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Zürich

Ecole polytechnique fédérale de Zurich
Politecnico federale di Zurigo
Swiss Federal Institute of Technology Zurich

Stable multilevel splittings of
boundary edge element spaces

R. Hiptmair and S. Mao

Research Report No. 2011-28
May 2011

Seminar für Angewandte Mathematik
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STABLE MULTILEVEL SPLITTINGS OF BOUNDARY EDGE
ELEMENT SPACES

RALF HIPTMAIR AND SHIPENG MAO

Abstract. We establish the stability of nodal multilevel decompositions of

lowest-order conforming boundary element subspaces of the trace space H− 1
2 (divΓ, Γ)

of H(curl, Ω) on boundaries of triangulated Lipschitz polyhedra. The decom-
positions are based on nested triangular meshes created by regular refinement
and the stability bounds are uniform in the number of refinement levels.

The main tool is the general theory of [P. Oswald, Interface precondition-
ers and multilevel extension operators, in Proc. 11th Intern. Conf. on Domain
Decomposition Methods, London 1998, pp. 96–103] that teaches, when stabil-
ity of decompositions of boundary element spaces with respect to trace norms
can be inferred from corresponding stability results for finite element spaces.
H(curl, Ω)-stable discrete extension operators are instrumental in this.

Stable multilevel decompositions immediately spawn subspace correction
preconditioners whose performance will not degrade on very fine surface meshes.
Thus, the results of this article demonstrate how to construct optimal iterative
solvers for the linear systems of equations arising from the Galerkin edge ele-
ment discretization of boundary integral equations for eddy current problems.

1. Introduction

The pioneering work of J. Xu [61, 62] revealed how simple stability properties
of decompositions of Galerkin trial and test spaces for symmetric positive definite
variational problems translate into good properties of induced subspace correction
preconditioners and iterative solvers. This paved the way for a comprehensive
theoretical understanding of multigrid methods and multilevel preconditioners for
low-order finite element discretizations of symmetric positive definite elliptic vari-
ational problems. In this context it is crucial to show that stability of multilevel
splittings holds uniformly with respect to the local and global resolution of the
finite element space.

This was first accomplished for H1(Ω)-conforming linear Lagrangian finite ele-
ments on quasi-uniform hierarchies of meshes [8,10,11,40,59]. Later the results were
extended to sequences of meshes created by adaptive mesh refinement, see [19,60,64]
and [41, Sect. 4.2.2]. The developments for H(curl,Ω)-elliptic variational problems
and their discretization by means of edge elements followed a similar path: uniform
stability was established in the case of regular refinement [5,21,30,32,49] and then
sequences of locally refined meshes were tackled successfully [17,35,63].

Date: May 13, 2011.
2000 Mathematics Subject Classification. 65N12, 65N15, 65N30.
Key words and phrases. Trace spaces, boundary element methods, edge elements, multilevel

preconditioning.
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2 RALF HIPTMAIR AND SHIPENG MAO

Symmetric positive definite variational problems are also common in the varia-
tional formulation of boundary integral equations (BIE) of the first kind [18], [46,
Sect. 3.4]. Therefore, stable decompositions of boundary element (BEM) spaces
immediately yield good subspace correction preconditioners for the linear systems
we obtain from the Galerkin BEM discretization of those BIEs. Preconditioning for
BEM has attracted considerable attention recently, since modern matrix compres-
sion techniques for discrete BIE entail the use of iterative solvers, whose efficiency
often hinges on powerful preconditioners.

Plenty of stability results for the piecewise polynomial subspaces of the classical
trace spaces H

1
2 (Γ) and H− 1

2 (Γ) associated with scalar 2nd-order elliptic boundary
value problems have been found. In [16, 56] stability proofs are given for closed
curves, in [2,42] for surfaces and adaptive refinement. These results were extended
to the p and hp version of BEM in [24, 26–28, 51, 52, 54] and to screen problems
in [23, 57]. Related techniques are substructuring techniques [1, 25] and multilevel
wavelet preconditioners for BEM [47,55,58].

Scant attention was paid to 1st-kind boundary integral equations set in the (tan-
gential) trace space H− 1

2 (divΓ,Γ) of H(curl,Ω), see [13–15] for the relevant trace
theorems. These BIE occur in the context of eddy current simulations in computa-
tional electromagnetism, see, e.g., [33, 34]. Their low-order Galerkin discretization
naturally rely on surface edge elements [7], also known as RWG boundary ele-
ments [44].

Hitherto no multilevel stability theory has been developed for these spaces and
only a few ideas in the direction of multilevel preconditioning have been floated
[3, 4]. It is the goal of this paper to fill the gap and show the uniform stability of
multilevel splitting of edge BEM subspaces of H− 1

2 (divΓ,Γ) on hierarchies of nested
triangular surface meshes created by regular refinement. The key idea is to take
the cue from the analysis of BIE in trace spaces, detach oneself from the boundary,
whisk estimates to a finite element setting in the volume and harness their mature
multilevel theory. This is made possible by the general theory of [43, Sect. 1], which
we are going to review in Sect. 2. In a sense, with more than ten years delay we
follow up on the final remark in [43] that “it is intriguing to look at the consequences
of our approach in connection with multilevel splittings for H(div) and H(curl)”.

A recurring motive in this article is the perspective to view the trace space
H− 1

2 (divΓ,Γ) as a member of a family of spaces, which is suggested by the following
commuting diagram

H1(Ω) grad−−−−→ H(curl,Ω) curl−−−−→ H(div,Ω)
|∂Ω

(point trace)

" ·× n |∂Ω
(tangential trace)

" · · n |∂Ω
(normal trace)

"

H
1
2 (Γ) curlΓ−−−−→ H− 1

2 (divΓ,Γ) divΓ−−−−→ H− 1
2 (Γ) .

(1.1)

Here, Γ stands for the boundary of the Lipschitz domain Ω with exterior unit
normal vectorfield n. A subscript Γ designates surface differential operators. The
diagram (1.1) is natural, once the function spaces are identified as a Hilbert complex
corresponding to the deRham complex of differential forms, and the various trace
operators are recognized as incarnarnations of the trace of differential forms [6,
Sect. 2].

It is an important observation that (1.1) carries over to the discrete setting of
finite element spaces and boundary element spaces, because both can be viewed
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as spaces of discrete differential forms built upon triangulations, see [6, 9, 29]. To
elaborate this let us equip Ω with a tetrahedral finite element mesh Ωh. On it we
consider the finite element spaces

• S1(Ωh) ⊂ H1(Ω) of piecewise linear continuous Lagrangian finite element
functions (3D Whitney 0-forms),

• ND1(Ωh) ⊂ H(curl,Ω) of Nedelec’s first family of edge elements [39] (3D
Whitney 1-forms),

• RT 0(Ωh) ⊂ H(div,Ω) of 3D div-conforming finite elements [39] (3D Whit-
ney 2-forms).

