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Abstract We study the discretization of linear transient transport problems for dif-
ferential forms on bounded domains. The focus is on semi-Lagrangian methods that
employ finite element approximation on fixed meshes combined with tracking of the
flow map. They enjoy unconditional stability.

We derive these methods as finite element Galerkin approach to discrete material
derivatives and discuss further approximations. An a priori convergence analysis is
conducted and supplemented by numerical experiments.

Keywords Convection-diffusion problem, discrete differential forms, discrete Lie
derivative, semi-Lagrangian methods

Mathematics Subject Classification (2000) 65M60, 65M25

1 Introduction

This article deals with transport dominated boundary value problems set in a polyhde-
dral Lipschitz domain Ω ⊂ R

n and governed by a prescribed continuously differentiable
velocity vector field β : Ω "→ R

n. To avoid technical difficulties we assume

β · n = 0 on ∂Ω , (1)

that is, β has vanishing normal components on the boundary of Ω.
Next, recall the classical linear transient 2nd-order convection-diffusion problem for

an unknown scalar function u = u(x, t) on a bounded polyhdedral Lipschitz domain
Ω ⊂ R

n:

∂tu − εdivgradu + β · gradu = f in Ω×]0, T [ ,

u = 0 on ∂Ω×]0, T [ ,

u(·, 0) = u0 .

(2)

H. Heumann · R. Hiptmair
Seminar for Applied Mathematics, Swiss Federal Institute of Technology, Zurich, Switzerland
Kun Li
School of Mathematical Sciences, Peking University, Beijing, China
Jinchao Xu
Department of Mathematics, PennState University, University Park, USA



2 Holger Heumann, Ralf Hiptmair, Kun Li, Jinchao Xu

Here, f models a source and u0 provides initial data. The parameter ε ≥ 0 controls the
strength of diffusion; for 0 < ε ' 1 the boundary value problem qualifies as convection-

dominated.

Solving the convection-diffusion problems numerically is usually challenging in the
case of dominant convection, because we encounter a singular perturbation. In the limit
ε → 0 of vanishing diffusion the problem type changes from parabolic to hyperbolic,
and the standard methods for parabolic problems usually fail.

We can distinguish two main families of methods for tackling the limiting transport
problem. These are the Eulerian methods and the Lagrangian methods. The former are
based on spatial discretization on a fixed mesh to which some numerical timestepping
procedure is applied. Convergence and stability are guaranteed by adding certain sta-
bilization terms as in e.g. SUPG finite element methods [18] or discontinuous Galerkin
method with upwind fluxes [17, 21, 28]. Lagrangian methods dispense with a fixed
spatial mesh and approximately track the flow induced by the velocity β. Typical rep-
resentatives are methods based on characteristics [3,10,29] and many kinds of particle
methods [7].

Both principles are blended in the semi-Lagrangian approach. On the one hand
it relies on fixed spatial meshes. On the other hand, transport is taken into account
through explicit use of the flow map. Many variants of semi-Lagrangian methods for (2)
(often for the case ε = 0) have been proposed. Articles making substantial contributions
to the numerical analysis of these methods are [9,22,23,26,27,32].

This article as well, aims at the numerical analysis of semi-Lagrangrian methods.
We go beyond the boundary value problem (2) by looking at it from the perspective of
differential forms on the n-dimensional manifold Ω. Then, utilizing the notion of the
Lie derivative, (2) turns out to be the particular instance for p = 0 of the following
generalized convection-diffusion problems for time dependent differential p-form ω =
ω(t), 0 ≤ p ≤ n

ε(−1)p+1d ∗ dω(t) + ∗∂tω(t) + ∗Lβω(t) = ϕ(t) in Ω×]0, T [ ,

ι∗ω = 0 on ∂Ω×]0, T [ ,

ω(0) = ω0 .

(3)

Here, d is the exterior derivative and ∗ is the Hodge operator and ι∗ stands for the
trace of a differential form. The convection operator Lβ is the Lie derivative [11, p. 133]
for the prescribed velocity field β. More explanations will be given in the next section.
More details and an introduction to the calculus of differential forms in the context
of discretization of partial differential equations are given in [15, Sect. 2], [2, Sect. 2],
and [1, Sect. 4]. For a general introduction to differential forms see [19, Chapter V].

The correspondence between (3) and (2) is established through the concept of
Euclidean vector proxies, which allows to model p-forms on Ω through vector fields
with

`n
p

´
components, see [4, Sect. 7], [2, Table 2.1], and [16, Table 2.1]1. For vector

proxies in 3D the exterior derivative is incarnated by the classical differential operators
grad, curl, and div.

A first benefit of studying the boundary value problem (3) is that, apart from (2)
for p = 0 it also comprises the so-called magnetic convection-diffusion problem from

1 Occasionally we will use the operator v.p. to indicate that a form is mapped to its corre-
sponding Euclidean vector proxy
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quasistatic electromagnetism in the presence of moving media for p = 1, see [14, Sect. 4].
In vector proxy notation the corresponding PDE reads

εcurlcurlA + ∂tA + curlA × β + grad(β · A) = f . (4)

Another benefit of the perspective of differential forms is the possibility of a unified
treatment of the various cases p = 0, . . . , n. This is complemented by the big advantage
of the calculus of differential forms to reveal intrinsic structure, which might be blurred
by the “metric overhead” carried by vector calculus.

The Galerkin discretization of (3) based on so-called discrete differential forms is
presented and discussed in [14]. Here we focus on the direct semi-Lagrangian approach
introduced in Sect. 3 of this article. Our main interest is in robustness of the methods,
that is, their sustained performance in the case ε → 0. The guideline is that robustness
can only be expected, if the method remains viable for the limit case ε = 0. Therefore,
we will examine only the pure advection problem

∗∂tω(t) + ∗Lβω(t) = ϕ(t) in Ω×]0, T [ ,

ω(0) = ω0 .
(5)

Note that no inflow takes place and, thus, no boundary conditions on ∂Ω are needed.
In Sects. 2 and 3 below we recall the derivation of the semi-Lagrangian discretization

of (5). For some algorithmic details we still refer to [14, Sect. 3]. The core part of the
paper will then be devoted to convergence analysis and numerical studies. For fully
discrete schemes and fixed polynomial degree of discrete forms we prove a priori error
estimates in terms of mesh width h and timestep size τ .

Of course, for the scalar problems, e.g. p = 0, the methods will resemble the known
semi-Lagrange Galerkin schemes [9,26] and semi-Lagrangian schemes based on interpo-
lation [31]. We point out that for p = 0 we recover known convergence results [9,23,26].

