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1 Introduction

The numerical solution of partial differential equations (PDEs) with random inputs has received
considerable attention in recent years. This is in particular motivated by questions around uncertainty
quantification, where PDEs with random inputs are to be solved efficiently for all values taken by
the uncertain input parameters. Depending on the number of parameters, there arises the question
of efficient numerical solution of such PDEs on possibly high-dimensional parameter spaces. In the
context of PDEs with spatially inhomogeneous, random coefficients, parametric expansions of such
coefficients, such as Karhunen-Loève expansions, give rise to parametric, deterministic PDEs on
infinite dimensional parameter spaces (the parameters being the coefficients in the Karhunen-Loève
expansions). For linear partial differential equations, it has been initiated in [14] and extended
in [1, 2, 7, 8] to rather general classes of sparse Karhunen-Loève expansions that the solutions of
these parametric, deterministic PDEs admit correspondingly sparse expansions in terms of tensorized
polynomial systems on the infinite dimensional parameter space, under the provision of sparsity of
the random inputs. To extend these results to a class of nonlinear, elliptic PDEs is the purpose of
the present paper.
The analysis in [2, 7, 8] involved in a crucial way the analytic dependence of the solution on the
parameters; the extension to the present, nonlinear case involves therefore likewise analyticity of
the nonlinearity in the PDE, in addition to the usual structural conditions such as convexity resp.
monotonicity and polynomial growth conditions at infinity.
The main results of the present paper are as follows: we establish, under the assumption of affine
dependence of the differential operator’s principal part on the countably many parameters, that the
unique, parametric solution of nonlinear, elliptic PDE depends holomorphically on the countably
many parameters in the input data. We then prove that the unique solution of the parametric,
nonlinear elliptic PDE admits representations in unconditionally convergent power series expansions
about the origin in parameter space as well as unconditionally convergent “polynomial chaos” type
expansions with respect to countable families of tensorized orthogonal polynomials on the parameter
space. We consider in particular expansions into tensorized Legendre and in Chebyshev polynomial
expansions; the latter representation generalizes, in the linear case, the results in [2, 7, 8] and is useful
in connection with recent sampling schemes on the parameter domain which are of “compressed
sensing type” (see, e.g. [10]).
The outline of this paper is as follows: in Section 2, we introduce the class of problems of interest, in
particular its parametric version depending on countably many parameters, and formulate structural
assumptions on the problem data and prove basic well-posedness results for this class of PDEs. All
parameters as well as data and solutions in this section are real-valued. Section 3 establishes then
the existence, uniqueness and holomorphic dependence of solutions for complex-valued parameter
vectors z ∈ CN. This holomorphic dependence then is exploited in Section 4 for estimating the
Taylor coefficients, and establishing their p-summability as well as absolute and uniform convergence
of the respective Taylor series. In Section 5 these results are extended to systems of tensorized
Legendre- and Chebyshev-polynomials. Under increased regularity assumptions on the inputs, we
show in Section 6 that also the solution possesses higher spatial regularity, which carries over to
the respective series expansions. In Section 7 we finally investigate convergence rates for N -term
approximation of the solution by Taylor-, Legendre- and Chebyshev-partial sums.
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2 A class of semilinear elliptic PDEs

In the following we shall consider the Dirichlet boundary value problem

−∇
(
a∇u

)
+G(u) = f in D , u = 0 on ∂D , (2.1)

where a = a(x) is a given fixed function on D.
We will denote the differential operator by T consisting of a linear part L = −∇(a∇·) and the
(nonlinear) composition operator TG = G(·). Here we shall not strive for utmost generality of
the function G. Since we wish to study parametric problems, which (as an intermediate step)
will be extended to complex parameters, our approach limits the possible choices for the function
G : C −→ C. More specifically, since we aim at proving analyticity of the parameter dependence
of the solutions, we shall only consider analytic functions G. Taking into account integrability
requirements (see below), we are basically left with studying polynomial functions G.
This leads to studying the problems

−∇
(
a∇u

)
+ um = f in D ⊂ Rn ,

u = 0 on ∂D ,
(2.2)

where the necessary restrictions on the power m ∈ N and the dimension n of the domain D will be
recalled below.

2.1 Basic properties of some composition operators

If we stick to the space H1
0 (D) for solutions of (2.2), then this automatically yields restrictions on

the one hand on the dimension n of the domain D ⊂ Rn and on the other hand on the exponent m.
The weak formulation of (2.2),

b1(u, v) + b2(u, v) = l(v) ,

where u, v ∈ H1
0 (D) and

b1(u, v) =

∫

D

a(x)∇u(x)∇v(x)dx , b2,m(u, v) =

∫

D

u(x)mv(x)dx , l(v) =

∫

D

f(x)v(x)dx ,

particularly requires u ∈ Lm+1(D) for b2,m to be well-defined on H1
0 (D) × H1

0 (D), hence we obtain
the following restrictions on the range of m from the Sobolev embedding theorem:

n = 1 or n = 2 : m ∈ N
n = 3 : H1

0 (D) ↪→ L6(D) hence 1 ≤ m ≤ 5

n = 4 : H1
0 (D) ↪→ L4(D) hence 1 ≤ m ≤ 3

n = 5 : H1
0 (D) ↪→ L10/3(D) hence 1 ≤ m ≤ 2

n = 6 : H1
0 (D) ↪→ L3(D) hence 1 ≤ m ≤ 2

n ≥ 7 : m = 1 .

We will assume the parameter m to be in this range thoughout this paper and denote the corre-
sponding set of parameters (n,m) by M. Thus apart from the possibility of restricting ourselves
to smoother functions, i.e. u ∈ Hs(D) for s > 1, there is only a very limited number of possible
parameters.
In this subsection we shall be concerned with some basic properties of the composition operators TG

associated with the functions Gm(t) = tm. The following lemma contains some mapping properties
needed in our further considerations.
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Lemma 2.1. Let (n,m) ∈ M. Further, let D ⊂ Rn be a Lipschitz domain, and put G(t) = tm.
Then TG : H1(D) −→ H−1(D) is bounded and locally Lipschitz continuous, i.e. Lipschitz continuous
on every bounded subset of H1

0 (D).

Proof . By the Sobolev embedding theorem we knowH1
0 (D) ↪→ Lm+1(D) with constant ι (depending

on m and on D) and we find for u, v ∈ H1
0 (D) by Hölder’s inequality

‖G(u)|H−1(D)‖ = sup
‖v|H1

0 (D)‖≤1

∣∣∣∣∣

∫

D

u(x)mv(x)dx

∣∣∣∣∣

≤ sup
‖v|H1

0 (D)‖≤1

(∫

D

|u(x)|m+1dx

)m/(m+1)(∫

D

|v(x)|m+1dx

)1/(m+1)

≤ ι‖u|Lm+1(D)‖m ≤ ιm+1‖u|H1
0 (D)‖m .

Moreover, we find again by Hölder’s inequality

‖G(u)−G(v)|H−1(D)‖ = sup
‖w|H1

0 (D)‖≤1

∣∣∣∣∣

∫

D

(u(x)m − v(x)m)w(x)dx

∣∣∣∣∣

= sup
‖w|H1

0 (D)‖≤1

∣∣∣∣∣

∫

D

(u− v)(um−1 + um−2v + · · ·+ uvm−2 + vm−1)w(x)dx

∣∣∣∣∣

≤
m−1∑

k=0

sup
‖w|H1

0 (D)‖≤1

∣∣∣∣∣

∫

D

(u− v)(um−1−kvk)w(x)dx

∣∣∣∣∣

≤
m−1∑

k=0

sup
‖w|H1

0 (D)‖≤1

‖u− v|Lm+1(D)‖ · ‖w|Lm+1(D)‖ ·
(∫

D

|u|(m+1)m−1−k
m−1 |v|(m+1) k

m−1dx

)m−1
m+1

≤ ι
m−1∑

k=0

‖u− v|Lm+1(D)‖ · ‖u|Lm+1(D)‖m−1−k · ‖v|Lm+1(D)‖k .

Thus ifM ⊂ H1
0 (D) is bounded with bound CM , then TG is Lipschitz continuous onM with Lipschitz

constant at most mιm+1Cm−1
M .

Remark 2.1. The elementary fact

an − bn = (a− b)(an−1 + an−2b+ an−3b2 + · · ·+ abn−2 + bn−1) (2.3)

has been essential in this argument. A more general version of this result can be found in [12],
Theorem 5.3.2/1.

Under the ellipticity assumption

0 < r ≤ a(x) ≤ R < ∞ , x ∈ D , (2.4)

the problem (2.2), restricted to real-valued functions a and G, can be seen to have real-valued
solutions u for every real-valued right-hand-side f . Without going into details, this follows from the
invertibility of L (by Lax-Milgram-theory) and (Lipschitz-)continuity, coercivity and monotonicity of
T by standard results on existence of solutions for nonlinear equations, see e.g. [12], Theorem 6.1/1.
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We shall, for purposes of analysis, require solutions of (2.1) or (2.2) for complex-valued functions a.
We first note that it is easily seen that the identity (2.3) and Lemma 2.1 remain valid for complex
variables and complex-valued functions, respectively. Moreover, under the generalized ellipticity
assumption

0 < r ≤ Ra(x) ≤ |a(x)| ≤ R < ∞ , (2.5)

the Lax-Milgram Theorem shows the bounded invertibility of L also in this case. However, the
argument above for the existence of solutions for (2.2) then would fail, since the mentioned theorem
in [12] as well as modifications thereof are only valid for (reflexive) real Banach spaces. Thus in
Section 3 we shall use a different approach based on fixed point iterations for spaces over C.

2.2 The parametric problem

As explained in the introduction, our main interest is the analysis of a parametric version of the
problems (2.1) or (2.2). More precisely, we shall investigate the parametric problem

−∇
(
a(y)∇u(y)

)
+G

(
u(y)

)
= f(y) in D , u = 0 on ∂D . (2.6)

Herein, the mappings f : U −→ H−1(D) and a : U −→ L∞(D) are given, real-valued. As the param-
eter domain U we choose U = [−1, 1]N, i.e. this can be interpreted as countably many parameters
each taking values in the unit interval [−1, 1]. We are particularly interested in problems, where the
dependence of the mapping a on the parameter vector y is affine, i.e. it is of the form

a(y) ≡ a(·, y) , a(x, y) = a(x) +
∑

j≥0

yjψj(x) , x ∈ D , y ∈ U .

The functions ψj ∈ L∞(D) are assumed given and real-valued, and additional assumptions will be
discussed later on.
We shall extend this problem to complex parameters, i.e. we shall assume that f admits an extension
to some H−1(D)-valued mapping defined on the complex parameter domain

U =
{
z ∈ CN : |zj| ≤ 1 , j ∈ N

}
≡

{
z ∈ C : |z| ≤ 1

}N
.

