

φ
K(x,ω)∇h(x,ω), (2)

where φ is the porosity which is assumed to be constant.
The transport of a passive tracer in the absence of PSD is described by

the Eulerian advection equation, i.e.,

∂c(x,ω)

∂t
+ v(x,ω) ·∇c(x,ω) = 0, (3)

where c(x,ω) is the tracer concentration. With PSD neglected, it was for
example shown by Meyer and Tchelepi [22] (section 2) that the Eulerian de-
scription (3) is equivalent to a particle-based Lagrangian formulation, which
reads

X(X0, t,ω) = X0 +

∫ t

t0

v(X(X0, s,ω),ω)ds, (4)

and where X(X0, t,ω) is the tracer particle position at time t dependent on
the injection point X0 at t = t0.

3. Karhunen-Loeve (KL) Expansion

To parametrize the log-conductivity Y (x,ω) = ln[K(x,ω)] in terms of
scalar random variables, we apply Karhunen-Loeve (KL) expansions. In
the next two sections, KL expansions for unconditional and conditional log-
conductivity fields without and with measurements, respectively, are out-
lined.

3.1. Unconditional KL Expansion

Like in most contributions discussed in the introduction, we assume that
the log-conductivity Y (x,ω) = ln[K(x,ω)] is a Gaussian process with given
mean Y (x) and bounded, symmetric, positive-definite covariance function
CY (x,x′) ([10] equation (2.7)). Such a process can be represented with the
KL expansion as

Y (x,ω) = Y (x) + Y ′(x,ω) = Y (x) +
∞∑

n=1

√
λnfn(x)ξn, (5)
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where the logarithmic conductivity Y (x,ω) is split into a mean Y (x) and a
fluctuation Y ′(x,ω) with Y ′ = 0. Y ′(x,ω) is then replaced by an infinite sum,
which represents the actual KL expansion [10, 14, 13]. ξn are n = 1 . . .∞
independently distributed standard normal random variables. The eigen-
values λn and eigenfunctions fn(x) are obtained from solving the following
Fredholm equation of the covariance function CY (x,x′):

∫

D

CY (x,x
′)f(x)dx = λf(x′), (6)

where D is the aquifer domain. The Fredholm equation admits infinitely
many eigenpairs (λn, fn(x)). After normalizing the orthogonal eigenfunctions
such that

∫

D

fm(x)fn(x)dx = δmn with n = 1 . . .∞ and m = 1 . . .∞,

the eigenpairs can be sorted in a non-increasing order, i.e.

λ1 ≥ λ2 ≥ · · · ≥ λ∞ ≥ 0. (7)

In general, the Fredholm equation (6) has to be solved numerically (see
[10], p. 43). Specifically for a space stationary covariance function, the fast
multipole method proposed by Schwab and Todor [23] can be applied. For
certain cases, however, solutions are available in analytical form. In this
work, the separable covariance function

CY (x,x
′) = σ2

Y exp

(
− |x1 − x′

1|
η1

− |x2 − x′
2|

η2

)
(8)

is used, where σ2
Y is the variance of the Gaussian log-conductivity process

and η1 and η2 are the correlation lengths in the two spatial directions x1 and
x2, respectively. The covariance function (8) depends only on the separation
vector between the two points x and x′, i.e., CY (x,x′) = CY (|x − x′|), and
therefore is spatially independent. For this choice of covariance function,
the Fredholm equation (6) has an analytical solution [24]. The analytical
eigenvalues and eigenfunctions for the two-dimensional case are based on
the solution of the Fredholm equation with the spatially one-dimensional
covariance function

CY (x1, x
′
1) = σ2

Y exp

(
− |x1 − x′

1|
η1

)
.
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The corresponding eigenvalues and eigenfunctions for the one-dimensional
case are given by

λn =
2η1σ2

Y

η21w
2
n + 1

and

fn(x1) =
η1wn(cos(wnx1) + sin(wnx1))√

(η21w
2
n + 1)L1/2 + η1

,

where L1 is the one-dimensional domain size (0 ≤ x1 ≤ L1) and wn are the
positive roots of the characteristic equation

(η21w
2 − 1) sin(wL1)− 2η1w cos(wL1) = 0.