Taking the restriction of Ωh to Γ := ∂Ω furnishes a triangular mesh of Γ, which
supports the boundary element spaces

• S1(Γh) ⊂ H
1
2 (Γ) of piecewise linear continuous boundary elements (2D

Whitney 0-forms),
• RT 0(Γh) ⊂ H− 1

2 (divΓ,Γ) of surface Raviart-Thomas vector fields [45] (2D
Whitney 1-forms),

• Q0(Γh) ⊂ H− 1
2 (Γ) of piecewise constant boundary element functions (2D

Whitney 2-forms).
More details will be given below in Sect. 3. Then straightforward computations
establish the commuting relationships, a discrete counterpart of (1.1)

S1(Ωh) grad−−−−→ ND1(Ωh) curl−−−−→ RT 0(Ωh)
|∂Ω

(point trace)

" ·× n |∂Ω
(tangential trace)

" · · n |∂Ω
(normal trace)

"

S1(Γh) curlΓ−−−−→ RT 0(Γh) divΓ−−−−→ Q0(Γh) .

(1.2)

Our approach will make heavy use of these relationships throughout.
We point out that from (1.2) it is immediate that all relevant lowest-order con-

forming boundary element spaces arise from taking the traces of finite element
spaces. This observation was what initially made us try and connect stability es-
timates for boundary element spaces with analogous results for finite elements in
the volume.

2. Abstract theory

In this section we revisit the theory presented in [43] in a slightly simplified form.
For the sake of completeness we give most results with proofs.

On a real Hilbert space V we consider the variational problem

find u ∈ V : a(u, v) = f(v) ∀v ∈ V ,(2.1)

where f ∈ V ′ is a bounded linear functional, and a(·, ·) a continuous, V -elliptic
bilinear form with associated operator A : V '→ V ′. It supplies an inner product
on V and the “energy norm” ‖v‖2A := a(v, v). An additive subspace correction
preconditioner M : V ′ '→ V for (2.1) is induced by the (not necessarily direct)
splitting

V =
L∑

i=0

Vi , Vi is a closed subspace of V ,(2.2)
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and defined through [41, Sect.4.1], [53, Sect. 2.1]

MA =
L∑

i=0

Pi .(2.3)

Here, we have written Pi for the a(·, ·)-orthogonal projections Pi : V '→ Vi onto Vi,
i = 0, . . . , L.

Following [41, Sect. 4.1] we introduce a norm on V by

|‖v‖|2A = inf

{
L∑

i=0

‖vi‖2A; vi ∈ Vi, v =
L∑

i=0

vi

}
, ∀v ∈ V .(2.4)

It allows the concise statement of the following fundamental result [41, Thm. 16]

Theorem 2.1. Let A and M defined as above, then for any v ∈ V

(2.5) a((MA)−1v, v) = |‖v|‖2A .

If there exist two constants λ and Λ such that

(2.6) λ‖v‖2A ≤ |‖v|‖2A ≤ Λ‖v‖2A ,

then we have the following estimate for the spectral condition number

(2.7) κ(MA) ≤ Λ
λ

.

Next, we consider a pair of Hilbert spaces V , X connected by a linear surjective
operator T : V '→ X, X = T(W ). Further, let d(·, ·) be a bounded, symmetric,
and X-elliptic bilinear form with associated operator D : X '→ X ′. For the related
norm we write ‖·‖D and remark that it is equivalent to the X-norm:

(2.8) ∃β,α > 0 : β‖ξ‖X ≤ ‖ξ‖D ≤ α‖ξ‖X , ∀ξ ∈ X .

Let V be split according to (2.2), which induces a splitting of X by

(2.9) X =
L∑

i=0

Xi , Xi := T(Vi) .

Assume that (2.6) holds for the decomposition of V . The question is, under what
conditions we can infer an analoguous estimate for (2.9). The answer is given by
P. Oswald in [43] and he identifies the following sufficient conditions:

Assumption STO: The operator T : V −→ X is bounded

(STO) ‖T v‖X ≤ C0‖v‖A , ∀v ∈ V

with constant C0 > 0.
Assumption USEO: There exist bounded (extension) operators E : X −→ V

and Ei : Xi −→ Vi, 0 ≤ i ≤ L, such that, with C1, C2 > 0,

T ◦ E = Id on X , ‖Eξ‖A ≤ C1‖ξ‖X , ∀ξ ∈ X ,(USEO.1)
ξi = T(Eiξi) , ‖Eiξi‖A ≤ C2‖ξi‖X , ∀ξi ∈ Xi , ∀i = 0, . . . , L .(USEO.2)

Remark 2.2. There may be some subspaces Vi ⊂ V such that Xi = T(Vi) = {0}.
We still keep them to simplify notations. Obviously, the only choice of Ei for such
i is the null operator such that Ei(Xi) = {0}, too.

Remark 2.3. STO and USEO are abbreviations of stable trace operators and
uniform stable extension operators, respectively.
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Now, we are in a position to state and prove a key abstract result, see [43,
Thm. 1].

Theorem 2.4. Under the assumptions STO and USEO we have the norm equiv-
alence

(2.10)
β2λ

C2
2α2

‖ξ‖2D ≤ |‖ξ‖|2B ≤ α2β−2ΛC2
0C2

1 ‖ξ‖
2
D , ∀ξ ∈ X ,

where

|‖ξ‖|2D := inf

{
L∑

i=0

‖ξ‖2D ; ξi ∈ ξi, ξ =
L∑

i=0

ξi

}
, ξ ∈ X ,(2.11)

and λ and Λ are the constants from (2.6).

Proof. Let us first prove the upper bound in (2.10). Pick any ξ ∈ X. According to
the assumption USEO, we have

(2.12) ξ = T(Eξ), ‖Eξ‖A ≤ C1‖ξ‖X .