Clearly, an analytic extension of a is given by

a(x, z) = a(x) +
∑

j≥0

zjψj(x) , x ∈ D , z ∈ U ,

where we now permit a and ψj, j ∈ N, to be complex-valued. Then our main assumption concerning
the function a will be the following counterpart of condition (2.5):

Assumption 1. There exist constants 0 < r ≤ R < ∞, such that we have

0 < r ≤ Ra(x, z) ≤ |a(x, z)| ≤ R < ∞ for a.e. x ∈ D and all z ∈ U . (2.7)

In other words, every function a(z) = a(·, z) satisfies condition (2.5), and the respective upper and
lower bounds may be chosen independent of z ∈ U . In view of this last remark, the following
assumption would seem more natural

Assumption 2. For every z ∈ C there exist constants 0 < r(z) ≤ R(z) < ∞, such that we have

0 < r(z) ≤ Ra(x, z) ≤ |a(x, z)| ≤ R(z) < ∞ for a.e. x ∈ D . (2.8)

6



The relation between these assumptions is the content of the following lemma.

Lemma 2.2. Assume

sup
z∈U

∥∥∥∥
∑

j>J

zjψj

∣∣∣∣L∞(D)

∥∥∥∥ −→ 0 (J → ∞) .

Then the Assumptions 1 and 2 are equivalent.

Proof . Obviously, Assumption 1 implies Assumption 2, hence it remains the reverse implication.
The crucial step to see this consists in proving that the mapping z -→ a(z) is continuous as a mapping
from U , equipped with the product topology, into L∞(D).
To prove continuity, let ε > 0 and a convergent sequence (zk)k∈N ⊂ U be given. In the product
topology convergence towards z ∈ U means that for every j ∈ N we have zkj → zj as k → ∞. Thus
for every J ∈ N we can find some k0(J, ε) such that

J∑

j=1

∣∣zkj − zj
∣∣ · ‖ψj|L∞(D)‖ ≤ ε

3
for all k ≥ k0 .

Moreover, we find J0(ε) such that

sup
w∈U

∥∥∥∥
∑

j>J

wjψj

∣∣∣∣L∞(D)

∥∥∥∥ ≤ ε

3
for all J ≥ J0 .

Then it holds for all k ≥ k1(ε) ≡ k0(J0(ε), ε)

‖a(zk)− a(z)|L∞(D)‖ ≤
∥∥∥∥a(z

k)− a−
J∑

j=1

zkjψj

∣∣∣∣L∞(D)

∥∥∥∥+

∥∥∥∥
J∑

j=1

zkjψj −
J∑

j=1

zjψj

∣∣∣∣L∞(D)

∥∥∥∥

+

∥∥∥∥a(z)− a−
J∑

j=1

zjψj

∣∣∣∣L∞(D)

∥∥∥∥

≤ ε

3
+

J∑

j=1

∣∣zkj − zj
∣∣ ·

∥∥ψj

∣∣L∞(D)
∥∥+

ε

3
≤ ε .

The result itself now is a consequence of the compactness of U (which in turn follows from Tychonoff’s
Theorem). The upper estimate supz∈U R(z) < ∞ is immediate, and the lower estimate follows from
the observation that due to (2.8) also z -→ 1

a(z) is a well-defined continuous mapping from U into

L∞(D) as well as

sup
z∈U

r(z)−1 =
(
inf
z∈U

r(z)
)−1

, i.e. sup
z∈U

1

r(z)
< ∞ ⇐⇒ inf

z∈U
r(z) > 0 .

This completes the proof.

The extra-condition in the above lemma (uniform approximation by finitely many parameters) will
later on automatically be satisfied due to assumptions on the functions ψj, cf. Theorem 4.1.
In the linear case, i.e. without the term G(u), in problem (2.6), the ellipticity Assumption 1 already
suffices to prove existence and uniqueness of solutions for the respective parametric problem for every
fixed parameter z ∈ U (Lax-Milgram theory). These arguments fail in the above semi-linear case.
Instead in the next section we will use an approach via fixed point assertions.
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3 Existence and regularity of solutions for complex param-
eters

In this section we are going to study existence and uniqueness of solutions u ∈ H1
0 (D) for the semi-

linear problem (2.1), and thus also solutions u(z) ∈ H1
0 (D) for the parametric problem (2.6) for every

fixed parameter z ∈ U . Afterward we shall investigate the regularity of the mapping z -−→ u(z).

3.1 A fixed point iteration

The approach is based on the mentioned well-known fact the linear problem

−∇
(
a∇u

)
= f in D , u = 0 on ∂D , (3.1)

has a uniquely determined solution ulin whenever a satisfies condition (2.5). This is an immediate
consequence of the Lax-Milgram-Theorem. Upon denoting the corresponding linear differential op-
erator by T lin : H1

0 (D) −→ H−1(D), i.e. T lin(u) = −∇
(
a∇u

)
, and its bounded linear inverse by

Slin : H−1(D) −→ H1
0 (D), we further find that every solution u of the semi-linear problem (2.1)

satisfies
u = Slin

(
f −G(u)

)
= ulin − Slin ◦G(u) .

This gives rise to a fixed point problem for the (nonlinear) operator T : H1
0 (D) −→ H1

0 (D), defined
by Tu = ulin − Slin ◦G(u).

Since Slin is linear, it immediately follows Tu− Tv = −Slin
(
G(u)−G(v)

)
, and

‖Tu− Tv|H1
0 (D)‖ ≤ ‖Slin : H−1(D) −→ H1

0 (D)‖ · ‖G(u)−G(v)|H−1(D)‖ , u, v ∈ H1
0 (D) .

In order to show the operator to be a contraction we have to suppose that the composition operator
TG is locally Lipschitz with appropriate bound on the Lipschitz constant.

Theorem 3.1. Let a satisfy the condition (2.5) with lower bound r, and put

ρ =
‖f |H−1(D)‖

r
.

Let the function G fulfill G(0) = 0, and let the composition operator TG : H1
0 (D) −→ H−1(D) be

bounded and locally Lipschitz. More precisely, assume

‖G(u)−G(v)|H−1(D)‖ ≤ L(2ρ)‖u− v|H1
0 (D)‖

for all u, v ∈ B2ρ(0) =
{
w ∈ H1

0 (D) : ‖w|H1
0 (D)‖ ≤ 2ρ

}
, where the constant L(2ρ) satisfies

L(2ρ)‖Slin : H−1(D) −→ H1
0 (D)‖ ≤ 1

2 . (3.2)

Then the problem (2.1) admits a uniquely determined solution u ∈ H1
0 (D) satisfying

‖u− ulin|H1
0 (D)‖ ≤ ρ ,

where ulin is the solution of the linear problem (3.1).

8



Proof . We want to apply Banach’s fixed point theorem. Therefore, we consider the operator T
on the set M = Bρ(ulin) = {v ∈ H1

0 (D) : ‖v − ulin|H1
0 (D)‖ ≤ ρ}. Due to the well-known a priori

estimate ‖ulin|H1
0 (D)‖ ≤ ρ, we find ‖v|H1

0 (D)‖ ≤ 2ρ for all v ∈ M . Moreover, M is a closed subset
of a Banach space, hence it can be considered as a complete metric space.
Furthermore, we find for u ∈ M

‖Tu− ulin|H1
0 (D)‖ = ‖Slin ◦G(u)|H1

0 (D)‖ ≤ ‖Slin : H−1(D) −→ H1
0 (D)‖ · ‖G(u)|H−1(D)‖

≤ L(2ρ)‖Slin : H−1(D) −→ H1
0 (D)‖ · ‖u|H1

0 (D)‖ ≤ ρ .

Similarly, the assumed local Lipschitz continuity shows that T : M −→ M is a contraction. Now
an application of Banach’s fixed point theorem proves the claim, where u is the corresponding fixed
point of T in Bρ

(
ulin

)
.

The last assertion of the Theorem, u ∈ Bρ

(
ulin

)
⊂ B2ρ(0), can be interpreted as an a-priori estimate,

hence we obtain
‖u|H1

0 (D)‖ ≤ 2ρ . (3.3)

Moreover, when checking whether the constants L(() satisfy the assumption (3.2), we can further
apply the a-priori estimates for solutions of the linear problem (3.1), which can be formulated as
‖Slin : H−1(D) −→ H1

0 (D)‖ ≤ r−1. Together with Lemma 2.1 we then find

L(2ρ)‖S : H−1(D) −→ H1
0 (D)‖ ≤ mι(m+ 1)m+1(2ρ)m−1 · r−1 .

Thus (3.2) turns out to be a smallness assumption for ρ and therefore for f ∈ H−1(D).

Remark 3.1. Note that without the restriction to “solutions close to the linear ones”, i.e. without
the additional condition

‖u− ulin|H1
0 (D)‖ ≤ ‖f |H−1(D)‖

r
,

the uniqueness of the solution generally fails. For example the (real) problem for G(t) = −t|t|p−2

and a(x) ≡ 1 (with certain restrictions on p) even has infinitely many solutions with arbitrarily large
norms, see [13], Theorem 7.2 and Remark 7.3.

We now return to the parametric prolem (2.6). Then clearly the solution u(z) can be obtained
by applying Theorem 3.1 for every fixed parameter z ∈ U . It only remains to check whether the
condition (3.2) can be fulfilled.

Theorem 3.2. Consider the problem (2.1) with G(ζ) = ζm for ζ ∈ C and (n,m) ∈ M. Let a
satisfy Assumption 1, and suppose

‖f(z)|H−1(D)‖m−1 <
rm

2mmι(m+ 1)m+1
for all z ∈ U . (3.4)

Then problem (2.1) admits a uniquely determined solution u(z) ∈ H1
0 (D) for every parameter z ∈ U ,

satisfying

‖u(z)− ulin(z)|H1
0 (D)‖ ≤ Mf

r
and ‖u(z)|H1

0 (D)‖ ≤ 2Mf

r
, (3.5)

where ulin(z) is the solution of the corresponding linear problem and Mf = supz∈U ‖f(z)|H−1(D)‖.

Note that if z -→ f(z) is continuous on U , then automatically Mf < ∞, and the smallness condition
then reads as Mm−1

f < rm

2mmι(m+1)m+1 .
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3.2 A fixed point iteration for Helmholtz-type problems.

Before we come to a stability assertion for the problem (2.1), we shall have a look at existence of
solutions for Helmholtz-type equations

−∇
(
a∇u

)
+ bu = f in D , u = 0 on ∂D , (3.6)

where the function b may be complex-valued. These problems are particularly simple cases of the
general problem (2.1), where the (nonlinear) composition operator TG is replaced by a (linear) mul-
tiplication operator T b, where T bu = bu.