Sorting the infinitely many positive roots wn in an increasing order yields a
decreasing series of eigenvalues λn.

The analytical eigenvalues and eigenfunctions for the two dimensional
covariance function (8) on a rectangular domain (0 ≤ x1 ≤ L1, 0 ≤ x2 ≤ L2)
are then constructed from the one-dimensional solutions:

λn =
4η1η2σ2

Y

(η21w
2
n1

+ 1)(η22w
2
n2

+ 1)

fn(x) = fn1(x1)fn2(x2).

The eigenvalues λn can be sorted to be non-increasing as in equation (7).
If the eigenvalues λn decay sufficiently fast to zero for increasing n, one

can truncate the KL expansion (5) after N terms. This makes the KL ex-
pansion computationally accessible and reduces the dimensionality of the
Y -probability space while still accurately approximating the infinite expan-
sion. An upper limit for the sum of all eigenvalues can be derived as follows:
squaring both sides of the KL expansion, i.e. of

Y ′(x,ω) =
∞∑

n=1

√
λnfn(x)ξn,

multiplying with the joint normal probability density function of all ξn, and
integrating over stochastic and physical space leads to an expression for the
sum of all eigenvalues

|D|σ2
Y =

∞∑

n=1

λn, (9)
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Figure 1: Eigenvalue decay (a) and accumulated eigenvalue convergence (b) dependent
on the correlation length η = η1 = η2 for a quadratic physical domain with side length
L = L1 = L2 = 1.

where |D| is the size of the spatial domain D (length in 1d, area in 2d,
volume in 3d) and σ2

Y is the log-conductivity variance that is assumed to
be independent of x. This expression provides an easily calculable limit for
the sum of all eigenvalues and therefore proves to be useful for investigating
the effect of truncating the KL expansion. Moreover, since equation (9) is
resulting from the square of the KL expansion of Y ′(x,ω), |D|σ2

Y can be
viewed as a total energy and the λn as energy fractions.

With the choice of covariance function (8), the eigenvalue decay is strongly
linked to the correlation lengths η1 and η2. Figure 1 illustrates how the
eigenvalues decay for different correlation lengths η = η1 = η2 and how the
cumulative sum of eigenvalues converges to the limit given by equation (9).
In this example, a quadratic physical domain was used with side length L =
L1 = L2 = 1. A short correlation length η implies a slow convergence and
therefore requires more terms to be retained in the KL expansion for an
accurate reproduction of the underlying Gaussian process.

3.2. Measurement-Based Conditional KL Expansion

In cases where conductivity measurements are available, the covariance
function C(c)

Y (x,x′) conditional on measurements becomes spatially depen-

dent, i.e., C(c)
Y (x,x′) &= C(c)

Y (|x − x′|). Lu and Zhang [16] have outlined a

procedure where the eigenpairs (λ(c)
n , f (c)

n (x)) of the conditional KL expan-

9



sion

Y (c)(x,ω) = Y
(c)
(x) +

∞∑

n=1

√
λ(c)
n f (c)

n (x)ξn (10)

are determined based on the unconditional ones. Here, ξn are—like in the
unconditional expansion—independently distributed standard normal ran-

dom variables. Details about the calculation of Y
(c)
(x) and the conditional

eigenpairs are provided in section 3.2 of [16].

4. Monte Carlo (MC) Simulation

As suggested by Zhang and Lu [15] (top of p.777), the KL expansion pro-
vides an elegant method to produce multivariate Gaussian log-conductivity
fields that may include measurements. Accordingly, we will use this method
not only for our PC-based technique, but also apply it in the MC framework
to produce reference data. The MC simulation loop therefore involves the
following steps:

• Generate a realization of the standard normal random vector ξN and
calculate the hydraulic conductivity Y N(x, ξN) or Y (c)N(x, ξN) based
on the truncated versions of equations (5) or (10), respectively, with N
terms included.