Unfortunately, for the simplest lowest order discrete p-forms, p > 0, our theory
does not predict convergence in the L2(Ω)-norm, when spatial and temporal resolution
are increased in tandem, though there is ample numerical evidence for it. Numerical
experiments also hint that the estimates, including those in the case p = 0, are not
sharp. Hence, our theoretical results must be regarded as preliminary, but we hope that
a more powerful theory can eventually be built on the ideas described in this article.

2 Lie derivatives and material derivatives of forms

We introduce a space-time domain QT := Ω× [0, T ] where Ω ⊂ R
n and [0, T ] ⊂ R. We

write (x, t) "→ Xt(x), t ∈ R, x ∈ Ω, for the flow map associated with the stationary
continuous vector field β : Ω "→ R

n, that is

d

dt
Xt(x) = β(Xt(x)) ∀x ∈ Ω, t ∈ R , X0(x) = x . (6)

The flow map is time-reversible, that is

Xt ◦ X−t = id ∀t ∈ R . (7)

Before introducing the Lie derivative we recall the definition of the directional derivative
for scalar functions f : Ω "→ R:

(β · gradf)(x) := lim
t→0

f(Xt(x)) − f(x)

t
. (8)
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Now we write Fp(Ω) for the space of p-forms on Ω. The scalar functions are 0–forms
and the Lie derivative Lβ of higher p-form ω ∈ Fp(Ω) is the generalization of the
directional derivative for a scalar function. For differential forms ω ∈ Fp(Ω) of order p,
p > 0, we replace the point evaluation of 0-forms with integration over p-dimensional
oriented sub-manifolds Mp of Ω. Then the Lie derivative of a p-form ω is [11, Ch. 4]:

Z

Mp

Lβω := lim
t→0

1
t

 Z

Xt(Mp)
ω −

Z

Mp

ω

!

. (9)

In terms of the pullback X∗
t with

Z

Mp

X∗
t ω :=

Z

Xt(Mp)
ω (10)

we can also write

Lβω := lim
t→0

X∗
t ω − ω

t
. (11)

With this, the Cartan’s magic formula [20, p. 142, prop. 5.3] gives the following identity:

Lβω = iβdω + diβω, (12)

where iβ is the contraction [11, p. 89]. For 0-forms the second term vanishes, for n-
forms the first one. We refer to [5, p. 26] and [14, Rem. 1.1, 1.2] for vector proxy
representations of Lie derivatives in two and three dimensional Euclidean space.

Taking into account the time dependence of the differential form ω = ω(t), the
limit value of (11) yields the so called material derivative:

Dβω(t) := lim
τ→0

X∗
τ ω(t + τ ) − ω(t)

τ
. (13)

This derivative is the rate of change of the action of differential forms in moving
media [12, p. 62]. We deduce:

Dβω(t) = lim
τ→0

X∗
τ ω(t + τ ) − X∗

τ ω(t)
τ

+ lim
τ→0

X∗
τ ω(t) − ω(t)

τ

=
∂

∂t
ω(t) + Lβω(t).

(14)

In conclusion we see that our limit problem (5) is a transport problem:

Dβω(t) = eϕ(t) in QT , ω(0) = ω0 , (15)

with eϕ := (−1)n(n−p) ∗ϕ, since ∗ ∗ω = (−1)n(n−p)ω [11, p. 364]. The explicit solution
of this transport problem (15) follows from semi-group theory:

Z

Mp

ω(t) =

Z

Mp

X∗
−tω(0) +

Z t

0

 Z

Mp

X∗
τ−t eϕ(τ )

!

dτ ∀Mp. (16)

For ϕ = 0 this means, that the advected p-form ω evaluated at time t on some p-
dimensional manifold Mp is equal to the value of ω at time 0 on the manifold X−t(Mp),
i.e. the image of Mp under X−t. In the case ϕ = 0 we find the following key conservation
properties of the solution of (15):
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First, closed forms remain closed when they are advected by the material derivative;
if Dβω(t) = 0 and dω(0) = 0 then dω(t) = 0, ∀t. This is a simple consequence of the
fact that the material derivative and the exterior derivative commute Dβd = dDβ.

Second, the so-called helicity is a conserved quantity of the solution of (5). If n is
odd and p = n−1

2 , then

h1(ω(0)) = h1(ω(t)) :=

Z

Ω
dω(t) ∧ ω(t) (17)

for solutions of (15). If n is even and p = n
2 , then we find conservation

h2(ω(0)) = h2(ω(t)) :=

Z

Ω
ω(t) ∧ ω(t), ∀t (18)

and

h3(ω(0)) = h3(ω(t)) :=

Z

Ω
dω(t) ∧ iβω(t), ∀t. (19)

For Euclidean vector proxies in R
3 the helicity functional has the familiar form

h1(A(t)) =

Z

Ω
curlA(t) · A(t) dx .

The proof of (17), (18) and (19) follows from the Leibniz rule for Lie derivatives of
products of p-forms ω and n − p forms η [11, p. 133]:

diβ(ω ∧ η) = Lβ(ω ∧ η) = Lβω ∧ η + ω ∧ Lβ (20)

and the assumption that the velocity field β has vanishing normal components on the
boundary of Ω.

It goes without saying that it is very desirable to design numerical algorithms that
inherit these properties and preserve closedness and helicity exactly or at least in some
approximative sense.

3 Discrete differential forms

Let Ωh = {T} be some simplicial triangulation of Ω. For T ∈ Ωh, hT denotes the
diameter and h = maxT∈Ωh

(hT ). Our approach to the discretization of (15) seeks to
approximate ω(t) for certain times tk in a (fixed) space of discrete differential forms

that are piecewise polynomial on Ωh. Here we do not go into details, but refer to [15],
[2], [1, Sect. 4] for an in-depth derivation and discussion of such spaces.

One finds finite element spaces for differential forms of any local polynomial degree.
More precisely, there are basically two families Wp

r (Ωh), r ∈ N0, and W̌p
r (Ωh), r ∈ N,

of finite element spaces, where r is related to the local polynomial degree and tells us
which complete polynomial space is still contained in Wp

r (Ωh) on each simplex. Forms
in these spaces have a well-defined exterior derivative and

ωh ∈ Wp
r (Ωh) ⇒ dωh ∈ Wp+1

r (Ωh), (21)

but

ωh ∈ W̌p
r (Ωh) ⇒ dωh ∈ W̌p+1

r−1 (Ωh). (22)
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On families of shape regular meshes, one can show standard approximation estimates [2,
Theorem 5.3]:

inf
ωh∈Wp

r

‖ω − ωh‖0,q ≤ Chmin(s,r+1)|ω|s,q , if |ω|s,q < ∞. (23)

measured in the Lq-norm, 1 ≤ q ≤ ∞, with C > 0 independent of h. See [15, p. 282] for
the definition of Sobolev spaces and Sobolev (semi)-norms | · |s,q of differential forms.