By (2.2) there exist wi, 0 ≤ i ≤ L such that Eξ =
L∑

i=0
wi. Furthermore, we can

assume this decomposition realizes the |‖ · |‖A norm of Eξ, i.e.,

|‖Eξ|‖2A =
L∑

i=0

‖wi‖2A .(2.13)

Thus we get a decomposition of ξ by

ξ =
L∑

i=0

ξi, ξi = Twi ∈ Xi, 0 ≤ i ≤ L .(2.14)

From this we conclude

|‖ξ‖|2D
inf
≤

L∑

i=0

‖ξ‖2D
(2.8)
≤ α2

L∑

i=0

‖ξi‖2X
(2.14)
= α2

L∑

i=0

‖Twi‖2X

(STO)
≤ α2C2

0

L∑

i=0

‖wi‖2A
(2.13)
= α2C2

0 |‖Eξ|‖2A
(2.6)
≤ α2ΛC2

0‖Eξ‖2A

(USEO.1)
≤ α2ΓC2

0C2
1‖ξ‖2X

(2.8)
≤ α2β−2ΛC2

0C2
1 ‖ξ‖

2
D .

Next, we prove the lower bound in (2.10). For any ξ ∈ X and a decomposition

ξ =
L∑

i=0
ξi with ξi ∈ Xi, 0 ≤ i ≤ L, from the assumption USEO again, we know

that

(2.15) Eiξi ∈ Xi , ξi = T(Eiξi) , ‖Eiξi‖A ≤ C2‖ξi‖X .
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Then we can assemble the estimates into
L∑

i=0

‖ξi‖2D
(2.8)
≥ β2

L∑

i=0

‖ξi‖2X
(2.15)
≥ β2

C2
2

L∑

i=0

‖Eiξi‖2A

inf
≥ β2

C2
2

∣∣∣∣∣

∥∥∥∥∥

L∑

i=0

Eiξi

∣∣∣∣∣

∥∥∥∥∥

2

A

(2.6)
≥ β2λ

C2
2

∥∥∥∥∥

L∑

i=0

Eiξi

∥∥∥∥∥

2

A

(STO)
≥ β2λ

C2
2

∥∥∥∥∥T

(
L∑

i=0

Eiξi

)∥∥∥∥∥

2

X

=
β2λ

C2
2

∥∥∥∥∥

L∑

i=0

T(Eiξi)

∥∥∥∥∥

2

X

(2.15)
=

β2λ

C2
2

∥∥∥∥∥

L∑

i=0

ξi

∥∥∥∥∥

2

X

=
β2λ

C2
2

‖ξ‖2X
(2.8)
≥ β2λ

C2
2α2

‖ξ‖2D .

!

Combining Thm. 2.1 and Thm. 2.4 we conclude the following condition number
estimate from Assumptions STO and USEO

(2.16) κ(MBB) ≤ α4ΛC2
0C2

1C2
2

β4λ
.

Here, we wrote MB : X ′ '→ X for the subspace correction preconditioner induced
by the splitting (2.9) in the same way as M emerged from (2.2).

For the concrete application to multilevel preconditioning in boundary element
spaces the ingredients of the abstract theory will be given the following meanings:

• The space V will stand for a conforming finite element space built on a
volume mesh and suitable for the Galerkin discretization of the s.p.d. vari-
ational problem (2.1).

• The estimate (2.6) will express the stability of some (multilevel) decompo-
sition of the finite element space.

• The operator T will be the trace operator associated with the energy norm.
• Its range X is a boundary element space contained in the natural trace

space.
In the following two sections we provide details with emphasis on H(curl,Ω)-
conforming edge elements and the corresponding H− 1

2 (divΓ,Γ)-conforming bound-
ary elements.

3. Discrete spaces

As introduced in Sect. 1, let Ωh be a tetrahedral finite element mesh of the
bounded Lipschitz polyhedron Ω ⊂ R3. As above, write Γh for the triangular
surface mesh of Γ := ∂Ω emerging by restricting Ωh to Γ. Next, we briefly review
the definitions of the standard finite element spaces, see [31, Sect. 3.2] for more
details.

The space S1(Ωh) of piecewise linear Lagrangian finite element functions reads

S1(Ωh) :=
{

v ∈ H1(Ω) :
v|T (x) = aT · x + αT

with aT ∈ R3, αT ∈ R
,∀T ∈ Ωh

}
.(3.1)
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We adopt the notation V(Ωh) for the set of vertices of Ωh and recall the standard
basis {bp}p∈V(Ωh) of S1(Ωh) consisting of locally supported “tent functions” defined
through

bp ∈ S1(Ωh) , bp(x) =

{
1 , if x = p ,

0 , if x ∈ V(Ωh) \ {p} .
(3.2)

When restricted to a single tetrahedron T ∈ Ωh, each basis function agrees with
one local barycentric coordinate function λi, i = 1, . . . , 4.

The edge element space ND1(Ωh) is given by

ND1(Ωh) :=
{
v ∈ H(curl,Ω) :

v|T (x) = aT × x + bT

with aT ∈ R3, bT ∈ R3 ,∀T ∈ Ωh

}
.(3.3)

The local basis functions be, e ∈ E(Ωh), of ND1(Ωh) are associated with the edges
of Ωh (edge set E(Ωh)). We scale them such that for the path integrals

∫

s
be · d's =

{
1 , if s = e ,

0 , if s ∈ E(Ωh) \ {e} .
(3.4)

Remember the local representation

be |T = λj gradλi − λi gradλj ,(3.5)

when e is the edge connecting the vertices i and j, {i, j} ⊂{ 1, . . . , 4}, of the
tetrahedron T .

We will also need the space RT 0(Ωh) of face element functions

RT 0(Ωh) :=
{
v ∈ H(div,Ω) :

v|T (x) = αT x + bT

withαT ∈ R, bT ∈ R3 ,∀T ∈ Ωh

}
.(3.6)

Writing F(Ωh) for the set of faces of Ωh, there is a canonical basis {bF }F∈F(Ωh) of
RT 0(Ωh) consisting of locally supported functions of RT 0(Ωh) fixed by

∫

S
bF · d'F =

{
1 , if S = F ,

0 , if S ∈ F(Ωh) \ {F} .
(3.7)

When restricted to a tetrahedron the basis functions can be written as

bF |T = λi gradλj × gradλk + λj gradλk × gradλi+
λj gradλk × gradλi ,

(3.8)

where the face F is spanned by the vertices i, j and k, i, j, k ∈ {1, . . . , 4}.
The last and simplest finite element space is the space Q0(Ωh) of piecewise con-

stant functions on Ωh, equipped with the standard basis {bT }T∈Ωh
of characteristic

functions of the elements of Ωh scaled such that
∫

K bK dx = 1.
Throughout, these finite element spaces will be endowed with the norm of the

underlying Sobolev spaces H1(Ω), H(curl,Ω), and H(div,Ω), respectively.
The degrees of freedom dual to the bases introduced above can be extended to

functionals on smooth functions and vector fields, respectively. Thus, they define
canonical interpolation operators ΠX , X ∈ {S,Nd,RT,Q} (with ranges S1(Ωh),



8 RALF HIPTMAIR AND SHIPENG MAO

ND1(Ωh), RT 0(Ωh), Q0(Ωh), respectively), which enjoy a fundamental commut-
ing diagram property, see, e.g., [31, Sect. 3.2] or [6, Sect. 5.2],

C∞(Ω) grad−−−−→ (C∞(Ω))3 curl−−−−→ (C∞(Ω))3 div−−−−→ C∞(Ω)

ΠS

" ΠNd

" ΠRT

" ΠQ

"

S1(Ωh) grad−−−−→ ND1(Ωh) curl−−−−→ RT 0(Ωh) div−−−−→ Q0(Ωh) .

