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Implicit-Explicit Runge-Kutta Methods for the Two-fluid MHD Equations

Harish Kumar1a
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Abstract

Two-fluid ideal magnetohydrodynamics (MHD) equations are a generalized form of the ideal MHD equations
in which the electrons and ions are considered as separate species. A major difficulty in the design of efficient
numerical algorithms for these equations is the presence of stiff source terms, particularly for realistic charge
to mass ratio (i.e. low Larmor radius). Following [9, 10, 11], we design implicit-explicit (IMEX) Runge-
Kutta (RK) time stepping schemes. The numerical flux is treated explicitly with strong stability preserving
(SSP)-RK methods and the stiff source term is treated implicitly using implicit Runge-Kutta methods. The
special structure of the two-fluid MHD equations enable us to split the source terms carefully and ensure that
only local (in each cell) equations need to be solved at each time step. Benchmark numerical experiments
are presented to illustrate the efficiency of this approach.

Keywords: Implicit Explicit Runge-Kutta Method, Two-fluid MHD, Plasma flows, Hyperbolic systems

1. Introduction

Flows in plasmas are frequently modeled by the equations of ideal magnetohydrodynamics (MHD). These
equations combine the Euler equations for compressible flow together with Maxwell equations for magnetic
fields. These equations assume quasi-neutrality of the plasma i.e. the difference in number density of ions
and electrons is ignored.

However, in many applications like fast magnetic reconnection, the assumption of quasi-neutrality is
violated. In such cases, one resorts to extended MHD models. A popular example consider the flow of two
different species, one electron and one ion, species separately. This results in the so-called two fluid MHD
equations (see [1], [2]). In non-dimensional conservative variables these equations are:

∂ρi

∂t
+∇ · (ρivi) = 0, (1.1a)

∂(ρivi)
∂t

+∇ ·
(
ρiviv!i + piI

)
=

1
r̂g

ρi(E + vi ×B), (1.1b)

∂Ei

∂t
+∇ · ((Ei + pi)vi) =

1
r̂g

ρi(E · vi), (1.1c)

∂ρe

∂t
+∇ · (ρeve) = 0, (1.1d)

∂(ρeve)
∂t

+∇ ·
(
ρevev!e + peI

)
= −λm

r̂g
ρe(E + ve ×B), (1.1e)

∂Ee

∂t
+∇ · ((Ee + pe)ve) = −λm

r̂g
ρe(E · ve), (1.1f)

∂B
∂t

+∇×E + κ∇ψ = 0, (1.1g)

1harish@math.ethz.ch
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∂E
∂t
− ĉ2∇×B + ξĉ2∇φ = − 1

λ̂2
dr̂g

(riρivi + reρeve), (1.1h)

∂φ

∂t
+ ξ∇ ·E =

ξ

λ̂2
dr̂g

(riρi + reρe), (1.1i)

∂ψ

∂t
+ κĉ2∇ ·B = 0. (1.1j)

Here, the subscript {i, e} refers to the ion and electron species respectively, ρ{i,e} are densities, v{i,e} =
(vx

{i,e}, v
y
{i,e}, v

z
{i,e}) are velocities, E{i,e} are the energies, p{i,e} are the pressures, B = (Bx, By, Bz) is the

magnetic field, E = (Ex, Ey, Ez) is the electric field, φ, ψ are the potentials and ξ, κ are the speeds for
Maxwell equations. Also, rα = qα/mα, α ∈ {i, e} are the charge-mass ratios and λm = mi/me is the
ion-electron mass ratio.

Several physically significant parameters appear in the non-dimensionalized form (1.1) of the two-fluid
equations. Here, r̂g = rg

x0
= miv

T
i

qiB0x0
is the normalized ion Larmor radius, ĉ = c/vT

i is the normalized speed
of light and λ̂d = λd/rg =

√
ε0vT2

i /n0qi/rg is the ion Debye length normalized with Larmor radius. Also,
vT

i is the reference thermal velocity of ions, B0 is the reference magnetic field and x0 is the reference length.
Ion mass mi is assumed to be 1. In addition, we assume that both the ion and the electron species satisfies
the ideal gas law:

