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ENTROPY STABLE NUMERICAL SCHEMES FOR TWO-FLUID MHD
EQUATIONS

HARISH KUMAR AND SIDDHARTHA MISHRA

Abstract. Two-fluid ideal magnetohydrodynamics (MHD) equations are a generalized form
of the ideal MHD equations in which electrons and ions are considered as separate species.
The design of efficient numerical schemes for the these equations is complicated on account
of their non-linear nature and the presence of stiff source terms, especially for high charge
to mass ratios. In this article, we design entropy stable finite difference schemes for the
two-fluid equations by combining entropy conservative fluxes and suitable numerical diffusion
operators. Furthermore, to overcome the time step restrictions imposed by the stiff source
terms, we devise time-stepping routines based on implicit-explicit (IMEX)-Runge Kutta (RK)
schemes. The special structure of the two-fluid MHD equations is exploited by us to design
IMEX schemes in which only local (in each cell) linear equations need to be solved at each
time step. Benchmark numerical experiments are presented to illustrate the robustness and
accuracy of these schemes.

1. Introduction

An ensemble of plasma consists of ions, electrons and neutral particles. These particles interact
through both short range (e.g. collisions) and long range ( e.g. electromagnetic) forces. Plasmas
are increasingly used in spacecraft propulsion, controlled nuclear fusion and in circuit breakers
in the electrical power industry.

Under the assumption of quasi-neutrality ( i.e. charge density difference between ions and
electrons is neglected), the flow of plasmas is modeled by the ideal MHD equations (see [8]).
Although, the ideal MHD equations have been successfully employed in modeling and simulating
plasma flows, this model is derived by ignoring the Hall effect and treating plasma flows as
single fluid flows. These effects are very important for many applications, e.g. space plasmas,
Hall current thrusters, field reversal configurations for magnetic plasma confinement and for fast
magnetic reconnection.

In this article, we consider the more general ideal two-fluid model (see [15],[13],[9]) for collision-
less plasmas. In the ideal two-fluid equations, electrons and ions are treated as different fluids by
allowing them to posses different velocities and temperatures. Assuming local thermodynamical
equilibrium, we write the two-fluid equations as a system of balance laws (see [9]):

(1.1) ∂tu + div f(u) = s(u), (x, t) ∈ R3 × (0,∞).

Here, u = u(x, y, z, t) is the vector of non-dimensional conservative variables,

(1.2) u = {ρi, ρivi, Ei, ρe, ρeve, Ee,B,E, φ,ψ}! .

Here, the subscripts {i, e} refer to the ion and electron species respectively, ρ{i,e} are the densities,
v{i,e} = (vx

{i,e}, v
y
{i,e}, v

z
{i,e}) are the velocities, E{i,e} are the total energies, B = (Bx, By, Bz) is

the magnetic field, E = (Ex, Ey, Ez) is the electric field and φ, ψ are the potentials. The flux
1
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vector f = (fx, fy, fz) can be written as,

(1.3) f(u) =






fi(ui)
fe(ue)
fm(um)




 , where fα(uα) =






ραvα

ρivαv!α + pαI
(Eα + pα)vα




 ,

with α ∈ {i, e}, and

(1.4) fm(um) =






T (E) + κψI
−ĉ2T (B) + ξĉ2φI

ξE
κĉ2B





, where T (K) =




0 Kz −Ky

−Kz 0 Kx

Ky −Kx 0



 ,

for any vector K = (Kx, Ky, Kz). Here uα = {ρα, ραvα, Eα}!, α ∈ {i, e}, um = {B,E, φ,ψ}!,
p{i,e} are the pressures, ξ, κ are penalizing speeds (see [14]) and ĉ = c/vT

i is the normalized speed
of light. Also, vT

i is the reference thermal velocity of ion. Writing the flux in component form
(see (1.3),(1.4)), we observe that the first two components of the flux, fα(uα), α ∈ {i, e}, are
the nonlinear ion and electron Euler fluxes and the third component is the linear Maxwell flux.
So, the homogenous part of (1.1) is hyperbolic.

The source term s is given by,

(1.5) s(u) =






0
1
r̂g

ρi(E + vi ×B)
0

−λm
r̂g

ρe(E + ve ×B)
−λm

r̂g
ρe(E · ve)
0

− 1
λ̂2

dr̂g
(riρivi + reρeve)

− ξ
λ̂2

dr̂g
(riρi + reρe)

0






,

with the charge to mass ratios rα = qα/mα, α ∈ {i, e} and the ion-electron mass ratio λm =
mi/me. Two physically significant parameters appear in the source term namely, the normalized
Larmor radius r̂g = rg

x0
= miv

T
i

qiB0x0
and the ion Debye length (normalized with respect to the

Larmor radius) λ̂d = λd/rg =
√

ε0vT 2

i /n0qi/rg . Here, B0 is the reference magnetic field, ε0 is
the permittivity of free space and x0 is the reference length. The ion mass mi and ion charge
qi are assumed to be 1. In addition, we assume that both the ion and the electron satisfies the
ideal gas law:

(1.6) Eα =
pα

γ − 1
+

1
2
ρα|vα|2, α ∈ {i, e},

with gas constant γ = 5/3. In the above equations, we use the perfectly hyperbolic form of the
Maxwell equation (see [14]), which represent the evolution of magnetic field B and electric field
E.

