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Switzerland

∗This work was supported by the European Research Council under
grant ERC AdG 247277



Shearlets and Microlocal Analysis∗

Philipp Grohs

Abstract Although wavelets are optimal for describing pointwise smoothness prop-
erties of univariate functions, they fail to efficiently characterize the subtle geo-
metric phenomena of multidimensional singularities in high-dimensional functions.
Mathematically these phenomena can be captured by the notion of the wavefront set
which describes point- and direction-wise smoothness properties of tempered distri-
butions. After familiarizing ourselves with the definition and basic properties of the
wavefront set we show that the shearlet transform offers a simple and convenient
way to characterize the wavefront set in terms of the decay properties of the shearlet
coefficients.

1 Introduction

One of the main reasons for the popularity of the wavelet transform is its ability to
characterize pointwise smoothness properties of functions. This property has proven
to be extremely useful in both pure and applied mathematics. To give a random
example we mention the beautiful work [15], where the pointwise smoothness of
the Riemann function is studied with a precision that had not been achievable before
with other methods.

For multidimensional functions, however, pointwise smoothness does not fully
capture the geometric features of the singularity set: it is also of interest in which
direction the function is singular. A useful notion to capture this additional informa-
tion is the wavefront set which has been defined in the introduction. It has its origins
in the work of Lars Hörmander on the propagation of singularities of pseudodiffer-
ential operators [16, 20].

Philipp Grohs
ETH Zürich, Rämistraße 101, 8001 Zürich, Switzerland e-mail: pgrohs@math.ethz.ch

∗ This work was supported by the European Research Council under grant ERC AdG 247277
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2 Philipp Grohs

It turns out that the wavelet transform is unable to describe the Wavefront Set of
a tempered distribution: even though in general the multidimensional wavelet trans-
form does possess a directional parameter2 [1], the fact that the degree of anisotropy
of the wavelet elements does not change throughout different scales implies that mi-
crolocal phenomena occurring in frequency cones with small opening angles cannot
be detected, compare also the discussions in [3].

The purpose of this chapter is to show that shearlets actually can describe direc-
tional smoothness properties of tempered distributions: it turns out that the wave-
front set can be characterized as the point-direction pairs for which the shearlet
coefficients are not of fast decay as the scale parameter tends to zero. Such a result
is of great interest in both theory, since it provides a simple and elementary analysis
tool to study refined notions of smoothness, and practice, where it is used for the
detection and classification of edges in images, compare Chapter 3 in this volume.

The first proof of this result has been given in [17] for “classical”, bandlimited
shearlets. In [9], an extension to general shearlet generators has been obtained.

1.1 Getting to know the Wavefront Set

Recall from the introduction the definition of the wavefront set of a bivariate tem-
pered distribution:

Definition 1. Let f be a tempered distribution on R2. We say that t0 ∈R2 is a regular
point if there exists a neighborhood Ut0 of t0 such that ϕψ ∈C∞, where ϕ is a smooth
cutoff function with ϕ ≡ 1 on Ut0 . The complement of the (open) set of regular points
is called singular support of f and denoted

sing supp( f ).

Furthermore, we call (t0,s0) a regular directed point if there exists a neighborhood
Ut0 of t0, a smooth cutoff function ϕ with ϕ ≡ 1 on Ut0 and a neighborhood Vs0 of
s0 such that

(ϕ f )∧(η) = O
(
(1+ |η |)−N) for all η = (η1,η2) such that

η2

η1
∈Vs0 and N ∈ N.

(1)
The wavefront set WF( f ) is the complement of the set of regular directed points.

The wavefront set is usually defined in the Fourier domain. An intuitive reason for
this definition is as follows: let us assume that we are given a function with a sin-
gularity (think of a jump) in some direction. Then, if we zoom in on the singularity,
all that remains are oscillations in the direction orthogonal to the singularity which
corresponds to slow Fourier decay.

At first sight, this definition might not feel too natural, especially for readers with
not much experience in Fourier analysis. Therefore, in order to get some feeling for

2 We thank J.-P. Antoine for pointing this out.
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this notion we first consider some examples for which we can immediately compute
the wavefront sets.

Example 1. The Dirac distribution δt , defined by 〈δt ,ϕ〉 :=ϕ(t) has singular support
{t}. Clearly, at x = t this distribution is non regular in any direction. This is reflected
by the non-decay of δ̂t := exp(2πi〈·, t〉). It follows that WF(δt) ⊂ {t}×R. On the
other hand we have WF(δt) ⊃ {t}×R since δt is regular locally around any point
t ′ ,= t. In summary, we obtain

WF(δt) = {t}×R.

Example 2. The line distribution δx2=p+qx1 , defined by 〈δx1=p+qx1 ,ϕ〉 :=
∫
R ϕ(x1, p+

qx1) has singular support {(x1,x2) : x2 = p+ qx1}. To describe the Wavefront Set
of δx2=p+qx1 we compute

δ̂x2=p+qx1(ω) =
〈
δx2=p+qx1 ,exp(2πi〈ω,x〉)

〉

=
∫

R
exp(2πi(ω1x1 +ω2(p+qx1)))dx2

= e2πipω2

∫

R
exp(2πi(ω1 +qω2)x1)dx2

= e2πipω1δω1+qω2=0.

We remark that, despite the fact that the operations above do not seem to be well-
defined at first sight, it is possible to make them rigorous by noting that the equal-
ities above are “in the sense of oscillatory integrals”, compare [20]. It follows that
δ̂x2=p+qx1(ω) is of fast decay, except when ω2/ω1 =−1/q, and therefore

WF(δx2=p+qx1) = {(x1,x2) : x2 = p+qx1}×{−1/q}.

Before we go to the next example we pause to introduce the Radon transform [8].
As we shall see later it will serve us as a valuable tool in the proofs of the later
sections.

Definition 2. The Radon transform of a function f is defined by

R f (u,s) :=
∫

x2∈R
f (u− sx2,x2)dx2, u,s ∈ R, (2)

whenever this expression makes sense.