• Solve the flow problem consisting of the elliptic PDE (1) for the hy-
draulic head and equation (2) for the flow field.

• Perform particle tracking with equation (4) to solve the transport prob-
lem.

This MC simulation loop is repeated until the statistical error has converged
to an acceptably low level.

5. PC/PCM Methodology

To sample the hydraulic head probability space more efficiently and to
reduce the number of required elliptic problem solutions, a polynomial chaos
(PC) expansion for the hydraulic head is introduced in the next section. The
expansion coefficients are determined with a probabilistic collocation method
(PCM) as outlined in section 5.2.
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5.1. Polynomial Chaos (PC) Expansion

The PC representation provides a direct connection between the random
variables ξN in the KL expansion and the dependent hydraulic head distri-
butions. Generally, the PC expansion of a spatially random field h(x,ω) has
the following form:

h(x,ω) = h̃0(x) +
∞∑

i1=1

h̃i1(x)Ψ̃1(ξi1)

+
∞∑

i1=1

i1∑

i2=1

h̃i1,i2(x)Ψ̃2(ξi1 , ξi2)

+
∞∑

i1=1

i1∑

i2=1

i2∑

i3=1

h̃i1,i2,i3(x)Ψ̃3(ξi1 , ξi2 , ξi3)

+ . . . , (11)

where the h̃i1,...,id(x) are deterministic functions that reflect the spatial de-
pendence of h(x,ω), and Ψ̃d(ξi1 , . . . , ξid) are orthogonal polynomials of order
d with respect to the random variables ξi1 , . . . , ξid [10, 14, 13, 25]. Here,
h(x,ω) is the hydraulic head. Equation (11) can be written more compactly
as

hN(x,ω) =
∞∑

p=1

hp(x)Ψp(ξ). (12)

The Ψp(ξ) are still orthonormal polynomials, but the indexing is differ-
ent. There is a one-to-one correspondence between the summands in equa-
tions (11) and (12). In practice, the PC expansion (11) has to be truncated
in terms of the number of random variables N :

hN(x, ξN) =
∞∑

p=1

hp(x)Ψp(ξ
N), (13)

as well as in terms of polynomial order d:

hN,P (x, ξN) =
P∑

p=1

hp(x)Ψp(ξ
N). (14)

If we allow for a maximum polynomial order of d and limit the number of
random variables to N , equation (14) consists of P = (N+d)!

N !d! terms. For this
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work, where standard normal random variables are used in the KL expan-
sion of the conductivity, normalized Hermite polynomials (see AppendixB)
are best suited for the PC expansion ([25] section 4). Hermite polynomials
satisfy an orthonormality property with respect to the joint standard normal
probability measure dµ(ξN), i.e.,

∫

Ω

Ψp(ξ
N)Ψp′(ξ

N)dµ(ξN) = δpp′ , (15)

where Ω denotes the probability space spanned by ξN .

5.2. Probabilistic Collocation Method (PCM)

To determine the PC expansion coefficients hp(x), we multiply both sides
of the N-truncated PC expansion (13) by the polynomial basis Ψp′ , integrate
with the corresponding probability measure over the space Ω, and apply the
orthonormality property (15), which eventually leads to

hp′(x) =

∫

Ω

hN(x, ξN)Ψp′(ξ
N)dµ(ξN). (16)

Here, the integral on the right hand side involves the solution of the PDE (1)
at every point in Ω. To resolve this, we approximate this integral by using
quadrature in Ω: in the integrand of equation (16), hN(x, ξN) is evaluated
only at few quadrature or collocation points in Ω. An approximation of the
integral can then be calculated with a multidimensional quadrature formula.
In [13], this approach is referred to as probabilistic collocation with discrete
projection.