Eα =
pα

γ − 1
+

1
2
ρα|vα|2, α ∈ {i, e}. (1.2)

with γ = 5/3. Eqns. (1.1a)-(1.1c) represent the conservation of mass, momentum and energy for the ions.
The source term in (1.1b) represents the Lorentz force acting on ions due to the electric and magnetic fields.
Similarly Eqns.(1.1d)-(1.1f) represent conservation of these quantities for electrons. Eqns. (1.1g)-(1.1j)
are the perfectly hyperbolic Maxwell’s (PHM) equations (see [3]). These equations satisfy the divergence
constraint approximately and are consistent with the hyperbolic structure of the fluid equations. Note that
when the Larmor radius r̂g → 0, the two-fluid model approaches the MHD limit. Similarly for r̂g → ∞,
(1.1) reduces to Euler equations for ions and electrons.

The system of two-fluid Eqns. (1.1) is a system of balance laws, and can be written in the form,

ut +∇ · f(u) = s(u). (1.3)

Here, the vector of unknowns u, the flux vector f = {fx, fy, fz}, and the source vector s can be read from
(1.1). It is well known that solutions of (1.3) consist of discontinuities in the form of shocks and contact
discontinuities. Numerical algorithms have to take into account the formation of these complex waves and
their interactions. Furthermore, in the case of two-fluid equations, source terms can be stiff, especially for
realistic physical parameters. Thus, explicit time stepping will be extremely expensive computationally due
to small time steps.

Numerical methods for the two-fluid equations have received some attention in recent years. In [2], the
authors uses a Roe-type Riemann solver. Time updates are performed by treating the stiff source term
implicitly and convection flux terms explicitly. The resulting equations are solved using Newton iterations.
This method might be diffusive and may require many iterations for each time step. In [1], the authors
propose a wave propagation method (see [4]) for the spatial discretization. For time update a second
order operator splitting approach is used. This approach is easy to implement but can be computationally
expensive, especially for the stiff source term. In [5, 6] authors, uses a Riemann-solver-free central difference
scheme for staggered grid based on [7]. However, numerical simulations uses artificial physical parameters,
to avoid stiffness in the source.

In this article, we present implicit-explicit (IMEX) Runge-Kutta (RK) schemes for the two-fluid Eqns.
(1.1) based on explicit treatment of convective flux using strong stability preserving (SSP) schemes (see [8])
and implicit treatment of the stiff source term (see [9, 10]). The resulting system of linear equations (in
each cell) are solved exactly.

Rest of the paper is organized as follows: In Section 2, we describe second order spatial discretization
of the two-fluid equations (1.1) based on Finite Volume Methods (FVM). In Section 3, we describe explicit
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SSP-RK time stepping methods. In Section 4, we present several IMEX-RK time stepping routines for the
two-fluid equations. In Section 5, we investigate the performance of these schemes using several numerical
test examples.

2. Finite Volume Methods

For notational simplicity, we focus on the Eqns. (1.1) in two space dimensions. The extension to
three space dimensions is straight forward. We approximate (1.1) in a domain (x, y) ∈ (xa, xb) × (ya, yb),
discretized uniformly (for simplicity), with mesh size ∆x,∆y into cells Iij = [xi− 1

2
, xi+ 1

2
] × [yj− 1

2
, yj+ 1

2
],

where xi+ 1
2

= xi + ∆x/2, yj+ 1
2

= yj + ∆y/2 and xi = xa + j∆x, yj = ya + j∆y for the indices 0 ≤ i ≤ Nx,
0 ≤ j ≤ Ny. A semi-sicrete FVM scheme can be written as,

dUn
i,j

dt
= − 1

∆x

(
Fx,n

i+ 1
2 ,j
− Fx,n

i− 1
2 ,j

)
− 1

∆y

(
Fy,n

i,j+ 1
2
− Fy,n

i,j− 1
2

)
+ s(Un

i,j), (2.1)

where Un
i,j ≈ 1

∆x∆y

∫
Ii,j

u(x, tn)dxdy is the cell average of u in the cell Iij at time level tn and Fx and Fy are
numerical fluxes consistent with fx and fy respectively. Note that the flux f of two-fluid equations can be
divided in to three parts, two nonlinear Euler fluxes (one each for ion and electron) and one linear Maxwell
flux for the electromagnetic quantities. The coupling between fluid flow and electromagnetic variables is
through the source term only. This allows us to easily construct numerical fluxes. For simplicity, we will
describe the numerical flux in the x−direction i.e. Fx only. The expression for the numerical flux in the
y−direction i.e. Fy, can be derived similarly.