Observe that our definition of the Radon transform differs from the most com-
mon one which parameterizes the directions in terms of the angle and not the slope
as we do. It turns out that our definition is particularly well-adapted to the mathe-
matical structure of the shearlet transform. The next theorem already indicates that
the Radon transform provides a useful tool in studying microlocal phenomena.

Theorem 1 (Projection Slice Theorem). With ω ∈ R and ·̂ denoting the univari-
ate resp. bivariate Fourier transform on the left resp. right-hand side we have the
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equality
(R f (u,s))∧(ω) = f̂ (ω(1,s)). (3)

Proof.

(R f (u,s))∧(ω) =
∫

R

∫

R
f (u− sx2,x2)e−2πiuω dx2du

=
∫

R

∫

R
f (ũ,x2)e−2πi(ũ+sx2)ω dx2dũ = f̂ (ω(1,s)).

By the Projection Slice Theorem, another way of stating that (t0,s0) is a regular
directed point is that

(RΦ f (u,s))∧(ω) = O(|ω|−N) and s ∈Vs0 , for all N ∈ N.

or in other words, that RΦ f (u,s) is C∞ in u around s = s0. We can now consider
the next example, the indicator function of the unit ball.

Example 3. We let f = χB with B = {(x1,x2) : x2
1 + x2

2 ≤ 1}. Clearly we have

sing supp( f ) = ∂B = {(x1,x2) : x2
1 + x2

2 = 1}.

In order to describe the Wavefront Set of f we pick a bump function ϕ around a
point t ∈ ∂B with t2/t1 = s0 and look at the Radon transform

Rϕ f (u,s) =
∫ us+

√
1+s2−u2

1+s2

us−
√

1+s2−u2
1+s2

ϕ(u− sx2,x2)dx2. (4)

This expression will always be zero unless

u ∈ [t1 + st2 − ε, t1 + st2 + ε]

with an arbitrarily small ε > 0 depending on the diameter of ϕ around t. By the
definition of t we have

t1 =
1√

1+ s2
0

, t2 =
s0√

1+ s2
0

,

and therefore u2 will be close to

(t1 + st2)2 =
(1+ ss0)2

1+ s2
0

.

It follows that u2 −1− s2 is arbitrarily close to

(1− ss0)2 − (1+ s2)(1+ s2
0)

1+ s2
0

,
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which is ,= 0 whenever s ,= s0. But if u2 − 1− s2 stays away from zero, by (4), the
function RΦ f is C∞ and therefore (t,s) is a regular directed point for s ,= s0. The
same argument implies that RΦ f is not smooth for s = s0 and we arrive at

WF( f ) = {(t,s) : t2
1 + t2

2 = 1, t2 = st1}.

We hope that this last example convinced the reader that indeed the Radon trans-
form is a useful tool for our purposes (compare [3, 17] where similar statements are
shown using much less elementary tools such as Bessel functions and the method of
stationary phase). It also gives a geometrical interpretation of the wavefront set: take
a family of translated lines with a prescribed slope s and compute the integrals of f
restricted to these lines. If these integrals do not vary smoothly with the translation
parameter, then we have a point in the wavefront set.

1.2 Contributions

The main result that we would like to present is the fact that the wavefront set can
be characterized by the magnitude of the shearlet coefficients as follows:

Theorem 2. Let ψ be a Schwartz function with infinitely many vanishing moments
in x1-direction. Let f be a tempered distribution and D = D1 ∪D2, where D1 =
{(t0,s0)∈R2× [−1,1] : for (s, t) in a neighborhood U of (s0, t0), |S H ψ f (a,s, t)|=
O(ak) for all k ∈N, with the implied constant uniform over U} and D2 = {(t0,s0) ∈
R2 × (1,∞] : for (1/s, t) in a neighborhood U of (s0, t0), |S H ψ̃ f (a,s, t)| = O(ak)
for all k ∈ N, with the implied constant uniform over U}. Then

WF( f )c = D .

The proof of this result will require some preparations. In particular we need to
study continuous reconstruction formulas which allow to reconstruct an arbitrary
function from its shearlet coefficients. For classical shearlet generators such a for-
mula is given in (??) in the introduction. In Section 2 we develop analogous formu-
las for arbitrary shearlet generators. Then, using these representations, in Section 3
we prove our main result, Theorem 2.

1.3 Other Ways to Characterize the Wavefront Set

The shearlet transform is not the only decomposition that is capable of character-
izing the Wavefront Set. As an example we mention the so-called FBI transform
which is defined by

f 0→ T f (x,ξ ,h) := αh
〈

f ,exp
(
−2πi(x− ·)2/2h

)
exp(2πi(x− ·) ·ξ/h)

〉
,
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where x,y ∈ R2 and h is a semiclassical parameter (see [20] for more information
on semiclassical analysis) and αh is some parameter. This transform can be inter-
preted as a semiclassical version of the Gabor transform [11] where the semiclassi-
cal Fourier transform is defined by

f 0→ f̂ h(ξ ) :=
∫

R2
f (x)exp(2πix ·ξ/h) .

Heisenberg’s uncertainty principle asserts that a time-frequency window must have
area at least h. Therefore, by letting h → 0 the time-frequency localization gets arbi-
trarily good which makes the FBI transform a useful tool in microlocal analysis. An
important result is that the decay rate of T f (x,ξ ,h) for h → 0 determines whether
the pair (x,ξ2/ξ1) lies in the wavefront set of f [20].

Another transform which – being also based on parabolic scaling – is much closer
to the shearlet transform is the curvelet transform [3]. The curvelet transform is also
capable of characterizing the wavefront set. Another transform based on parabolic
scaling with analogous properties is the transform introduced by Hart Smith in [22].

2 Reproduction Formulas

A crucial role in the proof of Theorem 2 will be played by so-called reproduction
formulas which allow to reconstruct an arbitrary function from its shearlet coeffi-
cients. The first such formula is given in [17] for classical shearlet generators and
further studies can be found in [10]. We will follow this latter work in our exposition.