The design of numerical schemes for systems of balance laws has undergone rapid devel-
opment in the last two decades, see [12] for a detailed description of efficient schemes. The
standard paradigm involves the use of finite volume (conservative finite difference) schemes in
which the solution is evolved in terms of (approximate) solutions of Riemann problems at cell
interfaces. Higher order accuracy in space is obtained by non-oscillatory interpolation proce-
dures of the TVD, ENO and WENO types. An alternative is to use the Discontinuous Galerkin
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(DG) approach. High-order temporal accuracy results from strong stability preserving (SSP)
Runge-Kutta (RK) methods. Source terms are included by using operator splitting approaches.

Although the two-fluid equations are a system of balance laws, standard discretization tech-
niques may fail to provide a robust approximation. Two major difficulties are present in the
numerical analysis of the two-fluid equations: 1) the design of suitable numerical fluxes and 2)
treatment of the source term that becomes increasingly stiffer as more realistic charge to mass
ratios are considered.

Given the above challenges, very few robust numerical schemes exist for the two-fluid equa-
tions. In [15], the authors derive a Roe-type Riemann solver. Time updates are performed by
treating the stiff source term implicitly and the flux terms explicitly. The resulting non-linear
equations are solved using Newton iterations. This method might be diffusive and may require
many iterations for each time step. In [9], the authors propose a wave propagation method (see
[12]) for the spatial discretization. For time updates, a second -order operator splitting approach
is used. A similar approach is taken in [13, 11], where spatial discretization is based on discon-
tinuous Galerkin (DG) methods and time update is based on SSP-RK methods. Both of these
approaches are easy to implement but can be computationally expensive, especially for realistic
charge to mass ratios.

Given the state of the art, we propose numerical schemes for the two-fluid equations with the
following novel features:

• First, we design entropy stable, conservative, finite difference discretization of the flux
term in the two fluid equations. The basis of our design is to ensure entropy stability
as the two fluid equations satisfy an entropy inequality at the continuous level. We use
the approach of [17] by constructing entropy conservative fluxes and suitable numerical
diffusion operators to ensure entropy stability. Second-order entropy stable schemes are
constructed following the framework of a recent paper [6].

• We discretize the source term in the two-fluid equations by an IMEX approach: the flux
terms are discretized explicitly whereas the source term is discretized implicitly. The
main feature of our schemes is their ability to use the special structure of the two-fluid
equations that allows us to design IMEX schemes requiring the solution of only local
(in each cell) linear equations at every time step. This is in contrast to the schemes
proposed in [15] that required the solution of non-linear iterations. The local equations
that result from our approach can be solved exactly making our schemes computationally
inexpensive.

The rest of this article is organized as follows: In the following Section 2, we obtain an entropy
estimate for the ideal two-fluid eqns. (1.1). This result at the continuous level is then used to
design an entropy stable finite difference scheme in Section 3. In Section 4, we present IMEX-
RK schemes for the temporal discretization. The resulting, algebraic system of equations is then
solved exactly. In Section 5, we simulate the nonlinear soliton propagation in the two-fluid plasma
and a stiff Riemann problem to demonstrate the robustness and efficiency of these schemes.

2. Analysis of Continuous Problem

It is well known that solutions of (1.1) consists discontinuities, even for smooth initial data.
Hence, we need to consider the solutions of (1.1) in the weak sense. However, uniqueness of the
solutions is still not guaranteed and we need to supplement (1.1) with additional admissibility
criteria to obtain a physically meaningful solution. This gives rise to concept of entropy. The
standard thermodynamic entropies for ion and electron Euler flows are,

(2.1) eα = − ραsα

γ − 1
with sα = log(pα)− γ log(ρα), α ∈ {i, e}.
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For the electromagnetic part we consider the quadratic entropy i.e electromagnetic energy,

(2.2) em(um) =
|B|2 + φ2

2
+

|E|2 + ψ2

2ĉ2
.

We obtain the following entropy estimate,

Theorem 2.1. Let u = {ρi, ρivi, Ei, ρe, ρeve, Ee,B,E, φ,ψ}! be a weak solution of the two-fluid
Eqns. (1.1) on R3× (0,∞). Furthermore, assume that there exists constants ρmin

α , ρmax
α and pmin

α

such that,
ρmin

α ≤ ρα ≤ ρmax
α , pα ≥ pmin

α , α ∈ {i, e},
then

(2.3)
d

dt

∫

R3
(ei + ee + em) dx dy dz ≤ C1

∫

R3
(ei + ee + em) dx dy dz + C2,

with constant C1 and C2 depending only on ρmin
α , ρmax

α , and pmin
α .

Proof. Let us first consider the fluid part of the equations. The entropy fluxes corresponding to
the flow entropies (2.1) are,

(2.4) qα = −ραsαvα

γ − 1
= vαeα, α ∈ {i, e}.

Assuming that u is a smooth solution of (1.1), the densities ρα and the pressures pα, satisfy,

∂tρα + vα ·∇ρα = 0,

∂tpα + γpα∇ · vα + vα ·∇pα = 0.

Using the expression for sα, we get

∂tsα + vα ·∇sα = 0.

Combining this with density advection we get entropy conservation, i.e.

(2.5) ∂teα +∇ · qα = 0.

Observe that (2.5) implies that the source term does not effect the evolution of fluid entropies.
For weak solutions, (2.5) reduces to entropy inequality,

(2.6) ∂teα +∇ · qα ≤ 0.

Integrating over R3 and adding,

(2.7)
d

dt

∫

R3
(ei + ee)dx dy dz ≤ 0.

