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A FAST DETERMINISTIC METHOD FOR

STOCHASTIC ELLIPTIC INTERFACE PROBLEMS

BASED ON LOW-RANK APPROXIMATION

HELMUT HARBRECHT AND JINGZHI LI

Abstract. In this work, we propose a fast deterministic numerical
method to solve stochastic elliptic interface problems with random inter-
faces. Shape calculus is first employed to derive the shape-type Taylor
expansion in the framework of the asymptotic perturbation approach.
Given a priori known mean field and two-point correlation function of
random interface variations, we can quantify the mean field and vari-
ance of random solutions in terms of certain orders of the perturbation
magnitude by solving a deterministic elliptic interface problem and its
tensorized counterpart with respect to the reference interface. Error es-
timates are derived for interface-resolved finite element approximation
in both physical and stochastic dimensions. In particular, a fast finite
difference scheme is proposed to compute the two-point correlation func-
tion of random solutions using the low-rank approximation based on the
pivoted Cholesky decomposition. Numerical experiments are presented
to demonstrate the advantages of the proposed method.

1. Introduction

Assorted models in science and engineering give rise to partial differential
equations (PDE), which can be solved with high accuracy by numerical meth-
ods if the data given are known exactly. Nevertheless, the input data are
seldom, if not at all, known exactly. As a consequence, accurate numerical
solutions are of limited use in the presence of randomness. Thus the re-
search on numerical methods of stochastic PDE with random input data has
recently attracted increasingly more interest.

Broadly speaking, there are two general categories of approaches to solve
stochastic PDE.

(A) Monte Carlo methods (MC) (see [25, 31] and the references therein):
This is the most general methodology to treat randomness by sampling nu-
merous draws of the random input data according to some a priori known
or empirical distribution, where each draw entails the computation of a de-
terministic PDE, and then forming the sample statistics like the mean and
variance based on these sample solutions. By interpreting the realizations
as draws of distinct random variables of independently identical distribution

2000 Mathematics Subject Classification. 60H15, 60H35, 65C20, 65C30.
Key words and phrases. Elliptic interface problem, stochastic interface, low-rank ap-

proximation, pivoted Cholesky decomposition.
Version 0.61 April 20.
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2 HELMUT HARBRECHT AND JINGZHI LI

(i.i.d.) with respect to the original one, one may show the convergent rate of
the MC methods is inversely proportionate to the square root of the num-
ber of samples. Dimension-independence allows the MC method well- suited
for general purposes. Nevertheless, to guarantee a certain accuracy, a huge
number of PDEs have to be solved to obtain the ensemble average, which
could require formidable computing resources in the naive way. Recently, an
efficient multilevel MC method is proposed to solve the elliptic PDE with
stochastic coefficient with optimal computational complexity [5].

(B) Deterministic approaches: if statistical description of the random input
data is specified, one can mathematically characterize the uncertainty in
the input data and recast the original stochastic PDE into a deterministic
one, thus obtaining the deterministic statistics of the unknown random field.
There are generally two subclasses in this case.

(B.1) Perturbation methods ([23, 24]): The pivotal idea of the perturbation
approach to stochastic PDEs involves expanding all the random fields at hand
about the expectation of the random input data via Taylor series expansion
with a given small perturbation magnitude ε and retaining terms up to high
order, mostly second or third order. Then all such expansions are substituted
into the original problem. Equating terms of equal orders in the asymptotic
expansions of related fields, one can arrive at the corresponding zeroth-, first-
and second-order subproblems, etc.

(B.2) Stochastic Galerkin methods ([2, 3, 4, 9, 10, 13, 14, 29, 32, 33, 36]):
The rationale behind is to express, through decomposition of physical and
stochastic variables (e.g. Karhunen-Loève expansion), the random field as
the tensor product of functions in the physical domain and random variables
in the stochastic one. Then one may adopt, respectively, finite element
spaces in the physical approximation and wavelets or chaos polynomials in
the stochastic approximation. Efficient solvers can be achieved by combining
with sparse grid techniques to circumvent the curse of dimensionality.

In the past decade, more intensive research focuses on PDEs with stochastic
loadings or coefficients as input data. Recently, uncertainty of computational
domains arouses more interest in modeling of randomness of domains as
stochastic input parameter, see, e.g., [7, 17, 20, 37] and the references therein.
For instance, it is inevitable that the shape of objects in industrial production
does not exactly comply with the engineering design. In this paper, we are
first concerned with modeling of the interface randomness in the equilibrium
state of the physical process with composite materials governed by elliptic
PDEs, which can be termed as stochastic elliptic interface problems (SEIP).

Elliptic interface problems (EIP) arise frequently in scientific computing and
industrial applications, e.g., when the concerned physical process involves
two or more materials or media of different properties, such as the conduc-
tivity of steel and bronze in heat diffusion. It is well known that the solutions
of elliptic interface problems have high regularity on each individual mate-
rial region but low regularity globally due to the discontinuity of material
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coefficients across the interface. Many numerical methods such as finite dif-
ference, finite element and finite volume have been developed in the past few
decades for elliptic interface problems. We refer to the monograph [28] and
the references therein for more details about the background and the state
of the art.

In this work, we would like to further pursue in this direction, namely in-
vestigating elliptic boundary value problems with random interfaces. It is of
immerse interest in the computational simulation in nano-physics, biology
and chemistry, where one uses unsharp interfaces like rough cross sections,
cell membranes and molecular surfaces for instance. Due to the uncertainty
of interfaces, the solution of the elliptic system itself becomes a random field.
Alternatively, the problem may well be reformulated as follows: Given sta-
tistics of the random interface perturbation, how to compute deterministic
statistics of interest for random solutions of SEIPs?