Further, for both families there exist so-called canonical nodal interpolation oper-
ators Ip

h [2, p. 62] commuting with the exterior derivative

dIp
hω = Ip+1

h dω, for all smooth p-forms ω on Ω . (24)

The interpolation operators Ip
h are built on canonical moment-based degrees of freedom

of the finite element spaces Wp
r (Ωh) and W̌p

r (Ωh), see [16, Sect. 3.4]. In the lowest order
case of Wp

0 (Ωh) these are simply the integrals
R
Mp

ω on all p-dimensional facets Mp of
all elements T ∈ Ωh.

In R
3 and R

2 the spaces Wp
r (Ωh) and W̌p

r (Ωh) agree with known classical finite
element spaces [2, p. 60] when we consider Euclidean vector proxies. For example, in
R

3 the spaces W1
r (Ωh) and W̌1

r (Ω) are Nédélec’s 1st and 2nd family of edge elements
presented in [24] and [25].

In light of the conserved quantities, namely exterior derivative and helicity, it is rea-
sonable to look for discretizations in such spaces of discrete differential forms. Discrete
differential forms inherit various mathematical structures from their smooth counter-
parts. They are promising candidates for achieving structure preserving discretizations.

In the subsequent derivations Wp(Ωh) is a generic discrete approximation space
for the space Fp(Ω) of p-forms on Ω.

4 Semi-Lagrangian discretization

The pullback X∗
−τ ωh of a discrete differential form ωh ∈ Wp(Ωh) will usually fail to

belong to Wp(Ωh). Thus, in order to convert the solution formula (16) into a timestep-
ping scheme for discrete differential forms, we need to introduce an intermediate pro-
jection P p

h : Fp(Ω) "→ Wp(Ωh) mapping the pullback of discrete differential forms back
to the discrete space. Given such an abstract projection operator, the discrete semi-
Lagrangian timestepping scheme with uniform timestep generates approximations ωi

h

to ω(iτ ) by the recursion

ω0
h = P p

hω0;

ωi+1
h = P p

hX∗
−τωi

h + P p
h

Z ti+1

ti

X∗
s−ti+1

eϕ(s)ds , i = 0, . . . , N − 1 .
(25)

Here, we first give an abstract error analysis for this semi-Lagrangian scheme (25),
under the assumption that the effect of the pullback can be controlled according to

‖X∗
−τ ω‖0,q ≤ (1 + Ceτ )‖ω‖0,q, (26)

with constant Ce independent of τ . We also assume a contraction property of the
projection

‖P p
h ω‖0,q ≤ ‖ω‖0,q . (27)
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Theorem 1 Let Wp(Ωh) be a piecewise polynomial space of discrete differential p-

forms with local polynomial degree r ∈ N. ω ∈ Fp(Ω) and ωh ∈ Wp(Ωh) are the

solutions to (5) and (25). Further assume that

‖P p
h ω − ω‖0,q ≤ Cphmin(s,r+1)‖ω‖s,q ∀ω ∈ Fp(Ω), ‖ω‖s,q < ∞ (28)

for some 1 ≤ q ≤ ∞ and s > 0. If there holds (26) and (27) then,

max
0≤i≤N

‖ωi − ωi
h‖0,q ≤ Chmin(s,r+1)(

1
τ

+ 1) max
0≤i≤N

‖ωi‖s,q , (29)

where ωi = ω(iτ ) and C > 0 is independent of h and τ .

Proof To bound the error ‖ωi −ωi
h‖0,q we add and substract the projection P p

hωi, use
Cauchy-Schwarz and formulas (5) and (25):

‖ωi − ωi
h‖0,q ≤ ‖ωi − P p

hωi‖0,q + ‖P p
hωi − ωi

h‖0,q

≤ ‖ωi − P p
hωi‖0,q + ‖P p

hX∗
−τ ωi−1 − P p

hX∗
−τ ωi−1

h ‖0,q

≤ ‖ωi − P p
hωi‖0,q + (1 + Ceτ )‖ωi−1 − ωi−1

h ‖0,q .

The last inequality follows from assumptions (26) and (27). A discrete Gronwall-like
inequality and the approximation assumption (28) yield with m := min(s, r + 1)

‖ωi − ωi
h‖0,q ≤

eCeτ(i−1) − 1
Ceτ

max
1≤j≤i

‖ωj − P p
hωj‖0,q + eCeτ(i−1)‖ω0 − ω0

h‖0,q

≤ Cp
eCeτ(i−1) − 1

Ceτ
hm max

1≤j≤i
‖ωj‖s,q + CpeCeτ(i−1)hm‖ω0‖s,q ,

and the assertion follows.

Note that no conditions on the timestep size τ are imposed in Theorem. 1, which
bears out the unconditional stability of semi-Lagrangian schemes, provided that the
underlying projection is a contraction, cf. [22].

Now we examine two concrete choices of the abstract projection operator P p
h .

1.) Interpolation scheme. A natural projection operator is the standard nodal
interpolation operator for discrete differential forms [2, p. 61]. With this, the interpo-

lation based semi-Lagrangian scheme reads:

ω0
h = Ip

hω0;

ωi+1
h = Ip

hX∗
−τωi

h +

Z ti+1

ti

Ip
hX∗

s−ti+1
eϕ(s)ds.

(30)

Unfortunately, Theorem (1) does not give convergence for most of these schemes, since
the interpolation operator lacks continuity in Lq . Only for the lowest order approxi-
mation of 0-forms (functions), e.g. r = 1 and p = ∞, we have the contraction property

‚‚‚I0
hu
‚‚‚
0,∞

≤ ‖u‖0,∞ ∀u ∈ L∞(Ω) ∩ C0(Ω) .

The assumption (28) follows immediately and the standard approximation estimate
(23) finally gives convergence. Nonetheless in our 2D experiments the interpolation
scheme invariably converged in L2(Ω) for p = 1, see Sect. 6.
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2.) Galerkin projection scheme. Let (·, ·)Ω denote the inner product on Fp(Ω)

(ω, η)Ω :=

Z

Ω
ω ∧ ∗η, ω, η ∈ Fp(Ω) .