For controlling the electromagnetic energy, we use the following inequality,

(2.8)
∫

R3

(
ρ2

α + |ραvα|2 + E2
α

)
dx dy dz ≤ C

∫

R3
eαdx dy dz + C,

for some constants C,C.The proof of (2.8) is a simple consequence of the positivity of density
and pressure and the use of the relative entropy method of Dafermos [5]. We multiply (1.1) with
the vector, {

010,B,
E
ĉ2

, φ,
ψ

ĉ2

}!

and note that flux terms are still in divergence form. Integrating over the whole space and using
Cauchy’s inequality on the right hand side, we get,

(2.9)
d

dt

∫

R3
emdx dy dz ≤ C3

(∫

R3
emdx dy dz +

∫

R3
(ei + ee)dx dy dz

)
+ C4.

Combining it with (3.22) we obtain (2.3). !
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Remark 2.2. Note that above proof of the theorem also give a bound on the fluid energy of the
system.

3. Semi-Discrete Schemes

In the last section, we showed that solutions of the two-fluid equations satisfy the entropy
estimate (2.3). In this section, we will design (semi-discrete) numerical schemes for the two-fluid
equations that satisfy a discrete version of the entropy estimate.

For simplicity, we consider two-fluid eqns. (1.1) in two dimensions, i.e.,

(3.1) ∂tu + ∂xfx(u) + ∂yfy(u) = s(u).

We discretize the two dimensional rectangular domain D = (xa, xb) × (ya, yb) uniformly with
mesh size (∆x,∆y). We define xi = xa + i∆x and yj = ya + j∆y, 0 ≤ i ≤ Nx, 0 ≤ j ≤ Ny,
such that xb = xa + Nx∆x and yb = ya + Ny∆x. The domain is then divided into cells
Iij = [xi−1/2, xi+1/2]× [yj−1/2, yj+1/2] with xi+1/2 = xi+xi+1

2 and yj+1/2 = yj+yj+1
2 . A standard

semi-discrete finite difference scheme for the eqn. (3.1) can be written as,

(3.2)
dUi,j

dt
+

1
∆x

(
Fx

i+1/2,j − Fx
i−1/2,j

)
+

1
∆y

(
Fy

i,j+1/2 − Fy
i,j−1/2

)
= s(Ui,j).

Here, Fx
i+1/2,j and Fy

i,j+1/2 are the numerical fluxes consistent with fx and fy respectively. We
introduce the entropy variables V and entropy potential χk which corresponds to the entropy
e = {ei, ee, em}!

(3.3) V =






Vi

Ve

Vm




 =






∂uiei(ui)
∂ueee(ue)

∂umem(um)




 , χk =






χk
i

χk
e

χk
m




 =






V!
i fk

i − qk
i

V!
e fk

e − qk
e

V!
mfk

m − qk
m




 ,

where qk
m is the entropy flux for the Maxwell part corresponding to the entropy em and k ∈ {x, y}.

We will follow the framework of Tadmor ( see [17, 18]) for designing an entropy stable scheme
for the two-fluid equations. The first step is to design an entropy conservative flux.

3.1. Entropy conservative flux. We require the following notation:

[a]i+1/2,j = ai+1,j − aij , ai+1/2,j =
1
2
(ai+1,j + ai,j),

[a]i,j+1/2 = ai,j+1 − aij , ai,j+1/2 =
1
2
(ai,j+1 + ai,j).

Following [17], an entropy conservative flux F̂ = {F̂x, F̂y} is defined as a consistent flux that
satisfies

(3.4) [V]!i+1/2,jF̂
x
i+1/2,j = [χx]i+1/2,j , [V]!i,j+1/2F̂

y
i,j+1/2 = [χy]i,j+1/2.

In general, the relation for conservative flux, (3.4) provides one equation for several unknowns.
Hence, entropy conservative numerical flux is not unique. We will now describe entropy conser-
vative numerical fluxes for the fluid part of the two-fluid equations.

In [10], Ismail and Roe have derived an expression for entropy conservative numerical fluxes
for Euler equations of gas dynamics. As the fluid part of (1.1) consists of two independent Euler
fluxes, we can use the expression derived in [10] for the entropy conservative numerical flux of
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the Euler flows of ion and electron. We need to introduce parametric vectors zα, α ∈ {i, e},

(3.5) zα =





z1
α

z2
α

z3
α

z4
α

z5
α




=

√
ρα

pα





1
vx

α

vy
α

vz
α

pα




, α ∈ {i, e}.

Then the entropy conservative numerical flux in x-direction is given by F̂x
α,i+1/2,j = [F̂x,1

α,i+1/2,,j , F̂
x,2
α,i+1/2,j ,

F̂x,3
α,i+1/2,j , F̂

x,4
α,i+1/2,j , F̂

x,5
α,i+1/2,j ]

!, with,

F̂x,1
α,i+1/2,j = z2

α,i+1/2,jz
5
α

ln
i+1/2,j ,(3.6)

F̂x,2
α,i+1/2,j = m5

α,i+1/2,j + m2
α,i+1/2,jF̂

x,1
α,i+1/2,j ,

F̂x,3
α,i+1/2,j = m3

α,i+1/2,jF̂
x,1
α,i+1/2,j ,

F̂x,4
α,i+1/2,j = m4

α,i+1/2,jF̂
x,1
α,i+1/2,j ,

F̂x,5
α,i+1/2,j =

1
2z1

α,i+1/2,j

(
γ + 1
γ − 1

F̂x,1
α,i+1/2,j

z1ln
α,i+1/2,j

+ z2
α,i+1/2,jF̂

x,2
α,i+1/2,j

+z3
α,i+1/2F̂

x,3
α,i+1/2,j + z4

α,i+1/2,jF̂
x,4
α,i+1/2,j

)
.

and entropy conservative numerical flux in y-direction is, F̂y
α,i,j+1/2 = [F̂y,1