It is common sense that knowledge of complete statistics of the input ran-
dom field is rarely a priori known in practice. Therefore, we impose two
additional assumptions for models in the current work, as in [20], (i) that
the perturbation magnitude of random interfaces around the mean interface
is relatively small and (ii) that the mean field and two-point correlation of
the random interface variations are known empirically or from elsewhere. It
is emphasized that the underlying stochastic process needs not to be known
explicitly under small perturbation assumption.

The second goal in the present paper aims at efficient and fast computa-
tion of the approximate mean and two-point correlation function of random
solutions of SEIPs. It is worth remarking that the Monte Carlo approach
employs a great number of sample interfaces to solve deterministic EIPs
with each sample interface, which is a demanding job, not to mention the
work about remeshing for each sample interface to avoid the sub-optimal
convergence [27].

The main techniques here are as follows: It is first revealed of the Fréchet
differentiability of the solution of EIPs with respect to the interface varia-
tions. Then, we develop the shape-Taylor expansion of random solutions via
shape calculus (see, e.g., [11, 30, 35] and the references therein). With the
shape gradient developed here, we set up a deterministic EIP and its ten-
sorized version for the mean and two-point correlation function of random
solutions, respectively. Instead of using sparse tensor finite element spaces
as in [16, 20], we make use of a low-rank approximation of the two-point cor-
relation of random solutions based on that of random interfaces in light of
the linearity of mapping from random interfaces to random solutions, which
leads to a fast finite difference implementation combined with the pivoted
Cholesky decomposition.

The main contribution of this work is three-folded: First we study a SEIP
model and characterize the shape-Taylor expansion of its random solution via
shape calculus. Second, a deterministic EIP and its tensorized counterpart
are formulated for the mean and two-point correlation function of random
solutions, respectively, with respect to a fixed reference interface. Rigorous
error estimates are derived accordingly in terms of both the perturbation
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magnitude and mesh size. Last, a finite difference implementation for the fast
computation of the two-point correlation function of random solutions using
the low-rank approximation based on the pivoted Cholesky decomposition.

The rest of the paper is organized as follows. In Section 2, we formulate the
mathematical description of the randomness of stochastic interfaces. In Sec-
tion 3, we derive the shape gradient of solutions to EIPs via shape calculus
[11, 30, 35]. In Section 4, we derive a deterministic elliptic interface prob-
lem and its tensorized counterpart for the mean and two-point correlation
of random solutions, respectively. In Section 5, error estimates for the fully
discrete approximation of the mean field and two-point correlation functions
are derived in both stochastic and physical dimensions. A fast algorithm
based on the low-rank approximation via the pivoted Cholesky decomposi-
tion is proposed as an efficient alternative to compute the two-point corre-
lation function of random solutions. In Section 6, numerical experiments
are shown to compare our proposed deterministic implementation with the
Monte Carlo method to demonstrate promising advantages.

2. Mathematical formulation

2.1. Model Problem. Consider the following EIP arising from the heat
conduction model in physics:

−∇ · (α(x,ω)∇u(x,ω)) = f(x) in D−(ω) ∪ D+(ω),(2.1)

[u(x,ω)] = 0 on Γ(ω),(2.2)
[

α(x,ω)
∂u

∂n
(x,ω)

]

= 0 on Γ(ω),(2.3)

u(x,ω) = 0 on ∂D,(2.4)

where the domain D ⊂ Rd, d = 2, 3, is assumed to be a fixed simply-
connected bounded convex one with Lipschitz boundary, which is occupied
by two random subdomains of different materials, resp. D−(ω) and D+(ω),
where D−(ω) ! D, D+(ω) := D \ D−(ω). These two subdomains are sepa-
rated by the random interface Γ(ω) := ∂D−(ω) (see Fig. 1), which is assumed
to be at least C2,1-smooth. Here (2.2) and (2.3) are the jump conditions
which the solution u(x,ω) has to meet on the random interface Γ(ω), f(x) is

D

D−(ω)D+(ω)

n

Γ(ω)

Figure 1. Domain sketch with stochastic interface.
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a deterministic source term satisfying f ∈ C∞(D), and n(x,ω) denotes the
unit normal vector to the interface Γ(ω) pointing to the interior of D+(ω).

For any arbitrarily fixed realization ω of a continuous function u(·,ω) we
denote by u−(·,ω) (resp. u+(·,ω)) its restriction onto D−(ω) (resp. D+(ω)).
Throughout the paper, the jump [u(·,ω)] is always understood to be u−(·,ω)−
u+(·,ω) on Γ(ω) in the sense of trace for each sample ω. The random coeffi-
cient field α(x,ω), due to the uncertainty of the interface Γ(ω), is assumed
to be a piecewise smooth function, namely

α(x,ω) = β(x) + χD−(ω)γ(x) in D,

with smooth deterministic functions β(x) and γ(x). The function χD−(ω) is
the characteristic function of the random subdomain D−(ω), i.e., it is 1 if
x ∈ D−(ω) and 0 otherwise. Moreover, we denote α−(x,ω) (resp. α+(x,ω))
the restriction of α(x,ω) onto D−(ω) (resp. D+(ω)). Hence, the flux jump
satisfies

[

α(ω)
∂u

∂n
(ω)

]

:= α−∂u−

∂n
(ω) − α+ ∂u+

∂n
(ω) on Γ(ω).

2.2. Stochastic Interfaces. To address the randomness of interfaces, it is
of first priority to model the stochastic interfaces in a mathematical way.