(3.9)

We learn from [6, Sect. 5.5], [31, Sect. 3.2] that the top and bottom sequencies
in (1.2) are exact, provided that Ω has trivial topology, that is, the co-homology
of a ball. For the sake of lucidity, we will largely forgo the discussion of general
topologies and make the following assumption. Remark 6.2 will briefly indicate how
to deal with more general situations.

Assumption 3.1. The domain Ω is connected with vanishing first (“no tunnels”)
and second (“no cavities”) Betti numbers.

As hinted in the Introduction, the relevant boundary element spaces on Γh can
be generated by taking suitable traces of finite element functions. Hence, we first
recall the continuous trace operators, see [15,37], the pointwise trace, the tangential
trace, and the normal component trace,

{
Tx : H1(Ω) −→ H

1
2 (Γ) ,

Txv(x) := v(x) , x ∈ Γ , ∀v ∈ C∞(Ω) ,
(3.10)

{
Tt : H(curl,Ω) −→ H− 1

2 (divΓ,Γ) ,

Ttv(x) := v(x)× n(x) , x ∈ Γ , ∀v ∈ (C∞(Ω))3 ,
(3.11)

{
Tn : H(div,Ω) −→ H− 1

2 (Γ) ,

Tnv(x) := v(x) · n(x) , x ∈ Γ , ∀v ∈ (C∞(Ω))3 .
(3.12)

Then we define the boundary element spaces

S1(Γh) := Tx(S1(Ωh)) ⊂ H
1
2 (Γ) ,(3.13)

RT 0(Γh) := Tt(ND1(Ωh)) ⊂ H− 1
2 (divΓ,Γ) ,(3.14)

Q0(Γh) := Tn(RT 0(Ωh)) ⊂ H− 1
2 (Γ) ,(3.15)

where Q0(Γh) is the space of piecewise constant discontinuous functions on Γh. For
all these spaces canonical bases {βp}p∈V(Γh) ⊂ S1(Γh), {βe}e∈E(Γh) ⊂ RT 0(Γh),
and {βF }F∈Γh

⊂ Q0(Γh) can be obtained by merely taking the appropriate traces
of those finite element bases functions belonging to vertices, edges, or faces, respec-
tively, contained in Γ:

βp := Tx(bp) for p ∈ V(Ωh) ∩ Γ ,(3.16)
βe := Tt(be) for e ∈ E(Ωh), e ⊂ Γ ,(3.17)
βF := Tn(bF ) for F ∈ F(Ωh), F ⊂ Γ .(3.18)

Eventually, Ass. 3.1 also ensures that we have an exact discrete DeRham sequence
formed by the boundary element spaces:

{1} −−−−→ S1(Γh) curlΓ−−−−→ RT 0(Γh) divΓ−−−−→ Q0(Γh) −−−−→ {0} .(3.19)
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4. Multilevel decompositions

Now we specify the particular setting required for the envisaged multilevel pre-
conditioners and their analysis.

Assumption 4.1. For some L ∈ N, ΓL := Γh is the finest surface mesh in a
sequence Γ0 ≺ Γ1 ≺ · · · ≺ ΓL of nested triangular meshes, for which Γ0 still
resolves the faces of Γ.

Here, Γi−1 ≺ Γi expresses the nestedness of two meshes in the sense that each
closed cell of Γi−1 is the union of closed cells of Γi. In order to link boundary
elements and finite elements, we have to take for granted that the hierarchy of
surface meshes fits a corresponding auxiliary hierarchy of volume meshes.

Assumption 4.2. The surface meshes Γi are to be the restrictions to Γ of the
members of a sequence of nested tetrahedral meshes Ω0 ≺ Ω1 ≺ · · · ≺ ΩL: Γi :=
Ωi |Γ.

As usual, we rule out severely distorted elements in both sequences of meshes:

Assumption 4.3. Both sequences (Ωl)
L
l=0, (Γl)

L
l=0 of meshes are uniformly shape-

regular, that is,

∃Cs > 0 : max
T∈Γl

hT

ρT
, max

K∈Ωl

hK

ρK
≤ Cs ∀l = 0, . . . , L ,(4.1)

Here we adopted the conventional notation hT , hK for the diameter of a mesh
cell (element), and ρT , ρK for the radius of the largest inscribed circle. For technical
reasons, which will become clear in Sect. 5, we demand that all elements of a mesh
have “about the same size”

Assumption 4.4. The sequence (Ωl)
L
l=0 of meshes is quasi-uniform, that is,

∃Cu > 0 : C−1
u ≤ maxK∈Ωl hK

minK∈Ωl hK
≤ Cu ∀l = 0, . . . , L ,(4.2)

It goes without saying that a quasi-uniformity condition like (4.2) is also satisfied
by (Γl)

L
l=0.

An easy way to generate sequences of meshes complying with Ass. 4.1–4.4 is the
global regular refinement of a coarse tetrahedral mesh Ω0 of Ω; each tetrahedron is
successively split into eight smaller according to the rules put forth in [36]. For the
surface meshes this amounts to splitting each triangle into four congruent triangles
of half the size.

On all these meshes Ωi and Γi, i = 0, . . . , L, we can define the finite element and
boundary element spaces introduced in the previous section. The index l for the
sequences of meshes may be dubbed the level. The level as a superscript will tag
the standard (canonical) basis functions of a finite element or boundary element
space built on a mesh on a certain level.

The theory of (local) multilevel preconditioning for edge elements developed
in [30,32,35] and [63, Sect. 5] suggests the following multilevel decomposition

ND1(Ωh) = ND1(Ω0)
︸ ︷︷ ︸

=: V0

+
L∑

l=1

{∑

e∈El

Span(bl
e)︸ ︷︷ ︸

=: Vl
e

+
∑

p∈Vl

Span(grad bl
p)

︸ ︷︷ ︸
=: Vl

p

}
.(4.3)



10 RALF HIPTMAIR AND SHIPENG MAO

The inner product of H(curl,Ω) will provide the s.p.d. bilinear form a on
ND1(Ωh). Thus, for the concrete splitting (4.3) the induced “multilevel norm” on
ND1(Ωh) in analogy to (2.11) is

|‖vh‖|2 := inf






‖v0‖2H(curl,Ω) +
L∑

l=1

{ ∑
e∈El

∥∥vl
e

∥∥2

H(curl,Ω)
+

∑
p∈Vl

∥∥vl
p

∥∥2

H(curl,Ω)

}
,

v0 +
L∑

l=1

{ ∑
e∈El

vl
e +

∑
p∈Vl

vl
p

}
= vh,

vl
e ∈ Vl

e, vl
p ∈ Vl

p,
v0 ∈ V0 .