α,i,j+1/2, F̂
y,2
α,i,j+1/2,

F̂y,3
α,i,j+1/2, F̂

y,4
α,i,j+1/2, F̂

y,5
α,i,j+1/2]

!, with,

F̂y,1
α,i,j+1/2 = z3

α,i,j+1/2z
5ln
α,i,j+1/2,(3.7)

F̂y,2
α,i,j+1/2 = m2

α,i,j+1/2F̂
y,1
α,i,j+1/2,

F̂y,3
α,i,j+1/2 = m3

α,i,j+1/2 + m3
α,i,j+1/2F̂

y,1
α,i,j+1/2,

F̂y,4
α,i,j+1/2 = m4

α,i,j+1/2F̂
y,1
α,i,j+1/2,

F̂y,5
α,i,j+1/2 =

1
2z1

α,i,j+1/2



γ + 1
γ − 1

F̂y,1
α,i,j+1/2

z1
α,

ln
i,j+1/2

+ z2
α,i,j+1/2F̂

y,2
α,i,j+1/2

+z3
α,i,j+1/2F̂

y,3
α,i,j+1/2 + z4

α,i,j+1/2F̂
y,4
α,i,j+1/2

)
,

Here, aln
i+1/2,j and aln

i,j+1/2 denotes the logarithmic means defined as,

aln
i+1/2,j =

[a]i+1/2,j

[log (a)]i+1/2,j
, aln

i,j+1/2 =
[a]i,j+1/2

[log (a)]i,j+1/2
,

and

mr
α,i+1/2,j =

zr
α,i+1/2,j

z1
α,i+1/2,j

, mr
α,i,j+1/2 =

zr
α,i,j+1/2

z1
α,i,j+1/2

, for r ∈ {2, 3, 4, 5}.

Now we will consider the electromagnetic part. Note the Maxwell flux is linear. Then, it is easy
to check that the entropy conservative numerical flux for the electromagnetic part is

(3.8) F̂x
m,i+1/2,j =

1
2
(fx(Um,i,j) + fx(Um,i+1,j)), F̂y

m,i,j+1/2 =
1
2
(fy(Um,i,j) + fy(Um,i,j+1)).
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Combining all the parts, the entropy conservative numerical flux for the Eqn. (1.1) are given by,

(3.9) F̂x
i+1/2,j =






F̂x
i,i+1/2,j

F̂x
e,i+1/2,j

F̂x
m,i+1/2,j





, F̂y

i,j+1/2 =






F̂y
i,j+1/2

F̂y
e,i,j+1/2

F̂y
m,i,j+1/2





.

3.2. Numerical diffusion operator. As entropy is dissipated at shocks, we need to add entropy
stable numerical diffusion operators to avoid spurious oscillations at shocks. Following [18],the
resulting numerical fluxes are of the form,

(3.10) Fx
i+1/2,j = F̂x

i+1/2 −
1
2
Dx

i+1/2[V]i+1/2,j , Fy
i,j+1/2 = F̂x

i+1/2 −
1
2
Dy

i,j+1/2[V]i,j+1/2.

with diffusion matrices are given by,

(3.11) Dx
i+1/2 = Rx

i+1/2,jΛ
x
i+1/2,jR

x!
i+1/2,j , Dy

i,j+1/2 = Ry
i,j+1/2Λ

y
i,j+1/2R

y!
i,j+1/2.

Here R{x,y} are the matrices of right eigenvectors of jacobians ∂uf{x,y} and Λ{x,y} are diagonal
matrices of eigenvalues in the x- and y-directions, respectively. We will use a Rusanov type type
diffusion operator given by a 18× 18 matrix,

Λ{x,y} = Λ = diag{( max
1≤i≤5

|λx
i |)I5×5, ( max

6≤i≤10
|λx

i |)I5×5, ( max
1≤i≤18

|λx
i |)I8×8}.

We use the eigenvector scaling due to Barth [4] for defining the eigenvector matrices.

3.3. Second Order Dissipation Operator. The diffusion operators described above are of
first order, as the jump term [V] is of order ∆x. To obtain the second order accurate scheme,
we can perform piecewise linear reconstructions of the entropy variable V. However, a straight-
forward reconstruction of the entropy variables may not be entropy stable. In [6], the authors
have constructed entropy stable second order (and even higher-order) diffusion operators. For
simplicity, we will consider the diffusion operator, Dx

i+1/2,j [V]i+1/2,j in x-direction only. The
diffusion operator in y-direction, Dy

i,j+1/2[V]i,j+1/2 can be constructed analogously. We need to
introduce scaled entropy variables,

Wx,±
i,j = Rx!

i±1/2,jVi,j .

If W̃x,±
i,j are the reconstructed values of Wx± in the x-direction, then the corresponding recon-

structed values Px±
i for Vij are given by,

Px±
ij = {RxT

i±i+1/2,j}(−1)W̃x,±
i,j .

The resulting second order entropy stable flux is then given by,

(3.12) Fx
i+1/2,j = F̂x

i+1/2 −
1
2
Dx

i+1/2[P
x]i+1/2,j ,

where the jump term [Px]i+1/2,j is given by,

[Px]i+1/2,j = Px−
i+1,j −Px+

i,j .

A sufficient condition for the scheme to be entropy stable (see [6]) is the existence of a diagonal
matrix Bx ≥ 0, such that,

[W̃x]i+1/2,j = Bx
i+1/2,j [W

x]i+1/2,j ,

i.e. the reconstruction of Wx has to satisfy a sign preserving property along the interfaces of
each cell. Component-wise this can be written as,

(3.13) sign([w̃l]) = sign([wl]),

for each component wl and w̃l of Wx and W̃x, respectively.
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3.4. Reconstruction Procedure. We suppress the j-dependence below for notational conve-
nience. The reconstruction for Wx is performed component-wise, so that (3.13) is satisfied. Let
us define jump of component w of the variable Wx,

(3.14) δi+1/2 = [w]i+1/2.