The L2-orthogonal projection operator Πp
h defined by

(Πp
hω, ηh)Ω := (ω, ηh) ω ∈ Fp(Ω), ηh ∈ Wp(Ωh), (31)

is another natural candidate for the abstract projection operator in (25). The resulting
Galerkin projection semi-Lagrangian scheme is:

(ω0
h, ηh)Ω = (ω0, ηh)Ω ∀ηh ∈ Wp(Ωh);

(ωi+1
h , ηh)Ω = (X∗

−τ ωi
h, ηh)Ω +

Z ti+1

ti

(X∗
s−ti+1

eϕ(s), ηh)Ωds ∀ηh ∈ Wp(Ωh).
(32)

First, as is readily seen, the L2-projection Πp
h commutes with integration in time. Sec-

ond, we clearly have a contraction property ‖Πp
h‖0,2 ≤ 1 for the projection operator,

and the best approximation estimates (23) for q = 2 immediately yield analoguous
estimates for Πp

h. Hence, Theorem (1) gives convergence once the bounded expan-
sion property of ‖X∗

−τ ω‖0,2 is verified. The assumption that β has vanishing normal
components implies Xτ (Ω) = Ω and thus

‖X∗
−τ ω‖0,2 =

Z

Ω
X∗

−τω ∧ ∗X∗
−τ ω =

Z

Ω
ω ∧ X∗

τ ∗ X∗
−τω. (33)

In the cases n = 2 and n = 3 we can immediately deduce explicit representations of
X∗

τ ∗X∗
−τ from the known representation formulas for pullbacks (see [15, p. 245]), e.g.

for differential forms ω in R
3 with vector proxies u or u we get:

p = 0 : v.p.(X∗
τ ∗ X∗

−τ ω)(x) = det(DXτ (x))u(x),

p = 1 : v.p.(X∗
τ ∗ X∗

−τ ω)(x) = det(DXτ (x))DX−1
τ (x)DX−T

τ (x)u(x),

p = 2 : v.p.(X∗
τ ∗ X∗

−τ ω)(x) = det(DXτ (x))−1DXT
τ (x)DXτ (x)u(x),

p = 3 : v.p.(X∗
τ ∗ X∗

−τ ω)(x) = det(DXτ (x))−1u(x).

(34)

In summary, we can bound X∗
−τ ω by

‖X∗
−τ ω‖2

0,q ≤ C(τ )‖ω‖2
0,q, (35)

where the constant C(τ ) depends on the Jacobian DXτ and determinant det(DXτ ).
For smooth velocity β these are smooth functions of τ [13, p. 100], thus, Taylor expan-
sion and DX0 = Id yield the desired bound:

‖X∗
−τ ω‖2

0,q ≤ (1 + Ceτ )‖ω‖2
0,q. (36)

For the general case of p-forms in R
n similar bounds can be established according to

the following Lemma.

Lemma 1 For sufficiently small τ there exists Ce such that

‖X∗
−τ ω‖2

0,2 ≤ (1 + Ceτ )‖ω‖2
0,2.
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Proof Let vol denote the volume form on Ω, i.e.
R
Ω vol = |Ω|. A differential p-form

ω ∈ Fp at x ∈ Ω is a alternating p-linear map on the tangent space, i.e. here with
Ω ⊂ R

n: ωx : R
n × · · ·× R

n "→ R. Then we have [2, p. 17]

‖ω‖2
0,2 =

Z

Ω
ω ∧ ∗ω =

Z

Ω
〈ωx, ωx〉vol,

where 〈·, ·〉 is the innerproduct on alternating p-linear maps [2, p. 11]: For η, ω ∈ Fp

〈ωx, ηx〉 =
X

σ

ωx

“
eσ(1), . . . eσ(p)

”
ηx

“
eσ(1), . . . eσ(p)

”
,

where the sum is over increasing sequences σ : {1, . . . , p} "→ {1, . . . , n} and e1, . . . en

is any orthonormal basis of R
n.

With these definitions and notations we have

‖X∗
−τ ω‖2

0,2 =

Z

Ω
X∗

−τω ∧ ∗X∗
−τ ω =

Z

Ω
〈
`
X∗

−τ ω
´
x

,
`
X∗

−τω
´
x
〉vol.

From the definition of the pullback it follows [2, p. 16]

`
X∗

−τ ω
´
x

(e1, . . . , ep) = ωX−τ (x) (DX−τ (x)e1, . . . , DX−τ (x)ep)

and we find

〈
`
X∗

−τ ω
´
x

,
`
X∗

−τω
´
x
〉 =

X

σ

“
ωX−τ (x)

“
DX−τ (x)eσ(1), . . . , DX−τ (x)eσ(p)

””2
.

Then p-linarity yields [30, p. 610]

〈
`
X∗

−τ ω
´
x

,
`
X∗

−τ ω
´
x
〉 =

X

σ

 
X

σ′

Mp
σ′,σωX−τ (x)

“
eσ′(1), . . . , eσ′(p)

”!2

,

where σ′ runs over increasing sequences {1, . . . , p} "→ {1, . . . , n} and Mp
σ′,σ are the

p-minors of the matrix DX−τ (x), i.e. the determinates of those matrices that consists
of the rows σ(1), . . . , σ(p) and columns σ′(1), . . . , σ′(p) of DX−τ (x). Let M p denote
that matrix that has all p-minors of DX−τ as entries, then we get the bound

〈
`
X∗

−τ ω
´
x

,
`
X∗

−τ ω
´
x
〉 ≤ ρ(x, τ, p)〈ωX−τ (x), ωX−τ (x)〉,

where ρ(x, τ, p) = ρ(MT
p M p) is the spectral radius of MT

p M p. Since DX0(x) is the
identity matrix we find in particular ρ(x, 0, p) = 1. Recall that Xτ (Ω) = Ω implies

Z

Ω
〈ωX−τ (x), ωX−τ (x)〉vol =

Z

X−τ (Ω)
〈ωX−τ (x), ωX−τ (x)〉vol

=

Z

Ω
〈ωx, ωx〉X

∗
τ vol.

Since v.p.(X∗
τ vol)(x) = det(DXτ (x)) v. p.(vol)(x) we get

‖X∗
−τ ω‖2

0,2 ≤ sup
x∈Ω

( |det(DXτ (x))|ρ(x, τ, p) ) ‖ω‖2
0,2,

which yields the assertion, since DXτ (x) is a smooth function of τ and DX0 is the
identity matrix [13, p. 100].
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Remark 1 For τ = T the semi-Lagrangian schemes seem to provide ω(T ) in one step.
This is true, but irrelevant, because we are studying semi-Lagrangian methods as build-
ing blocks for the discretization of the convection-diffusion problem (3), see [14]. Unduly
large timesteps will make the scheme miss the diffusion completely. Therefore, τ has
to be linked to the spatial meshwidth h.

Remark 2 For τ = O(h) the estimates in Theorem 1 are suboptimal. In particular
convergence can not be proven for r = 0, although it is suggested by our experiments.
This phenomenon is also observed for Lagrangian methods of scalar transport problems.
Up to our knowledge there exists no proof of convergence for the case r = 0, except
for certain simplified problems in R

1 and R
2 with constant velocity [23].