2.1. A four wave HLL type numerical flux
In this article, we will use a four-wave HLL type (see [4]) numerical flux which is described below: Denote

u = {uf ,um}! and fx(u) = {fx
f (uf ), fx

m(um)}!, with,

uf = {ρi, ρivi, Ei, ρe, ρeve, Ee}! (2.2a)
fx
f = {ρiv

x
i , ρiv

x2
i + pi, ρiv

x
i vy

i , ρiv
x
i vz

i , (Ei + pi)vx
i , (2.2b)

ρev
x
e , ρev

x2
e + pe, ρev

x
e vy

e , ρev
x
e vz

e , (Ee + pe)vx
e }!

um = {B,E, φ,ψ}! (2.2c)
fx
m = {κψ,−Ey, Ex, ξĉ2φ, ĉ2By,−ĉ2Bx, ξEx, κĉ2Bx}!. (2.2d)

We exploit the split structure of the flux in (1.1) and consider the fluid speeds,

bl
f = min

k
min

α
(λα

k (Un
f,i,j), λ

α
k (Un

f,a), 0), (2.3a)

br
f = max

k
max

α
(λα

k (Un
f,i+1,j), λ

α
k (Un

f,a), 0). (2.3b)

Here λα
k ∈ {vx

α − cα, vx
α, vx

α + cα}, α ∈ {i, e} are the eigenvalues of the fluid part, with sound speeds
cα =

√
γpα/ρα. Here, Un

f,a represent the arithmetics average of states Un
f,i,j and Un

f,i+1,j . Similarly, let bl
m

and br
m be the Maxwell HLL speeds, then a four wave HLL type numerical flux for (1.1) can be written as,

Fx,n
i+1/2,j =

{
Fx,n

f,i+1/2,j ,F
x,n
m,i+1/2,j

}!
, (2.4)

where

Fx,n
β,i+ 1

2 ,j
=

br
βfx

β (Un
β,i,j)− bl

βfx
β (Un

β,i+1,j)
br
β − bl

β

+
br
βbl

β

br
β − bl

β

(Un
β,i+1,j −Un

β,i,j), β ∈ {f, m}. (2.5)
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2.2. Second order spatial discretization
The semi-discrete scheme (2.1) scheme with numerical flux (2.4) is only first order accurate. To obtain

second order spatial discretization, it is standard to replace the piecewise constant approximation Un
i,j , of

conservative variables with a piecewise linear reconstruction. As before, we will describe the reconstruction
procedure in x-direction only. The reconstruction in y-direction is similar.

We suppress the j-dependence below for notational convenience. Given cell averages Un
i , the reconstruc-

tion procedure is carried out component-wise. Let U be a component of U, reconstructed with piecewise
linear reconstruction pn

i (x) with slope σn
i in each cell, then

pn
i (x) = Un

i + σn
i (x− xi).

Let us define traces,
Un,+

i = pn
i (xi+1/2), and Un,−

i = pn
i (xi−1/2).

Then a second order scheme is obtained by replace numerical flux Fx,n
i+1/2 = Fx(Un

i ,Un
i+i) in (2.1) with

F̃x,n
i+1/2 = F̃x(Un

i ,Un
i+1) = Fx(Un,+

i ,Un,−
i+1). (2.6)

In this work, we will use the slop σn
i ,

σn
i = minmod

(
Un

i+1 − Un
i

∆x
,
Un

i − Un
i−1

∆x

)
,

which corresponds to the MinMod limiter (see [4]). Here,

minmod(a, b) =

{
sign(a) min(|a|, |b|), if sign(a) = sign(b),
0, otherwise.

3. Explicit time stepping

In this section we will present second- and third-order accurate explicit RK time-stepping scheme for the
semi-discrete equation (2.1).These methods are strong stability preserving (SSP) (see [8]).