(4.4)

The next key result addresses the uniform stability of the local nodal multilevel
splitting (4.3), that is, the norm equivalence (2.6) for this concrete case.

Theorem 4.5. There are constants 0 < λ ≤ Λ depending only on Ω and Cs such
that

λ ‖vh‖H(curl,Ω) ≤ |‖vh‖| ≤ Λ ‖vh‖H(curl,Ω) ∀vh ∈ ND1(Ωh) .(4.5)

Proofs of this theorem in the setting of this article can be found in [30, 32] and
even more general situations (local refinement) in [17,35,63].

5. Stable extensions

Now we tackle the key assumption USEO of the abstract theory of Sect. 2
for the finite element space ND1(Ωh), the associated surface edge element space
RT 0(Γh) and the splitting (4.3). First, we have to find a discrete extension op-
erator E : RT 0(Γh) '→ ND1(Ωh), uniformly bounded with respect to the norms
of H(curl,Ω) and H− 1

2 (divΓ,Γ). Secondly, we have to show that the mappings
H− 1

2 (divΓ,Γ) → H(curl,Ω) that take a nodal basis function of RT 0(Γl) to the
one of ND1(Ωl) associated with the same edge enjoy a norm bound independent
of the basis function and the level. A similar result is needed for “tent functions”
in S1(Γh) in order to deal with the curl-free terms in the splitting (4.3).

5.1. Discrete extension in H(curl,Ω). We focus on the meshes Ωh and Γh :=
Ωh |Γ and designate by h their common “meshwidth”, that is, the size of the largest
element of Ωh. To begin with, we recall the construction of bounded discrete
extension operators S1(Γh) → S1(Ωh).

Lemma 5.1. There exists an extension operator E0 : S1(Γh) '→ S1(Ωh) such that
for any ψh ∈ S1(Γh) we have

(5.1) Tx(E0ψh) = ψh

and

(5.2) ‖E0ψh‖H1(Ω) ≤ C ‖ψh‖H
1
2 (Γ)

,

where C > 0 depends only on Ω and the shape-regularity 1 of the triangulation Ωh.

1the phrase that a constant “depends on shape-regularity” means that this constant may be a
function of Cs from (4.1).
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Proof. For any ψh ∈ S1(Γh) ⊂ H
1
2 (Γ), we consider its H1(Ω)-extension defined as

the solution φ ∈ H1(Ω) of the auxiliary boundary value problem
{−/φ + φ = 0, in Ω,

Txφ = ψh, on Γ ,
(5.3)

which satisfies the obvious estimate

(5.4) ‖φ‖H1(Ω) ≤ C ‖ψh‖H
1
2 (Γ)

,

where the constant C > 0 only depends on the domain Ω.
Let Qh : H1(Ω) → S1(Ωh) be the so-called Scott-Zhang type quasi-interpolation

operator, which is continuous and preserves boundary values in S1(Γh), see [50].
Thus, if we define

E0ψh := Qhφ, ∀ψh ∈ S1(Γh) ,(5.5)

by [50, Thm. 3.1] there exists a constant C > 0 depending only on the shape-
regularity of the mesh, such that

‖E0ψh‖H1(Ω) = ‖Qhφ‖H1(Ω) ≤ C‖φ‖H1(Ω)

(5.4)
≤ C ‖ψh‖H

1
2 (Γ)

.

The preservation of boundary values follows from [50, Thm. 2.1]. !
Unfortunately, this recipe fails for H(curl,Ω), because tangential traces of func-

tions in H(curl,Ω) may not even belong to L2(Γ). A construction of a quasi-
interpolation operator based on volume integrals was pursued in [48]. Yet, this
quasi-interpolation onto ND1(Ωh) does not preserve non-homogeneous boundary
values. Thus, we take a completely different tack exploiting the connections be-
tween different spaces depicted in (1.1), (1.2).

We start with an auxiliary elliptic lifting theorem:

Lemma 5.2. There exists a εΩ ∈ (0, 1
2 ) depending solely on the geometry of Ω,

such that for any ε ∈ [0, εΩ) and µ ∈ Hε(Γ),
∫

∂Ω µ dS = 0, we can find a vector field

w ∈ H(div,Ω) , div w = 0 , Tnw = µ ,(5.6)

which enjoys the stability

(5.7) ‖w‖
H

1
2 +ε(Ω)

≤ C ‖µ‖Hε(Γ) ,

with C > 0 depending only on Ω and ε.

Proof. Denote by Γi, i = 1, . . . ,M , the (flat) faces of Γ and write ni for the exterior
unit normal at Γi.

Multiplying µ with the characteristic function of Γi still yields a function µi ∈
Hε(Γ), which, owing to trace theorems for Sobolev spaces [22, Thm. 1.5.1.5], can
be extended to a function vi ∈ H

1
2+ε(Ω). Then

v(x) :=
∑

i
vi(x) ni ∈ (H

1
2+ε(Ω))3 with Tnv = µ .(5.8)

Then, thanks to [20, Cor. 23.5], there is εΩ ∈]0, 1
2 ) such that for ε ∈ [0, εΩ) the

solution of the homogeneous Neumann problem





−∆u = div v ∈ H− 1
2+ε(Ω) , in Ω ,

∂u

∂n
= 0 , on Γ ,

(5.9)
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belongs to H
3
2+ε(Ω) and satisfies

‖u‖
H

3
2 +ε(Ω)

≤ C ‖div v‖
H− 1

2 +ε(Ω)
≤ C ‖v‖

H
1
2 +ε(Ω)

≤ C ‖µ‖Hε(Γ) ,

where all constants depend on Ω only. Setting w := gradu+v gives us the desired
vector field. !

The following interpolation error estimate for the canonical interpolation onto
RT 0(Ωh) is well-known, see Theorem 5.25 of [38] and [31, Thm. 3.16].

Lemma 5.3. For any ε ∈ (0, 1
2 ], the canonical interpolation operator ΠRT : (C∞(Ω))3 '→

RT 0(Ωh) can be extended to a continuous mapping ΠRT : (H 1
2+ε(Ω))3 '→ RT 0(Ωh)

and satisfies

(5.10) ‖u−ΠRT u‖L2(Ω) ≤ C h
1
2+ε‖u‖

H
1
2 +ε(Ω)

,

with C > 0 depending only on Ω, ε, and the shape-regularity of the mesh Ωh.