Example 4. To give some motivation we mention the continuous wavelet transform
which is defined by mapping a function f to its transform coefficients

W T ψ f (a,b) := 〈 f ,ψa,b〉,

where
ψa,b(·) := a−1/2ψ

(
·−b

a

)
, a,b ∈ R.

It is well known that whenever the Calderon condition

Cwav
ψ :=

∫

R

|ψ̂(ω)|2

|ω| dω < ∞

holds, we have the reconstruction formula

f =
1

Cwav
ψ

∫

R

∫

R
W T ψ(a,b)ψa,b

da
a

db.

The measure da
a db comes from the fact that the wavelet transform carries the struc-

ture of a group representation of the affine group for which this measure is the left
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Haar measure [14]. Another way to see why this measure is natural in the wavelet
context is that the operations of dilation by a and translation by b map a unit square
in (a,b)-space to a rectangle with volume a−1. We also want to mention that it is
not necessary to consider the wavelet transform over all frequencies a. Under some
assumptions on ψ one can show that there exists a smooth function Φ such that

f =
1

Cwav
ψ

(∫

R

∫ 1

0
W T ψ(a,b)ψa,b

da
a

db+
∫

R
〈 f ,Φ(·−b)〉Φ(·−b)db

)
. (5)

See [7] for more information on wavelets.

We would like to find conditions for a formula similar to (5) to hold for the shearlet
transform. In the case of the full shearlet transform where we have a group structure
at hand, such a formula follows from standard arguments, see e.g. [6].

Remark 1. The group structure provides us with the natural invariant measure for
the shearlet transform: it is given by da

a3 dsdt. A heuristic explanation for the power
of −3 in the density is the fact that this measure divides the parameter space into
unit cells of side a by

√
a in space (hence a factor a−3/2), unit intervals of length√

a on the space of directions (hence a factor
√

a) and finally a factor of a−1 since
a is a scale parameter, see also [4].

In Example 4 we have seen an integral formula which is a Cwav
ψ -multiple of the

identity. In the shearlet setting the corresponding constant arises in the following
admissibility condition, compare also [5]. In the following we will assume that ψ
satisfies this condition. All the results regarding the resolution of the Wavefront
Set also hold without this assumption, but in that case we would have to split the
frequency domain into four half-cones depending on the signs of the coordinates
ξ1, ξ2.

Definition 3. A function ψ is called admissible if

Cψ =
∫

R

∫ 0

−∞

|ψ̂(ξ )|2

|ξ1|2
dξ1dξ2 =

∫

R

∫ ∞

0

|ψ̂(ξ )|2

|ξ1|2
dξ1dξ2 < ∞. (6)

For our purposes it is necessary that the directional parameter varies only in a com-
pact set, otherwise the implicit constants in Theorem 2 would deteriorate. Therefore
we would like to find representations similar to (5) for the cone-adapted shearlet
transform.

The main result is as follows:

Theorem 3. We have the representation formula

Cψ f =
∫

R2

∫ 2

−2

∫ 1

0
S H ψ f (a,s, t)ψa,s,ta−3dadsdt +

∫

R2
〈 f ,Φ(·− t)〉Φ(·− t)dt

(7)
which is valid for all f ∈ L2(C)∨ with a smooth function Φ and Cψ being the con-
stant from the shearlet admissibility condition, see Definition 3. An analogous state-
ment is true for the vertical cone C̃.
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An important role in the proof of this theorem will be played by the function

∆ψ(ξ ) :=
∫ 2

−2

∫ 1

0

∣∣∣ψ̂
(

aξ1,a1/2(ξ2 − sξ1)
)∣∣∣

2
a−3/2dads. (8)

The reason for this fact is given in the next lemma:

Lemma 1. The representation (7) holds if and only if

∆ψ(ξ )+
∣∣Φ̂(ξ )

∣∣2 =Cψ for all ξ ∈C. (9)

Proof. First we note that (7) is equivalent to

C2
ψ‖ f‖2

2 =
∫

R2

∫ 2

−2

∫ 1

0
|〈 f ,ψa,s,t〉|2 a−3dadsdt

+
∫

R2
|〈 f ,Φ(·− t)〉|2 dt. (10)

This follows from polarization. Taking the Fourier transform of both sides in (10)
yields

Cψ‖ f̂‖2
2 =

∫

R2

∫ 2

−2

∫ 1

0

∣∣〈 f̂ , ψ̂a,s,t〉
∣∣2 a−3dadsdt

+
∫

R2

∣∣〈 f̂ ,(Φ(·− t))∧〉
∣∣2 dt

=
∫

R2

∫ 2

−2

∫ 1

0
〈 f̂ , ψ̂a,s,t〉〈 f̂ , ψ̂a,s,t〉a−3dadsdt

+
∫

R2
〈 f̂ ,(Φ(·− t))∧〉〈 f̂ ,(Φ(·− t))∧〉dt

Plugging in the explicit formula for the Fourier transform lets us rewrite the above
equation as follows:

=
∫

R2

∫ 2

−2

∫ 1

0

∫

R2
f̂ (ξ )a3/4e−2πitξ ψ̂

(
aξ1,a1/2(ξ2 − sξ1)

)
dξ ×

∫

R2
f̂ (η)a3/4e−2πitη ψ̂

(
aη1,a1/2(η2 − sη1)

)
dηa−3dadsdt

+
∫

R2

∫

R2
f̂ (ξ )exp(−2πitξ )Φ̂(ξ )dξ ×

∫

R2
f̂ (η)exp(−2πitη)Φ̂(η)dηdt

=
∫ 2

−2

∫ 1

0

∫

R2

∫

R2

∫

R2
exp(−2πi(η −ξ )t) f̂ (ξ )a3/4ψ̂

(
aξ1,a1/2(ξ2 − sξ1)

)
×

f̂ (η)a3/4ψ̂
(
aη1,a1/2(η2 − sη1)

)
dηdξ dta−3dads

+
∫

R2

∫

R2

∫

R2
exp(−2πi(η −ξ )t) f̂ (ξ )Φ̂(ξ ) f̂ (η)Φ̂(η)dξ dηdηdt.
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An application of Parseval’s formula yields

Cψ‖ f̂‖2
2 = ‖ f̂‖2

2

(∫ 2

−2

∫ 1

0

∣∣∣ψ̂
(

aξ1,a1/2(ξ2 − sξ1)
)∣∣∣

2
a−3/2dads+

∣∣Φ̂(ξ )
∣∣2
)
.