Fix any fixed interface Γ ∈ C3,1 ⊂ C2,1, which is a closed and orientable
manifold of co-dimension one separating two fixed subdomains D− and D+.
For a given smooth, nontangential interface variation V ∈ C2,1(Γ, Rd) with
‖V‖C2,1(Γ,Rd) ≤ 1 there exists some sufficiently small constant ε0 > 0 such
that the perturbed interface can be defined for any 0 ≤ ε < ε0 by

Γε := {x + εV(x) : x ∈ Γ} ∈ C2,1.

Moreover, Γε uniquely defines the deterministic subdomains D−
ε and thus

D+
ε := D \ D−

ε . For ease of exposition, in the rest of the paper, we will
restrict ourselves to normal variations [11, 30]. More precisely, letting n(x)
be the unit normal vector along Γ pointing into D+, we can fully characterize
the interface variation by its normal component

V(x) := κ(x)n(x),

where
κ ∈ A :=

{

ν ∈ C2,1(Γ, R) : ‖ν‖C2,1(Γ,R) ≤ 1
}

,

and thus
Γε := {x + εκ(x)n(x) : x ∈ Γ} .

Note that normal variations require Γ ∈ C3,1 in order to ensure that the
normal satisfies n ∈ C2,1(Γ, Rd).

To account for the randomness of stochastic interfaces, it is equivalent to
mathematically describe the random field

(2.5) κ(x,ω) : Γ × Ω → R .

The stochastic interfaces Γ(ω) can be rigorously characterized by a complete
probability space (Ω,Σ, P ) where Ω is the set of all admissible interfaces from
sample draws, namely realizations ω *→ κ(·,ω) ∈ A , Σ is the Borel σ-algebra
of A , and P : Σ → [0, 1] is a probability measure on the measurable space
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(Ω,Σ). For probability space on Banach spaces see [6, 26] and references and
therein.

Instead of grasping full knowledge of the random solutions, we are more
interested in certain statistics of the random field u : D × Ω → R, which
satisfies the PDE (2.1)–(2.4) P -a.s. in Ω.

2.3. Mean and two-point correlation. For a P -measureable mapping
κ(x,ω) : Ω → A and the associated normal interface variation in the nor-
mal direction κ(x,ω)n(x), throughout the rest of the work, we assume that
κ(x,ω) has a finite second moment with respect to P , which belongs to the
Bochner space L2(Ω, C2,1(Γ, R)).

Given a random interface field κ ∈ L2(Ω, C2,1(Γ, R)) and some perturbation
magnitude ε with 0 ≤ ε < ε0, the random interface can be parametrized by

Φε :

{

Γ × Ω → Rd,

(x,ω) *→ x + εκ(x,ω)n(x).

A realization of the subdomains D±(ω) is thus separated by the interface

Γε(ω) := {Φε(x,ω) : x ∈ Γ} , ω ∈ Ω.

Due to κ ∈ L2(Ω, C2,1(Γ, R)), the first two statistical moments of the random
interface variation κ(x,ω) are pointwise finite. They are defined as follows:
the mean

Eκ(x) :=

∫

Ω
κ(x,ω) dP (ω) = E(κ(x,ω)), x ∈ Γ,

the covariance

Covarκ(x,y) :=

∫

Ω
(κ(x,ω) − Eκ(x)) (κ(y,ω) − Eκ(y)) dP (ω), x, y ∈ Γ,

and the two-point correlation function

Corκ(x,y) :=

∫

Ω
κ(x,ω)κ(y,ω) dP (ω) = E(κ(x,ω)κ(y,ω)), x, y ∈ Γ .

Here by E we denote the expectation or ensemble average with respect to the
probability measure P .

In particular, we see that

E(Γε(ω)) := {E(Φε(x,ω)), x ∈ Γ} = {x + εEκ(x)n(x), x ∈ Γ}.

Without loss of generality, we may assume that the interface random field
κ(x,ω) is centered, namely

(2.6) Eκ(x) = 0.

Otherwise, we may readjust the reference interface such that (2.6) holds.
Therefore, E(Γε(ω)) = Γ and

Covarκ(x,y) = Corκ(x,y).
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Furthermore, once Eκ(x) and Corκ(x,y) are given, it holds

CorΦε(x,y) : = E(Φε(x,ω)Φε(y,ω))

= x · y + ε2Corκ(x,y)n(x) · n(y),

which means that the two-point correlation function of random interfaces
can be modeled by that of the random normal variation κ(x,ω).

3. Shape calculus

In this section, we return to the deterministic world to develop the shape-
Taylor expansion of solutions to EIPs with respect to the reference interface
Γ ∈ C3,1 via shape calculus. To that end, we derive the shape gradient based
on the velocity method (cf. also [21, 22, 30, 35]).

Now consider a deterministic EIP with respect to the reference interface Γ:

−∇ · (α∇u) = f in D− ∪ D+,(3.1)

[u] = 0 on Γ,(3.2)
[

α
∂u

∂n

]

= 0 on Γ,(3.3)

u = 0 on ∂D,(3.4)

and a deterministic perturbed PDE with the perturbed interface Γε

−∇ · (α∇uε) = f in D−
ε ∪ D+

ε ,(3.5)

[uε] = 0 on Γε,(3.6)
[

α
∂uε

∂n

]

= 0 on Γε,(3.7)

uε = 0 on ∂D,(3.8)

where the perturbed interface Γε := {x + εκ(x)n(x), x ∈ Γ}, D−
ε is the in-

terior part of Γε and D+
ε := D \ D−

ε , and the normal variation κ(x) ∈ A .
Moreover, we denote by u−

ε (resp. u+
ε ) its restriction on D−

ε (resp. D−
ε ).