Let Un
i,j is the discrete solution at tn, and ∆t = tn+1 − tn. Then the semi-discrete scheme (2.1), can be

written as,
dUn

i,j

dt
= Li,j(Un) + Si,j(Un), (3.1)

with,

Li,j(Un) = − 1
∆x

(
Fx,n

i+1/2,j − Fx,n
i−1/2,j

)
− 1

∆y

(
Fy,n

i,j+1/2 − Fy,n
i,j−1/2

)
, and Si,j(Un) = s(Un

i,j).

In order to advance a numerical solution from time tn to tn+1, the SSP-RK algorithm is as follows:

1. Set U(0)
i,j = Un

i,j .

2. For m = 1, ...., k + 1, compute,

U(m)
i,j =

m−1∑

l=0

αmlU
(l)
i,j + βml∆tn(Li,j(U(l)) + Si,j(U(l))).

3. Set Un+1
i,j = U(k+1)

i,j .

The coefficients αml and βml are given in Table 1.
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order αil βil

2 1 1
1/2 1/2 0 1/2

3 1 1
3/4 1/4 0 1/4
1/3 0 2/3 0 0 2/3

Table 1: Parameters for Runge-Kutta time marching schemes.

4. IMEX-Runge-Kutta methods

IMEX-RK schemes for the balance laws (1.3) are considered by Pareschi and Russo in [9, 10]. Following
framework prescribed in [9, 10], an IMEX-RK scheme for (1.3) based on the implicit discretization of the
stiff source terms and and the explicit discretization of the convective flux when applied to the semi-discrete
scheme (3.1), takes the form:

U(l) = Un + ∆t
l−1∑

m=1

ãlmL(U(m)) + ∆t
N∑

m=1

almS(U(m)) (4.1a)

Un+1 = Un + ∆t
N∑

l=1

w̃lL(U(l)) + ∆t
N∑

m=1

wlS(U(l)). (4.1b)

Here, we have ignored the spatial indices i, j for the sake of notational simplicity. The N × N matrices
Ã = (ãlm), ãlm = 0 for m ≥ l and A = (alm), are such that the scheme (4.1) is explicit in L and implicit in
S. The IMEX scheme (4.1) can also be characterized with double tableau in the usual Butcher notation:

c̃ Ã

w̃!

c A

w!

We further assume, that alm = 0 for m > l i.e. we consider diagonally implicit Runge-Kutta (DIRK)
methods for the source terms. Note it is a sufficient condition to guarantee that L is always evaluated
explicitly. It has been shown in [9] that scheme (4.1) is asymptotic preserving in the zero relaxation limit
for the hyperbolic systems with relaxation. We would like to point out that two-fluid eqns. (1.1) also have
stiff source term when r̂g → 0. However, source term of these equations are oscillatory, in contrast to the
diffusive source terms for the hyperbolic systems with relaxation.

In this article, we will consider the two IMEX scheme presented in [9, 10], corresponding to the butcher
tablue 2, and 3.

0 0 0 0
1/2 1/2 0 0
0 1/2 1/2 0

1/3 1/3 1/3

1/4 1/4 0 0
1/4 0 1/4 0
1 1/3 1/3 1/3

1/3 1/3 1/3

Table 2: IMEX-SSP2(3,3,2) stiffly accurate
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0 0 0 0
1 1 0 0

1/2 1/4 1/4 0
1/6 1/6 2/3

γ γ 0 0
1− γ 1− 2γ γ 0
1/2 1/2− γ 0 γ

1/6 1/6 2/3
γ = 1− 1√

2

Table 3: IMEX-SSP3(3,3,2) L-stable

s Number of implicit stages
σ Number of explicit stages
p Overall order of accuracy

Table 4: IMEX scheme notation

In both of these schemes, the explicit part of the table corresponds to SSPk methods, where k corresponds
to the order of explicit part. Implicit part of these schemes is L-stable. Following [9], we denote each scheme
with SSPk(s, σ, p) where s, σ and p are expressed in Table 4.

Using the IMEX-FVM (4.1) schemes the numerical solution is updated as follows:

• For l = 1, · · · , N , Evaluate the following intermediate states,

1. Explicit convective flux update,

U(l)
∗ = Un + ∆t

l−2∑

m=1

ãlmL(U(m)) + ∆tãll−1L(U(l−1)). (4.2)

2. Implicit stiff source update: Solve

U(l) = U(l)
∗ + ∆t

l−1∑

m=1

almS(U(m)) + ∆tallS(U(l)), (4.3)

for U(l).