This implies the statement.

Due to the previous lemma the goal in proving Theorem 3 is to show that the (more
precisely: any) function Φ defined by the equation (9) is smooth. To this end it
suffices to show that

∣∣Φ̂(ξ )
∣∣2 = O

(
|ξ |−N) for ξ ∈C, ξ → ∞.

Before we do this we would like to understand the function ∆ψ better. It turns out
that if we allow to integrate over R×R+ instead of [−2,2]× [0,1], the integral is
equal to the admissibility constant Cψ .

Lemma 2. We have

Cψ =
∫

R

∫

R+

∣∣∣ψ̂
(

aξ1,a1/2(ξ2 − sξ1)
)∣∣∣

2
a−3/2dads. (11)

Proof. We make the substitution η1(a,s) = −aξ1,η2(a,s) = a1/2(ξ2 − sξ1). The
Jacobian of this substitution equals a1/2ξ 2

1 = a1/2 (η1/a)2 = a−3/2η2
1 which shows

the desired result.

Now we can prove the Fourier decay of Φ .

Lemma 3. We have
∣∣Φ̂(ξ )

∣∣2 = O
(
|ξ |−N) , for all N ∈ N and |ξ2|/|ξ1|≤ 3/2. (12)

Proof. By Lemma 2 we have that

∣∣Φ̂(ξ )
∣∣2 =

(∫

a∈R+, |s|>2
|ψ̂

(
aξ1,

√
a(ξ2 − sξ1)

)
|2a−3/2dads

+
∫

a>1, |s|<2
|ψ̂

(
aξ1,

√
a(ξ2 − sξ1)

)
|2a−3/2dads

)
.

We will analyze these two integrals separately, starting with the second one: Due to
the smoothness of ψ and the fact that s only varies in a compact set we can estimate

∫

a>1, |s|>2
|ψ̂

(
aξ1,

√
a(ξ2 − sξ1)

)
|2a−3/2dads !

∫

a>1
(a|ξ1|)−Na−3/2

! |ξ1|−N ! |ξ |−N .

The last inequality follows since we can always estimate |ξ1|−1 by |ξ |−1 due to the
fact that |ξ2|/|ξ1|≤ 3/2. We turn to the estimation of
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∫

a∈R+, |s|>2
|ψ̂

(
aξ1,

√
a(ξ2 − sξ1)

)
|2a−3/2dads.

First we treat the case a > 1 by estimating
∫

a>1, |s|>2
|ψ̂

(
aξ1,

√
a(ξ2 − sξ1)

)
|2a−3/2dads !

∫

a>1, |s|>2
a−N (ξ2 − sξ1)

−2N ×

a−3/2dads

=
∫

a>1, |s|>2
|ξ1|−2Na−N |ξ2/ξ1 − s|−2N ×

a−3/2dads

≤
∫

a>1, |s|>2
|ξ1|−2Na−N |3/2− |s||−2N ×

a−3/2dads ! |ξ |−N .

Now we come to the last case where we will utilize the fact that ψ possesses in-
finitely many moments as well as the smoothness of ψ in the second coordinate.
∫

a<1, |s|>2
|ψ̂

(
aξ1,

√
a(ξ2 − sξ1)

)
|2a−3/2dads

!
∫

a<1, |s|>2
aM|ξ1|Ma−L|ξ2 − sξ1|−2L ×

a−3/2dads

≤
∫

a<1, |s|>2
aM|ξ1|M−2La−L |3/2− |s||−2L ×

a−3/2dads

for any L,M, in particular for L = N +2 and M = L+4 which gives that
∫

a<1, |s|>2
|ψ̂

(
aξ1,

√
a(ξ2 − sξ1)

)
|2a−3/2dads ! |ξ |−N .

Summing up all three estimates proves the lemma.

Now we have collected all the necessary ingredients to prove Theorem 3.

Proof (of Theorem 3). By Lemma 1 all we need to show is that any Φ , defined by
(9) is smooth. But this is established by Lemma 3.

Remark 2. The assumptions in 3 can be weakened considerably, see [10]. In this
paper it is also shown that it not possible to obtain useful representation formulas
without first projecting to a frequency cone. In [13] slightly different continuous
representation formulas are considered which are called atomic decompositions, see
also [22, 2] where similar constructions are introduced for the curvelet transform.
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3 Resolution of the Wavefront Set

In this section we prove our main result, Theorem 2. The proof turns out to be
rather long but nevertheless quite elementary. Intuitively it is not too surprising that
the shearlet transform is capable of resolving the wavefront set since every shearlet
element only interacts with frequency content which is contained in a cone that gets
narrower as the scale increases. The difficult part is to overcome the technical details
in making this intuition rigorous. To this end the Radon transform will turn out to
be a valuable tool.

We divide this section into three parts. In the first part we prove one half of
Theorem 2, namely the fast decay of the shearlet coefficients corresponding to a
regular directed point. This turns out to be the easier part. To prove the converse
statement we need to study the notion of the wavefront set a little more in the second
part before we can tackle the full proof of Theorem 2 in the third part.

In the results that we present here, the choice of parabolic scaling is not essential
– it could be replaced by any anisotropic scaling with corresponding dilation matrix
diag

(
a,aδ ), 0 < δ < 1.

3.1 A Direct Theorem

We start by proving one half of Theorem 2, namely we show that if we are given a
regular directed point of f , then only the parameter pair (s, t) corresponding to this
point and direction can possibly have a large interaction with f . Such statements are
usually called direct theorems (or also Jackson theorems).