5.3. Smolyak Quadrature

There are different ways to construct a multidimensional quadrature for-
mula. A straight forward multidimensional quadrature rule is obtained from
building the tensor product of one-dimensional rules. One-dimensional quadra-
ture rules of the form

Q1
I u ≡

I∑

i=1

wi u(Ξi) ≈
∫

Ω

u(ξ) dξ

are used to approximately integrate a function u(ξ) for ξ ∈ Ω. It is based on
the function values at points Ξi ∈ Ω and weights wi, both with i = 1 . . . I.
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In Q1
I , the superscript 1 reflects the dimensionality of the quadrature rule and

the subscript I specifies the number of quadrature points. The full tensor
rule for integrating an N-dimensional function u(ξ1, . . . , ξN) is defined as:

(Q1
I ⊗ · · ·⊗Q1

I)u ≡
I∑

i1=1

· · ·
I∑

iN=1

wi1 . . . wiN u(Ξi1 , . . . ,ΞiN ).

Clearly, the number of full tensor quadrature points is IN . In general, the
stochastic dimensionality N , i.e. the number of terms in the truncated KL
expansion, is numerous. Hence, a quadrature formula for the integration over
a high dimensional space constructed in a tensor product manner suffers from
an unfavorable growth of quadrature points with every additional random
dimension.

To avoid this so-called ‘curse of dimensionality’, we resort to Smolyak’s
quadrature [26]. Let Q1

In with n = 1 . . . N denote N one-dimensional quadra-
ture rules with rule n, i.e., Q1

In , having In quadrature points and weights.
Smolyak’s rule then reads:

QN
q u ≡

∑

q−N+1≤|I|≤q

(−1)q−|I| ·
(
N − 1

q − |I|

)
· (Q1

I1 ⊗ · · ·⊗Q1
IN
)u. (17)

Every summand of the Smolyak quadrature represents a weighted full tensor
rule, for which the number of coordinate points in the different dimensions
are given by I = {I1, . . . , IN}. q specifies the sparseness of the quadrature
rule, since it limits the total number of coordinate points in all dimensions
|I| = I1 + · · · + IN . Stacking different grids, for which the total number
of coordinate points is fixed, on top of each other leads to a sparse grid
structure.

Note that the full tensor and the Smolyak quadrature allow for different
orders of multidimensional polynomials that can be integrated exactly. As-
suming the one-dimensional integration rule consists of I quadrature points
and weights to integrate a polynomial up to degree 2I − 1 exactly. The
full tensor quadrature rule then integrates products of one-dimensional poly-
nomials with each degree at most 2I − 1 exactly. On the other hand, the
Smolyak quadrature limits the total polynomial exactness: an integral over
a multidimensional polynomial of total degree 2(q − N + 1) − 1 or less is
computed exactly. Therefore, Smolyak’s quadrature limits the polynomial
exactness in a more suitable way in the sense that it avoids an exponential
growth of quadrature points with respect to the dimensionality N .
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Figure 2: Full tensor Gauss-Hermite grid with I = 6 one-dimensional coordinates (a) and
a comparable Smolyak grid with sparseness parameter q = 7 (b).

A comparison of a two-dimensional (N = 2) full tensor quadrature grid
with I = I1 = I2 = 6 and a Smolyak sparse grid with the sparseness param-
eter q = 7 is provided in figure 2. Relating the full tensor parameter I and
the sparseness parameter q for a comparison with I = (q − N + 1) is moti-
vated by the discussion in the previous paragraph. As a building block for
the multidimensional rules, the one-dimensional Gauss-Hermite quadrature
(see AppendixA) is used. Since Gauss-Hermite quadrature points are not
nested, the sparseness of Smolyak’s grid does not pay off at low dimensions,
but eventually, as the dimensionality is increased, the number of quadrature
points are dramatically reduced. Further information on Smolyak quadrature
and sparse grids can be found in [27, 19, 21].