• Finally update the solution at the next time level using,

Un+1 = Un + ∆t
N∑

l=1

w̃lL(U(l)) + ∆t
N∑

l=1

wls(U(l)). (4.4)

Observe that each intermediate step in the above algorithm requires us to solve (4.3). Usually, this is
achieved using an iterative solver (see [2]). However, this can be expensive or may need several iterations to
achieve required accuracy. In contrast to [2], we note that the source term of the two-fluid equations (1.1)
can split carefully to solve (4.3), exactly. We proceed as follows:

Denote conservative variable U = {V1,V2,V3}! where,

V1 = {ρi, ρe, B
x, By, Bz, ψ}!,

V2 = {ρiv
x
i , ρiv

y
i , ρiv

z
i , ρev

x
e , ρev

y
e , ρev

z
e , Ex, Ey, Ez}!,

V3 = {Ei, Ee, φ}!.

We observe that (4.3) can be rewritten in the following 3 blocks,

V(l)
1 = G1(U

(l)
∗ ), (4.5a)
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V(l)
2 = G2(U(1), · · · ,U(l−1),U(l)

∗ ) + A(V(l)
1 )V(l)

2 , (4.5b)

V(l)
3 = G3(U(1), · · · ,U(l−1),U(l)

∗ ) + H(V(l)
1 ,V(l)

2 ). (4.5c)

Here G1,G2 and G3 are the explicit part of (4.3) for the variables V1,V2 and V3 respectively. The
Eqns. (4.5) are then solved in sequential manner:

I) Equation (4.5a) is updated explicitly as it involves the evaluation of terms which depends on the known
quantities from previous steps.

II) Note that the matrix A(V(l)
1 ) in Eqn. (4.5b) is,

A(V(l)
1 ) =





0 Bz,(l)

r̂g
−By,(l)

r̂g
0 0 0 ρ(l)

i
r̂g

0 0

−Bz,(l)

r̂g
0 Bx,(l)

r̂g
0 0 0 0 ρ(l)

i
r̂g

0
By,(l)

r̂g
−Bx,(l)

r̂g
0 0 0 0 0 0 ρ(l)

i
r̂g

0 0 0 0 Bz,(l)

r̂e,g
−By,(l)

r̂e,g

ρ(l)
e

r̂e,g
0 0

0 0 0 −Bz,(l)

r̂e,g
0 Bx,(l)

r̂e,g
0 ρ(l)

e
r̂e,g

0

0 0 0 By,(l)

r̂e,g
−Bx,(l)

r̂e,g
0 0 0 ρ(l)

e
r̂e,g

−ri
K 0 0 −re

K 0 0 0 0 0
0 −ri

K 0 0 −re
K 0 0 0 0

0 0 −ri
K 0 0 −re

K 0 0 0





(4.6)

with r̂e,g = −r̂g/λm and K = λ̂2r̂g. All the entries in the matrix are already computed in step I. So,
we can rewrite Eqn. (4.5b) as,

V(l)
2 =

(
I− (∆t)A(V(l)

1 )
)(−1)

(G2(U(1), · · · ,U(l−1),U(l)
∗ )). (4.7)

The term
(
I− (∆t)A(V(l)

1 )
)(−1)

(G2(U(1), · · · ,U(l−1),U(l)
∗ )) is evaluated symbolically.

III) The Eqn. (4.5c) is now updated for Vn+1
3 by evaluating H(V(l)

1 ,V(l)
2 ).

In addition to the above scheme we will also consider two more IMEX schemes, namely second order IMEX-
SSP2 and third order IMEX-SSP3. These schemes are based on SSP explicit schemes described in Section
3. To obtain these IMEX schemes, each intermediate Euler time update is performed by solving,

U(m) = ∆t(L(U(m−1))) + ∆tS(U(m)) (4.8)

for U(m). The eqn. (4.8) can be solved exactly, similar to the Eqn. (4.3). We refer to [11] for more details.

5. Numerical Results

In this section, we consider several benchmark test cases for illustrating the efficiency of the IMEX
schemes. For the sake of comparison we will also present results for SSP-RK explicit schemes, namely
second-order (O2-exp) and third-order (O3-exp) SSP-RK.