Remark 3. The corresponding result for the wavelet case states that if a univariate
function is smooth in a point then the wavelet coefficients of f associated with
the location of that point decay fast with the scale, provided that the underlying
wavelet has sufficiently many vanishing moments. The proofs in the wavelet case
are considerably simpler, see e.g. [19].

Theorem 4 (Direct Theorem). Assume that f ∈ S ′(R2) and that (t0,s0) is a reg-
ular directed point of f . Let ψ be a test function with infinitely many directional
vanishing moments. Then there exists a neighborhood Ut0 of t0 and Vs0 of s such that
we have the decay estimate

S H ψ f (a,s, t) = O
(
aN) for all N ∈ N. (13)

Proof. In the proof we will denote by N an unspecified and arbitrarily large integer.
We can without loss of generality assume that f is already localized around t0, i.e.
f = Φ f where Φ is the cutoff function from the definition of the Wavefront Set
which equals 1 around t0. To show this we prove that

〈(1−Φ) f ,ψast〉= O
(
aN) . (14)



12 Philipp Grohs

Since we have assumed that ψ is in the Schwartz class, we have for any P > 0 that

|ψ(x)|! (1+ |x|)−P (15)

By definition we have

ψast(x1,x2) = a−3/4ψ
(
(x1 − t1)+ s(x2 − t2)

a
,

x2 − t2
a1/2

)
. (16)

Now we note that in computing the inner product (14) we can assume that |x−t|> δ
for some δ > 0 and t in a small neighborhood Ut0 of t0, since (1−Φ) f = 0 around
t0. By (15) we estimate

|ψast(x)| ! a−3/4
(

1+
∣∣∣∣

(
a−1 sa−1

0 a−1/2

)
(x− t)

∣∣∣∣

)−P

≤ a−3/4

(
1+

∥∥∥∥

(
a −sa1/2

0 a1/2

)∥∥∥∥
−1

|x− t|
)−P

! a−3/4
(

1+C(s)a−1/2|x− t|
)−P

= O
(

a−3/4+P/2|x− t|−P
)

for |x− t|> δ and C(s) =
(

1+ s2

2 +(s2 + s2

4

)1/2
)1/2 (compare [17, Lemma 5.2]).

Let us for now assume that f is a slowly growing function (i.e. a function with at
most polynomial growth). Then we can estimate

〈(1−Φ) f ,ψast〉 ! a−3/4+P/2
∫

|x−t|≥δ
|x− t|−P|1−Φ(x1,x2)|| f (x1,x2)|dx1dx2

= O
(
aN) , (17)

for t ∈Ut0 and P large enough, which yields (14). For a general tempered distribution
f we use the fact that f can be written as a finite superposition of terms of the form
Dβ g, where g has slow growth, D denotes the total differential and β ∈ N2 [21].
Then we can use integration by parts together with the fact that also the derivatives
of ψ obey the decay property (15) to arrive at the general case.

Now, assuming that f = ϕ f is localized, we go on to estimate the shearlet co-
efficients |〈 f ,ψast〉|. To do this we utilize the Fourier transform. Furthermore, we
assume that f ∈ L2(R2). The general case can again be handled by repeated partial
integrations, at the expense of some (finitely many) powers of a. First note that the
Fourier transform of ψast is given by

ψ̂ast(ξ ) = a3/4 exp(−2πitξ ) ψ̂
(

aξ1,a1/2(ξ2 − sξ1)
)
. (18)

Now pick 1
2 < α < 1 and write
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|〈 f ,ψast〉| =
∣∣〈 f̂ , ψ̂ast〉

∣∣≤ a3/4
∫

R2

∣∣ f̂ (ξ1,ξ2)
∣∣
∣∣∣ψ̂

(
aξ1,a1/2(ξ2 − sξ1)

)∣∣∣dξ

= a3/4
∫

|ξ1|<a−α
︸ ︷︷ ︸

A

+a3/4
∫

|ξ1|>a−α
︸ ︷︷ ︸

B

. (19)

Since ψ possesses M moments in the x1 direction which means that

ψ̂(ξ1,ξ2) = ξ M
1 θ̂(ξ1,ξ2)

with some θ ∈ L2(R2), we can estimate A as

A = a3/4
∫

|ξ1|<a−α

∣∣ f̂ (ξ1,ξ2)
∣∣
∣∣∣ψ̂

(
aξ1,a1/2(ξ2 − sξ1)

)∣∣∣dξ

= a3/4
∫

|ξ1|<a−α
aM |ξ1|M

∣∣ f̂ (ξ1,ξ2)
∣∣
∣∣∣θ̂

(
aξ1,a1/2(ξ2 − sξ1)

)∣∣∣dξ

≤ aM(1−α)a3/4
∫

|ξ1|<a−α

∣∣ f̂ (ξ1,ξ2)
∣∣
∣∣∣θ̂

(
aξ1,a1/2(ξ2 − sξ1)

)∣∣∣dξ

≤ a(1−α)M 〈∣∣ f̂
∣∣ ,
∣∣θ̂ast

∣∣〉≤ a(1−α)M ∥∥ f̂
∥∥

2

∥∥θ̂ast
∥∥

2 = a(1−α)M‖ f‖2‖θ‖2

= O
(
aN) (20)

with M large enough. In order to estimate B we make the following substitution:
(

a 0
−a1/2s a1/2

)(
ξ1
ξ2

)
=

(
ξ̃1
ξ̃2

)
, dξ1dξ2 = a−3/2dξ̃1dξ̃2.