5 Fully discrete semi-Lagrangian schemes

An actual implementation of schemes (32) and (30) requires further approximations.
This needs to be done very carefully in order to preserve the favourable stability prop-
erties of Lagrangian schemes established in Theorem 1. A family of simplicial meshes
(Ωh)h with mesh width h is taken for granted.

(i) Approximate flow map. First we would like to introduce approximations X̄τ

of the flow map Xτ that depend on both Ωh and the timestep τ . We require consistency
in the following sense:

– X̄τ : Ω "→ Ω is Ωh-piecewise smooth,
– there are k, l ≥ 1 such that for h → 0 and τ → 0

‖Xτ − X̄τ‖∞ ≤ O(hk+1τ + τ l) and ‖Xτ − X̄τ‖1,∞ ≤ O(hkτ + τ l). (37)

A simple construction of approximate flow maps relies on the nodal basis functions
(λi)i spanning the space of continuous piecewise polynomial Lagrangian finite element
functions of degree k. The degrees of freedom associated to these basis functions are
point evaluations at particular nodal points (ai)i defined by affine coordinates inside
the simplices of the mesh. Then we define

X̄τ (x) :=
X

i

X̄τ,iλi(x) (38)

where the coefficients X̄τ,i are approximations to the trajectories Xτ (ai) of the degrees
of freedoms ai with

‖Xτ (ai) − X̄τ,i‖ ≤ O(τ l) for τ → 0 , (39)

see figure 1 for an illustration.
This approximation is consistent by construction. The error |Xτ−X̄τ |s,∞ splits into

an error originating from approximations of the trajectories of the degrees of freedom,
which is assumed to be of order O(τ l), and an error originating from interpolation in
Lagrangian finite element functions. The bound on the interpolation error follows from
standard interpolation estimates for Lagrangian finite elements [6, Sect. 3.1]. If Πh

denotes the interpolation operator and β is sufficiently smooth, we have:

‖Xτ − ΠhXτ‖s,∞ = ‖Xτ − id−Πh(Xτ − id)‖s,∞

≤ Chk+1−s|Xτ − id |k+1,∞

≤ Chk+1−sτ |β|k+1,∞,
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Fig. 1 Illustration of the approximation of the flow map Xτ . Left: The fixed mesh Ωh (blue
solid lines) and its image Xτ (Ωh) (red dashed lines) under the exact flow. For smooth β
Xτ (Ωh) consists of non-polynomial curved polygons. Right: A low order consistent approxima-
tion X̄τ (Ωh) (black solid lines) of Xτ (Ωh) (red dashed lines). Here we used linear Lagrangian
elements and exact trajectories for the vertices, hence X̄τ (Ωh) has again straight edges and
the vertices of Xτ (Ωh) and X̄τ (Ωh) coincide.

where the last inequality follows from (6).

(ii) Approximation of the source. We have to approximate the time integration
of the right-hand side in (32) and (30). Since ϕ does not depend on ω, it is reasonable
to chose some quadrature method for the approximation Q(ϕ, t, t + τ ) ≈

R t+τ
t ϕ(s)ds

which satisfies

˛̨
˛̨
Z t+τ

t
ϕ(s)ds − Q(ϕ, t, τ )

˛̨
˛̨ ≤ Cτm max

t≤s≤t+τ

˛̨
˛̨ dm

dtm
ϕ(s)

˛̨
˛̨ , m ≥ 1 . (40)

Now we are in a position to formulate fully discrete semi-Lagrangian timestepping
schemes.

1.) Fully discrete Galerkin projection scheme. Find ωi
h ∈ Wp(Ωh), i =

0, . . . , N , such that for all ηh ∈ Wp(Ωh):

(ω0
h, ηh)Ω = (ω0, ηh)Ω ;

(ωi+1
h , ηh)Ω = (X̄∗

−τωi
h, ηh)Ω + (Q(X̄∗

s−ti+1
eϕ(s), ti, ti+1), ηh)Ω .

(41)

For p = 0 and continuous piecewise linear approximation spaces (41) is exactly the
scheme in [27].

2.) Fully discrete interpolation scheme. Find ωi
h ∈ Wp(Ωh), i = 0, . . . , N ,

such that:
ω0

h = Ip
hω0;

ωi+1
h = Ip

hX̄∗
−τ ωi

h + Ip
hQ(X̄∗

s−ti+1
eϕ(s), ti, ti+1)

(42)

Owing to the approximation (38) of the flow map, the pullbacks are still piecewise
polynomial. Hence, the right-hand sides in (41) and (42) can be computed exactly. For
instance, for the Galerkin projection scheme (41) this can be done after the intersections
of all elements T of the mesh Ωh with all elements X̄τ (T ′) of the transported mesh
X̄τ (Ωh) have been found (see Figure 2 for illustration).
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Fig. 2 The innerproducts on the right-hand side of the Galerkin projection scheme (41) pair
finite element functions defined on two different meshes, namely the fixed mesh (blue dashed
lines) and the approximated transported mesh (black solid lines). Since in both meshes the
facets are polynomial, we can algorithmically determine a partitioning of Ω such that all
appearing finite element functions are smooth on each part. The finite element functions and
the pullbacks are polynomials, hence the innerproducts can be computed exactly.

At a first glance this seems to be very expensive. Nevertheless we contend that at
least for the case of low order approximations (k = 0) such schemes provide competitive
methods.

The interpolation schemes (42) are cheaper in certain cases. In particular, in the
case of lowest order approximation and p < n the degrees of freedom are simple facet
integrals and we only need to determine intersections of transported p-dimensional
facets with elements T of mesh Ωh. In addition, the interpolation schemes give entirely
explicit schemes, while for the Galerkin projection schemes we have to solve a linear
system in each timestep. Algorithmic details for interpolation schemes are discussed
in [14, Sect. 3].

Remark 3 Inspired from standard finite element techniques one could be tempted to
split the inner product (X̄∗

−τωh, ηh)Ω into a sum of integrals over elements of Ωh

and apply some quadrature rule there. We dub this scheme the quadrature-based
scheme:

Find ωi
h ∈ Wp(Ωh), i = 0, . . . , N , such that for all ηh ∈ Wp(Ωh):

(ω0
h, ηh)Ω,h = (ω0, ηh)Ω,h;

(ωi+1
h , ηh)Ω,h = (X̄∗

−τωi
h, ηh)Ω,h + (Q(X̄s−ti+1 eϕ(s), ti, ti+1), ηh)Ω,h ,

(43)

with

(ω, η)Ω,h =
X

T∈Ωh

X

i

wi,T ∗ ω(xi,T ) ∧ η(xi,T ) (44)

for suitable quadrature points (xi,T )i ∈ T and quadrature weights (wi,T )i. Compared
to the projection scheme this reduces the computational cost, since only the trajectories
for the quadrature points need to be computed. However, this scheme is dubious since
we apply quadrature on domains with discontinuous integrands. Our experiments in
the next section (see Example 2) show that these doubts are justified.
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In analogy to Theorem 1 we can prove convergence for the solutions of the Galerkin
projection scheme (41). To begin with, for sufficiently smooth velocity β our consistent
approximations of the flow map fulfill

‖X∗
−τ ω − X̄∗

−τ ω‖0,2 ≤ Cf (hkτ + τ l)‖ω‖1,2 , (45)

for Cf = Cf (β, Dβ) > 0 independent of h and τ .