5.4. Transport

The PC representation (14) provides a direct formal connection between
the random number vector ξN—that determines the conductivity field Y N(x, ξN)
or Y (c)N(x, ξN) by means of the KL expansions (5) or (10), respectively—
and the hydraulic head hN,P (x, ξN). With the hydraulic conductivity and the
hydraulic head, the associated velocity field can be calculated based on equa-
tion (2). Consequently, once the PC and KL expansion coefficients hp(x) with
p = 1 . . . P and

√
λnfn(x) with n = 1 . . . N , respectively, are determined,

flow field realizations can be generated or sampled very efficiently based on
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the random number vector ξN . Unlike in the MC method outlined in sec-
tion 4, no elliptic flow problems have to be solved. In the absence of PSD,
the streamline method (4) is subsequently applicable to solve the transport
problem. This strategy is computationally efficient and circumvents limi-
tations (KLME [18]) and inaccuracies discussed (KL/PC/PCM [20]) in the
introduction. In the following, we refer to the new method outlined in this
section as probabilistic collocation MC method (PCMCM).

5.5. PC Reduction
For the previously outlined sampling technique, the number of polynomial

basis functions P present in the PC expansion influences directly the compu-
tational cost. After having calculated—based on equations (16) and (17)—
the PC expansion with P terms, the number of PC terms is reduced in view
of an efficient sampling of transport statistics. To this end, the velocity field
described by equations (2), (5) and (14), i.e.,

vN,P (x, ξN) = −1

φ
exp(Y (x) +

N∑

n=1

√
λnfn(x)ξn)

P∑

p=1

∇hp(x)Ψp(ξ
N),

is relevant. To verify the importance of different terms in the second sum
with summation index p, the energy norm (

∫
D ∇hp(x)2dx)1/2 of the coeffi-

cients hp(x) is considered. Terms with a norm being below a certain threshold
are discarded from the PC expansion. This reduction step leads to a more
compact and computationally efficient PC representation involving Pred < P
terms.

6. Test Cases

To investigate the performance of the PCMCM method, a quadratic con-
fined aquifer with side length L = L1 = L2 was considered similar to the test
cases used in [20] and [21]. The boundary conditions for the flow problem (1)
are specified as illustrated in figure 3. Dirichlet type boundaries were applied
at the left and right sides of the domain, i.e.,

h(x,ω) = hin and hout at x1 = 0 and L1, respectively,

and Neumann type no-flow boundaries are prescribed at the top and bottom
domain sides, i.e.,

∂h(x,ω)

∂x2
= 0 at x2 = 0 and L2.
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Figure 3: Computational domain with boundary conditions of the confined aquifer con-
sidered. The thick black line represents an exemplary tracer particle trajectory.

A constant mean flow in x1-direction is resulting from the prescribed con-
stant hydraulic head boundaries at x1 = 0 and x1 = L1. The porosity for
the calculation of the flow velocity with Darcy’s law (2) was set to φ = 1.
At position x = (0.0446L1, L2/2)T , a passive tracer was injected to study
transport in the absence of PSD. An exemplary tracer particle trajectory is
depicted in figure 3.

Both unconditional (first case) and conditional (second case) simulations
were performed. In the conditional case, the set of conductivity measure-
ments depicted in figure 4 was used. These measurements locally reduce
uncertainty of the log-conductivity. An exemplary conductivity realization
calculated from the conditional KL expansion (10) with N = 100 terms is
depicted in figure 4.

The mean and variance of the unconditional logarithmic conductivity
were set to Y = 0 and σ2

Y = 1. The correlation length in the two spacial
directions were set to η1 = η2 = 0.4 for an aquifer domain of size L = L1 =
L2 = 1. Together with the covariance function given by equation (8), this
determines the unconditional Gaussian log-conductivity process completely.
The characterization of the conditional process involves in addition to the
previously outlined parameters the log-conductivity measurements depicted
in figure 4.
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Figure 4: Logarithmic conductivity measurements and exemplary realization from the
conditional KL expansion (10) with N = 100 terms.