Proposition 3.1. Consider the problem (3.6), where a satisfies condition (2.5). Moreover, assume

‖bu|H−1(D)‖ ≤ Cb ‖u|H1
0 (D)‖ (3.7)

for every u ∈ H1
0 (D), where the constant Cb ≡ ‖T b : H1

0 (D) −→ H−1(D)‖ satisfies

Cb‖Slin : H−1(D) −→ H1
0 (D)‖ ≤ 1

2 (3.8)

and where the operator S has the same meaning as in the previous section. Then there exists a
uniquely determined solution u ∈ H1

0 (D) of (3.6) satisfying

‖u− ulin|H1
0 (D)‖ ≤ ρ =

‖f |H−1(D)‖
r

and ‖u|H1
0 (D)‖ ≤ 2ρ ,

where ulin = Slinf is the unique solution of the problem (3.1).

Proof . As before, we shall use a fixed point iteration to obtain the desired result from Banach’s
fixed point theorem. To this end, consider for u ∈ H1

0 (D) the operator T ,

Tu = ulin − Slin ◦ T bu = ulin − Slin
(
bu
)
.

Then we find by Assumption (3.7)

‖Tu− ulin|H1
0 (D)‖ ≤ ‖Slin : H−1(D) −→ H1

0 (D)‖ · ‖bu|H−1(D)‖
≤ Cb‖Slin : H−1(D) −→ H1

0 (D)‖ · ‖u|H1
0 (D)‖ .

Hence T is a mapping from Bρ(ulin) into itself, since ‖ulin|H1
0 (D)‖ ≤ ρ and ‖u|H1

0 (D)‖ ≤ 2ρ for all
u ∈ Bρ

(
ulin

)
. Moreover, we similarly obtain

‖Tu− Tv|H1
0 (D)‖ = ‖Slin ◦ T b(u− v)|H1

0 (D)‖
≤ ‖Slin : H−1(D) −→ H1

0 (D)‖ · ‖b(u− v)|H−1(D)‖
≤ Cb‖Slin : H−1(D) −→ H1

0 (D)‖ · ‖u− v|H1
0 (D)‖ ,

which shows that T is a contraction. An application of Banach’s fixed point theorem now shows the
existence of precisely one fixed point of T in Bρ

(
ulin

)
, which is the desired solution of (3.6).

As opposed to the semilinear problem (2.1) we this time have a smallness condition on the input
function b. However, in the following application of this result, this in turn will again be reformulated
as a smallness condition for f .
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Proposition 3.2. Let u and ũ be solutions of (2.1) for G(ζ) = ζm and (n,m) ∈ M with data a
and ã, both satisfying (2.5) with lower bound r, and the right hand sides f, f̃ . If f and f̃ satisfy the
condition

max
(
‖f |H−1(D)‖, ‖f̃ |H−1(D)‖

)
< r

m
m−1

(
2mmι(m+ 1)m+1

)− 1
m−1

, (3.9)

then it holds

‖u− ũ|H1
0 (D)‖ ≤ 2

r

(
‖f − f̃ |H−1(D)‖+ 2‖a− ã|L∞(D)‖ · ‖f̃ |H

−1(D)‖
r

)
.

Proof . Subtracting the corresponding problems for u and ũ yields with w = u− ũ
∫

D

(
f − f̃

)
vdx =

∫

D

a∇u ·∇vdx−
∫

D

ã∇ũ ·∇vdx+

∫

D

(
G(u)−G(ũ)

)
vdx

=

∫

D

a∇w ·∇vdx+

∫

D

(
a− ã

)
∇ũ ·∇vdx+

∫

D

vw
m−1∑

j=0

um−1−jũjdx .

Defining

b(x) =
m−1∑

j=0

um−1−j(x)ũj(x) ,

then w = u− ũ is a weak solution of the Helmholtz-type problem

−∇(a∇w) + bw = * in D , w
∣∣
∂D

= 0 ,

where

*(v) =

∫

D

(
f − f̃

)
vdx+

∫

D

(
ã− a

)
∇ũ ·∇vdx .

To apply the previous proposition we have to check condition (3.7). Since we have the a priori
estimates ‖u|H1

0 (D)‖ ≤ 2ρ and ‖ũ|H1
0 (D)‖ ≤ 2ρ, where ρ = r−1 max

(
‖f |H−1(D)‖, ‖f̃ |H−1(D)‖

)
,

we find

‖T bw|H−1(D)‖ ≤ ι(m+ 1)m+1
m−1∑

j=0

‖u|H1
0 (D)‖m−1−j · ‖ũ|H1

0 (D)‖j · ‖w|H1
0 (D)‖

≤ ι(m+ 1)m+1m(2ρ)m−1 · ‖w|H1
0 (D)‖ .

In other words, T b is bounded (and hence globally Lipschitz continuous) with norm at most C :=
ι(m+ 1)m+1m(2ρ)m−1. Moreover, we obtain

‖*|H−1(D)‖ ≤ ‖f − f̃ |H−1(D)‖+ ‖a− ã|L∞(D)‖ · ‖ũ|H1
0 (D)‖

≤ ‖f − f̃ |H−1(D)‖+ ‖a− ã|L∞(D)‖ · r−1‖f̃ |H−1(D)‖ .

In this case, the counterpart of condition (3.7) reads as

C‖Slin : H−1(D) −→ H1
0 (D)‖ ≤ 1

2 ,

which can be reformulated as the imposed smallness-condition on f . Applying Proposition 3.1 now
yields that there is a uniquely determined solution w0 of (3.6) in Bρ̃(Slin*), where ρ̃ = r−1‖*|H−1(D)‖.
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Thus it remains to show that this solution coincides with w. To this end we note that also w is a
fixed point of T (recall Tu = Slin* − Slin ◦ T bu), and that T is a contraction on the whole space
H1

0 (D). Then we obtain

‖w − w0|H1
0 (D)‖ = ‖T (w − w0)|H1

0 (D)‖ ≤ C0‖Slin : H−1(D) −→ H1
0 (D)‖ · ‖w − w0‖ ,

which for w 1= w0 yields a contradiction. Finally, the a priori estimate from Proposition 3.1 yields
‖w|H1

0 (D)‖ ≤ 2ρ̃, which completes the proof.

Note that a priori it is not clear, whether w ∈ Bρ̃(S*), hence we used this indirect approach to show
that the solutions coincide.

3.3 Partial derivatives

For the arguments used in the later sections it will be necessary to further extend the considered
parameter domains. We follow [2] and define for δ > 0 domains

Aδ =
{
z ∈ CN : δ ≤ Ra(x, z) ≤ |a(x, z)| ≤ R(z) < ∞ for every x ∈ D

}
.

If a fulfills Assumption 1, then Aδ ⊃ U for every 0 < δ ≤ r. Moreover, we put A =
⋃

δ>0 Aδ, and
assume z -→ f(z) to admit an extension from U to A.

Furthermore, we suppose the data f(z) ∈ H−1(D) to satisfy the smallness-condition

‖f(z)|H−1(D)‖ <

(
δm

2mmι(m+ 1)m+1

) 1
m−1

for all z ∈ Aδ and all 0 < δ ≤ r . (3.10)

Then the assumptions of both Theorem 3.2 and Proposition 3.2 are fulfilled. Note that there is no
further assumption on the function a or the parameter z, apart from the ellipticity condition (2.5).
Hence for every z ∈ Aδ we have a uniquely determined solution u(z) ∈ H1

0 (D) satisfying the estimate

‖u(z)|H1
0 (D)‖ ≤ 2‖f(z)|H−1(D)‖

δ
≤ M(δ) = 2δ−1 sup

z∈Aδ

‖f(z)|H−1(D)‖ , (3.11)

where the finiteness of the supremum follows from (3.10).
With this estimates in hand, we begin with a preparation.

Proposition 3.3. Let (n,m) ∈ M, and consider G(ζ) = ζm with m ≥ 2. Then it holds

lim
h→0

∥∥G(u(z + hej))−G(u(z))−G′(u(z))(u(z + hej)− u(z))
∣∣H−1(D)

∥∥
|h| = 0 .

Note that although this expression appears reminiscent of Fréchet or Gâteaux differentiability, it
does not imply either (neither is G′(u(z))(u(z + ·ej) − u(z)) a (bounded) linear mapping, nor is
u(z + hej)− u(z) a (fixed) direction).

Proof . Fix z ∈ A, and choose δ > 0 such that z ∈ Aδ. First we note that then for h ∈ C \ {0} we
have z + hej ∈ Aδ/2: With z ∈ Aδ and |h| · ‖ψj|L∞(D)‖ < δ/2 we find

3a(x, z + hej) ≥ 3a(x, z)− |h| · ‖ψj|L∞(D)‖ ≥ δ − δ/2 = δ/2

12



as well as
|a(x, z + hej)| ≤ |a(x, z)|+ |h| · ‖ψj|L∞(D)‖ ≤ R(z) + δ/2 < ∞ .

In particular, this yields u(z + hej) ∈ H1
0 (D) to be well-defined. Next we recall that by Taylor’s

Theorem it holds

g(z)− g(z0)− g′(z0)(z − z0) = (z − z0)
2

∫ 1

0

(1− t)g′′
(
z0 + t(z − z0)

)
dt

for every analytic function g (this version easily follows from the C-valued real-variable version by
considering the Taylor polynomial for the mapping t -→ g(z0 + t(z − z0)) around 0, evaluated in
t = 1). In particular, this can be applied to the polynomial G. Thus we can apply Taylor’s formula
pointwise (where z corresponds to u(z + hej) and z0 corresponds to u(z)) to obtain

G
(
u(z + hej)

)
−G

(
u(z)

)
−G′(u(z)

)(
u(z + hej)− u(z)

)

=
(
u(z + hej)− u(z)

)2
∫ 1

0

(1− t)G′′(u(z) + t(u(z + hej)− u(z))
)
dt .