The following lemma furnishes an inverse inequality for piecewise constant bound-
ary element functions.

Lemma 5.4. For any ε ∈ (0, 1
2 ], we have

(5.11) ‖µh‖Hε(Γ) ≤ C h−( 1
2+ε) ‖µh‖H− 1

2 (Γ)
∀µh ∈ Q0(Γh) ,

with C > 0 depending on the shape-regularity and quasi-uniformity2 of Γh.

Proof. Without further notice, all constants in this proof may depend on ε, Γ, the
shape-regularity and quasi-uniformity of Γh.

(i) From [12, Appendix] we learn that Q0(Γh) ⊂ Hε(Γ) for all 0 ≤ ε < 1
2 with

‖µh‖Hε(Γ) ≤ Ch−ε ‖µh‖L2(Γ) ∀µh ∈ Q0(Γh) .(5.12)

(ii) Let β ∈ H1(Γ) denote the sum of cubic bubble functions (products of
barycentric coordinate functions) associated with the triangles of Γh. Clearly, we
have ‖β‖H1(Γ) ≤ Ch−1 ‖β‖L2(Γ). For any µh ∈ Q0(Γh) this implies

‖µh‖L2(Γ) ≤ C

∫
Γ µhβ dS

‖β‖L2(Γ)

≤ Ch−1

∫
Γ µhβ dS

‖β‖H1(Γ)

≤ Ch−1 ‖µh‖H−1(Γ) .(5.13)

(iii) From (5.13) we obtain by interpolation between the Sobolev spaces L2(Γ)
and H−1(Γ)

‖µh‖L2(Γ) ≤ Ch−
1
2 ‖µh‖H− 1

2 (Γ)
∀µh ∈ Q0(Γh) .(5.14)

Combined with (5.12) this gives the assertion of the lemms. !

The idea for the construction of the stable discrete extension operator E :
RT 0(Γh) '→ ND1(Ωh) is the following: given ξh ∈ H− 1

2 (divΓ,Γ), first find a
divergence-free extension of divΓ ξh ∈ Q0(Γh) and determine a suitable vector po-
tential. This is done in the next lemma. Then extend a divΓ-free remainder using
a discrete surface scalar potential, see the proof of Thm. 5.6 below.

2the phrase that a constant “depends on quasi-uniformity” means that this constant may be
a function of Cu from (4.2).
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Lemma 5.5. There exists a discrete extension operator E1 : Q0(Γh) '→ ND1(Ωh)
such that for any µh ∈ Q0(Γh) we have

(5.15) Tn(curl(E1µh)) = µh

and

(5.16)
∥∥E1µh

∥∥
H(curl,Ω)

≤ C ‖µh‖H− 1
2 (Γ)

,

with C > 0 depending only on Ω, and the shape-regularity and quasi-uniformity of
Γh and Ωh.

Proof. Fix an ε ∈ (0, εΩ] with εΩ from Lemma 5.2. Lemma 5.4 teaches that µh ∈
Q0(Γh) actually belongs to Hε(Γ). Write w ∈ H(div,Ω) ∩ (H 1

2+ε(Ω))3 for the
divergence-free extension of µh according to Lemma 5.2.

Recalling Lemma 5.3, we have

‖w −ΠRTw‖L2(Ω) ≤ C h
1
2+ε‖w‖

H
1
2 +ε(Ω)

Lemma 5.2
≤ C ‖µh‖H− 1

2 (Γ)
,

which implies that

(5.17) ‖ΠRTw‖L2(Ω) ≤ ‖w −ΠRT w‖L2(Ω) + ‖w‖L2(Ω) ≤ C ‖µh‖H− 1
2 (Γ)

.

On the other hand, since divw = 0, by the commuting diagram property (3.9)
for the canonical interpolation operators, we know that div ΠRTw = 0. Thanks to
Ass. 3.1, this implies that there exists vh ∈ ND1(Ωh) such that

(5.18) curl vh = ΠRTw, ‖vh‖H(curl,Ω) ≤ C‖ΠRTw‖L2(Ω).

It can be checked easily that Tn(curl vh) = Tn(ΠRTw) = Tnw = µh on Γ. Then,
if we define E1µh := vh, (5.16) follows from (5.17). !

From [13] recall that the norm of H− 1
2 (divΓ,Γ) is defined as

‖ψ‖2
H− 1

2 (divΓ,Γ)
:= ‖ψ‖2

H
− 1

2
‖ (Γ)

+ ‖divΓ ψ‖2
H− 1

2 (Γ)
, ψ ∈ H− 1

2 (divΓ,Γ) .(5.19)

Theorem 5.6. There exists a discrete extension operator E : RT 0(Γh) '→ ND1(Ωh)
such that for any ξh ∈ RT 0(Γh) we have

(5.20) Tt(Eξh) = ξh

and

(5.21) ‖Eξh‖H(curl,Ω) ≤ CE ‖ξh‖H− 1
2 (divΓ,Γ)

with CE > 0 depending only on Ω and the shape-regularity and quasi-uniformity of
the mesh.

Proof. Given ξh ∈ RT 0(Γh), we know that divΓ ξh ∈ Q0(Γh). Then by Lemma
5.5, we have a discrete extension E1(divΓ ξh) ∈ ND1(Ωh) with

∥∥E1(divΓ ξh)
∥∥

H(curl,Ω)
≤ C ‖divΓ ξh‖H− 1

2 (Γ)
.(5.22)

However, we cannot expect such an extension to preserve the boundary values as
required by (5.20). A closer inspection of ξh − Tt(E1(divΓ ξh)) reveals that

divΓ(ξh − Tt(E1(divΓ ξh))) = divΓ ξh − Tn(curlE1(divΓ ξh)) = 0 ,
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which, thanks to Ass. 3.1 and the discrete exact sequence (3.19), means that there
exists a function ψh ∈ S1(Γh) with

∫
Γ ψh dS = 0, such that

(5.23) curlΓ ψh = ξh − Tt(E1(divΓ ξh)) .

Since curlΓ : {ψ ∈ H
1
2 (Γ),

∫
Γ ψ dS = 0} '→ H

− 1
2

‖ (Γ) is injective with closed
range [15], we can estimate

‖ψh‖H
1
2 (Γ)

≤ C ‖curlΓ ψh‖
H

− 1
2

‖ (Γ)
= C

∥∥ξh − Tt(E1(divΓ ξh))
∥∥

H
− 1

2
‖ (Γ)

≤ C
(
‖ξh‖

H
− 1

2
‖ (Γ)

+
∥∥E1(divΓ ξh)

∥∥
H(curl,Ω)

)

(5.22)
≤ C ‖ξh‖H− 1

2 (divΓ,Γ)
.