The first order shape derivative for the elliptic interface problem is defined
formally by the pointwise limit

du(x) := du(x)[κ] = lim
ε→0

uε(x) − u(x)

ε
, x ∈

(

D− ∩ D−
ε

)

∪
(

D+ ∩ D+
ε

)

,

and can be characterized by the following lemma.

Lemma 1. Under the smoothness assumptions on the interface Γ, normal
variation κ and small perturbation magnitude as before, the shape derivative
du := du[κ], which is written as du+ and du− restricted onto D− and D+,
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respectively, satisfies the following EIP with nonhomogeneous jump condi-
tions:

−∇ · (α∇du) = 0 in D− ∪ D+,(3.9)

[du] = −κ

[

∂u

∂n

]

on Γ,(3.10)

[

α
∂du

∂n

]

= ∇Γ · (κ[α]∇Γu) on Γ,(3.11)

du = 0 on ∂D,(3.12)

where ∇Γ, ∇Γ · denote, respectively, the surface gradient and surface diver-
gence operators which are defined by ∇Γv := ∇v − (∇v · n)n for a scalar
function v, and ∇Γ · v := ∇ · v − (∇vn) · n for a vector field v.

Proof. The plan of the proof is as follows: We take the difference of the
respective variational forms of the reference problem (3.1)–(3.4) and of the
perturbed one (3.5)–(3.8), take the limit by letting ε → 0 and deduce the
PDE (3.9)–(3.12) of the shape gradient from this limiting variational form.

The variational formulations of the original PDE (3.1)–(3.4) and of the per-
turbed one (3.5)–(3.8) read as follows: Seek u, uε ∈ H1

0 (D) such that

(3.13)

∫

D−

α−∇u− ·∇v dx +

∫

D+

α+∇u+ ·∇v dx =

∫

D

fv dx

and

(3.14)

∫

D−
ε

α−∇u−
ε ·∇v dx +

∫

D+
ε

α∇u+
ε ·∇v dx =

∫

D

fv dx

for all v ∈ H1
0 (D).

Subtracting (3.13) from (3.14), dividing by ε on both sides and taking the
limit by letting ε tend to zero, we obtain, (see [35, Chap. 2] and [30, Chap.
4] for details), the variational form for the shape gradient du:

∫

D−

α−∇du− ·∇v dx +

∫

D+

α+∇du+ ·∇v dx

+

∫

Γ
κ(α−∇u− − α+∇u+) ·∇v dx = 0.

(3.15)

Testing (3.15) by φ ∈ C∞
0 (D±), we arrive at the PDE in (3.9).

The flux jump condition (3.11) follows by first testing (3.15) with smooth
functions ψ ∈ C∞(Rd) on Γ and employing the flux jump condition (3.3) on
Γ. Then it yields

α−∂du−

∂n
− α+ ∂du+

∂n
= ∇Γ ·

((

α− − α+
)

κ∇Γu
)

by using the tangential Green formula (cf. [11]) on the surface of co-dimension
one, namely

∫

Γ
∇Γf · v ds +

∫

Γ
f∇Γ · v ds = 0,

where f is a surface scalar function and v is a surface tangential vector field.
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Let ψ ∈ C∞(Rd), then from the jump condition (3.6),
∫

Γε

(

u−
ε − u+

ε

)

ψ ds = 0.

Pulling back from Γε to Γ and taking the derivative with respect to ε on
both sides of this equality and evaluating it at ε = 0, we obtain, by the same
argument [11, Eq. (4.16)], that

∫

Γ

(

du− − du+
)

ψ ds

= −

∫

Γ
κ

[

∂ ((u− − u+)ψ)

∂n
+ (d − 1)H

(

u− − u+
)

ψ

]

ds

= −

∫

Γ
κ

[

∂u

∂n

]

ψ ds,

where H is the mean curvature of the interface Γ, and we have used the jump
condition (3.2) in the second equality to simplify the formula. Then the first
jump condition (3.10) follows from arbitrariness of ψ, which completes the
proof. "

Remark. It is worth noting that the shape gradient du is in general not in
H1

0 (D) since it may be discontinuous along the interface Γ.

With the shape gradient at hand, we can develop a deterministic shape-type
Taylor expansion as follows:

(3.16) uε(x) = u(x) + εdu[κ](x) + O(ε2), x ∈ D \ Uε0
(Γ),

where the constant hidden in the Landau symbol depends on the function u
and the distance to the interface, and this expansion only holds away from
the ε0-tube region

Uε0
(Γ) := {y = x + tε0n(x), t ∈ [0, 1], x ∈ Γ} .

4. Statistics of Random Solutions

In this section, we study statistics of random solutions to SEIPs in terms
of that of random interfaces through the perturbation method. The main
idea behind the perturbation approach to the stochastic PDE is the matched
asymptotic principle, which involves expanding all the random fields under
concern about the expectation of the random interface via Taylor series ex-
pansion with a given small perturbation magnitude ε and retaining terms up
to high order, mostly second or third order. For a sufficiently small ε0 > 0,
we can develop a random version shape-type Taylor expansion of random so-
lutions to (2.1)–(2.4) with resort to the shape gradient, which is formulated
in the following lemma.