Then

B = a−3/4
∫

|ξ̃1 |
a >a−α

∣∣∣∣∣ f̂

(
ξ̃1

a
,

s
a

ξ̃1 +a−1/2ξ̃2

)∣∣∣∣∣

∣∣∣ψ̂
(

ξ̃1, ξ̃2

)∣∣∣dξ . (21)

Now we shall use that (t0,s0) is a regular directed point of f . This means that there
is a neighborhood (s0 − ε,s0 + ε) such that

f̂ (η1,η2)! (1+ |η |)−R for all
η2

η1
∈ (s0 − ε,s0 + ε). (22)

Looking at (21) we now consider η2
η1

with

η1 :=
ξ̃1

a
, η2 :=

s
a

ξ̃1 +a−1/2ξ̃2 and
ξ̃1

a
> a−α

and get the estimate

s−aα−1/2ξ̃2 ≤
η2

η1
= s+a−1/2ξ̃2

a
ξ̃1

≤ s+aα−1/2ξ̃2. (23)

By (22) we have that
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∣∣∣∣∣ f̂

(
ξ̃1

a
,

s
a

ξ̃1 +a−1/2ξ̃2

)∣∣∣∣∣!
(

1+
|ξ̃1|
a

)−R

(24)

for s in a neighborhood Vs0 of s0, |ξ̃1|
a > a−α and |ξ̃2| < ε ′a1/2−α for some ε ′ < ε .

Now we first split the integral B according to

B = a−3/4
∫

|ξ̃1|/a≥a−α

∣∣∣ f̂
(

ξ̃1/a,
s
a

ξ̃1 +a−1/2ξ̃2

)∣∣∣
∣∣∣ψ̂

(
ξ̃1, ξ̃2

)∣∣∣dξ̃1dξ̃2

= a−3/4
∫

|ξ̃1|/a≥a−α , |ξ̃2|<ε ′a1/2−α
︸ ︷︷ ︸

B1

+a−3/4
∫

|ξ̃1|/a≥a−α |ξ̃2|>ε ′a1/2−α
︸ ︷︷ ︸

B2

(25)

By (24) we can estimate B1 according to

B1 = O
(

aαR−3/4 ‖ψ̂‖1

)
= O

(
aN) (26)

whenever R is large enough.
It only remains to estimate B2. For this we will use the fact that ∂ L

∂xL
2

ψ ∈ L2(R2).
This implies that

B2 ≤ a−3/4
∫

|ξ̃1|/a≥a−α |ξ̃2|>ε ′a1/2−α

∣∣∣ f̂
(

ξ̃1/a,
s
a

ξ̃1 +a−1/2ξ̃2)ψ̂(ξ̃1, ξ̃2

)∣∣∣dξ̃1dξ̃2

= a−3/4
∫ ∣∣∣∣∣ f̂

(
ξ̃1/a,

s
a

ξ̃1 +a−1/2ξ̃2

)
ξ̃−L

2

(
∂ L

∂xL
2

ψ
)∧

(ξ̃1, ξ̃2)

∣∣∣∣∣dξ̃1dξ̃2

≤ (ε ′)−La−3/4+(α−1/2)L × (27)
∫

R2

∣∣∣ f̂
(

ξ̃1/a,
s
a

ξ̃1 +a−1/2ξ̃2

)∣∣∣

∣∣∣∣∣

(
∂ L

∂xL
2

ψ
)∧(

ξ̃1, ξ̃2

)∣∣∣∣∣dξ̃1dξ̃2

= (ε ′)−La(α−1/2)L

∣∣∣∣∣

〈
∣∣ f̂
∣∣ ,

∣∣∣∣∣

(
∂ L

∂xL
2

ψast

)∧
∣∣∣∣∣

〉∣∣∣∣∣

≤ (ε ′)−La(α−1/2)L‖ f‖2

∥∥∥∥
∂ L

∂xL
2

ψ
∥∥∥∥

2
= O

(
aN) . (28)

Putting together the estimates (17), (20), (26) and (28) we finally arrive at the desired
conclusion.

Remark 4. Observe that in the proof of the direct theorem it is nowhere essential
that we have parabolic scaling of a in the first and a1/2 in the second coordinate.
All the results that we present in this chapter hold equally well for any anisotropic
scaling of a in the first coordinate and aδ in the second coordinate where 0 < δ < 1
is arbitrary, see also the discussion at the end of [17]. This stands in contrast to
the results on Fourier integral operators [13] and sparse approximation of cartoon
images [12, 18], where the parabolic scaling plays an essential role.
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3.2 Properties of the Wavefront Set

Here we prove to basic results related to the wavefront set. The first result concerns
its well-definedness. Recall that the definition of a regular directed point involves a
localization by a bump function. The first thing we need to show is that the property
of being a regular directed point does not depend on the choice of such a func-
tion. The second result concerns the frequency side and states that a point-direction
pair comprises a regular directed point of f if and only if it is a regular directed
point of the frequency projection of f onto a cone containing the direction of the
point-direction pair. Both of these results seem obvious but they need to be proven,
nevertheless.

We start with the first statement.

Lemma 4. Assume that (t0,s0) is a regular directed point of f and ϕ is a test func-
tion. Then (t0,s0) is a regular directed point of ϕ f .

Proof. Assume that (t0,s0) is a regular directed point of f and let ξ be such that
ξ2/ξ1 = s0. Then we can write ξ = te0 where e0 denotes the unit vector with slope
s0 and t proportional to |ξ |. What we want to show is that

ϕ̂ f (te0) = O
(
|t|−N) .

Since pointwise multiplication transforms into convolution in the Fourier domain,
this is equivalent to

ϕ̂ ∗ f̂ (te0) =
∫

R2
f̂ (te0 −ξ )ϕ̂(ξ )dξ = O

(
|t|−N) . (29)

Since (t0,s0) is a regular directed point, by definition there exists 0 < δ < 1 such
that te0+Bδ is still contained in the frequency cone with slopes s ∈Vs0 for all t ∈R.
Here, Bδ denotes the unit ball in R2 with radius δ around the origin. After picking
δ we can split the integral in (29) into

∫

|ξ |<δ t
f̂ (te0 −ξ )ϕ̂(ξ )dξ +

∫

|ξ |>δ t
f̂ (te0 −ξ )ϕ̂(ξ )dξ .