Lemma 2 Assume the velocity field β fulfils ‖β‖l+1,∞ ≤ ∞. Then a consistent ap-

proximation of the flow map according to (38) fulfills (45).

Proof The proof uses similar arguments as the proof of Lemma 1. With the notation
introduced there, we have in particular

‖X∗
−τ ω − X̄∗

−τ ω‖2
0,2 =

Z

Ω

˙`
X∗

−τ ω − X̄∗
−τω

´
x

,
`
X∗

−τ ω − X̄∗
−τ ω

´
x

¸
vol.

In what follows σ and σ′ are increasing sequences {1, . . . , p} "→ {1, . . . , n} and e1, . . . , en

is an orthonormal basis of R
n. For fixed x ∈ Ω and τ we introduce the abbreviations

ωx (eσ) := ωx

“
eσ(1), . . . , eσ(p)

”
, ωX := ωX−τ (x) and DX := DX−τ (x). Then we find

`
X∗

−τ ω
´
x

(eσ) = ωX (DXeσ) =
X

σ′

Mp
σ′,σωX (eσ)

and `
X̄∗

−τω
´
x

(eσ) = ωX̄

`
DX̄eσ

´
=
X

σ′

M̄p
σ′,σωX̄ (eσ) ,

where Mp
σ,σ′ and M̄p

σ,σ′ are the p-minors of DX and DX̄ . Together this yields

`
X∗

−τω − X̄∗
−τω

´
x

(eσ) = ωX (DXeσ) − ωX̄

`
DX̄eσ

´
= A1 + A2

with
A1 =

X

σ′

“
Mp

σ′,σ − M̄p
σ′,σ

”
ωX (eσ′)

and
A2 =

X

σ′

M̄p
σ′,σ (ωX (eσ′) − ωX̄( eσ′ )) .

For each σ′ we have that ωX(eσ′) is function of X, i.e. for smooth differential forms
Taylor expansion yields

ωX(eσ′) = ωX̄(eσ′ ) + (X − X̄)∂xωx(eσ′)|x=X+s(X−X̄)

for some s with 0 ≤ s ≤ 1. As in the proof of Lemma (1) the matrices containing the
p-minors of DX and DX̄ shall be denoted by M p. Thus, we have

‖X∗
−τ ω − X̄∗

−τω‖2
0,2 ≤ a1 + a2,

with
a1 = sup

x
ρ
“
(M p − M̄ p)T (Mp − M̄ p)

”
sup

x
|det(DXτ )|‖ω‖2

0,2

and
a2 = sup

x
ρ
“
M̄

T
p M̄ p)

”
sup

x
|det(DXτ )|‖X − X̄‖2

0,∞|ω|21,2.

We get the bound

‖X∗
−τ ω − X̄∗

−τ ω‖2
0,2 ≤ C‖X−τ − X̄−τ‖

2
1,∞‖ω‖2

0,2 + C‖X−τ − X̄−τ‖
2
0,∞|ω|21,2,

and the assertion follows.
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Theorem 2 Let ωh be the solution of (41) with either Wp(Ωh) = Wp
r (Ω),r ≥ 0, or

Wp(Ωh) = W̌p
r (Ωh), r > 0. Assume

– that the solution ω(t) ∈ Fp(Ω) of (3) satisfies ‖ω‖s,2 < ∞ for s ≥ 1 and all

0 ≤ t ≤ T ,

– the expansion property (26) for the exact flow map,

– order m approximation of the source according to (40).

Then for h and τ sufficiently small it is

max
0≤i≤N

‖ωi − ωi
h‖0,2 ≤C

„
(1 +

1
τ

)hmin(s,r+1) + hk + τ l−1
«

max
0≤i≤N

‖ωi‖s,2

+ C(τm−1 + τhk + τ l)C(eϕ)

(46)

where ωi = ω(iτ ).

Proof The proof is similar to the proof of Theorem 1. The additional approximations,
the approximate flow and the approximation of the source, give additional consistency
errors in the error recursion for the error:

‖ωi − ωi
h‖0,2 ≤‖ωi − Πp

hωi‖0,2 + ‖Πp
hωi − ωi

h‖0,2

≤‖ωi − Πp
hωi‖0,2 + ‖Πp

hX∗
−τωi−1 − Πp

hX̄∗
−τ ωi−1

h ‖0,2

+ ‖Πp
h

Z ti

ti−1

X∗
s−ti

eϕ(s)ds − Πp
hQ(X̄∗

s−ti
eϕ(s), ti−1, ti)‖0,2

:=E1 + E2 + E3.

For the second term in the last line we find by L2-stability, bound (26), bound (45)
and l ≥ 1:

E2 ≤‖X∗
−τ ωi−1 − X̄∗

−τωi−1
h ‖0,2

≤‖X̄∗
−τ ωi−1 − X̄∗

−τωi−1
h ‖0,2 + ‖(X∗

−τ − X̄∗
−τ )ωi−1‖0,2

≤(1 + Ceτ )‖ωi−1 − ωi−1
h ‖0,2 + Cf (hkτ + τ l)‖ωi−1‖1,2.

For the term E3 we get from bound (45) and the approximation of the source:

E3 ≤‖

Z ti

ti−1

X∗
s−ti

eϕ(s)ds − Q(X̄∗
s−ti

eϕ(s), ti−1, ti)‖0,2

≤‖

Z ti

ti−1

X̄∗
s−ti

eϕ(s)ds − Q(X̄∗
s−ti

eϕ(s), ti−1, ti)‖0,2

+ ‖

Z ti

ti−1

X̄∗
s−ti

eϕ(s)ds −

Z ti

ti−1

X∗
s−ti

eϕ(s)ds‖0,2

≤C1(eϕ)hm + C2(eϕ)(hkτ2 + τ l+1),

with C1(eϕ) and C2(eϕ) independent of h and τ . Then discrete Gronwall-like inequality
yields:

‖ωi − ωi
h‖0,2 ≤

eCeτ(i−1) − 1
Ceτ

max
1≤j≤i

“
‖ωj − Πp

hωj‖0,2 + Cf (hkτ + τ l)‖ωj−1‖1,2

”

+
eCeτ(i−1) − 1

Ceτ
(τm + τ2hk + τ l+1)C(ϕ)

+ eCτ(i−1)‖ω0 − ω0
h‖0,2
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and the assertion follows.