Lemma 2. Under the small perturbation assumption and smoothness condi-
tions on admissible interface variations and given data, the random solution
to (2.1)–(2.4) admits the following shape-type Taylor expansion:

(4.1) u(x,ω) = u(x) + εdu[κ(x,ω)](x,ω) + O(ε2),
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for x ! K ∈ D \Uε0
(Γ), P -a.s. ω ∈ Ω, where u is the deterministic solution

to the elliptic problem with the fixed reference interface Γ and du(x,ω) is the
associated shape gradient, namely the solution of the EIP (3.9)–(3.12) with
κ(x) being replaced by κ(x,ω) and D± by D±(ω).

Proof. Taylor expansion in (4.1) is the stochastic analog of (3.16). Thus, the
assertion follows by repeating the argument in the proof of Lemma 1 in Sec-
tion 3 for any fixed realization of the normal interface variation κ(x,ω)n(x)
associated with the sample ω. "

Now we can approximate the deterministic statistics of random solutions to
(2.1)–(2.4) with the help of (4.1). More precisely, the mean field and variance
of random solutions can be approximated by their deterministic surrogates
with respect the reference interface in terms of certain approximation orders
of the perturbation magnitude.

The following theorem addresses the semi-discrete approximation to the
mean field in the stochastic dimension.

Theorem 3. The expectation Eu(x) of random solutions to (2.1)–(2.4) can
be approximated by solving the deterministic PDE (3.1)–(3.4) with respect to
the reference interface Γ, up to the second order in terms of the perturbation
magnitude. More precisely,

Eu(x) = u(x) + O(ε2), x ∈ K ! D \ Uε0
(Γ),

where u is the deterministic solution to the EIP (3.1)–(3.4) with the reference
interface Γ.

Proof. Using the shape-Taylor expansion, we obtain

Eu(x) = u(x) + εE (du[κ(x,ω)](x,ω)) + O(ε2).

By the linearity of the expectation operator E, taking the expectation on
both sides of the stochastic version of the PDE (3.9)–(3.12) of the shape
gradient du(x,ω), and taking account of the fact that Eκ(x) = 0, we have

E (du[κ(x,ω)](x,ω)) = 0,

from which, the desired claim follows. Thus the proof is done. "

The second theorem studies the approximation of the variance of random
solutions.

Theorem 4. The variance Varu(x) of random solutions to (2.1)–(2.4) can be
approximated by solving the deterministic tensor product PDE (4.5)–(4.14)
as follows with respect to the reference interface Γ, up to the third order in
terms of the perturbation magnitude. More precisely,

(4.2) Varu(x) = ε2Vardu(x) + O(ε3), x ∈ K ! D \ Uε0
(Γ),

where

Vardu(x) = Var(du[κ(x,ω)](x,ω)) = Cor(du[κ](x),du[κ](y))
∣

∣

y=x

= Cordu(x,y)
∣

∣

y=x
,

and Cordu(x,y) is the solution to (4.5)–(4.14).
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Proof. Observe the following variance identity

(4.3) Var(a + bX + cY ) = b2Var(X) + 2bcCovar(X,Y ) + c2Var(Y ),

where X and Y are two random variables with finite second moments.

As a result for random variables with finite variance, the following inequality
holds via the Cauchy-Schwarz inequality:

(4.4) Covar(X,Y ) ≤
√

Var(X) · Var(Y ) .

Combining (4.3) and (4.4) with the shape-Taylor expansion (4.1), we have

Varu(x) = ε2Var(du[κ(x,ω)](x,ω)) + O(ε4) +
√

Var(du[κ(x,ω)](x,ω))O(ε3)

= ε2Var(du[κ(x,ω)](x,ω)) + O(ε3).

Hence the proof is completed. "

We can approximate Varu(x) by deterministically solving the tensor product
PDE of Cordu(x,y) on the tensor domain D × D ⊂ R2d. Denote by [[·]]
the tensor-product of the jump operator which is given for any two-point
correlation function w(x,y) by

[[w(x,y)]] = lim
D−"x→Γ

D−"y→Γ

w(x,y) − lim
D−"x→Γ

D+"y→Γ

w(x,y)

− lim
D+"x→Γ

D−"y→Γ

w(x,y) + lim
D+"x→Γ

D+"y→Γ

w(x,y).

Then the tensor product boundary value problem involving Cordu(x,y) can
be stated as follows:

– Tensor-product-domain PDE :

(4.5) (∇x ⊗∇y) · (κ(x)κ(y)(∇x ⊗∇y)Cordu(x,y)) = 0,

for all (x,y) ∈ D± × D±,

– Interface-domain PDE :

−∇y · (α(y)∇y [Cordu(x,y)]
x
) = 0,(4.6)

−∇y ·

(

α(y)∇y

[

α(x)
∂Cordu

∂nx

(x,y)

]

x

)

= 0,(4.7)

for all (x,y) ∈ Γ × D±;

– Domain-interface PDE :

−∇x ·
(

α(x)∇x [Cordu(x,y)]
y

)

= 0,(4.8)

−∇x ·

(

α(x)∇x

[

α(y)
∂Cordu

∂ny

(x,y)

]

y

)

= 0,(4.9)

for all (x,y) ∈ D± × Γ;

– DD tensor interface condition:

(4.10) [[Cordu(x,y)]] = Corκ(x,y)

[

∂u

∂n
(x)

] [

∂u

∂n
(y)

]

,

for all (x,y) ∈ Γ × Γ;
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– DN and ND tensor interface condition:

[[

α(y)
∂Cordu

∂ny

(x,y)

]]

= −∇Γ,y ·

([

∂u

∂n
(x)

]

[α(y)]Corκ(x,y)∇Γu(y)

)

,

(4.11)

[[

α(x)
∂Cordu

∂nx

(x,y)

]]

= −∇Γ,x ·

([

∂u

∂n
(y)

]

[α(x)]Corκ(x,y)∇Γu(x)

)

,

(4.12)

for all (x,y) ∈ Γ × Γ;

– NN tensor interface condition:
[[

α(x)α(y)
∂2Cordu

∂nx∂ny

(x,y)

]]

(4.13)

= (∇Γ,x ⊗∇Γ,y) · ([α(x)][α(y)]Corκ(x,y)∇Γu(x)∇Γu(y)) ,

for all (x,y) ∈ Γ × Γ;

– Tensor-product boundary condition:

(4.14) Cordu(x,y) = 0,

for all (x,y) ∈ ∂ (D × D).