We start by estimating the first term: By assumption we then have that

f̂ (te0 −ξ ) = O
(
|te0 −ξ |−N)= O

(
|t|−N) ,

and this suffices to establish that
∫

|ξ |<δ t
f̂ (te0 −ξ )ϕ̂(ξ )dξ = O

(
|t|−N) .

Now the second term. As before in the proof of Theorem 4 we assume that f̂ is a
slowly growing function. Again, this is no restriction since any tempered distribution
is a finite sum of derivatives of slowly growing functions. To get rid of the derivatives
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we simply do some integrations by parts in the integral (29) and shift them to ϕ̂ .
Since ϕ̂ is still a test function this does not do any harm. Now we can establish the
second part as by estimating

∫

|ξ |>δ t
f̂ (te0 −ξ )ϕ̂(ξ )dξ !

∫

|ξ |>δ t
|te0 −ξ |L|ξ |−Mdξ

!
∫

|ξ |>δ t
|t|L|ξ |L|ξ |−Mdξ

with M arbitrary and L the (finite) order of growth of f̂ . Picking M sufficiently large
and using the fact that |ξ |" |t| we arrive at the desired estimate.

The second basic result that we want to establish is that a frequency projection onto
a cone does not affect the set of regular directed points.

Lemma 5. Assume that (t0,s0) is a regular directed point of f . Let C0 be a cone
containing the slope s0. Then (t0,s0) is a regular directed point of P̂C0 f , where P̂C0
denotes the frequency projection of f onto the frequency cone C0. The converse also
holds true.

Proof. To show this we first assume that (t0,s0) is a regular directed point of f . By
definition we then can pick a bump function ϕ such that ϕ f has fast Fourier decay
in a frequency cone around s0, i.e.

ϕ̂ ∗ f̂ (ξ ) = O
(
|ξ |−N) , ξ2/ξ1 ∈Vs0 .

By shrinking the neighborhood Vs0 of s0 if necessary, we can assume without loss
of generality that for some small δ > 0 we have the inclusion (see Figure 3.3 right)

{
η +Bδ |η | : η2/η1 ∈Vs0

}
⊂C0. (30)

The inclusion (30) implies that

ξ ∈Cc
0 ⇒ |η −ξ |> δ |η | η2/η1 ∈Vs0 . (31)

Write

ϕ̂ ∗ f̂ (η) =
∫

R2
χC0 f̂ (η −ξ )ϕ̂(ξ )dξ +

∫

R2
χCc

0
f̂ (η −ξ )ϕ̂(ξ )dξ .

The statement is proven if we can show that
∫

R2
χCc

0
f̂ (η −ξ )ϕ̂(ξ )dξ = O

(
|η |−N) , η2/η1 ∈Vs0 . (32)

But this follows by writing (32) as
∫

R2
χCc

0
f̂ (ξ )ϕ̂(η −ξ )dξ
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and using (31) together with the fact that

ϕ̂(η −ξ ) = O
(
|η −ξ |−N) .

The last result in particular implies that in order to study the Wavefront Set of a
tempered distribution f we can restrict ourselves to studying the Wavefront Sets
of the two frequency projections P̂C f , P̂C̃ f separately. This also holds true for the
shearlet coefficients of a tempered distribution:

Lemma 6. Assume that f is a tempered distribution. Let (t0,s0) be a point-direction
pair and C0 a frequency cone around the direction with slope s0. Then we have the
equivalence

S H ψ f (a,s0, t0) = O
(
aN)⇔ S H ψ

(
P̂C0 f

)
(a,s0, t0) =

(
aN) .

Proof. By linearity of the shearlet transform we have

S H ψ f (a,s0, t0)−S H ψ
(
P̂C0 f

)
(a,s0, t0) = S H ψ

(
P̂Cc

0
f
)
(a,s0, t0).

But clearly (t0,s0) is a regular directed point of P̂Cc
0

f . Therefore, by Theorem 4 we
can establish that

S H ψ
(

P̂Cc
0

f
)
(a,s0, t0) = O

(
aN)

which proves the statement.

3.3 Proof of the Main Result

We are almost ready to tackle the second half of Theorem 2. First we need the
following localization lemma.

Lemma 7. Consider a tempered distribution f and a smooth bump function ϕ which
is supported in a small neighborhood Vt0 of t0 ∈ R2. Let Ut0 be another neighbor-
hood of t0 with Vt0 ⊂⊂Ut0 . Consider the function

g(x) =
∫

t∈Uc
t0
, s∈[−2,2], a∈[0,1]

〈 f ,ψa,s,t〉ϕ(x)ψa,s,t(x)a−3dadsdt.

Then
ĝ(ξ ) = O

(
|ξ |−N) , ξ ∈C. (33)

Proof. Consider for s ∈ [−1,1] the Radon transform

I(u) := Rg(u,s).

By the projection slice theorem we need to show that
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I(N)(u) :=
(

d
du

)N

I ∈ L1(R) (34)

which implies that
ωNÎ(ω) = ωNĝ(ω,sω)! 1,

and therefore since |s|≤ 1 this implies (33). By the product rule I(N) can be written
as a sum of terms of the form

∫

t∈U(t0)c, s∈[−2,2], a∈[0,1]
〈 f ,ψa,s,t〉

∫

R

(
d

dx1

)N− j

ϕ(u− sx,s)a− j

((
d

dx1

)N− j

ψ

)

a,s,t

(u− sx,x)dxa−3dadsdt.

By the support properties of ϕ , the points y := (u− sx,x) must lie in V (t0) for this
expression to be nonzero. With the same argument as in the beginning of the proof
of Theorem 4, leading to (14), we can establish that

((
d

dx1

)N− j

ψ

)

a,s,t

(y) = O
(
aN |y− t|−N) . (35)

Since we can assume that y ∈Vt0 and t ∈Uc
t0 we obtain (see Figure 3.3 left)

t0 y

t

Vt0

Ut0

0

η

C0

η2/η1 ∈Vs0

Fig. 1 Left: Illustration of the proof of (36). Right: Illustration of (30).

|y− t|" |t − t0|, (36)



Shearlets and Microlocal Analysis 19

which, together with (35) establishes the desired claim. Note that by Fubini’s theo-
rem the application of the Radon transform is justified a-posteriori.