By Lemma 5.1, we have a discrete extension E0ψh ∈ S1(Ωh) with

‖E0ψh‖H1(Ω) ≤ C ‖ψh‖H
1
2 (Γ)

.

Then we can define
Eξh := E1(divΓ ξh) + gradE0(ψh)

and it is immediate that E satisfies (5.20) and (5.21). !

5.2. Local extension of basis functions.

Lemma 5.7. For any p ∈ V(Γh), then the nodal basis functions bp ∈ S1(Ωh) and
βp ∈ S1(Γh) linked by (3.16) satisfy

‖bp‖H1(Γ) ≤ Cp ‖βp‖H
1
2 (Γ)

,

with a constant Cp > 0 that depends on the shape regularity constant Cs from (4.1)
only.

Proof. Write hp for the largest size of elements abutting p ∈ V(Γh). Thanks to
shape regularity we can resort to simple scaling arguments and local inverse in-
equalities to confirm

‖bp‖H1(Ω) ≤ C |bp|H1(Ω) ≤ Ch
1
2
p ,

C ≤ ‖βp‖H1(Γ) ≤ Ch
− 1

2
p ‖βp‖H

1
2 (Γ)

,

with C depending only on shape-regularity. !

Lemma 5.8. For any edge e ∈ E(Ωh) which is located on the boundary, then
the canonical basis functions be and βe of ND1(Ωh) and RT 0(Γh), respectively,
complying with (3.17), satisfy

‖be‖H(curl,Ω) ≤ Ce ‖βe‖H− 1
2 (divΓ,Γ)

,(5.24)

with Ce > 0 depending only on shape regularity, that is, on Cs from (4.1).

Proof. By scaling argument and a simple calculations, we have for any edge e ∈
E(Γh) (with length he)

‖be‖H(curl,Ω) ≤ C ‖curl be‖L2(Ω) ≤ Ch
− 1

2
e ,
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with C > 0 depending only on shape-regularity. Next, we use the inverse inequality
(5.14) locally to see

Ch−1
e ≤ ‖divΓ βe‖L2(Γ) ≤ Ch

− 1
2

e ‖divΓ βe‖H− 1
2 (Γ)

.

!

6. Proof of uniform stability

Now we are in a position to apply the abstract theory of Sect. 2 with
• V = ND1(Ωh) ⊂ H(curl,Ω), and a given by the H(curl,Ω)-inner prod-

uct,
• X = RT 0(Γh) ⊂ H− 1

2 (divΓ,Γ), and d agreeing with the inner product of
the trace space H− 1

2 (divΓ,Γ),
• T as the continuous and surjective trace operator Tt : H(curl,Ω) →

H− 1
2 (divΓ,Γ),

• E : X → V provided by the discrete extension operator from (??).
Recalling (3.17), the splitting of RT 0(Γh) = TtND1(Ωh) induced by the nodal
multilevel decomposition (4.3) of the edge finite element space according to (2.9) is
straightforward:

RT 0(Γh) = RT 0(Γ0)︸ ︷︷ ︸
=: X0

+
L∑

l=1

{ ∑

e∈E(Γl)

Span(βl
e)︸ ︷︷ ︸

=: Xl
e

+
∑

p∈V(Γl)

Span(curlΓ βl
p)

︸ ︷︷ ︸
=: Xl

p

}
.(6.1)

The splitting (4.3) is the concrete counterpart of (2.2), whereas the spaces X0, Xl
e,

and Xl
p correspond to the Xi’s of (2.9). It remains to fix the subspace extension

operators Ei from Ass. USEO. In concrete terms, we search for extension operators
E0 : X0 → V0, El

e : Vl
e → Xl

e, and El
p : Xl

p → Vl
p, where the spaces involved are

defined in (4.3) and (6.1).
The operators El

e and El
p act between one-dimensional spaces, which leaves little

freedom. In light of (3.17) and (3.16) we set

El
e(αβl

e) := αbl
e , α ∈ R ,(6.2)

El
p(α curlΓ βl

p) := αgrad bl
p , α ∈ R .(6.3)

For E0 : RT 0(Γ0) '→ ND1(Ω0) we employ the discrete extension operator from
Sect. 5.1 on the pair of coarsest meshes and denote its stability constant from (5.21)
by CE0 .

Theorem 6.1. Under Ass. 3.1–4.4 the nodal multilevel decomposition (6.1) of the
surface edge element space RT 0(Γh) is uniformly stable in the sense that there
exist constants 0 < λΓ ≤ ΛΓ that depend only on Ω, the shape regularity measure
Cs from (4.1) and the quasi-uniformity measure Cu from (4.2) such that

λΓ ‖ξh‖H− 1
2 (divΓ,Γ)

≤ |‖ξh‖|Γ ≤ ΛΓ ‖ξh‖H− 1
2 (divΓ,Γ)

∀ξh ∈ RT 0(Γh) ,

where |‖·‖|Γ is the multilevel norm induced by the splitting (6.1), cf. (2.11).

Proof. We have to verify the assumptions of the abstract Thm. 2.4. Ass. STO
is clear by the continuity of the trace operator Tt : H(curl,Ω) → H− 1

2 (divΓ,Γ),
see [15]. The extension operator E : RT 0(Γh) '→ ND1(Ωh) enjoys the prop-
erties (USEO.1) with CE, see Theorem 5.6. Similarly, the extension operator
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E0 : RT 0(Γ0) '→ ND1(Ω0) enjoys the properties (USEO.2) with CE0 . Further,
the simple extension operators El

e and El
p discussed above clearly comply with

(USEO.2) thanks to Lemmas 5.7 and 5.8. !
Remark 6.2. In fact, we can dispense with the simplifying assumption Ass. 3.1 on
the topology of Ω with some extra technical effort. Topological obstructions can
interfere with the existence of potentials. Such potentials are used twice in the
construction of the discrete extention operator E.

Firstly, we need a vector potential in the proof of Lemma 5.5. Yet we notice
that the Lemma will be invoked only for µh ∈ Q0(Γh) with vanishing mean on all
connected components of Γ. This guarantees the existence of a vector potential for
w. Hence, Lemma 5.5 does not hinge on Ass. 3.1.

The discrete scalar surface potential ψh for ζh occurring in the proof of 5.6 may
not exist, if the first Betti number of Ω does not vanish. However, by adding a
suitable weighted sum of discrete co-homology surface vector fields ∈ RT 0(Γ0) on
the coarsest surface mesh, we can ensure the existence of a discrete scalar poten-
tial. The discrete co-homology surface vector fields can be extended to functions
∈ ND1(Ω0) in a rather arbitrary fashion, because all this is done on the coarsest
level and a dependence of the constants on Ω0 is acceptable. With this new twist,
the construction of E works for general Ω and Thm. 5.6 still holds with an extra
dependence of the constants on Ω0.