Multiplying with v ∈ H1
0 (D) and integrating over D yields

∫

D

∣∣∣
(
G(u(z + hej))−G(u(z))−G′(u(z))(u(z + hej)− u(z))

)
v(x)

∣∣∣dx

=

∫

D

∣∣u(z + hej)− u(z)
∣∣2|v(x)|

∫ 1

0

∣∣(1− t)G′′(u(z) + t(u(z + hej)− u(z))
)∣∣dtdx

≤ ‖u(z + hej)− u(z)|Lm+1(D)‖2 · ‖v(x)|Lm+1(D)‖

×

∥∥∥∥∥

∫ 1

0

∣∣(1− t)G′′(u(z) + t(u(z + hej)− u(y))
)∣∣dt

∣∣∣∣∣Lm+1
m−2

(D)

∥∥∥∥∥ ,

where in the last line we used Hölder’s inequality (clearly the case m = 2 is trivial). The last factor
can be further estimated using the (generalized) Minkowski inequality. Then we obtain

∥∥∥∥∥

∫ 1

0

∣∣(1− t)G′′(u(z) + t(u(z + hej)− u(z))
)∣∣dt

∣∣∣∣∣Lm+1
m−2

(D)

∥∥∥∥∥

≤
∫ 1

0

∥∥∥(1− t)G′′(u(z) + t(u(z + hej)− u(z))
)∣∣∣Lm+1

m−2
(D)

∥∥∥dt

=

∫ 1

0

(1− t)m(m− 1)
∥∥∥
∣∣u(z) + t(u(z + hej)− u(z))|m−2

∣∣∣Lm+1
m−2

(D)
∥∥∥dt

≤
∫ 1

0

(1− t)m(m− 1)
(
(1− t)‖u(z)|Lm+1(D)‖+ t‖u(z + hej)|Lm+1(D)‖

)m−2

dt

≤ m(m− 1)

∫ 1

0

(1− t)dt

(
ι(m+ 1)M(δ)

)m−2

=
1

2
m(m− 1)

(
ι(m+ 1)M(δ)

)m−2

,

where at the end we used the a priori estimate (Theorems 3.1 and 3.2), and ι(m+1) is the embedding
constant for H1

0 (D) ↪→ Lm+1(D). Combining these two estimates yields together with the stability
estimate (Proposition 3.2)

∥∥G(u(z + hej))−G(u(z))−G′(u(z))(u(z + hej)− u(z))
∣∣H−1(D)

∥∥
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≤ 1
2m(m− 1)ι(m+ 1)m+1‖u(z + hej)− u(z)|H1

0 (D)‖2 ·M(δ)m−2

≤ 1
2m(m− 1)ι(m+ 1)m+1M(δ)m−24δ−2

×
(
‖f(z + hej)− f(z)|H−1(D)‖+ ‖a(·, z + h)− a(·, z)|L∞(D)‖M(δ)

)2

≤ 2m(m− 1)ι(m+ 1)m+1M(δ)m−2δ−2
(
O(|h|) + |h| · ‖ψj|L∞(D)‖M(δ)

)2

= O(|h|2) .

This proves the claim.

We now aim at proving existence of partial derivatives for the mapping z -→ u(z). To do so we
require an additional assumption on f .

Assumption 3. We assume the mapping z -→ f(z) to admit partial derivatives ∂zjf(z) ∈ H−1(D)
at every point z ∈ A with respect to every variable zj, j ∈ N.

Then the desired regularity result for z -→ u(z) reads as follows.

Theorem 3.3. Let z -→ f(z) ∈ H−1(D) satisfy the condition (3.10) and Assumption 3. Then at
any point z ∈ A, the function z -→ u(z) admits partial derivatives ∂zju(z) ∈ H1

0 (D) with respect to
each complex variable zj. For each j ∈ N, ∂zju is the unique solution in H1

0 (D) of the linear problem:

∫

D

a(x, z)∇w(x) ·∇v(x)dx+

∫

D

G′(u(x, z)
)
w(x)v(x)dx

=

∫

D

∂zjf(x, z)v(x, z)dx−
∫

D

ψj(x)∇u(x, z) ·∇v(x)dx for all v ∈ H1
0 (D) .

Proof . Fix again z ∈ A, and choose δ > 0 such that z ∈ Aδ. As in the proof of Proposition 3.3 we
have z + hej ∈ Aδ/2 for |h| sufficiently small. For such h, the difference quotient

wh(z) =
u(z + hej)− u(z)

h
∈ H1

0 (D)

is well-defined and we find for arbitrary v ∈ H1
0 (D) and such h that

h

∫

D

f(x, z + hej)− f(x, z)− h∂zjf(x, z)

h
v(x)dx+ h

∫

D

∂zjf(x, z)v(x)dx

=

∫

D

a(x, z + hej)∇u(x, z + hej) ·∇v(x)dx−
∫

D

a(x, z)∇u(x, z) ·∇v(x)dx

+

∫

D

(
G(u(x, z + hej))−G(u(x, z))

)
v(x)dx

= h

∫

D

a(x, z)∇wh(x, z) ·∇v(x)dx+

∫

D

(
a(x, z + hej)− a(x, z)

)
∇u(x, z + hej) ·∇v(x)dx

+

∫

D

(
G(u(x, z + hej))−G(u(x, z))

)
v(x)dx

= h

∫

D

a(x, z)∇wh(x, z) ·∇v(x)dx+ h

∫

D

ψj(x)∇u(x, z + hej) ·∇v(x)dx

+ h

∫

D

G(u(x, z + hej))−G(u(x, z))−G′(u(x, z))(u(x, z + hej)− u(x, z))

h
v(x)dx
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+ h

∫

D

G′(u(x, z))wh(x, z)v(x)dx .

By Proposition 3.3 the third integral in the last line converges to 0 as h → 0, and the first integral
on the left hand side converges to 0 as well due to Assumption 3.
If we define *h(v) =

∫
D ψj(x)∇u(x, z + hej) ·∇v(x)dx and *0(v) =

∫
D ψj(x)∇u(x, z) ·∇v(x)dx, then

this yields bounded linear functionals on H1
0 (D), and together with (3.11) we find

|*h(v)− *0(v)| =

∣∣∣∣∣

∫

D

ψj

(
∇u(z + hej)−∇u(z)

)
·∇vdx

∣∣∣∣∣

≤ ‖ψj|L∞(D)‖ · ‖u(z + hej)− u(z)|H1
0 (D)‖ · ‖v|H1

0 (D)‖

≤ 1

δ
‖ψj|L∞(D)‖

(
‖f(z + hej)− f(z)|H−1(D)‖+ |h| · ‖ψj|L∞(D)‖M(δ)

)
‖v|H1

0 (D)‖ .

In the last line we applied the stability estimate (Proposition 3.2). We conclude *h → *0 in H−1(D)
as h → 0. Furthermore, defining

Lh(v) =

∫

D

f(x, z + hej)− f(x, z)− h∂zjf(x, z)

h
v(x)dx−

∫

D

ψj(x)∇u(x, z + hej) ·∇v(x)dx

−
∫

D

G(u(x, z + hej))−G(u(x, z))−G′(u(x, z))(u(x, z + hej)− u(x, z))

h
v(x)dx

this yields another bounded linear functional on H1
0 (D), and we find Lh → *0 in H−1(D) as h → 0.

The next step consists in an application of Proposition 3.1 with b(x, z) = G′(u(x, z)), hence we have
to check condition (3.7). Similar to Lemma 2.1, applying Hölder’s inquality yields

‖G′(u(z))v|H−1(D)‖ ≤ mι(m+ 1)m+1‖u(z)|H1
0 (D)‖m−1 · ‖v|H1

0 (D)‖ , v ∈ H1
0 (D) ,

hence (3.7) is fulfilled with Cb =̂ (2ρ(z))m−1mι(m + 1)m+1, where ρ(z) = δ−1‖f(z)|H−1(D)‖. Thus
condition (3.8) reduces once more to a smallness-condition for f(z),

‖f(z)|H−1(D)‖ ≤ δ
(
2mmι(m+ 1)m+1‖Slin

z : H−1(D) −→ H1
0 (D)‖

)−1/(m−1)
,

which in turn is satisfied due to assumption (3.10). This implies that the function wh is the unique
weak solution of the problem

∫

D

a(x, z)∇wh(x, z) ·∇v(x)dx+

∫

D

G′(u(x, z))wh(x, z)v(x)dx =

∫

D

∂zjf(x, z)v(x)dx+ Lh(v) .

Similarly, w0 is the unique weak solution of the problem
∫

D

a(x, z)∇w0(x, z) ·∇v(x)dx+

∫

D

G′(u(x, z))w0(x, z)v(x)dx =

∫

D

∂zjf(x, z)v(x)dx+ *0(v) .

Combining these two problems, we once more obtain from Proposition 3.1 together with Theorem
3.1 the estimate

‖wh(z)− w0(z)|H1
0 (D)‖ ≤ ‖Lh − *0|H−1(D)‖

r
→ 0 (h → 0) .

Thus ∂zju(z) = w0(z) = limh→0 wh(z) exists in H1
0 (D).
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4 Estimates of Taylor coefficents

From now on we assume the functions a and f to satisfy Assumption 1, the smallness-condition
(3.10) and Assumption 3, respectively.

4.1 δ-admissible sequences

We remind on the domains

Aδ =
{
z ∈ CN : δ ≤ Ra(x, z) ≤ |a(x, z)| ≤ R(z) < ∞ for every x ∈ D

}
.

where δ > 0, and U ⊂ Aδ for δ ≤ r as a consequence of Assumption 1. Following [2] we call a
sequence ρ = (ρj)j∈N of positive real numbers δ-admissible, if

∞∑

j=1

ρj|ψj(x)| ≤3 a(x)− δ

for almost every x ∈ D. This particularly implies that the poly-disc

Uρ =
∏

j∈N

{
ζ ∈ C : |ζ| ≤ ρj

}

is contained in Aδ. Indeed, we find for z ∈ Uρ and almost every x ∈ D

3a(x, z) ≥ 3a(x)−
∞∑

j=1

|zj| · |ψj(x)| ≥ 3a(x)−
∞∑

j=1

ρj|ψj(x)| ≥ δ

as well as

|a(x, z)| ≤ |a(x)|+
∞∑

j=1

|zj| · |ψj(x)| ≤| a(x)|+ 3a(x)− δ ≤ 2|a(x)| ≤ 2R .

Similarly, we put
Uρ,E =

∏

j∈E

{
ζ ∈ C : |ζ| ≤ ρj

}

for every (finite) set E ⊂ N.

4.2 A preliminary estimate for partial derivatives of u

We first prove a preliminary result for estimates for partial derivatives of u(y) (and hence for its
Taylor coefficients) for general δ-admissible sequences ρ.
Before we come to the next proposition, we shall need some more notation. We denote by

F =
{
ν = (νj)j∈N ∈ NN

0 : | supp ν| < ∞
}

the set of all sequences of non-negative integers with at most finitely many non-vanishing components.
Here

supp ν =
{
j ∈ N : νj 1= 0

}

denotes the support of ν, and we put |ν| =
∑

j∈N νj, which is finite if, and only if, | supp ν| < ∞.
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Proposition 4.1. Let f ∈ H−1(D) satisfy the condition (3.10). Let a δ-admissible sequence ρ =
(ρj)j∈N be given. Then for every ν ∈ F we have the estimate

‖∂νu(y)|H1
0 (D)‖ ≤ ν!M(δ)

∏

j∈supp ν

ρ
−νj
j .

Proof . The proof is based on the argument in [2, Lemma 2.4].