Consider φ, a slope limiter satisfying φ(θ−1) = φ(θ)θ−1 and define divided differences,

θ−i =
δi+1/2

δi−1/2
and θ+

i =
δi−1/2

δi+1/2
.

Then the reconstructed values of w in the cell Ii are

w̃−i = w−i −
1
2
φ(θ−i )δi−1/2, w̃+

i = w+
i +

1
2
φ(θ+

i+1)δi+1/2.

Using these values we obtain

[w̃]i+1/2 =
(

1− 1
2
(φ(θ+

i ) + φ(θ−i+1))
)

δi+1/2.

This shows that the sign property is satisfied iff

φ(θ) ≤ 1, ∀ θ ∈ R.

In this article, we will use the minmod limiter based reconstruction which satisfies the sign
preserving property (see [6]). The minmod limiter is given by,

(3.15) φ(θ) =






0, if θ < 0,

θ, if 0 ≤ θ ≤ 1,

1, else.

3.5. Discrete entropy stability. In this section, we prove that scheme given by the flux (3.12)
is entropy stable i.e. it satisfies a discrete version of the entropy estimate (2.3). We have the
following result,

Theorem 3.1. The semi-discrete finite difference scheme (3.2), with entropy stable numerical
flux (3.12), is second order accurate for smooth solutions. Furthermore, it satisfy,

(3.16)
d

dt

∑

i,j

(ei,i,j + ee,i,j + em,i,j)∆x∆y ≤ C5

∑

i,j

(ei,i,j + ee,i,j + em,i,j)∆x∆y + C6

if conditions for Theorem 2.1 are satisfied.

Proof. It is easy to see that the scheme is of second order accuracy, as both the entropy conserva-
tive flux F̂ and the numerical diffusion operator, are second order accurate for smooth solutions.
Now, consider the fluid part of (3.2), i.e.

(3.17)
dUα,i,j

dt
+

1
∆x

(
Fx

α,i+1/2,j − Fx
α,i−1/2,j

)
+

1
∆y

(
Fy

α,i,j+1/2 − Fy
α,i,j−1/2

)
= Sα,i,j(U),

for α ∈ {i, e} with entropy numerical fluxes,

(3.18) Qx
i+1/2,j = V

!
i+1/2,jF

x
i+1/2,j − χ̄i+1/2,j , Qy

i,j+1/2 = V
!
i,j+1/2F

y
i,j+1/2 − χ̄i,j+1/2.

Multiplying (3.17) with V!
α,i,j and imitating the proof of Theorem 2.2 form [17], we get

deα(Ui,j)
dt

=
1

∆x

(
Q̂x

i+1/2,j − Q̂x
i−1/2,j

)
− 1

∆x

(
Q̂y

i,j+1/2 − Q̂y
i,j−1/2

)
+ V!

α,i,jSα,i,j(U)

− 1
2∆x

(
[V]!i+1/2,jD

x
i+1/2,j [P

x]i+1/2,j + [V]!i−1/2,jD
x
i−1/2,j [P

x]i−1/2,j

)
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− 1
2∆y

(
[V]!i,j+1/2D

y
i,j+1/2[P

y]i,j+1/2 + [V]!i,j−1/2D
y
i,j−1/2[P

y]i,j−1/2

)

= − 1
∆x

(
Qx

i+1/2,j −Qx
i−1/2,j

)
− 1

∆x

(
Qy

i,j+1/2 −Qy
i,j−1/2

)
+ V!

α,i,jSα,i,j(U)

− 1
4∆x

(
[V]!i+1/2,jD

x
i+1/2,j [P

x]i+1/2,j + [V]!i−1/2,jD
x
i−1/2,j [P

x]i−1/2,j

)

− 1
4∆y

(
[V]!i,j+1/2D

y
i,j+1/2[P

y]i,j+1/2 + [V]!i,j−1/2D
y
i,j−1/2[P

y]i,j−1/2

)

Here

Q̂x
i+1/2,j = V

!
i+1/2,jF̂

x
i+1/2,j − χ̄i+1/2,j , and Q̂y

i,j+1/2 = V
!
i,j+1/2F̂

y
i,j+1/2 − χ̄i,j+1/2.

are entropy fluxes corresponding to the entropy conservative fluxes F̂x and F̂y respectively. Let
us consider the diffusion terms. Ignoring all the indices, each diffusion term satisfy,

[V]!D[P] = [V]!RΛR![P]
= [V]!RΛR!(R!)(−1)[W̃]
= (R![V])!ΛB([W])
= (R![V])!ΛB(R!V)
≥ 0,

as both B and Λ are non-negative diagonal matrices. So, we get

deα,i,j

dt
+

1
∆x

(
Qx

α,i+1/2,j −Qx
α,i−1/2,j

)
+

1
∆y

(
Qy

α,i,j+1/2 −Qy
α,i,j−1/2

)
≤ V!

α,i,jSα,i,j .

A simple calculation shows that,

V!
α,i,jSα,i,j = 0.