7. Numerical Method

In this section, details of the numerics and the implementation of the
outlined PCMCM are provided.

7.1. KL Expansion

As illustrated in section 3, the number of terms retained in the KL ex-
pansion in order to maintain a certain accuracy depends on the decay of the
eigenvalues λn. With the choice of η1 = η2 = 0.4 for a domain of size L1 = 1
by L2 = 1, N = 20 terms are kept in the KL expansion in order to preserve
around 80% of the total energy (9). Compared to the works [20] and [21],
this energy content seems rather high. Li and Zhang [20] retain seven KL
terms in a two dimensional setting with the same normalized correlation
lengths of η1/L1 = η2/L2 = 0.4. Lin and Tartakovsky [21] worked with four
KL modes in a three-dimensional setting with L1 = 6, L2 = L3 = 3, and
η1 = η2 = η3 = 1, which leads to a very low residual energy content. We
observed in our setting that N = 20 KL expansion terms are necessary in
order to obtain sufficiently accurate results.

7.2. Smolyak Quadrature

With N = 20 terms in the KL expansion and the sparseness parameter
q = 22, a Smolyak grid with 861 quadrature points is resulting in the N -
dimensional space spanned by ξN . Consequently, to obtain the hydraulic
head values hN(x,ΞN) at the quadrature points ΞN , the same number of
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flow problems (1) must be solved. For efficiency reasons it is important that
this number is much smaller compared to the number of MC samples required
for PCMCM.

As explained in section 5.3, the Smolyak quadrature relies on one-dimensional
quadrature rules. Since the integration to be approximated is with respect to
a joint Gaussian measure (see equation (16)), the one-dimensional quadra-
ture rule is given by the Gauss-Hermite quadrature (see AppendixA). This
provides a one-dimensional integration accuracy of polynomial degree 2I − 1
for I quadrature coordinates. Based on the one-dimensional integration accu-
racy, the Smolyak quadrature with N = 20 dimensions can exactly integrate
multidimensional polynomials of degree 2(q −N + 1)− 1 = 5 or smaller.

7.3. PC Expansion

As discussed in section 5.1, normalized Hermite polynomials (see AppendixB)
are best suited in connection with standard normal random variables. It is
not clear a priori though, where to truncate the PC representation of the
hydraulic head field, i.e., for which polynomial basis functions the projection
in equation (16) should be computed. Usually, Hermite polynomial basis
functions of low order and basis functions associated with random variables
corresponding to large KL eigenvalues are of major importance. In this work
and in the contribution of Li and Zhang [20], polynomials up to order d = 2
were applied. The order 2 restriction for the PC basis functions is also moti-
vated by the Smolyak quadrature accuracy of order 5. If the actual hydraulic
head solution was indeed not featuring any PC basis functions of order above
2, the Smolyak quadrature for the projections (16) would be exact, since at
most polynomials of order 4 would appear in the integral. In the reduction
step described in section 5.5, around 70% of the P = 231 PC terms were
eliminated leading to Pred = 66 remaining terms for the unconditional case.
A similar fraction of PC terms was discarded in the conditional case.

7.4. Flow and Streamline Solvers

For the solution of the deterministic flow problem (1) at the quadrature
points with the boundary conditions outlined in section 6, the flow solver by
Meyer and Tchelepi [22] was applied. The aquifer domain was discretized
with 101×101 equi-sized grid cells. For tracer transport, the semi-analytical
streamline tracking algorithm outlined by Pollock [28] was used. To sample
transport statistics, 5 · 105 sample trajectories were generated.
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Figure 5: Exemplary tracer trajectories: MC with N = 100 random dimensions (a) and
PCMCM with N = 20 random dimensions (b).