Put E = supp ν and J = |E|. Writing z = (zE, zEc), i.e. zE ∈ CJ contains the components
corresponding to inidces j ∈ E, the δ-admissibility of ρ then mplies the estimate

‖u(zE, 0)|H1
0 (D)‖ ≤ 2‖f(zE, 0)|H−1(D)‖

δ
≤ M(δ) (4.1)

for every zE ∈ Uρ,E. W.l.o.g. we assume E = {1, . . . , J}, which always may be achieved by re-
numerating the variables. If we further define the sequence ρ̃ by

ρ̃j = ρj + ε , j ∈ E , ε =
δ

2
∑

j∈E ‖ψj|L∞(D)‖ , ρ̃j = ρj , j 1∈ E ,

it is easily checked that ρ̃ is δ/2-admissible. In particular, uE is analytic in an open neighbourhood
of Uρ,E, where writing uE(z1, . . . , zJ) = uE(zE) ≡ u(zE, 0).
We may thus apply Cauchy’s integral formula (see, e.g., [6]) in each variable zj, j ∈ E, to obtain

uE(z1, . . . , zJ) = (2πi)−J

∮

Γ1(z1)

· · ·
∮

ΓJ (zJ )

u(z′E, 0)

(z′1 − z1) · · · (z′J − zJ)
dz′1 · · · dz′J

= (2πi)−J

∮

Γ1

· · ·
∮

ΓJ

u(z′1 + z1, . . . , z′J + zJ)

z′1 · · · z′J
dz′1 · · · dz′J .

where Γj(zj) denotes the circle with radius ρj and center zj, and Γj ≡ ΓJ(0). Differentiation (or
directly applying the formula for derivatives) then yields

∂νu(0) =
∂|ν|u

∂zν11 · · · ∂zνJJ
(0) = ν!(2πi)−J

∮

Γ1

· · ·
∮

ΓJ

u(z1, . . . , zJ)

zν1+1
1 · · · zνJ+1

J

dz1 · · · dzJ .

Eventually, together with (4.1) we conclude

‖∂νu(0)|H1
0 (D)‖ ≤ ν!M(δ)

∏

j∈E

ρ
−νj
j .

This proves the claim.

We put emphasis on the observation that Proposition 4.1 is valid for arbitrary δ-admissible sequences.
Hence the resulting estimate may be improved to

‖∂νu(0)|H1
0 (D)‖ ≤ ν!M(δ) inf

ρ δ-admissible

∏

j∈supp ν

ρ
−νj
j .

Moreover, note that the optimal sequence ρ (if it exists) may be a different one for every ν ∈ F .
We eventually aim at proving *p-summability results for the Taylor coefficients. For this purpose it
will be sufficient to construct “suitable” δ-admissible sequences ρ ≡ ρ(ν), upon which the respective
summability result will be based.
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4.3 Construction of δ/2-admissible sequences

The construction is essentially based on corresponding arguments in [2]. The starting point for our
construction will be a given fixed δ-admissible sequence (. For given multiindex ν ∈ F we will now
construct a δ/2-admissible sequence ρ. We shall use the abbreviation γj = ‖ψj|L∞(D)‖. The basic
assumption then reads as

(
(j‖ψj|L∞(D)‖

)
j∈N ∈ *1(N) , i.e.

∑

j≥1

(jγj < ∞ . (4.2)

To begin with choose M ∈ N such that

∑

j>M

(jγj ≤
δ

12
,

which exists due to the choice of (. Without loss of generality, we assume that the indexing of the
parameters yj is chosen such that the sequence

(
(jγj

)
j∈N is non-increasing. Then we partition N into

two sets E = {1, . . . ,M} and F = N \ E. We further choose κ > 1 such that

(κ− 1)
∑

j≤M

(jγj ≤
δ

4
.

Finally, we define our sequence ρ by

ρj = κ(j , j ∈ E ; ρj = max
(
(j,

δνj
4|νF |γj

)
, j ∈ F ,

where νE denotes the restriction of ν to the index set E, and |νF | denotes the *1-norm of the
multiindex, i.e. |νF | =

∑
j>M νj. (with the convention νj

|νF | = 0 if |νF | = 0).

Now we first check that this sequence ρ indeed is δ/2-admissible. To do so, we estimate

∑

j≥1

ρj|ψj(x)| = κ
∑

j≤J

(j|ψj(x)|+
∑

j>J

max
(
(j,

δνj
4|νF |γj

)
|ψj(x)|

≤ (κ− 1)
∑

j≤J

(jγj +
∑

j≤J

(j|ψj(x)|+
∑

j>J

(
(j +

δνj
4|νF |γj

)
|ψj(x)|

≤ δ

4
+
∑

j∈N

(j|ψj(x)|+
δ

4
,

and hence by choice of (

∑

j≥1

ρj|ψj(x)| ≤
∑

j∈N

(j|ψj(x)|+
δ

2
≤ 3a(x)− δ

2
.

Then we obtain by Proposition 4.1 the estimate

‖tν |H1
0 (D)‖ ≤ M(δ/2)ρ−ν ≤ M(δ/2)

(∏

j∈E

ηνj(
−νj
j

)(∏

j∈F

( |νF |dj
νj

)νj
(
−νj
j

)
,
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where η = 1
κ < 1 and dj = 4'jγj

δ . Moreover, factors with exponent νj = 0 are understood to be 1.
This estimate can be equivalently written as

(ν‖tν |H1
0 (D)‖ ≤ M(δ/2)

(∏

j∈E

ηνj
)(∏

j∈F

( |νF |dj
νj

)νj
)
. (4.3)

Finally, we note that the choice of M implies

‖d|*1(F )‖ =
∑

j>M

dj ≤
1

3
. (4.4)

4.4 Summability of Taylor coefficients

The construction in the previous section are the basis for the following theorem. We shall follow
closely the argument given in [2] (Sections 2.2, 3.2–3.3 and 4.4). Before stating the main theorem,
we mention the following basic result of [1].

Proposition 4.2. Given 0 < p < 1, it holds
( |ν|!

ν! b
ν
)
ν∈F ∈ *p(F) if, and only if,

∑
j∈N bj < 1 and

(bj)j∈N ∈ *p(N).

In the sequel we shall use the following notion: We say that a sequence (ΛN)N∈N of finite subsets of
F exhausts F , if every finite set Λ ⊂ F is contained in every set ΛN for all N ≥ N0 (with N0 = N0(Λ)
chosen sufficiently large).

Theorem 4.1. Suppose f satisfies condition (3.10). Moreover, let ρ = (ρj)j∈N be an arbitrary
δ-admissible sequence, and assume

(
‖ψj|L∞(D)‖

)
j∈N ∈ *1(N) and

(
ρj‖ψj|L∞(D)‖

)
j∈N ∈ *p(N) for some p < 1. (4.5)

Then the Taylor coefficients tν of the solution u of (2.1) satisfy
(
ρν‖tν |H1

0 (D)‖
)
ν∈F ∈ *p(F).

If additionally

sup
z∈Uρ

∥∥f(z)− f(z1, . . . , zJ , 0, . . . , )
∣∣H−1(D)

∥∥ −→ 0 (J −→ ∞) , (4.6)

then it holds ∑

ν∈F

tνz
ν = u(z) , z ∈ Uρ ,

with uniform and unconditional convergence, which has to be understood in the following sense: If
(ΛN)N≥1 exhausts F , then the partial sums SΛNu(z) =

∑
ν∈ΛN

tνzν satisfy

lim
N→∞

sup
z∈Uρ

‖u(z)− SΛNu(z)|H1
0 (D)‖ = 0 .

Proof . Step 1: Proof of the *p-summability.
We first note that every δ-admissible sequence may serve as the fixed reference sequence ( in the
constructions of the last section. Hence, we conclude from (4.3)

∑

ν∈F

(
ρν‖tν |H1

0 (D)‖
)p ≤ M(δ/2)p

∑

ν∈F

(∏

j∈E

ηνj
)p(∏

j∈F

( |νF |dj
νj

)νj
)p
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≡ M(δ/2)p
(∑

ν∈FE

α(ν)p
)(∑

ν∈FF

β(ν)p
)

≡ M(δ/2)pAEAF ,

where FE = {ν ∈ F : supp ν ⊂ E} and FF = {ν ∈ F : supp ν ⊂ F}. Then it further follows

AE =

(∑

ν∈FE

α(ν)p
)

=
∑

ν∈FE

∏

j∈E

ηνjp =
∏

j∈E

∞∑

n=0

ηnp =

(
1

1− ηp

)M

,

recall η < 1 (since E is finite and |E| = M the index set FE may be identified with NM
0 ). Now we

turn to showing AF < ∞. Using as before the convention 00 = 1 and dνF =
∏

j∈F d
νj
j we find

β(ν) =
∏

j∈F

( |νF |dj
νj

)νj
=

|νF ||νF |
∏

j∈F ν
νj
j

dνF , ν ∈ FF . (4.7)

Applying the Stirling inequalities

n!en

e
√
n
≤ nn ≤ n!en√

2πn
, n ≥ 1 ,

we can further estimate the numerator and denominator in (4.7),

|νF ||νF | ≤ |νF |!e|νF | and
∏

j∈F

ν
νj
j ≥ νF !e|νF |

∏
j∈F max(1, e

√
νj)

≥ νF !e|νF |
∏

j∈F eνj
,

where at the end we used the bound max(1, e
√
n) ≤ en. Altogether we then obtain from (4.7)

β(ν) ≤ |νF |!
νF !

e|νF |dνF =
|νF |!
νF !

∏

j∈F

(edj)
νj .

We next apply Proposition 4.2 to the sequence (edj)j∈N. The assumptions of Proposition 4.2 are
satisfied due to (4.4), e < 3, and condition (4.5). Eventually, this yields

∑
ν∈FF

β(ν)p < ∞, and thus
the asserted summability of the Taylor coefficients.

Step 2: Convergence of the Taylor series.
We have just shown

(
ρν‖tν |H1

0 (D)‖
)
ν∈F ∈ *p(F), which particularly implies

(
ρν‖tν |H1

0 (D)‖
)
ν∈F ∈

*1(F) and thus the absolute convergence of the Taylor series
∑

ν∈F tνzν on Uρ. We now show its
convergence towards u(z) in two substeps: First we reduce it to the case of a finite number of
parameters zj, and then prove the convergence in that special case.

Substep 2.1: Reduction to a finite number of parameters.
If we put

aJ(·, z1, . . . , zJ) = a(·) +
∑

1≤j≤J

zjψj(·) ,

we obtain

∥∥a(·, z)− aJ(·, z1, . . . , zJ)
∣∣L∞(D)

∥∥ =

∥∥∥∥
∑

j>J

zjψj

∣∣∣∣L∞(D)

∥∥∥∥ ≤
∑

j>J

|zj| ·
∥∥ψj

∣∣L∞(D)
∥∥
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and thus

sup
z∈Uρ

∥∥a(·, z)− aJ(·, z1, . . . , zJ)
∣∣L∞(D)

∥∥ ≤
∑

j>J

ρj‖ψj|L∞(D)‖ −→ 0 (J −→ ∞) (4.8)

due to condition (4.5). If we denote by uJ the restriction of u to J parameters, i.e.

uJ(z1, . . . , zJ) = u(z1, . . . , zJ , 0, . . .) ≡ u(z(J)) ,

then it follows from Proposition 3.2 and δ-admissibility of ρ

∥∥u(z)− uJ(z1, . . . , zJ)
∣∣H1

0 (D)
∥∥ ≤ 2

δ

(∥∥f(z)− f(z1, . . . , zJ , 0, . . . , )
∣∣H−1(D)

∥∥

+M(δ)
∥∥a(·, z)− aJ(·, z1, . . . , zJ)

∣∣L∞(D)
∥∥
)
. (4.9)

We finally conclude from (4.8) and (4.9) together with the assumption (4.6)

sup
z∈Uρ

∥∥u(z)− uJ(z1, . . . , zJ)
∣∣H1

0 (D)
∥∥ −→ 0 (J −→ ∞) .