5. Error Estimates and Implementation

In this section, error estimates will be carried out for the full discrete ap-
proximations of the mean field and two-point correlation function of random
solutions in terms of both the mesh size in the physical domain and the per-
turbation magnitude in the stochastic dimension. Algorithmic implementa-
tion of a fast finite difference method based on the low-rank approximation
via the pivoted Cholesky decomposition is presented for the efficient compu-
tation of the two-point correlation function of random solutions.

In the sequel, interface-resolved triangulations are assumed for solving the
EIP system (3.1)–(3.4) to achieve optimal convergence rates for the deter-
ministic PDE, cf. [8, 27]. By the use of parametric mappings, we even are
endowed with hierarchical finite element spaces amenable for the sparse ten-
sor approximation of the two-point correlation function (see [16] for details).

5.1. Computing the approximate expectation. We have presented the
discussion of the semi-discrete approximation in the stochastic dimension
of the mean field and two-point correlation function in the continuous case
by the asymptotic analysis in terms of the perturbation magnitude. Now
we develop finite element discretization to yield fully discrete approximation
and derive the convergence results in terms of both the finite element mesh
size of the triangulation and the perturbation magnitude.

Assume that the triangulation {Th}h>0 is a sequence of quasi-uniform and
shape-regular triangulations with the mesh size h, which exactly resolve the
interface via parametrization, and let {Vh}h>0 be the corresponding finite
element spaces over the given triangulations. We can obtain the discrete
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finite element approximation uh to u by solving the variational form of (3.1)–
(3.4) with respect to the reference interface Γ in the finite dimensional space
Vh.

The discretization error of the deterministic solution u can be quantified by
the follow lemma adapted from [27, Thm. 4.1] with little modification.

Theorem 5. Let {Th}h>0, {Vh}h>0 be a family of interface-resolved trian-
gulations and the associated finite element spaces (cf. [16, 27]). Let uh be
the deterministic finite element solution corresponding to the deterministic
solution u(x) of the elliptic problem (3.1)–(3.4) with respect to the reference
interface Γ. Then there holds for s = 0, 1 that

(5.1) ‖u − uh‖Hs(D) ≤ Ch2−s ‖u‖H2(D−)∪H2(D+) .

Let Eu be the expectation of random solutions to (2.1)–(2.4). Then, on K !

D \ Uε0
(Γ) there holds

‖Eu(x) − uh(x)‖Hs(K) ≤ C
(

ε2 + h2−s
)

‖u‖H2(D−)∪H2(D+) .

Proof. The estimate (5.1) follows easily from [27] for at least C2-smooth
interfaces. The estimates for expectation can be completed by combining
Theorem 3, (5.1) and the following triangle inequality

‖Eu − uh‖Hs(K) ≤ ‖Eu − u‖Hs(K) + ‖u − uh‖Hs(K) .

"

5.2. Computing the two-point correlation function.

5.2.1. Computing local shape derivatives. Notice that the PDE for the local
shape derivative du = du(κ) is not amenable for naive finite element dis-
cretization due to the non-homogeneous Dirichlet jump condition. Here we
use the offset function technique to convert the original PDE (3.9)–(3.12)
into two systems.

To this end, we assume that we have an offset function du−

off = du−

off(κ) ∈
H1(D−) such that

−∇ ·
(

α∇du−

off

)

= 0 in D−,(5.2)

du−
off = −κ

[

∂u

∂n

]

on Γ.(5.3)

We extend this function trivially to D+ by letting du+
off = 0. By subtracting

duoff from du, we are led to seek duhom = duhom(κ) ∈ H1
0 (D) such that

−∇ · (α∇duhom) = 0 in D− ∪ D+,(5.4)

[duhom] = 0 on Γ,(5.5)
[

α
∂duhom

∂n

]

= ∇Γ · (κ[α]∇Γu) − α−∂du−
off

∂n
on Γ,(5.6)

duhom = 0 on ∂D.(5.7)

The computation of duoff and duhom from (5.2)–(5.3) and (5.4)–(5.7), respec-
tively, by finite element methods is straightforward if we restrict the finite
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element spaces Vj onto D− and D, respectively. In particular, if we apply
the Lagrange multiplier method [1] with λh being in the trace space Vh|Γ,
we get the optimal convergence rate.

Theorem 6. Assume {Th}h>0, {Vh}h>0 to be specified as in Subsection 5.1.
Let duh be the deterministic finite element approximation via combining the
respective finite element solutions from (5.2)–(5.3) and (5.4)–(5.7) associated
with the deterministic shape gradient du[κ] to the elliptic problem (3.9)–
(3.12) with respect to the reference interface Γ. Then there holds for s = 0, 1
that

‖du − duh‖Hs(D−)∪Hs(D+)

≤ Ch2−s

{

∥

∥

∥

∥

κ

[

∂u

∂n

]
∥

∥

∥

∥

H3/2(Γ)

+ ‖∇Γ · (κ[α]∇Γu)‖H1/2(Γ)

}

(5.8)

≤ Ch2−s ‖u‖H2(D−)∪H2(D+)

where ‖κ‖C2,1(Γ,R) ≤ 1, provided that the given data are sufficiently smooth.