5.1. Convergence Rates
To compute order of convergence, we construct a smooth solution of (1.1) using modified equation:

∂tu + ∂xf(u) = s(u) + K(x, t).

7



The initial densities are taken to be ρi = ρe = 2.0 + sin(2πx), with the velocities vx
i = vx

e = 1.0 and
the pressures pi = pe = 1.0. The initial magnetic field is By = sin(2πx) and the initial electric field is
Ez = − sin(2πx). The computational domain is taken to be (0, 1) with periodic boundary conditions. To
ensure non-vanishing source term we take ion-electron mass ratio to be 2.0. All other physical parameters
are assumed to be equal to 1.0. To ensure that the exact solution is

ρi = 2.0 + sin(2π(x− t)),

we take,
K(x, t) = {013,−(2 + sin(2π(x− t))), 0, 0, 2 + sin(2π(x− t)), 0}!.
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Figure 1: L1 order of convergence: L1-errors of the ion-density at time t = 2.0 are plotted for 100, 200, 400, and 800 cells.

In Figure 1, we have plotted the convergence rates for the different time-stepping schemes based on the
second order FVM spatial discretization. We observe that the explicit (O2-exp and O3-exp), SSP3(3,3,2) L-
stable (SSP3(3,3,2)-L) and SSP3(3,3,2) stiffly accurate (SSP3(3,3,2)-S) schemes converge with second order.
However rate of convergence for the IMEX-SSP2 and IMEX-SSP3 schemes falls as we refine the mesh. This
is due to the splitting errors of these schemes.

5.2. Soliton propagation in one dimension: Low mass ratio
Simulations of soliton formations and interactions in two-fluid plasma are carried out in [1, 5, 6]. We

perform two simulations with Larmor radii of 0.01 and 0.0001. The simulation with Larmor radius 0.01
corresponds to the simulations carried out in [1, 5]. Note that low Larmor radius corresponds to the large
length scale and (or) large ion charge to mass ratios).

Initially, we assume that plasma is stationary and ion density is given by the smooth hump,

ρi = (1.0 + exp(−25.0|x− L/3.0|)), (5.1)

on domain D = (0, L) with L = 12.0. The initial electron pressure is assumed to be pe = 5.0ρi with initial
ion-electron pressure ratio of 0.01. The normalized Debye length assumed to be 1.0, with ion-electron mass
ratio of 25. We use periodic boundary conditions to facilitate soliton interaction. The simulations are carried
out with 1000 cells.
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(a) Ion-density at non-dimensional t = 1, 2, 3, 4, and 5
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(b) Ion-density comparison of various schemes at non-
dimensional time t = 5.0

Figure 2: Soliton propagation in one dimension with 1000 cells and Larmor radius r̂g = 0.01
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(a) Ion-density at non-dimensional t = 1, 2, 3, 4, and 5
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(b) Ion-density comparison of various schemes at non-
dimensional time t = 5.0

Figure 3: Soliton propagation in one dimension with 1000 cells and Larmor radius r̂g = 0.0001

Scheme r̂g = 0.01 r̂g = 0.0001
O2-exp 7.73 1652.68
O3-exp 11.76 144.19

IMEX-SSP2 8.46 8.39
IMEX-SSP3 12.75 12.68

SSP3(3,3,2)-L 13.91 14.74
SSP3(3,3,2)-S 13.74 14.17

Table 5: Comparison of simulation times for soliton propagation in one dimension till t = 5.0 on 1000 cells.
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Numerical results are presented in Figure 2 and 4 for the second order schemes with explicit and IMEX
time-stepping, and for the Larmor radii of 0.01 and 0.0001. In Figure 2(a) we have plotted the solution at
time t = 1, 2, 3, 4 and 5 for the Larmor radius of 0.01. We note that all the schemes are able to capture the
soliton waves and produce similar results. In Figure 2(b) we have compared the solutions corresponding to
the scheme at non-dimensional time t = 5. We observe that all the schemes produce comparable results. In
Figure 4(a) we have plotted the solution at time t = 1, 2, 3, 4 and 5 for the Larmor radius of 0.0001. Again
we note that soliton waves are captured by all the schemes. From the solution plots at non-dimensional time
t = 5 in Figure 4(b), we observe that O2-exp produce some oscillations. These oscillations do disappear if
we use smaller time steps. All other schemes produce comparable results.