8. Results

The PCMCM results are compared with two different MC data sets. The
first MC simulation was produced with the same number of KL terms as
in the PCMCM, i.e., N = 20, whereas in the second MC simulation—to
which we refer to as reference MC solution—100 KL terms were used. By
comparing the PCMCM solution to the MC solution with the same number
of terms, i.e., N = 20, deviations can directly be related to limitations of
the PC expansion and the Smolyak quadrature. Differences between the MC
with only 20 KL terms and the reference MC with N = 100, on the other
hand, can be attributed to truncation errors of the KL expansion.

In figure 5, the first 100 tracer trajectory realizations from both PCMCM
and MCmethod are depicted. In these results, no conductivity measurements
were taken into account. The PCMCM does not guarantee a divergence free
velocity field, which gives rise to non-physical tracer trajectories like the
PCMCM trajectory that impacts at the upper no-flow boundary. Overall, in
the PCMCM, around 1% of the sampled trajectories in both the conditional
and unconditional cases violated mass conservation, i.e., got trapped inside
the domain or impacted at no-flow boundaries. These trajectories were not
taken into account for output statistics.

In figures 6 and 7, tracer particle position histograms are provided for
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the unconditional case and two different travel times t = 0.2 and 0.5, re-
spectively. There is very good agreement with the reference MC for both
times. Neither the PCMCM nor the MC with 20 KL terms introduce major
statistical error. The preparatory step in the PCMCM simulation to identify
the PC representation for the hydraulic head took 130 sec. Moreover, 120
sec were required to perform the subsequent hydraulic head and transport
sampling in the PCMCM. On the other hand, the MC approach with N = 20
random variables took 1070 sec for the same amount of samples and with
N = 100 around 1380 sec.

As is seen in figure 7a, a significant fraction of particles, i.e. 14.3%, has
left the computational domain at time t = 0.5. These particles were excluded
from the histograms. Especially in the x2 particle position histogram, this
leads to a certain bias.

Particle histograms at time t = 0.5 for the conditional case with mea-
surements are provided in figure 8. In general, the choice of measurements
causes the conductivity to be higher in the upper part of the aquifer do-
main and this region is therefore subject to more tracer discharge, which is
confirmed by inspection of figure 8. When comparing the PCMCM results
to the MC reference simulations, one can conclude that the PCMCM works
accurately. Truncating the conditional KL expansion after N = 20 terms,
however, leads to slight deviations as is observable from a comparison of the
two MC simulations. Similar or better agreement was found at time t = 0.2.

Since the MC simulations with N = 20 and N = 100 random dimensions
exhibit significant differences in the conditional case, it needs to be verified
that N = 100 is still sufficient as a reference. In figure 9, we check the
convergence of the MC results for N = 100, 200, and 400, which indicates
that at N = 100, the MC results have converged and no additional KL terms
are required also in the conditional case.

9. Discussion and Conclusions

In this work, a new framework for the propagation of uncertainty from
the hydraulic conductivity field to advective tracer transport is outlined. For
the description of the uncertain conductivity field, a Karhunen-Loeve (KL)
expansion was applied. This expansion can accommodate for measurement
values at different spatial locations. A Hermite-polynomial-based polynomial
chaos (PC) expansion was used to describe the uncertainty resulting in the
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Figure 6: Normalized position histograms of the tracer particle ensemble at t = 0.2: (a)
x1 position; (b) x2 position; (c) MC, x position, N = 20 random dimensions; (d) MC,
x position, N = 100 random dimensions; (e) PCMCM, x position, N = 20 random
dimensions.
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Figure 7: Normalized position histograms of the tracer particle ensemble at t = 0.5: (a)
x1 position; (b) x2 position; (c) MC, x position, N = 20 random dimensions; (d) MC,
x position, N = 100 random dimensions; (e) PCMCM, x position, N = 20 random
dimensions.
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Figure 8: Normalized position histograms of the tracer particle ensemble at t = 0.5,
conditional on logarithmic conductivity measurements: (a) x1 position; (b) x2 position;
(c) MC, x position, N = 20 random dimensions; (d) MC, x position, N = 100 random
dimensions; (e) PCMCM, x position, N = 20 random dimensions; (f) mean of logarithmic
conductivity, conditional on measurements.
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Figure 9: Normalized position histograms of the tracer particle ensemble at t = 0.5,
conditional on logarithmic conductivity measurements: x1 position. MC simulations with
different numbers of terms in the KL expansion, i.e., N = 100, 200, and 400, are reported.