Proof. Using the Lagrange multiplier approach we have for s = 0, 1

‖duoff − duoff,h‖Hs(D−)+

∥

∥

∥

∥

λh −
∂duoff

∂n

∥

∥

∥

∥

Hs−3/2(Γ)

≤ Ch2−s

∥

∥

∥

∥

κ

[

∂u

∂n

]
∥

∥

∥

∥

H3/2(Γ)

.

From [27], it follows

‖duhom − duhom,h‖Hs(D−)∪Hs(D+)

≤ Ch2−s

{

∥

∥

∥

∥

κ

[

∂u

∂n

]
∥

∥

∥

∥

H3/2(Γ)

+ ‖∇Γ · (κ[α]∇Γu)‖H1/2(Γ)

}

provided that the exact Neumann data of duoff are inserted. Since, however,
only their approximation is available, then an additional consistency error
appears in the right hand side. It is bounded by

sup
v∈H2−s(D)

|〈f − fh, v〉| =

∣

∣

∣

∣

∫

Γ
α−

(

λh −
∂duoff

∂n

)

vds

∣

∣

∣

∣

≤ C

∥

∥

∥

∥

λh −
∂duoff

∂n

∥

∥

∥

∥

Hs−3/2(Γ)

‖v‖H3/2−s(Γ)

≤ Ch2−s

∥

∥

∥

∥

κ

[

∂u

∂n

]
∥

∥

∥

∥

H3/2(Γ)

‖v‖H2−s(D).

Putting these inequalities together proves our final assertion (5.8). "

5.2.2. Low-rank approximation. We can proceed in two different ways to
compute the two-point correlation function Cordu given by (4.5)–(4.14). The
first way is a direct solution in the sparse tensor product space as considered
in e.g. [16, 20]. The second way, which is simpler to implement, consists in
computing a low-rank approximation

(5.9) Corκ ≈
m

∑

i=1

κi ⊗ κi
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of the two-point correlation function of κ(ω) in the full tensor product space
Vh ⊗ Vh. With such a low-rank approximation at hand we have

(5.10) Cordu ≈
m

∑

i=1

du(κi) ⊗ du(κi)

due to the linearity of the mapping κ *→ du(κ). Hence, it suffices to solve
(5.2)–(5.7) for all κi.

Assume that Corκ ∈ C(Γ×Γ) is continuous, then the discrete version of the
low-rank approximation (5.9) corresponds to the low-rank decomposition

(5.11) C ≈ Cm =
m

∑

i=1

!i!
T
i

of the matrix

C = [Corκ(xi,xj)]i,j ∈ R
n×n

where {xi} are the nodes of the finite element mesh.

The best low-rank approximation (5.9) with respect to L2(Γ × Γ) is given
by the spectral decomposition whose computation requires the knowledge of
the eigenpairs (ϕi,λi) of the integral operator

(5.12) (Kκu)(x) :=

∫

Γ
Corκ(x,y)u(y) dy, x ∈ Γ.

The decay of the eigenvalues {λi} and thus the length m depends heavily on
the smoothness of Corκ. Related decay rates have been proven in [15, 34].

Algorithm 1: Pivoted Cholesky decomposition

Data: matrix C = [Corκ(xi,xj)]i,j ∈ Rn×n and error tolerance ε > 0
Result: low-rank approximation Cm =

∑m
i=1 !i!

T
i such that

trace(C − Cm) ≤ ε
begin

set m := 1;
set d := diag(C) and error := ‖d‖1;
initialize π := (1, 2, . . . , n);
while error > ε do

set i := arg max{dπj : j = m,m + 1, . . . , n};
swap πm and πi;
set 0m,πm :=

√

dπm ;
for m + 1 ≤ i ≤ n do

compute 0m,πi :=

(

Corκ(xπm ,xπi) −
m−1
∑

j=1

0j,πm0j,πi

)

/

0m,πm;

update dπi := dπi − 0m,πm0m,πi;

compute error :=
n

∑

i=m+1

dπi ;

increase m := m + 1;

end
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We use here the pivoted Cholesky decomposition to compute a low-rank
approximation of Corκ as proposed in [18]. It is a purely algebraic approach
which is quite simple to implement, see Algorithm 1. It produces a low-rank
approximation to C for any given precision ε > 0. The approximation error
is rigorously controlled in terms of the trace norm. Exponential convergence
rates can be proven under the assumption that the eigenvalues of C exhibit
a sufficiently fast exponential decay, see [18]. Numerical experiments show
that the pivoted Cholesky decomposition in general converges optimally in
the sense of the rank m being bounded by the number of terms required for
the spectral decomposition of Corκ to get the error ε.

Having the low-rank decomposition (5.9) of the interface perturbation’s two-
point correlation function at hand, the complexity to compute the shape
derivative’s two-point correlation (5.10) is at least m × n, if n denotes the
number of finite elements. Therefore, log-linear complexity in n can only be
achieved if m ∼ log n which requires an exponential decay of the spectral
decomposition of the two-point correlation Corκ. This, however, is only
the case if Corκ is analytical (cf. [34]). In contrast to that, the sparse grid
approach from [16, 20] produces approximations in log-linear complexity also
for two-point correlation functions of finite smoothness. We refer the reader
to [15] for a more extensive comparison of the spectral decomposition and
the sparse grid approach.