In Table 5, we have presented the simulation times of different time-stepping methods in seconds on the
four computational cores for Larmor radii of 0.01 and 0.0001. In the case of r̂g = 0.01, the time step is
dictated by CFL condition due to fastest wave speed. We note that, simulation times of two step methods
O2-exp and IMEX-SSP2 are comparable, with O2-exp being slightly faster. Similarly, simulation times
of the three step methods, O3-exp, IMEX-SSP3, SPP3(3,3,2)-L and SSP3(3,3,2)-S are comparable, with
O3-exp being the fastest. This is due to the evaluation of the matrix inverse for the source update in IMEX
schemes. We also note that IMEX-SSP3 is slightly faster than SSP3(3,3,2)-L and SSP3(3,3,2)-S scheme.
Furthermore, three step methods are approximately 50 percent more expansive than the two step methods,
due to computation of an additional intermediate step. In the case of r̂g = 0.0001 the time step is dictated
by the stiffness of the source. In this case we note that simulation time of O2-exp has increase by two orders
of magnitude. Third order explicit scheme O3-exp perform better, still simulation time needed is almost 12
times than that of non-stiff case with r̂g = 0.01. For the IMEX schemes we note that simulations times are
similar to the case of r̂g = 0.01.

5.3. Soliton propagation in one dimension: Realistic mass ratio
In this section, we will simulate soliton propagation in one-dimension with realistic mass ratio mi/me =

1836 and Larmor radius of r̂g = 0.0001. The initial ion-density is,

ρi = (1.0 + M exp(−25.0|x− L/3.0|)) (5.2)

with M = 2.0 on the computational domain (0, Lx) with Lx = 12.0. All other initial and boundary conditions
are the same as in the previous section 5.2.
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(a) Ion-density at non-dimensional t = 1, 2, 3, 4, and 5
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(b) Ion-density comparison of various schemes at non-
dimensional time t = 5.0

Figure 4: Soliton propagation in one dimension with 2500 cells and Larmor radius r̂g = 0.0001

Numerical solutions using 2500 cells are presented in Figure 4 . In Figure 4(a), we have plotted the ion
density at non-dimensional times t = 1, 2, 3, 4 and 5. We note that all the schemes are able to capture the
soliton waves and their interactions. In Figure 4(b), we have plotted the solution at time t = 5.0. We observe
that all the schemes have comparable results. Also, SSP3(3,3,2)-S scheme produce small oscillations, but
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Scheme Simulation time
O3-exp 2287.88

IMEX-SSP2 327.91
IMEX-SSP3 479.97

SSP3(3,3,2)-L 617.23
SSP3(3,3,2)-S 569.14

Table 6: Comparison of simulation times for one dimensional soliton propagation with mass ratio of 1836 and Larmor radius
0.0001

these oscillations are stable and disappear with further mesh refinement. These simulations are performed
on 10 computational cores. In Table 6 we have presented the simulation time for the schemes. We note that
the simulation time of O3-exp scheme is four times more then the IMEX schemes. The simulation time of
the IMEX schemes is comparable. We have ignored O2-exp scheme due to large computation time.

5.4. Generalized shock tube Riemann problem
The initial conditions for the Riemann problem are,

Uleft =






ρi = 1.0
pi = 5 × 10−5

ρe = 1.0 me/mi

pe = 5 × 10−5

Bx = 0.75
By = 1.0
vi = ve = E = 0
φ = ψ = Bz = 0

Uright =






ρi = 0.125
pi = 5 × 10−6

ρe = 0.125 me/mi

pe = 5 × 10−6

Bx = 0.75
By = −1.0
vi = ve = E = 0
φ = ψ = Bz = 0

(5.3)

on a domain (0, 1) with, U = Uleft for x < 0.5 and U = Uright for x > 0.5. The ion-electron mass ratio
is taken to be 1836. The problem is nondimensionalized using p0 = 10−4 which results in the normalized
speed of light ĉ = 100. Non-dimensional Debye length is taken to be 0.01. We compute solutions using
non-dimensional Larmor radii of 100 and 0.001 and use Neumann boundary conditions.