Theorem 5. Assume that f is a tempered distribution and that for (s0, t0)∈ [−1,1]×
R2 we have in a neighborhood U of (s0, t0), |S H ψ f (a,s, t)|=O(aN) for all N ∈N,
with the implied constant uniform over U. Then (s0, t0) is a regular directed point
of f . An analogous result holds for 1

s0
∈ [−1,1] and the shearlet ψ̃ for the vertical

cone C̃.

Proof. First we assume without loss of generality that f has its Fourier transform
supported in C. Otherwise we continue with the frequency projection P̂C f and in-
voke Lemma 5 and Lemma 6 to arrive at the theorem.

By Theorem 3 we can represent f as

f =
∫

R2

∫ 2

−2

∫ 1

0
S H ψ f (a,s, t)ψa,s,ta−3dadsdt +

∫

R2
〈 f ,Φ(·− t)〉Φ(·− t)dt,

modulo an irrelevant constant. A further simplification can be obtained by noting
that

∫
R2〈 f ,Φ(·− t)〉Φ(·− t)dt is always smooth, since

(∫

R2
〈 f ,Φ(·− t)〉Φ(·− t)dt

)∧
(ξ ) = f̂ (ξ )|Φ̂(ξ )|2 = O

(
|ξ |−N)

by Lemma 3 (this holds if f̂ is a slowly growing function, the general case is handled
by integration-by-parts as usual). Therefore, all we need to show is that (t0,s0) is a
regular directed point of

∫

R2

∫ 2

−2

∫ 1

0
S H ψ f (a,s, t)ψa,s,ta−3dadsdt.

To this end, we multiply this expression by a smooth bump function ϕ localized
around t0 and note that by Lemma 7 we actually only need to show that (t0,s0) is a
regular directed point of

h :=
∫

Ut0

∫ 2

−2

∫ 1

0
S H ψ f (a,s, t)ϕψa,s,ta−3dadsdt,

where Ut0 is a compact neighborhood of t0. To show this we will establish that

I(N)(u) ∈ L1(R),

where
I(u) := Rh(u,s0).

With the same computations as in the proof of Lemma 7, we see that I(N) consists
of terms of the form
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∫

t∈Ut0 , s∈[−2,2], a∈[0,1]
〈 f ,ψa,s,t〉

∫

R

(
d

dx1

)N− j

ϕ(u− s0x,s)a− j

((
d

dx1

)N− j

ψ

)

a,s,t

(u− s0x,x)dxa−3dadsdt.

By making Ut0 (and the support of ϕ) sufficiently small, we can establish the exis-
tence of ε > 0 such that for all t ∈Ut0 and s ∈ [s0 −ε,s0 +ε] we have (s, t) ∈U . We
now split the above integral according to s ∈ [s0 −ε,s0 +ε] and |s− s0|> ε . For the
first part we invoke the fast decay of the shearlet coefficients of f for (s, t) ∈ U to
see that

∫

t∈Ut0, s∈[s0−ε,s0+ε], a∈[0,1]
〈 f ,ψa,s,t〉

∫

R

(
d

dx1

)N− j

ϕ(u− s0x,s)a− j

((
d

dx1

)N− j

ψ

)

a,s,t

(u− s0x,x)dxa−3dadsdt = O(1). (37)

In order to handle the case |s− s0| > ε we note that the corresponding integral can
be written as

∫

t∈Ut0 , s∈[s0−ε,s0+ε]c, a∈[0,1]
〈 f ,ψa,s,t〉a− j×

R




(

d
dx1

)N− j

ϕ

((
d

dx1

)N− j

ψ

)

a,s,t



(u,s0)a−3dadsdt. (38)

Note that we can write

R




(

d
dx1

)N− j

ϕ

((
d

dx1

)N− j

ψ

)

a,s,t



(u,s0) = 〈δ̃u,s0 ,θa,s,t〉, (39)

where

θ :=
(

d
dx1

)N− j

ψ

and

δ̃u,s0 :=
(

d
dx1

)N− j

ϕδx1=u−s0x2 .

The Wavefront Set of δ̃u,s0 is given by

{(x1,x2,s) : x1 = u− s0x2, s = s0} ,

as can be seen from the computations in Example 2. Since the function θ satisfies
the assumptions of Theorem 4 we can apply this result and obtain that



Shearlets and Microlocal Analysis 21

〈δ̃u,s0 ,θa,s,t〉= S H θ δ̃u,s0(a,s, t) = O(aN).

By (39) this implies that also the expression (39) is bounded. Together with (37)
this proves that I(N) is bounded and therefore in L1 since it is compactly supported.
This proves the theorem. The argument for the dual cone follows from obvious
modifications.

Putting together Theorem 4 and Theorem 5 we have finally proved Theorem 2:

Corollary 1. Theorem 2 holds true.

Remark 5. It is possible to weaken the assumptions in Theorem 2 considerably if one
is only interested in determining directional regularity of a finite order, as opposed
to our definition where Fourier decay of arbitrary order is asked in the definition of
a regular directed point. In that case only finitely many vanishing moments and only
finite smoothness of ψ is required. The details are given in [9].
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Fig. 2 This figure illustrates the main result, Theorem 2. On the top left we show the function f
to be analyzed – a rotated quadratic B-spline curve which has curvature discontinuities at integer
points. Therefore, the Wavefront Set of f consists of the origin with all directions attached and
the tangents of concentric circles with integer radius. The top right shows the analyzing shearlet
which is of tensor product type. The two figures at the bottom show the magnitudes of the shearlet
coefficients corresponding to two different directions – the horizontal direction on the bottom left
and the diagonal direction with slope 1 on the bottom right. It is evident from these pictures that
only the parameters corresponding to points of the Wavefront Set have non-negligible shearlet
coefficients.
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