This results in the fluid entropy inequality,

(3.19)
deα,i,j

dt
+

1
∆x

(
Qx

α,i+1/2,j −Qx
α,i−1/2,j

)
+

1
∆y

(
Qy

α,i,j+1/2 −Qy
α,i,j−1/2

)
≤ 0, α ∈ {i, e},

summing over all the cells we get,

(3.20)
d

dt

∑

i,j

eα,i,j∆x∆y ≤ 0, α ∈ {i, e},

Repeating the entropy argument of Dafermos [5] used in Theorem 2.1 we get an discrete energy
estimate for fluid part,

(3.21)
∑

i,j

(
ρ2

α,i,j + |ρα,i,jvα,i,j |2 + E2
α,i,j

)
∆x∆y ≤ C7

∑

i,j

eα,i,j∆x∆y + C8,

Imitating the proof of Theorem 2.1 where integration is replaced by summation, we get,

(3.22)
d

dt

∑

i,j

em,i,j∆x∆y ≤ C9

∑

i,j

(em,i,j + ei,i,j + ee,i,j)∆x∆y + C10.

Combining with (3.20), we get (3.16). !
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order αil βil

2 1 1
1/2 1/2 0 1/2

3 1 1
3/4 1/4 0 1/4
1/3 0 2/3 0 0 2/3

Table 1. Parameters for Runge-Kutta time marching schemes.

4. Fully Discrete Schemes

Let Un is the discrete solution at tn, and ∆t = tn+1 − tn. Then a semi-discrete scheme (3.2)
can be written as,

(4.1)
dUn

i,j

dt
= Li,j(Un) + Si,j(Un),

where,

Li,j(Un) = − 1
∆x

(
Fx

i+1/2,j − Fx
i−1/2,j

)
− 1

∆y

(
Fy

i,j+1/2 − Fy
i,j−1/2

)
, and Si,j(Un) = s(Un

i,j).

We describe two different time discretization schemes below.

4.1. Explicit Schemes. We use explicit Runge-Kutta (RK) time marching schemes for the
time-discretizing of the two-fluid equations. For simplicity, we restrict ourselves to the second-
and third-order accurate RK schemes (see [16]). These methods are strong stability preserving
(SSP). In order to advance a numerical solution from time tn to tn+1, the SSP-RK algorithm is
as follows:

1. Set U(0) = Un.
2. For m = 1, ...., k + 1, compute,

U(m)
i,j =

m−1∑

l=0

αmlU
(l)
i,j + βml∆tn(Li,j(U(l)) + Si,j(U(l))).

3. Set Un+1
i,j = U(k+1)

i,j .
The coefficients αml and βml are given in Table 1.

4.2. IMEX-RK Schemes. As the source term in two-fluid equations is stiff, the explicit time
stepping scheme works only for a very restricted time step. Hence, we consider IMEX methods.
An Implicit-Explicit Runge-Kutta (IMEX-RK) scheme for (1.1), is based on the implicit treat-
ment of the stiff source term and and an explicit treatment of the convective flux terms. We
will use SSP-RK schemes described above for the explicit time-stepping, with each intermediate
Euler update is carried out by solving,

Um+1
i,j = Um

i,j + ∆tLi,j(Um) + ∆tSi,j(Um+1),(4.2)

for Um+1. Usually (4.2) is solved using some iterative methods. However, we can exploit the
special structure of the source term for the two-fluid equations to solve (4.2) exaclty. We proceed
as follows:
Denote U = {W1,W2,W3} with,

W1 = {ρi, ρe, B
x, By, Bz, ψ}!
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W2 = {ρiv
x
i , ρiv

y
i , ρiv

z
i , ρev

x
e , ρev

y
e , ρev

z
e , Ex, Ey, Ez}!

W3 = {Ei, Ee, φ}!

We observe that (4.2) can be rewritten in the following three blocks,

W(m+1)
1 = G1(U(m)),(4.3a)

W(m+1)
2 = G2(U(m)) + A(W(m+1)

1 )W(m)
2 ,(4.3b)

W(m+1)
3 = G3(U(m)) + H(W(m+1)

1 ,W(m+1)
2 ).(4.3c)

Here G1,G2 and G3 are the explicit parts of (4.2) for the variables W1,W2 and W3 respectively.
The Eqns. (4.3) are then solved in sequential manner:

I) Equation (4.3a) is updated explicitly, as it involves the evaluation of the known terms from
the previous time step.

II) Note that the matrix A(W(m+1)
1 ) in Eqn. (4.3b) is,

(4.4)
2

666666666666666666666666664

0 Bz,(m+1)
r̂g

−By,(m+1)
r̂g

0 0 0
ρ
(m+1)
i

r̂g
0 0

−Bz,(m+1)
r̂g

0 Bx,(m+1)
r̂g

0 0 0 0
ρ
(m+1)
i

r̂g
0

By,(m+1)
r̂g

−Bx,(m+1)
r̂g

0 0 0 0 0 0
ρ
(m+1)
i

r̂g

0 0 0 0 Bz,(m+1)
r̂e,g

−By,(m+1)
r̂e,g

ρ
(m+1)
e
r̂e,g

0 0

0 0 0 −Bz,(m+1)
r̂e,g

0 Bx,(m+1)
r̂e,g

0
ρ
(m+1)
e
r̂e,g

0

0 0 0 By,(m+1)
r̂e,g

−Bx,(m+1)
r̂e,g

0 0 0
ρ
(m+1)
e
r̂e,g

−ri
K 0 0 −re

K 0 0 0 0 0

0
−ri
K 0 0 −re

K 0 0 0 0

0 0
−ri
K 0 0 −re

K 0 0 0

3

777777777777777777777777775

with r̂e,g = −r̂g/λm and K = λ̂2r̂g. All the quantities in the matrix are already computed
in step I. So, we can rewrite Eqn. (4.3b) as,

(4.5) W(m+1)
2 =

(
I− (∆t)A(W(m+1)

1 )
)(−1)

G2(U(m)).

which can evaluated exactly.
III) The Eqn. (4.3c) is now updated for Wm+1

3 by evaluating H(Wm+1
1 ,Wm+1

2 ).
Thus, our IMEX scheme does not require any non-linear Newton solves or any global matrix
inversions. It only needs explicit evaluations of the inverse of a local 9 × 9 matrix in each cell
making this scheme computationally inexpensive.