Since (26) cannot hold for the interpolation operators Ip
h, a counterpart of Theo-

rem. 2 remains elusive for the interpolation scheme (42). However, if we had a conver-
gence estimate for all p in some norm, this would involve an estimate for d(ωi −ωi

h) in
the same norm. This could be concluded from the commuting diagram property (24).

This commuting property is also very important for analyzing whether the dis-
crete schemes inherit the preservation of closedness or helicity. While the interpolation
schemes obviously preserve closedness of initial data in the case of vanishing righthand
side ϕ, this cannot be expected from the Galerkin projection scheme.

The following lemma proves, that the interpolation schemes preserve helicity ap-
proximatively, e.g. the error converges with the same rate as the error of the solution.

Lemma 3 Let ω be the solution of (3) with ϕ = 0 and assume that the solution ωh(T )
of the interpolation scheme (42) satiesfies for all p ∈ {0, . . . , n} and some s > 1

‖ω(0) − ωh(0)‖0,q ≤ Chs and ‖ω(T ) − ωh(T )‖0,q ≤ Chs . (47)

with C > 0 independent of h and ω. Then

|hi(ωh(0)) − hi(ωh(T ))| ≤ Chs . (48)

where hi, i = 2, 3 for even n,i = 1 for odd n, stands for the helicity functionals defined

in (17), (18) and (19).

Proof We give the proof for helicity h1. For h2 and h3 the assertion follows in the same
way. Note that h1(ω(0)) − h1(ω(T )) := h1(ω

0) − h1(ω
N ) = 0, then

|h1(ω
0
h) − h1(ω

N
h )| =|h1(ω0

h) − h1(ω0) + h1(ω
N ) − h1(ωhN )|

=

˛̨
˛̨
Z

Ω
dω0

h ∧ ω0
h − dω0 ∧ ω0 + dωN ∧ ωN − dωN

h ∧ ωN
h

˛̨
˛̨

≤

˛̨
˛̨
Z

Ω
(dω0

h − dω0) ∧ ω0
h

˛̨
˛̨+
˛̨
˛̨
Z

Ω
dω0 ∧ (ω0

h − ω0)

˛̨
˛̨

+

˛̨
˛̨
Z

Ω
(dωN − dωN

h ) ∧ ωN

˛̨
˛̨+
˛̨
˛̨
Z

Ω
dωN ∧ (ωN − ωN

h )

˛̨
˛̨

The assertion follows by Cauchy-Schwarz-inequality and the fact that the exterior
derivatives of solutions of the interpolation schemes converge of same order as the
solutions themselves.

6 Numerical examples: 1-forms in R
2

In this section we take Ω = R
2 and study the performance of semi-Lagrangian methods

for the transport problem

∗∂tω(t) + ∗Lβω(t) = ϕ in Ω ⊂ R
2 ,

ω(0) = ω0
(49)
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for time-dependent 1-forms ω(t) ∈ F1(Ω). In vector proxy notion with u := v. p.(ω)
this reads

∂tu + grad(β · u) + RT
div(Ru)β = f in Ω ,

u(0) = u0 in Ω,
(50)

with R =

„
0 1
−1 0

«
. We approximate ω by lowest order discrete 1-forms ωh ∈ W1

0 (Ωh)

on a triangular mesh Ωh. In the following we will study the performance of the Galerkin

projection schemes 41 and the interpolation schemes 42. The discrete space W1
0 (Ωh)

consists of tangentially continuous, piecewise polynomial functions, with piecewise con-
stant exterior derivatives (“edge elements”). The basis functions are associated with
the edges of the mesh and the degrees of freedom are line integrals on edges.

Further, we use continuous piecewise linear Lagrangian finite elements to approx-
imate the flow map (38). If not stated differently, we use explicit Euler timesteps to
determine the flow of the vertices. Thus, the transported mesh X̄τ (Ωh) is again a mesh
with straight edges. The inner products for both, the Galerkin projection scheme and
the interpolation scheme, are calculated exactly. The right-hand sides are evaluated by
means of one-point quadrature in time, using the endpoint of the integration interval
(40). In the following experiments we link the timestep size τ to the meshsize h by the
relationship

τ = γ
h

‖β‖
, (51)

where γ is some constant. In most cases, we will choose γ ≈ 1, which is advisable for the
full advection-diffusion problem in a setting with (locally) significant diffusion. Remem-
ber that it is this class of problems that we aim to design methods for. Nevertheless,
for the sake of brevity and clarity, we do not treat diffusion terms here.

6.1 Example 1: Generic right-hand side

In (50), we consider Ω = [−1, 1]2 and choose the velocity

β = (1 − x2
1)(1 − x2

2)

„
0.66
1

«
.

The date u(0) and f is chosen such that

u = cos(2πt)

„
sin(πx1) sin(πx2)
(1 − x2

1)(1 − x2
2)

«
.

is the solution. With this choice we encounter a non-zero right-hand side in (50).

In Figure 3 we monitor the convergence for different values of γ. The numerical
error of the interpolation scheme and the projection scheme are almost the same. Since
we observe convergence here, we conclude that our estimate in Theorem 2 is not sharp.
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IS (γ = 0.25)

PS (γ = 0.25)

IS (γ = 0.5)

PS (γ = 0.5)

IS (γ = 0.8)

PS (γ = 0.8)

O(h)

Fig. 3 Example 1: Convergence rates of L2-error at t = 0.4 for the interpolation scheme (IS)
and the Galerkin projection scheme (PS) on time interval [0, 0.4] for γ = 0.25, γ = 0.5 and
γ = 0.8.

6.2 Example 2: Failure of quadrature based scheme

The drawback of the Galerkin projection scheme obviously is the requirement to cal-
culate the inner products (X̄∗

−τ ωh, ηh)Ω exactly. A cheaper option is the quadrature-
based scheme introduced in remark 3.

We consider the same data for problem (50) as in example 1. Figure 4 shows the
convergence rate of a quadrature-based scheme built on the barycenters as quadrature
points. Only for a few initial refinement steps there is some sort of convergence, breaking
down when we refine further. We observe the same phenomenon, if we use higher
order quadrature rules to approximate the inner products (see Figure 5). This result
is as expected since the quadrature-based scheme applies quadrature on domains with
discontinuous integrands.