hydraulic conductivity and the flow field. To fully determine the PC expan-
sion, Smolyak quadrature was employed and deterministic flow problems at
relatively few quadrature points were solved. For an increasing number of
terms in the KL expansion and order of the PC expansion, the number of
quadrature points grows. With the PC expansion determined, hydraulic head
and transport realizations can be generated at relatively low computational
costs compared to Monte Carlo (MC) simulations. For the transport part, a
convectional streamline approach was used, which avoids inaccuracies result-
ing from corresponding PC expansions as reported in previous contributions.
To reduce the computational cost associated with the PC expansion, a new
reduction technique was outlined leading to a more compact PC expansion.

The resulting PC/MC method (PCMCM) was validated with MC refer-
ence data for a quadratic confined aquifer with a multivariate Gaussian log-
conductivity field. The correlation length of the log-conductivity field was set
to 40% of the aquifer side length and the log-conductivity variance to σ2

Y = 1.
Both unconditional and conditional simulations with log-conductivity mea-
surements were performed. For the investigated test cases, the PCMCM
provided very accurate transport statistics at considerably lower computa-
tional cost compared to the MC method.

For shorter log-conductivity correlation lengths, more terms in the KL ex-
pansion have to be included, which increases the number of terms in the PC
expansion and eventually can lead to large numbers of quadrature points of
similar order as samples in the MC method. Similarly, for large σ2

Y , the order
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of the PC expansion has to be increased, which also leads to a larger number
of quadrature points. To treat shorter correlation lengths and higher σ2

Y in
the future, adaptive procedures are needed to compute the PC expansion of
the hydraulic head. The significance of different terms in the KL expansion
is quantified by their individual eigenvalues. Adaptive methodologies could
benefit from this fact to increase the manageable random dimensionality.
The current approach, however, does not distribute the number of quadra-
ture points in an adaptive manner (i.e., placing more quadrature points in
dimensions representing random variables of greater importance), but dis-
cards unimportant PC expansion terms. For more information on adaptive
probabilistic schemes the reader is referred to [14, 29].
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AppendixA. Gauss-Hermite Quadrature

The Gauss-Hermite quadrature is tailored for integration with respect
to the standard Gaussian measure 1/

√
2π exp(−ξ2/2). The I quadrature

points Ξi, i = 1 . . . I, are the roots of the I’th order normalized Hermite
polynomial ΨI(ξ) as defined by the recurrence relation (B.1). (The roots of
the ’Physicist’s’ Hermite polynomials are listed in [30], table 25.10. In order
to obtain the roots of the normalized Hermite polynomials for the Gaussian
measure, the tabulated roots need to be rescaled by a factor of

√
2.) The

corresponding weights can then be calculated as

wi =
1

IΨI−1(Ξi)
.

AppendixB. Hermite Polynomials

The one-dimensional Hermite polynomials are constructed from the fol-
lowing recurrence relation:

Ψ−1 = 0, Ψ0 = 1 and Ψd+1(ξ) =
1√
d+ 1

(ξΨd(ξ)−
√
dΨd−1(ξ)), (B.1)
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where d indicates the order of a polynomial and ξ is the standard normal
random variable. The one-dimensional Hermite polynomials serve as building
blocks for the N -dimensional case:

Ψp(ξ
N) =

N∏

n=1

Ψdn(ξn),

where every distinct one-dimensional index set [dn]Nn=1 is associated with a
unique index p. The order of a multidimensional Hermite polynomial is∑N

n=1 dn.
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