5. Numerical Results

We present a set of numerical experiments to demonstrate the robustness of the proposed
schemes.

5.1. Convergence Rates. As it is not possible to obtain explicit solution formulas for the
two-fluid equations, we employ a forced solution approach to manufacture explicit solutions.

In one space dimension, we consider the modified equation:

∂tu + ∂xf(u) = s(u) + K(x, t).

with forcing term:

K(x, t) = {013,−(2 + sin(2π(x− t))), 0, 0, 2 + sin(2π(x− t)), 0}!

The initial densities are ρi = ρe = 2.0 + sin(2πx), with the velocities vx
i = vx

e = 1.0 and the
pressures pi = pe = 1.0. The initial magnetic field is By = sin(2πx) and the electric field is
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Figure 1. L1 order of convergence: L1-errors of the ion-density at time t = 2.0
are plotted for 100, 200, 400, and 800 cells.

Ez = − sin(2πx). The computational domain is (0, 1) with periodic boundary conditions. To
ensure non-vanishing source term we take ion-electron mass ratio to be mi/me = 2.0.

It is straightforward to check that the exact solution is

ρi = ρe = 2.0 + sin(2π(x− t)).

In Figure 1, we have plotted the convergence rates for the second-order schemes based on entropy
stable fluxes with minmod (ES-MinMod) reconstruction for the spatial discretization and the
second order SSP-RK scheme for time update. For comparison, we have also plotted the results
for the second-order FVM scheme based on a four wave HLL type solver with minmod limiter
(O2-FVM). We observe that entropy stable scheme are less diffusive than the standard FVM
schemes. The IMEX schemes also perform equally well. However, we observe that rate of
convergence for IMEX scheme falls when we refine the mesh. This is due to splitting errors for
the IMEX schemes.

5.2. Soliton Propagation in One Dimension. Soliton propagation in two-fluid plasmas are
simulated in [9, 1, 3, 2]. It is shown that ion-acoustic solitons can form from an initial density
hump. In this section, we follow [9, 3], to simulate this soliton in one dimension with ion-electron
mass ratio of 25. Then, we simulate soliton with realistic ion-electron mass-ratio of 1836.

5.2.1. Soliton Propagation in One Dimension: Low mass ratio.

No. of Cells O2-ESMN-exp O2-ESMN-IMEX
100 18.58 5.97
200 37.12 24.02
400 93.86 96.37
800 378.54 386.9

Table 2. Comparison of simulation times of numerical scheme at various resolution.
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at x = 1.5 at non-dimensional time t = 5.0

Figure 2. Soliton propagation in one dimensions
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Figure 3. Soliton propagation: Numerical solutions at under-resolved meshes
of 200 cells.
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Initially, the plasma is assumed to be stationary with ion density,

(5.1) ρi = 1.0 + exp(−25.0|x− L/3.0|)

and mass ratio mi/me = 25 on the computational domain D = (0, L) with L = 12.0. Electron
pressure is pe = 5.0ρi with ion-electron pressure ratio of 1/100. Normalized Debye length is
taken to be 1.0 and normalized Larmor radius is 0.01. Periodic boundary conditions are used.

Numerical results are presented in fig. 2 for the second order schemes with explicit and
IMEX time-stepping, using 2000 cells. The solutions are plotted for second order entropy stable
schemes O2-ESMN. For comparison, we have also computed the solution with standard FVM
scheme O2-FVM. In Figure 2(a), we have plotted the ion-density profile at non-dimensional
times t = 0, 1, 2, 3, 4 and 5. Observe that all the schemes are able to capture soliton waves. In
particular, the speed of soliton propagation is the same for all the schemes. In Figure 2(b), we
have zoomed at the the stationary central wave ( atx = 4.0) of the solution after time t = 5.0
and compared the schemes. We have also plotted a reference solution computed using O2-FVM-
exp scheme on 40000 cells. We observe that the entropy stable schemes are more accurate than
the standard FVM scheme. Furthermore, both explicit and IMEX time-stepping gives similar
results. Similar features can be observed from Figure 2(c) where we have plotted the left wave (
at x = 1.0) at time t = 5. In Figure 3, we have plotted the solution at the under-resolved mesh
of 200 cells. At this low resolution, the time step is constrained due to the source term. We
again observe that the entropy stable schemes are less diffusive than the FVM scheme. However
observe that the middle stationary wave is not fully resolved by both the explicit and IMEX
schemes.

In Table 2, we have presented the simulation time in seconds for the second order entropy
stable schemes at various resolutions. At lower resolutions (No of cells less than 200), the time
step is dictated by the source terms, so the IMEX schemes are faster. In fact, we observe that at
the resolution of 100 cells, IMEX schemes are almost three times faster than the corresponding
explicit scheme. However, as we compute for finer resolutions, the CFL condition (in terms of the
wave speeds) dictates the time step. So, the simulation times of both types of schemes becomes
comparable.