In particular, we have

sup
z∈Uρ

∥∥u(z)− uJ(z1, . . . , zJ)
∣∣H1

0 (D)
∥∥ ≤ 1

2N

for every J ≥ J0(N) and N ∈ N.
Substep 2.2: Convergence for finitely many parameters.
As mentioned before, the mapping z(J) -→ u(z(J)) is holomorphic in an open neighbourhood of the
polydisc Uρ,J =

⊗
1≤j≤J{ζ ∈ C : |ζ| ≤ ρj}, see the proof of Proposition 4.1. By standard results

on Banach space-valued holomorphic functions (cf. [4, Proposition 3.5] or [6, Theorem 2.1.2]) this
implies its analyticity and therefore the uniform convergence of its Taylor series on this polydisc. In
particular, for the index sets

Λ∗
K =

{
µ ∈ NJ

0 : |µ| ≤ K
}

we have

sup
z=(z1,...,zJ )∈Uρ,J

∥∥uJ(z)− SΛ∗
K
uJ(z)

∣∣H1
0 (D)

∥∥ ≤ 1

2N

for all K ≥ K0(N). W.l.o.g. we choose K0(N) ≥ N and J0(N) ≥ N to be increasing. More-
over, the index set Λ∗

K ⊂ NJ
0 can be identified with an index set Λ

∗
K ⊂ F in an obvious way (the

contained indices being supported in {1, . . . , J}). In the same spirit we identify the partial sums

SΛ∗
K
uJ(z1, . . . , zJ) and SΛ

∗
K
u(z(J)) ≡ SΛ

∗
K
u(z) for z ∈ Uρ. Finally, putting Λ∗

N = ΛK0(N) ⊂ NJ0(N)
0 , we

end up with

sup
z∈Uρ

∥∥u(z)− SΛ
∗
N
u(z)

∣∣H1
0 (D)

∥∥ ≤ 1

N
,

which proves the (uniform) convergence of the Taylor series for this particular order of summation.
Clearly the sequence of sets (Λ

∗
N)N∈N exhausts F .

Substep 3: Unconditional summability.
Now let an arbitrary exhausting sequence (ΛN)N∈N of finite subsets of F be given. Then for any
fixed ε > 0 we can find some M = M(ε), such that

sup
z∈Uρ

∥∥u(z)− SΛ
∗
M
u(z)

∣∣H1
0 (D)

∥∥ ≤ ε

2
.
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Moreover, we may assume ∑

ν *∈Λ∗
M

ρν‖tν |H1
0 (D)‖ ≤ ε

2

since (Λ
∗
N)N∈N exhausts F . Because (ΛN)N∈N exhausts F there exists some N0(ε) such that Λ

∗
M ⊂ ΛN

for all N ≥ N0. This finally implies

sup
z∈Uρ

∥∥u(z)− SΛNu(z)
∣∣H1

0 (D)
∥∥ ≤ sup

z∈Uρ

∥∥u(z)− SΛ
∗
M
u(z)

∣∣H1
0 (D)

∥∥+ sup
z∈Uρ

∥∥SΛN\Λ∗
M
u(z)

∣∣H1
0 (D)

∥∥

≤ ε

2
+ sup

z∈Uρ

∑

ν∈ΛN\Λ∗
M

|zν | · ‖tν |H1
0 (D)‖

≤ ε

2
+

∑

ν *∈Λ∗
M

ρν‖tν |H1
0 (D)‖ ≤ ε .

This completes the proof.

5 Series expansions in tensorized polynomial bases

5.1 Legendre Series

In this section we shall consider expansions of the mapping z -→ u(z) into series of tensorized
Legendre polynomials. These expansions and related N -term approximations are better suited than
Taylor polynomials, if the error is measured in the least squares sense, i.e. it results in better decay
estimates.
When talking about Legendre polynomials there are different versions according to the chosen nor-
malization. In the univariate case, we define the system (Pn)n≥0 to be Legendre polynomials with
the L∞-normalization ‖Pn|L∞([−1, 1])‖ = Pn(1) = 1, and we denote by Ln =

√
2n+ 1Pn their

L2-normalized version, i.e. ∫ 1

−1

|Ln(t)|2
dt

2
= 1 .

We further put P0 = L0 = 1. For ν ∈ F , we define

Pν(z) =
∏

j≥1

Pνj(zj) and Lν(z) =
∏

j≥1

Lνj(zj) .

We note that the choice P0 = L0 = 1 renders Pν(z) well-defined, since due to the finite support of ν,
only finitely many factors are different from 1.
As a direct consequence we note that (Lν)ν∈F is an orthonormal basis in L2(U, dµ), where dµ is the
countable product of the probability measures dyj

2 on [−1, 1]. The spaces Lp(U, dµ), 0 < p ≤ ∞, as
well as the vector-valued spaces Lp(U, dµ;X) are to be understood similarly.
From condition (3.4) and the a priori estimate (3.5) we immediately conclude u ∈ L∞(U, dµ;H1

0 (D)) ↪→
L2(U, dµ;H1

0 (D)), thus we obtain the unique expansions

u(y) =
∑

ν∈F

uνPν(y) =
∑

ν∈F

vνLν(y)
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with convergence in L2(U, dµ;H1
0 (D)), where the H1

0 (D)-valued coefficients uν and vν are given by

vν =

∫

U

u(y)Lν(y)dµ(y) and uν =

(∏

j≥1

(1 + 2νj)

)1/2

vν .

We then find the following analog of Theorem 4.1 for tensorized Legendre expansions.

Theorem 5.1. Let a fulfill Assumption 1 for some 0 < r ≤ R < ∞, and suppose f satisfies
condition (3.10) and Assumption 3. Moreover, let ρ = (ρj)j∈N be a δ-admissible sequence with
ρj ≥ 1, j ∈ N, and assume

(
‖ψj|L∞(D)‖

)
j∈N ∈ *1(N) and

(
ρj‖ψj|L∞(D)‖

)
j∈N ∈ *p(N) for some p < 1. (5.1)

Then the Legendre coefficients uν and vν of the solution u of (2.1) satisfy
(
ρν‖uν |H1

0 (D)‖
)
ν∈F ∈ *p(F)

and
(
ρν‖vν |H1

0 (D)‖
)
ν∈F ∈ *p(F). If additionally

sup
z∈U

∥∥f(z)− f(z1, . . . , zJ , 0, . . . , )
∣∣H−1(D)

∥∥ −→ 0 (J −→ ∞) , (5.2)

then it holds
u(z) =

∑

ν∈F

uνPν(z) =
∑

ν∈F

vνLν(z) , z ∈ U ,

with uniform and unconditional convergence, which has to be understood in the following sense:
If (ΛN)N≥1 is a sequence of subsets of F which exhausts F , then the partial sums SΛNu(z) =∑

ν∈ΛN
uνPν(z) =

∑
ν∈ΛN

vνLν(z) satisfy

lim
N→∞

sup
z∈U

‖u(z)− SΛNu(z)|H1
0 (D)‖ = 0 .

As for the Taylor series, we start with a preliminary estimate.

Proposition 5.1. Let the coefficient a satisfy Assumption 1. For any ν ∈ F let ρ denote a ν
dependent δ-admissible sequence which is chosen in the following fashion: ρj ≥ 1 for all j ∈ N and
ρj > 1 for all j ∈ supp ν. Moreover, suppose f fulfills condition (3.10) and Assumption 3. Then we
have the estimate

‖uν |H1
0 (D)‖ ≤ M(δ)

∏

j∈supp ν

πρj
2(ρj − 1)

(2νj + 1)ρ
−νj
j .

The proof is exactly the same as the corresponding one in [2, Lemma 4.2], based on the a priori
estimate (3.11). Equipped with this estimate, the proof of Theorem 5.1 follows by exactly the same
argument as in [2], Sections 4.3 and 4.4. Specifically, this means a modification of the argument
for Taylor coefficients and Taylor series (i.e. construction of suitable δ/2-admissible sequences ρ(ν),
reformulation of the estimate resulting from Proposition 5.1, and finally applying Proposition 4.2).
We omit the details.

5.2 Chebyshev Series

As another example of orthogonal polynomials defined on the interval [−1, 1] we consider the Cheby-
shev polynomials Tn(t) = cos(n arccos(t)), n ∈ N, and T0(t) = 1. They satisfy

‖Tn|L∞([−1, 1])‖ = 1 , n ≥ 0 , and

∫

[−1,1]

|Tn(t)|2
dt√
1− t2

=
π

2
, n ∈ N .
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As before we consider the set U equipped with the Borel σ-algebra B(U) and the probability measure

dη =
⊗

j∈N

dt

π
√
1− t2

.

As in the Legendre-case condition (3.4) and the a priori estimate (3.5) imply u ∈ L∞(U, dη;H1
0 (D)) ↪→

L2(U, dη;H1
0 (D)). Moreover, the system of tensorized polynomials (Tν)ν∈F , where for ν ∈ F we put

Tν(y) =
∏

j∈N Tνj(yj), constitutes an orthogonal basis. Note that they are not orthonormal with
respect to the measure η, but it holds

∫

U

|Tν(y)|2dη(y) =
∏

j∈supp ν

1

2
= 2−| supp ν| .

Nevertheless, this yields the unique expansions

u(y) =
∑

ν∈F

wνTν(y) , y ∈ U , wν = 2| supp ν|
∫

U

u(y)Tν(y)dη(y) ,

with convergence in L2(U, dη;H1
0 (D)).

We again aim at a summability result as in Theorems 4.1 and 5.1, and once more we start with an
estimate in terms of arbitrary δ-admissible sequences.

Proposition 5.2. Under the assumptions of Proposition 5.1 it holds the estimate

‖wν |H1
0 (D)‖ ≤ M(δ)

∏

j∈supp ν

2ρ
−νj
j ≡ M(δ)2| supp ν|ρ−ν .

Proof . We will only discuss the case ν = ne1, n ∈ N, the general case then is a straightforward
modification by applying the one-variable case to every variable zj with j ∈ supp ν.
Similar to the proof of Proposition 4.1 we write z = (z1, z′) ∈ Aδ and put u1(z1) = u(z1, z′) for some
arbitrary z′ ∈ U ′ =

∏
j≥2{ζ ∈ C : |ζ| ≤ 1} (note that due to the assumption on ρ we have U ⊂ Uρ).

Then we have ‖u1(z1)|H1
0 (D)‖ ≤ M(δ), and we further find

∫

U

Tν(y)u(y) dη(y) =

∫

U ′

∫

[−1,1]

Tn(t)u(t, y
′)

dt

π
√
1− t2

dη(y′) ≡
∫

U ′
In(y

′) dη(y′) .