Numerical solutions are presented in Figure 5. In Figure 5(a) we have plotted the numerical solutions
at Larmor radius of r̂g = 100. We expect solutions to be close to the corresponding ion Euler gas flow
solution. We observe that all the scheme produce solution close to Euler solution. Furthermore all the
schemes produce comparable results with 1000 cells. The simulation times for the explicit and implicit
schemes are similar in this case.

In Figure 5(b) we have plotted solution at 20000 cells corresponding to the Larmor radius of 0.001 for
the O3-exp, IMEX-SSP2 and IMEX-SSP3 schemes. We have have ignored other schemes due to significantly
large simulation times. We note that solution for all the schemes is converging to the MHD solution with
O3-exp solution being the closest. Both IMEX schemes fails to capture contact discontinuity wave. These
simulations are carried out on 32 computational cores. The simulation times for O3-exp, IMEX-SSP2 and
IMEX-SSP3 scheme are 4506.8, 13905.5 and 20610.4 seconds, respectively. We note that although IMEX
scheme are not efficient in this case, stiffness in the source is due to the low Debye length compare to the
soliton case where stiffness was primarily due to low Larmor radius.

5.5. Soliton Propagation in two dimensions
Soliton in two fluid plasma in two dimension were simulate in [6]. However non-physical mass ratio and

Larmor radius were used in simulations in order to avoid stiff source terms. In this Section we will simulate
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(a) Ion-density plots with Larmor radius r̂g = 100 and 1000 cells
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Figure 5: Bri-Wu shock tube problem: Solution at non-dimenisonal time t = 0.1
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(a) Ion-density at non-dimensional t = 0, 0.1, 0.2, 0.3, 0.4, and 0.5 with SSP3(3,3,2)-S scheme.
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(b) Ion-density plot of solution along the line x = 1 at non-dimensional time t = 0.3

Figure 6: Soliton propagation in two dimensions with mass ratio of 1836, and Larmor radius r̂g = 0.0001 using 200× 200 cells
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soliton in two dimensions using realistic mass ratio of 1836 and Larmor radius of 0.0001. We consider initial
ion density of,

ρi = 1.0 + 5.0 exp(−500.0((x− Lx/2.0)2 + (y − Ly/2.0)2) (5.4)

on the computational domain (0, Lx)× (0, Ly) with Lx = Ly = 2.0. All other initial conditions and physical
parameters are same as in the case of one dimensional soliton propagation in Section 5.2. We use Neumann
boundary conditions.

Numerical simulations are carried out using 200 × 200 cells on 10 computational cores. The results
are presented in Figure 6. In Figure 6(a), we have plotted the solution at non-dimensional time of t =
0, 0.1, 0.2, 0.3, 0.4 and 0.5 using SPP3(3,3,2)-S time stepping routine. We note that initial density hump
breakdown, which results in to a radial wave moving outward. The wave structure is similar to the one
dimensional case (see 5.3). In Figure 6(b) we have plotted ion-density along the line x = 1.0 for the scheme
at time t = 0.3. We observe that all the schemes produce comparable results. Simulation time for the

Scheme Simulationtime
O3-exp 8039.16

IMEX-SSP2 1141.26
IMEX-SSP3 1596.34

SSP3(3,3,2)-L 1926.75
SSP3(3,3,2)-S 1924.84

Table 7: Comparison of simulation times for two dimensional soliton simulation.

schemes are presented in Table 7. Similar to the one dimensional case (see 5.3), we see that O3-exp scheme
is about four time computationally expensive than the IMEX schemes. Furthermore, in three step IMEX
schemes, IMEX-SSP3 is the least expensive.

6. Conclusion

We have presented several IMEX-FVM schemes for the two fluid MHD equations based on the explicit
evaluation of the numerical flux and implicit treatment of the source terms. These schemes are then bench-
marked and compared using several numerical examples. The IMEX scheme are shown to be computationally
efficient for the low Larmor radius.
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Lévy processes

11-16 Ch. Schwab and A.M. Stuart
Sparse deterministic approximation of Bayesian inverse problems

11-15 A. Barth and A. Lang
Almost sure convergence of a Galerkin–Milstein approximation for
stochastic partial differential equations

11-14 X. Claeys
A single trace integral formulation of the second kind for acoustic
scattering