5.2.2. Soliton Propagation in One Dimension: Realistic Mass Ratio. In this section, we simulate
the soliton propagation with realistic ion-electron mass ratio i.e. with mi/me = 1836. The initial
ion-density is

(5.2) ρi = (1.0 + M exp(−25.0|x− L/3.0|))

with M = 2.0 on the computational domain (0, Lx) with Lx = 12.0. All other initial and boundary
conditions are the same as in the case of one-dimensional soliton propagation in section 5.2.1.
We need about 10000 cells to resolve all the small scale oscillations.

Numerical results are plotted in Figure 4 for the second order ES-MinMod scheme, using both
explicit and IMEX time-stepping procedures. In Figure 4(a), we have plotted the ion density at
non-dimensional times t = 0, 1, 2, 3, 4 and 5. We observe that both IMEX and explicit schemes
captures the soliton waves equally well. Also, note that the soliton waves have accelerated after
passing through the stationary wave. The acceleration is directly proportional to the magnitude
M of the perturbation to the density. In Figure, 4(b) we have zoomed at central stationary
wave. Note that both schemes have resolved small scale oscillations. We would also like to point
out that it is possible to run simulations at lower resolutions. However, this leads to unresolved
oscillations similar to the case of the under-resolved simulation in section 5.2.1 (see Figure 3).
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Figure 4. Soliton propagation with ion-electron mass ratio mi/me = 1836 in
one dimension

5.3. Generalized Brio-Wu Shock tube Problem. The initial conditions for this Riemann
problem are

(5.3) Uleft =






ρi = 1.0
pi = 5 × 10−5

ρe = 1.0 me/mi

pe = 5 × 10−5

Bx = 0.75
By = 1.0
vi = ve = E = 0
φ = ψ = Bz = 0

Uright =






ρi = 0.125
pi = 5 × 10−6

ρe = 0.125 me/mi

pe = 5 × 10−6

Bx = 0.75
By = −1.0
vi = ve = E = 0
φ = ψ = Bz = 0

on the computational domain (0, 1) with, U = Uleft for x < 0.5 and U = Uright for x > 0.5. The
ion-electron mass ratio is taken to be mi/me = 1836. The initial condition are non-dimensionzed
using p0 = 10−4. Non-dimensional Debye length is taken to be 0.01. Simulations are carried out
using Larmor radii of 10 and 0.001. Neumann boundary conditions are used.

Numerical solutions are presented in Figure 5. In Figure 5(a) we have plotted the numerical
solutions based on O2-ESMinMod scheme using second order explicit and IMEX time updates.
Solutions are computed with non-dimensional Larmor radius of 10.0 using 1000 cells. We observe
that solution is close to the Euler solution. Furthermore, both IMEX and explicit schemes
produce similar results.

In Figure 5(b) we have plotted the solutions with non-dimensional Larmor radius of 0.001.
Numerical solutions are computed using 50000 cells. The number of cells may seems too excessive
but they are needed in order to resolve the small scale oscillations, present in the solution due to
the physics of the problem. We observe that the both explicit and IMEX solutions are converging
to the MHD limit. In fact, explicit schemes have resolved all the waves. However it produces
some small scale oscillations. On the other hand, the IMEX scheme do not resolve the middle
contact discontinuity correctly. For explicit scheme, the small scale oscillation disappear when
SSP-RK3 time update is used(see Figure 5(c)). However, similar to the case of SSP-RK2, the
third order SSP-RK3 IMEX scheme does not resolve the contact discontinuity. This points to
the need of developing more suitable IMEX-RK schemes for two-fluid equations.
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(b) Generalized Brio-Wu shock tube problem: 50000 cells were used. Numerical
solutions are plotted for second order schemes with r̂g = 0.001
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(c) Generalized Brio-Wu shock tube problem: 50000 cells were used. Numerical
solutions are plotted for second order schemes with r̂g = 0.001

Figure 5. Generalized Brio-Wu shock tube Riemann problem
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(a) Ion-denisty evolution:Ion density ρi at time t = 0.0, 0.1, 0.2, 0.3, 0.4, and 0.5
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(b) Comparison of the schemes: Ion-density cut at x = 1 for time t = 0.5 of
various schemes

Figure 6. Soliton propagation in two dimensions

5.4. Soliton Propagation in Two space dimensions. Initial ion-density of the plasma is
considered to be,

(5.4) ρi = 1.0 + 5.0 exp(−500.0((x− Lx/2.0)2 + (y − Ly/2.0)2)

on the computational domain (0, Lx)×(0, Ly) with Lx = Ly = 2.0. All other initial conditions are
same as in the case of one dimensional soliton propagation in section 5.2.1. Neumann boundary
conditions are used to allow the waves to exit the domain without noticeable reflections. Note
that this simulation is more stiff than those carried out in [2].

Numerical results are presented Figure 6. In Figure 6(a) we have plotted the solution at non-
dimensional time of t = 0, 0.1, 0.2, 0.3, 0.4 and 0.5 using second order entropy stable scheme with
IMEX time stepping (O2-ESMN-IMEX). We observe that soliton structures similar to the one
dimensional forming and moving away from the central density hump. In Figure 6(b) we have
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one dimensional plots of the solutions at x = 1 at time t = 0.5 for explicit and IMEX schemes.
The performance of both explicit and IMEX schemes is comparable.

6. Conclusion

We have presented second-order, entropy stable finite difference schemes for the ideal two-
fluid MHD equations. The semi-discrete version of the schemes is shown to be entropy stable.
Furthermore, entropy stable schemes are shown to be more accurate (less diffusive) than the FVM
schemes using several benchmark examples. To overcome the time-step restriction imposed by
stiff source term, we have designed computationally efficient IMEX schemes. The proposed
schemes are shown to be robust in a series of numerical experiments.
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