5.2.3. Non-intrusive approach. Instead of computing the local shape deriv-
ative du(κi), we can approximate it by a finite difference. This means that,
for a small h > 0, we replace (5.10) by

(5.13) Cordu ≈
1

h2

m
∑

i=1

(

uΓ(I+hκi) − u
)

⊗
(

uΓ(I+hκi) − u
)

,

where uΓ(I+hκi) denotes the solution of the interface problem (2.1)–(2.4) with
respect to the perturbed interface

Γ(I + hκi) := {x + hκi(x)n(x) : x ∈ Γ}.

Thus, it is neither necessary to explicitly know the local shape derivative
nor to implement it. In fact, besides the computation of the approximate
expectation u, we need then only the m “samples” uΓ(I+hκi) to calculate
the approximate variance. This therefore constitutes an extremely fast non-
intrusive algorithm in the quantification of domain uncertainties.

6. Numerical Experiments and Discussions

6.1. Deterministic vs. Monte Carlo approach. We present some nu-
merical tests to demonstrate our theoretical predictions. Let D := (−1, 1)2

be a square of edge length 2 and let

Γ := {x ∈ R
2 : ‖x‖ = 1/2}

be a circular interface which subdivides D into the interior domain D− and
the exterior domain D+. In D+ the diffusion coefficient is set as α+ := 1,
in the interior domain D− we consider α− := 2 in our first and α− := 10 in
our second example.
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We parametrize the interface Γ by polar coordinates

γ : [0, 2π] → Γ, s *→ γ(s) :=
1

2

[

cos(s)
sin(s)

]

.

Correspondingly, the stochastic interface Γε(ω) can be expressed via the
perturbed parametrization

γ(s,ω) := γ(s) + εκ(s,ω)

[

cos(s)
sin(s)

]

.

Herein, we assume that the stochastic interface perturbation is given by

κ(s,ω) :=
5

∑

k=0

ak(ω) cos(ks) + bk(ω) sin(ks).

with stochastic coefficients ak(ω) and bk(ω) being equally distributed in
[−1, 1] and mutually stochastically independent. This leads to the two-point
correlation function

(6.1) Corκ(s, t) =
1

3

5
∑

k=0

cos(ks) cos(kt) + sin(ks) sin(kt).

For our numerical experiments we choose ε = 0.02. Even though ε is small
the perturbation is considerably large since the norm ‖κ(ω)‖C2,1([0,2π]) might
be large.

We determine first the expectation and the variance of random solutions
to this SEIP by a Monte Carlo method, using M = 10000 samples. The
triangulation has to be reconstructed for each sample in order to resolve the
interface exactly. In order to compute the sample mean and variance, we
interpolate the solution to a fixed quadrangular grid with 65 × 65 nodes.
The approximate expectation and variance are depicted in the first row of
Figure 2 for α− := 2 and Figure 3 for α− := 10.

In the second row of Figures 2 and 3 the approximate expectation and vari-
ance of our deterministic algorithm is depicted. To ensure a fair comparison,
we interpolated the finite element solutions on the same rectangular mesh as
the Monte Carlo solutions. Notice that the pivoted Cholesky decomposition
computes an exact rank-11 approximation of the two-point correlation (6.1)
since it is of finite rank 11. This means that only 11 shape derivatives need
to be determined to compute the approximate variance.

In the last row of Figures 2 and Figure 3, we plotted the differences of ex-
pectations and variances of both algorithms. We see that the deterministic
approach produces quite accurate approximations except in the direct neigh-
borhood of the reference interface, as predicted by our theory.

6.2. Non-intrusive approach. Our next example is concerned with the
comparison of the shape derivative-based approach (5.10) and the non-intrusive
approach (5.13). The domain D and the interface Γ are chosen as in the
previous example while the associated coefficients are set as α− := 2 and
α+ = 1. The stochastic perturbation of the interface is assumed to exhibit
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Expectation and variance of the Monte Carlo simulation
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Figure 2. Approximate expectation and variation in case of
α = 2 and ε = 0.02.

the Gaussian two-point correlation

Corκ = exp

(

−
‖x− y‖2

σ

)

where we consider the choices σ = 10, 100, 1000.

We again use the pivoted Cholesky decomposition (Algorithm 1) to compute
the discrete low-rank decomposition (5.11) with a trace error of ε = 0.001.
It has the rank m = 17 if σ = 10, the rank m = 54 if σ = 100, and
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Expectation and variance of the Monte Carlo simulation
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Figure 3. Approximate expectation and variation in case of
α = 10 and ε = 0.02.

the rank m = 171 if σ = 1000. The step size h in the finite differences
of (5.13) are chosen as h = 0.001. The resulting approximate two-point
correlations are plotted in Figures 4–6. As these plots demonstrate, the
non-intrusive approach (5.13) produces reasonable approximations of the
solution’s variance while the implementation is extremely simple. Especially,
we observe that influence of the stochastic interface becomes more localized
as σ increases, i.e., if the correlation length of the interface perturbation
decreases.
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Figure 4. Approximate variations (left: via shape derivative
/ middle: via finite difference / right: difference between the
approaches) in case of the Gaussian kernel with σ = 10.
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Figure 5. Approximate variations (left: via shape derivative
/ middle: via finite difference / right: difference between the
approaches) in case of the Gaussian kernel with σ = 100.
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Figure 6. Approximate variations (left: via shape derivative
/ middle: via finite difference / right: difference between the
approaches) in case of the Gaussian kernel with σ = 1000.
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