It clearly suffices to bound ‖In(y′)|H1
0 (D)‖ independently of y′. At first we find

πIn(y
′) =

∫ π

0

cos(nθ)u1(cos θ)dθ =
1

2

∫ π

−π

u1(cos θ) cos(nθ)dθ

=
1

2i

∫

|ζ|=1

u1

(
ζ + ζ−1

2

)(
ζn + ζ−n

2

)
dζ

ζ
≡ 1

2i

∫

|ζ|=1

u1

(
J (ζ)

)(
J (ζn)

)dζ
ζ

.

The last step is verified by substituting the standard parametrization ζ(θ) = eiθ and by the Joukowsky-
transform J (ζ) = (ζ + ζ−1)/2. Vice versa it is well-known that J maps the unit circle onto the
interval [−1, 1] (traversed twice), since with |ζ| = 1 it follows J (ζ) = 3(ζ). Then we can estimate

4π‖In(y
′)|H1

0 (D)‖ ≤
∥∥∥∥
∫

|ζ|=1

u1

(
J (ζ)

)
ζn

dζ

ζ

∣∣∣∣H
1
0 (D)

∥∥∥∥+

∥∥∥∥
∫

|ζ|=1

u1

(
J (ζ)

)
ζ−ndζ

ζ

∣∣∣∣H
1
0 (D)

∥∥∥∥
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=

∥∥∥∥
∫

|ζ|=ρ1

u1

(
J (ζ)

)
ζn−1dζ

∣∣∣∣H
1
0 (D)

∥∥∥∥+

∥∥∥∥
∫

|ζ|=ρ−1
1

u1

(
J (ζ)

)
ζ−n−1dζ

∣∣∣∣H
1
0 (D)

∥∥∥∥

≤ M(δ)ρn−1
1 · 2πρ1 +M(δ)ρ−n−1

1 · 2πρ−1
1 = 4πM(δ)ρ−n

1 .

Here we used Cauchy’s Theorem, since |J (ζ)| ≤ ρ1 for |ζ| = ρ1 or |ζ| = ρ−1
1 , and u1 is analytic in an

open neighbourhood of the disc {ζ ∈ C : |ζ| ≤ ρ1}, see the proof of Proposition 4.1.

The above classical argument can essentially be found in Section 3 of [11].
By a modification of the construction and summation argument from Section 4 similar to the
Legendre-case, we then obtain an analogous summability result for coefficients in the Chebyshev
expansion.

Theorem 5.2. Theorem 5.1 remains true upon replacing the Legendre polynomials Lν by the
Chebyshev polynomials Tν as well as the Legendre coefficients vν by the Chebyshev coefficients wν .

6 Higher spatial regularity

In connection with numerical approximations of the problem (2.6) in the domain D, it is of interest
to establish sufficient conditions on the data which imply additional regularity of the parametric
solutions in D, while maintainig the summability of their series expansions. In this section, we
assume f ∈ L2(D) ↪→ H−1(D). Then we have

‖f |H−1(D)‖ ≤ CP‖f |L2(D)‖ ,

where CP denotes the Poincaré constant of D. Here, the smoothness space W (D) is defined as space
of all solutions to the Dirichlet problem

−∆u = f in D , u|∂D = 0 ,

with f ∈ L2(D), i.e.
W (D) =

{
u ∈ H1

0 (D) : ∆u ∈ L2(D)
}
.

The space W (D) can be semi-normed and normed, respectively, by

|v|W = ‖∆v|L2(D)‖ , ‖v|W (D)‖ = ‖v|H1
0 (D)‖+ |v|W .

We remark that for polygonal resp. polyhedral domainsD, this space is contained in certain weighted
H2(D) spaces, with weight functions which vanish at corners resp. corners and vertices of D (see,
e.g., [5, 9] and the references there).

6.1 W -analyticity of u

Before we return to our parametric problem we shall first prove an a priori estimate and a stability
assertion for the problem (2.1), now with respect to the W -norm. If we additionally assume a ∈
W 1

∞(D), i.e. ∇a ∈ L∞(D), then we may reformulate the problem (2.1) as

−∆u =
1

a

(
f +∇a ·∇u−G(u)

)
. (6.1)
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Assuming as before the validity of the ellipticity condition (2.5) we need to assure G(u) ∈ L2(D) in
order to conclude ∆u ∈ L2(D). Restricting ourselves once more to functions G(t) = tm, this further
restricts the choices of possible pairs (n,m). More precisely, we define

M′ =
{
(n,m) ∈ M : H1

0 (D) ↪→ L2m(D)
}
.

Under these conditions we can conclude: If u ∈ H1
0 (D) solves the problem (2.2), then we already

have ∆u ∈ L2(D), and from (6.1) we obtain the estimate

|u|W = ‖∆u|L2(D)‖ ≤ 1

r

(
‖f |L2(D)‖+ ‖∇a|L∞(D)‖ · ‖u|H1

0 (D)‖+ ‖G(u)|L2(D)‖
)

≤ 1

r

(
‖f |L2(D)‖+ ‖∇a|L∞(D)‖ · 2‖f |H

−1(D)‖
r

+ ‖u|L2m(D)‖
)
, (6.2)

and hence

‖u|W (D)‖ ≤ 1

r

(
1 + CP

(
2 +

2‖∇a|L∞(D)‖
r

+
2ι(2m)

r

))
‖f |L2(D)‖ . (6.3)

We continue with the announced stability assertion.

Lemma 6.1. Let u and ũ be solutions of (2.2) with f, f̃ ∈ L2(D) and coefficients a, ã ∈ W 1
∞(D),

satisfying condition (2.5) for the same constants r and R. Then there holds the estimate

|u− ũ|W ≤ 1

r

(
‖f − f̃ |L2(D)‖+ ‖a− ã|L∞(D)‖ · |u|W

+ ‖∇(a− ã)|L∞(D)‖ · ‖u|H1
0 (D)‖+ ‖∇ã|L∞(D)‖ · ‖u− ũ|H1

0 (D)‖

+ ι(2m)2mC2(m−1)
P ‖u− ũ|H1

0 (D)‖2
(
2max

(
‖f |L2(D)‖, ‖f̃ |L2(D)‖

)

r

)2(m−1)
)
.

Proof . We already know from the above considerations u, ũ ∈ W (D). Moreover, from

−a∆u = f +∇a ·∇u−G(u) and − ã∆ũ = f̃ +∇ã ·∇ũ−G(ũ)

we conclude

ã∆(ũ− u) = (a− ã)∆u+ f − f̃ +∇(a− ã) ·∇u+∇ã ·∇(u− ũ) +G(ũ)−G(u) .

Taking into account condition (2.5) for ã, the claim now follows by applying the L2(D)-norm. How-
ever, we need to have a closer look on the term G(ũ) − G(u). Applying Hölder’s inequality we
obtain

‖G(u)−G(ũ)|L2(D)‖ =

∫

D

∣∣u(x)m − ũ(x)m
∣∣2dx

=

∫

D

|u(x)m − ũ(x)m| · |u(x)− ũ(x)| ·
∣∣∣∣
m−1∑

j=0

u(x)m−1−jũ(x)j
∣∣∣∣dx

≤ ‖u− ũ|L2m(D)‖ · ‖um − ũm|L2m(D)‖
m−1∑

j=0

‖u|L2m(D)‖m−1−j‖ũ|L2m(D)‖j
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≤ ‖u− ũ|L2m(D)‖2
(m−1∑

j=0

‖u|L2m(D)‖m−1−j‖ũ|L2m(D)‖j
)2

≤ ι(2m)2m‖u− ũ|H1
0 (D)‖2

(m−1∑

j=0

‖u|H1
0 (D)‖m−1−j‖ũ|H1

0 (D)‖j
)2

≤ ι(2m)2mC2(m−1)
P ‖u− ũ|H1

0 (D)‖2
(
2max

(
‖f |L2(D)‖, ‖f̃ |L2(D)‖

)

r

)2(m−1)

.

This finally completes the proof.

We now return to the parametric problem. In order to derive a counterpart of Theorem 3.3, we shall
henceforth assume ψj ∈ W 1

∞(D) for all j, and we define domains

Aδ,B :=
{
z ∈ CN : 0 < δ ≤ 3(a(x, z)) ≤ |a(x, z)| ≤ 2R and |∇a(x, z)| ≤ B for a.e. x ∈ D

}
⊂ Aδ .

Clearly, choosing B sufficiently large implies that Aδ,B is nonempty. Moreover, the estimate (6.3)
implies the uniform bound

‖u(z)|W (D)‖ ≤ M(δ, B) =
1

δ

(
1 + 2CP

(
1 +

B

δ
+

ι(2m)

δ

))
sup

z∈Aδ,B

‖f(z)|L2(D)‖ . (6.4)

Finally, we put Ã =
⋃

δ>0,B>0 Aδ,B.

Proposition 6.1. Let (n,m) ∈ M′, and consider G(ζ) = ζm with m ≥ 2. Then it holds

lim
h→0

∥∥G(u(z + hej))−G(u(z))−G′(u(z))(u(z + hej)− u(z))
∣∣L2(D)

∥∥
|h| = 0 , z ∈ Ã .

Proof . Fix z ∈ Aδ,B. Then similar to the proof of Proposition 6.1 we find z + hej ∈ Aδ/2,2B for
|h| sufficiently small, i.e. u(z + hej) ∈ H1

0 (D) is well-defined. As in the proof of Proposition 3.3 we
apply Taylor’s Theorem to obtain

∥∥∥G
(
u(z + hej)

)
−G

(
u(z)

)
−G′(u(z)

)(
u(z + hej)− u(z)

)∣∣∣L2(D)
∥∥∥
2

=

∫

D

∣∣u(z + hej)− u(z)
∣∣4
∣∣∣∣
∫ 1

0

(1− t)G′′(u(z) + t(u(z + hej)− u(z))
)
dt

∣∣∣∣
2

dx

≤ ‖u(z + hej)− u(z)|L2m(D)‖4 ·

∥∥∥∥∥

∫ 1

0

(1− t)G′′(u(z) + t(u(z + hej)− u(y))
)
dt

∣∣∣∣∣L 2m
m−2

(D)

∥∥∥∥∥

2

,

where in the last line we used Hölder’s inequality (again the case m = 2 is trivial). As before the
last factor can be further estimated using the (generalized) Minkowski inequality to find

∥∥∥∥∥

∫ 1

0

(1− t)G′′(u(z) + t(u(z + hej)− u(z))
)
dt

∣∣∣∣∣L 2m
m−2

(D)

∥∥∥∥∥

≤
∫ 1

0

(1− t)m(m− 1)
∥∥∥
∣∣u(z) + t(u(z + hej)− u(z))|m−2

∣∣∣L 2m
m−2

(D)
∥∥∥dt
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≤ m(m− 1)

2

(
ι(2m)M(δ, B)

)m−2
.