Remark 6.3. We could not find a discrete extension operator E, for which stability
can be proved without resorting to a global inverse inequality. Such inverse in-
equalities invariable entail an assumption on the quasi-uniformity of the sequence
of meshes, see our Ass. 4.4. Except for the analysis of the extension operator, all
other aspects of the theory developed in this article carry over to shape-regular
families of locally refined meshes.

Remark 6.4. The technique adopted in this paper can also be used to tackle the
stability of multilevel decompositions of S1(Γh) and Q0(Γh) in the trace spaces
H

1
2 (Γ) and H− 1

2 (Γ), respectively. We do not dwell on this, because the results
have already been found by other means [2].

Remark 6.5. The approach of this article also works for discrete traces spaces de-
fined on skeletons, that is, the union of boundaries of adjacent polyhedra, provided
that counterparts of Ass. 3.1 through Ass. 4.4 are satisfied, where the skeleton mesh
has to be extended to finite element volume meshes in all polyhedra.

7. Implementation

The parallel subspace correction preconditioner defined by (6.1) can efficiently
be implemented in the spirit of multigrid methods, also called multilevel diagonal
scaling in this context, see [30, Sect. 6]. We give an algebraic description close to
what has to be coded actually.

Write Dl, l = 0, . . . , L, for the Galerkin matrix of the inner product d(·, ·) of
H− 1

2 (divΓ,Γ) with respect to the nodal basis {βl
e}e∈E(Γl)

of RT 0(Γh). These
,E(Γl) × ,E(Γl)-matrices will be dense, generically. Note that DL is the matrix of
the linear system to be solved.

Next, write Pl, l = 1, . . . , L, for the so-called prolongation matrices of size
,E(Γl) × ,E(Γl−1). Each entry corresponds to a pair of edges (e, e′), e ∈ E(Γl),
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e′ ∈ E(Γl−1), and is defined by the refinement relation

βl−1
e′ =

∑

e∈E(Γl)

(Pl)e,e′β
l
e , e′ ∈ E(Γl−1) .(7.1)

Hence, these matrices will be sparse with at most six non-zero entries per column.
Eventually, we need the discrete surface curl matrices Ll of size ,E(Γl)× ,V(Γl),

which agree with the oriented edge-vertex incidence matrices of the mesh Γl [31,
Sect. 3.1], and can be defined by

curlΓ βl
p =

∑

e∈E(Γl)

(Ll)e,pβl
e , p ∈ V(Γl) .(7.2)

They have entries ∈ {−1, 0, 1} and exactly two non-zero elements per row. Note
that through the formula Sl := LT

l DlLl we can obtain the dense matrix Sl ∈
R#V(Γl),#V(Γl) with entries d(curlΓ βp, curlΓ βp′), p,p′ ∈ V(Γl).

Algorithm 1 Algorithmic realization of the parallel subspace correction precondi-
tioner based on (6.1). The meanings of the matrices are explained in the text.

1: function psc(l ∈ {1, . . . , L}, 'r ∈ R#E(Γl))
2: if l = 0 then
3: return D−1

0 'r;
4: else
5: 'c ∈ R#E(Γl): ce :=

re

(Dl)e,e
, e ∈ E(Γl);

6: 'ρ = LT
l 'r;

7: 'γ ∈ R#V(Γl): γp :=
ρp

(Sl)p,p
, p ∈ V(Γl);

8: 'cH := psc(l − 1,PT
l 'r);

9: return 'c + Ll'γ + Pl'cH ;
10: end if

The recursive implementation of the parallel subspace correction preconditioner
is detailed in Alg. 1: the action of the preconditioning operator M : RT 0(Γh)′ '→
RT 0(Γh) on a linear functional r passed as its coefficient vector 'r with respect to
the standard dual basis of RT 0(Γh) is realized as Mr =psc(L,'r), where the result
Mr ∈ ND1(Ωh) is returned in the form of the coefficient vector of its standard
basis representation. The function psc can take the place of the preconditioning
operator in a preconditioned conjugate gradient algorithm.

From Thm. 6.1 and Thm. 2.1 we immediately infer the the preconditioner will
perform independently on the depth of refinement.

Corollary 7.1. Under Ass. 4.1–4.4, the spectral condition number of the linear op-
erator 'x '→ psc(L,Dl'x) on R#E(Γh) depends only on Ω, the shape-regularity measure
Cs from (4.1), and the quasi-uniformity constant Cu from (4.2).

Moreover, the computational cost of executing psc except for the inversion of A0

is proportional to

cost(psc) ∼
L∑

l=1

{,E(Γl) + ,V(Γl)} .(7.3)



18 RALF HIPTMAIR AND SHIPENG MAO

Due to the geometric increase of ,E(Γl) and ,V(Γl) with the level l, cost(psc) will
be bounded by a small multiple of ,E(Γh). Also notice that only the diagonals
of Dl and Sl will be needed. This implies optimal complexity of psc, that is, a
computational effort proportional to the number of components of the argument
vector 'r.
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12 (2004), pp. 311–330.

[58] T. von Petersdorff and C. Schwab, Wavelet approximations for first kind boundary in-
tegral equations on polygons, Numer. Math., 74 (1996), pp. 479–516.

[59] J. Wang, Convergence analysis of the Schwarz algorithm an multilevel decomposition iter-
ative methods II: Nonselfadjoint and indefinite elliptic problems, SIAM J. Numer. Anal., 30
(1993), pp. 953–970.

[60] H.-J. Wu and Z.-M. Chen, Uniform convergence of multigrid V -cycle on adaptively re-
fined finite element meshes for second order elliptic problems, Science in China: Series A
Mathematics, 39 (2006), pp. 1405–1429.

[61] J. Xu, Theory of Multilevel Methods, PhD thesis, PennState University, State College, 1989.
[62] , Iterative methods by space decomposition and subspace correction, SIAM Review, 34

(1992), pp. 581–613.
[63] J.-C. Xu, L. Chen, and R. Nochetto, Optimal multilevel methods for h(grad), h(curl),

and h(div) systems on graded and unstructured grids, in Multiscale, non-linear and adaptive
approximation, R. DeVore and A. Kunoth, eds., Springer, Berlin, 2009, pp. 599–659.

[64] X. Xu, H. Chen, and R. H. W. Hoppe, Optimality of local multilevel methods on adaptively
refined meshes for elliptic boundary value problems, J. Numer. Math., 18 (2010), pp. 59–90.
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