Combining these two estimates finally yields
∥∥G(u(z + hej))−G(u(z))−G′(u(z))(u(z + hej)− u(z))

∣∣L2(D)
∥∥

≤ 1
2m(m− 1)ι(2m)m‖u(z + hej)− u(z)|H1

0 (D)‖2 ·M(δ, B)m−2 = O(|h|2) ,
cf. either Proposition 3.2 or Theorem 3.3. This proves the claim.

As before, we still need an assumption on the regularity of z -→ f(z).

Assumption 4. We assume the mapping z -→ f(z) to admit partial derivatives ∂zjf(z) ∈ L2(D)

at every point z ∈ Ã with respect to every variable zj, j ∈ N.

Theorem 6.1. For every z ∈ Ã the mapping z -→ u(z) admits complex partial derivatives ∂zju(z) ∈
W (D) with respect to each variable zj.

Proof . From the proof of Theorem 3.3 we know that the difference quotient wh(z) is the unique
weak solution of

−∇
(
a(·, z)∇w

)
+G′(u(z)

)
w = ∂zjf(z) + Lh ,

where

Lh =
f(z + hej)− f(z)− h∂zjf(z)

h
+∇

(
ψj∇u(z + hej)

)

− G(u(z + hej))−G(u(z))−G′(u(z))(u(z + hej)− u(z))

h
.

The assumptions ∇ψj ∈ L∞(D) and (n,m) ∈ M′ then further yield

Lh =
f(z + hej)− f(z)− h∂zjf(z)

h
+∇ψj ·∇u(z + hej) + ψj∆u(z + hej)

− G(u(z + hej))−G(u(z))−G′(u(z))(u(z + hej)− u(z))

h
∈ L2(D) .

As above this further implies wh ∈ W (D). Similarly, we know from Theorem 3.3 that wh(z) converges
in H1

0 (D) towards w0(z) = ∂zju(z), which is the solution of

−∇
(
a(·, z)∇w

)
+G′(u(z)

)
w = ∂zjf(z) +∇ψj ·∇u(z) + ψj∆u(z) .

Again we conclude w0 ∈ W (D), and we find by subtracting these two problems

−a(·, z)∆(wh − w0) = −G′(u(z)
)
(wh − w0) +∇ψj ·∇

(
u(z + hej)− u(z)

)

+ ψj∆
(
u(z + hej)− u(z)

)
+

f(z + hej)− f(z)− h∂zjf(z)

h

− G(u(z + hej))−G(u(z))−G′(u(z))(u(z + hej)− u(z))

h
.

By dividing by a(·, z) and applying the L2(D)-norm we then obtain

|wh − w0|W −→ 0 (h −→ 0) ,

since all the terms on the right hand side converge to 0 separately (this follows from Theorem 3.3,
Proposition 3.2, Lemma 6.1, Assumption 4, and Proposition 6.1, in this order). This completes the
proof.
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6.2 Summability of Taylor, Legendre and Chebyshev coefficient sequences

We begin with the counterpart of Propositions 4.1, 5.1 and 5.2.

Lemma 6.2. Under the assumptions of Theorem 6.1, we have the estimate

‖tν |W (D)‖ ≤ M(δ, B)ρ−ν

for every ν ∈ F and every (δ, B)-admissible sequence ρ. If additionally we have ρj ≥ 1 for all j ∈ N
and ρj > 1 for j ∈ supp ν, we also find

‖uν |W (D)‖ ≤ M(δ, B)
∏

j∈supp ν

πρj
2(ρj − 1)

(2νj + 1)ρ
−νj
j and ‖wν |W (D)‖ ≤ M(δ, B)

∏

j∈supp ν

2ρ
−νj
j .

Proof . The proof of the first part is identical to the one of Proposition 4.1, using now the regularity
result from Theorem 6.1, and replacing the estimate (4.1) by its counterpart based upon (6.4). In
a similar way, we obtain the second part by the same argument as in the proofs of Propositions 5.1
and 5.2.

Theorem 6.2. Let a satisfy Assumption 1 for some 0 < r ≤ R < ∞. Suppose f fulfills

‖f(z)|H−1(D)‖ <

(
δm

22mmι(m+ 1)m+1

) 1
m−1

, z ∈ Aδ/2,B , (6.5)

and Assumption 4. Moreover, let ρ = (ρj)j∈N be an arbitrary (δ, B)-admissible sequence with B
sufficiently large and ρj ≥ 1, j ∈ N, and assume

(
‖ψj|W 1

∞(D)‖
)
j∈N ∈ *1(N) and

(
ρj‖ψj|W 1

∞(D)‖
)
j∈N ∈ *p(N) for some p < 1. (6.6)

Then the Taylor coefficients tν and the Legendre coefficients uν and vν of the solution u of (2.2)
satisfy

(
ρν‖tν |W (D)‖

)
ν∈F ∈ *p(F),

(
ρν‖uν |W (D)‖

)
ν∈F ∈ *p(F) and

(
ρν‖vν |W (D)‖

)
ν∈F ∈ *p(F). If

additionally
sup
z∈Uρ

∥∥f(z)− f(z1, . . . , zJ , 0, . . . , )
∣∣L2(D)

∥∥ −→ 0 (J −→ ∞) , (6.7)

then it holds

u(z) =
∑

ν∈F

tνz
ν , z ∈ Uρ , and u(z) =

∑

ν∈F

uνPν(z) =
∑

ν∈F

vνLν(z) =
∑

ν∈F

wνTν(z) , z ∈ U ,

with uniform and unconditional convergence in W (D), which is to be understood as in Theorems
4.1, 5.1 and 5.2.

Proof . The proof of the summability assertion is exactly the same as the one for Theorems 4.1, 5.1
and 5.2 upon replacing γj = ‖ψj|L∞(D)‖ by γ̃j = ‖ψj|W 1

∞(D)‖ = ‖ψj|L∞(D)‖+ ‖∇ψj|L∞(D)‖, see
also [2, Theorem 5.1]. Moreover, also the convergence proof remains the same upon now using the
stability assertion for the W -semi-norm (Lemma 6.1).
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7 Best N-term approximation rates

The convergence results from Theorems 4.1 and 5.1 may be re-interpreted in the following way: when
approximating the mapping y -→ u(y), i.e. approximately solving the parametric problem (2.6),
instead of solving single instances of the problem (i.e. solving the equation for single fixed choices
y(j) ∈ U , j = 1, . . . , N) and afterward interpolating these points u(y(j)), we can try to simultaneously
approximate the solution for all y ∈ U by approximating u by appropriate partial sums of the Taylor,
Legendre or Chebyshev expansions. The main task consists in bounding truncation errors of best
N -term approximation by monomials yν or polynomials Pν , Lν or Tν , respectively. Moreover, we can
utilize the summability results from Theorems 4.1, 5.1 and 5.2 to estimate the rate of convergence.
To do so, we note that by Assumption 1 the constant sequence ρj = 1, j ∈ N, is δ-admissible for all
0 < δ ≤ r. Then

sup
y∈U

∥∥u(y)− S(T )
Λ u(y)

∣∣H1
0 (D)

∥∥ = sup
y∈U

∥∥∥∥u(y)−
∑

ν∈Λ

tνy
ν

∣∣∣∣H
1
0 (D)

∥∥∥∥ ≤
∑

ν *∈Λ

‖tν |H1
0 (D)‖ .

Similarly, we obtain by Parseval’s identity

∥∥u− S(L)
Λ u

∣∣L2

(
U ; dµ;H1

0 (D)
)∥∥2

=

∥∥∥∥u−
∑

ν∈Λ

vνLν(y)

∣∣∣∣L2

(
U ; dµ;H1

0 (D)
)∥∥∥∥

2

=
∑

ν *∈Λ

‖vν |H1
0 (D)‖2 .

These observations are to be combined with Stechkin’s Lemma, which in our case can be formulated as
follows: Given a sequence γ = (γν)ν∈F ⊂ H1

0 (D), and denoting by ΛN ⊂ F an index set corresponding
to the N largest values of ‖γν |H1

0 (D)‖, it holds for 0 < p ≤ q ≤ ∞
(∑

ν *∈ΛN

‖γν |H1
0 (D)‖q

)1/q

≤ N−1/p+1/q

(∑

ν∈F

‖γν |H1
0 (D)‖p

)1/p

and this choice of ΛN yields a best N -term approximation of γ. We have shown

Theorem 7.1. Let a and f satisfy the assumptions of Theorems 4.1, 5.1 and 5.2. If we denote by
Λ(T )

N ⊂ F an index set corresponding to the N largest values of ‖tν |H1
0 (D)‖, then it holds

sup
y∈U

∥∥u(y)− S(T )

Λ
(T )
N

u(y)
∣∣H1

0 (D)
∥∥ ≤

∥∥∥
(
‖tν |H1

0 (D)‖
)
ν∈F

∣∣∣*p(F)
∥∥∥N−s , s =

1

p
− 1 .

This remains true for the Legendre Polynomials Pν and the Chebyshev polynomials Tν with the
respective coefficients, partial sums and index sets for largest coefficients.
Moreover, if Λ(L)

N ⊂ F is a set corresponding to the N largest values of ‖vν |H1
0 (D)‖, then it holds

∥∥u− S(L)

Λ
(L)
N

u
∣∣L2

(
U, dµ;H1

0 (D)
)∥∥ ≤

∥∥∥
(
‖vν |H1

0 (D)‖
)
ν∈F

∣∣∣*p(F)
∥∥∥N−s , s =

1

p
− 1

2
,

and once more this remains true for Chebyshev polynomials Tν with respect to the measure η.
Finally, if a and f satisfy the assumptions of Theorem 6.2, then all the estimates remain true upon
replacing the H1

0 (D)-norm by the W (D)-norm.

If it comes to an actual computation of these approximating partial sums, one has to take into
consideration that also the coefficients itself must be approximated, e.g. for Taylor coefficients by
approximately solving linear problems as in Theorem 3.3.
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Here the increased spatial regularity from Section 6 comes into play. These results enable us to solve
the corresponding linear problems for the Taylor coefficients using Finite element techniques. If we
denote by t the rate of convergence for the Finite element method (depending on the method itself
as well as the shape of the domain D), then the error of computing tν ∈ W (D), measured in the
H1

0 (D)-norm, can be estimated by CM−t
ν , where Mν is the number of degrees of freedom used in the

computation of tν . The total number of degrees of freedom required for approximating the partial
sum S̃Λu is then given by

Ndof =
∑

ν∈Λ

Mν .

With this notation the approximation error in both, the parametric space as well as in the physical
domain D, satisfies the estimate

sup
y∈U

∥∥u(y)− S̃(T )

Λ
(T )
N

u(y)
∣∣H1

0 (D)
∥∥ ≤ C N−min{s,t}

dof ,

where the occurring constants can be estimated in dependence of
∥∥(‖tν |H1

0 (D)‖)ν∈F
∣∣*p(F)

∥∥ and∥∥(‖tν |W (D)‖)ν∈F
∣∣*p(F)

∥∥. Similar considerations are true for Legendre or Chebyshev partial sums
(see [2], Section 5).
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