6.3 Example 3: Rotating hump problem

Now we study the behaviour of the interpolation scheme (42) and the projection scheme
(41) for the classical rotating hump problem [8, Sect. 5.1]. We consider problem (50) on
a circular domain Ω := {(x1, x2) : x2

1 + x2
2 ≤ 1} with source term f = 0, the velocity

field:

β =

„
x2

−x1

«
(52)
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Fig. 4 Example 2: Convergence rate of the L2-error at t− 0.4 for a Galerkin scheme with low
order quadrature on the time interval [0, 0.4] and γ = 0.2, γ = 0.4, γ = 0.6 and γ = 0.8.

and “smooth hump” initial data

u0(x) =

8
<

:
grad f(x) , for

q
x2
1 + (x2 − 0.25)2 ≤ 0.5

(0, 0)T , for
q

x2
1 + (x2 − 0.25)2 > 0.5 ,

∈ C2(Ω) . (53)

with the function

f(x) = cos

„
π
q

x2
1 + (x2 − 0.25)2

«4

. (54)

The exact solution is

u(t, x) = (R(t))−1u0(R(t)x), R(t) :=

„
cos(t) − sin(t)
sin(t) cos(t)

«
. (55)

In order to study the impact of the approximation of the flow map, we use both (i)
the explicit Euler method, and (ii) the explicit midpoint method in order to determine
the positions of the vertices of the advected mesh, cf. (38). Final time is T = 2π,
that is, we track one full revolution. Tables 1, 2, 3, 4 list the L2 errors of numerical
solutions at T = 2π for different mesh sizes h and timestep sizes τ . The numbers
convey the need for balancing h and τ , with higher order integration of trajectories
allowing larger timesteps. First, for fixed meshsize h we observe that the minimal error
is not attained for the minimal timestep size, but for some medial values of τ . This
observation matches the negative power of τ in the estimate of Theorem (2).



Semi-Lagrangian methods for advection of differential forms 19

10−2 10−1

10−1

100

h

L
2
-e

rr
or

order 2

order 3

order 13

O(h)

Fig. 5 Example 2: Convergence rate of the L2-error at t − 0.4 for a Galerkin scheme with
local quadrature rules of different orders on the time interval [0, 0.4].

τ\h 0.420 0.210 0.105 0.052 0.026
1.5707 1.86 1.89 1.86 1.88 2.33
0.7853 1.86 1.88 1.88 2.01 2.36
0.3926 1.84 1.82 1.80 2.01 2.32
0.1963 1.85 1.79 1.52 1.51 1.79
0.0997 1.85 1.80 1.54 1.05 1.02
0.0498 1.85 1.81 1.59 1.18 0.63
0.0249 1.85 1.81 1.61 1.26 0.79
0.0124 1.85 1.81 1.62 1.30 0.88
0.0062 1.85 1.81 1.63 1.31 0.92

Table 1 Example 3, rotating hump: L2-error of the solution of the interpolation scheme
(42) with explicit Euler method for different discretization parameters timestep τ (rows) and
mesh size h (columns).

Second, when comparing the errors for the two integration schemes, we see that the
minimal error for the explicit midpoint method is attained for larger values of τ than
for the explicit Euler method. This reflects the higher order approximation properties
of the explicit midpoint method, that appear explicitly in the estimate of Theorem 2
for the projection scheme.

For our choice of data we find that the solution fulfills divRu = 0 for all times,
which we expect to hold also for the numerical solution produced by the interpolation
scheme. Yet, when using the explicit midpoint rule for tracking vertex trajectories.
This is only true for small timesteps and fine meshes as can be seen from Figure 7 On
the other hand, the scheme based on explicit Euler seems immune to “div-pollution”.
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Fig. 6 Example 3: Convergence rates of L2-error at t = 0.5π for the interpolation scheme
with explicit midpoint rule (MM) and explicit Euler method (EE) on time interval [0, 0.5π]
for γ = 0.2, γ = 0.4, γ = 0.6 and γ = 0.8.

τ\h 0.420 0.210 0.105 0.052 0.026
1.5707 1.85 1.86 1.91 2.12 2.47
0.7853 1.79 1.53 1.51 1.70 1.80
0.3926 1.83 1.56 0.99 0.55 0.50
0.1963 1.84 1.72 1.23 0.60 0.22
0.0997 1.84 1.77 1.49 0.85 0.33
0.0498 1.85 1.79 1.56 1.15 0.52
0.0249 1.85 1.80 1.59 1.24 0.79
0.0124 1.85 1.81 1.61 1.28 0.87
0.0062 1.85 1.81 1.62 1.31 0.92

Table 2 Example 3, rotating hump: L2-error of the solution of the interpolation scheme
(42) with explicit midpoint method for different discretization parameters timestep τ (rows)
and mesh size h (columns).

We blame this puzzling observation on the fact that the approximate flow maps will
not map Ω exactly onto itself; backward trajectories may leave the domain and there
may be edges, whose image under the flow will be at least partly outside the fixed mesh.
In our implementation of the interpolant ΠhX̄∗

−τ ωh we simply ignore the contribution
of such edges, thus destroying the closedness property, see Figures 8. As long as ωh has
compact support away from ∂Ω this effect remains invisible. Yet, inevitable artificial
diffusion will make suppωh spread, reach ∂Ω, and interpolation errors will pollute
dωh, see Figure 7. Perversely, this happens for the midpoint rule but not in the case of
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τ\h 0.420 0.210 0.105 0.052 0.026
1.5707 1.85 1.86 1.90 2.11 2.45
0.7853 1.85 1.85 1.87 2.02 2.32
0.3926 1.84 1.80 1.78 1.99 2.29
0.1963 1.84 1.79 1.57 1.49 1.75
0.0997 1.84 1.80 1.60 1.18 1.01
0.0498 1.85 1.81 1.64 1.31 0.75
0.0249 1.85 1.81 1.66 1.39 0.96
0.0124 1.85 1.82 1.68 1.40 1.01
0.0062 1.85 1.82 1.69 1.43 1.11

Table 3 Example 3, rotating hump: L2-error of the solution of the projection scheme (41)
with explicit Euler method for different discretization parameters timestep τ (rows) and mesh
size h (columns).

τ\h 0.420 0.210 0.105 0.052 0.026
1.5707 1.85 1.87 1.94 1.88 2.33
0.7853 1.84 1.61 1.52 1.73 1.84
0.3926 1.83 1.71 1.01 0.56 0.51
0.1963 1.84 1.74 1.22 0.67 0.25
0.0997 1.84 1.78 1.50 0.86 0.34
0.0498 1.84 1.80 1.59 1.20 0.56
0.0249 1.85 1.81 1.62 1.28 0.81
0.0124 1.85 1.81 1.66 1.40 0.99
0.0062 1.85 1.82 1.67 1.43 1.10

Table 4 Example 3, rotating hump: L2-error of the solution of the projection scheme (41)
with explicit midpoint method for different discretization parameters timestep τ (rows) and
mesh size h (columns).
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Fig. 7 Example 3: Behavior of ‖divRuh‖0,1 as a function of t, with uh produced by the
interpolation scheme with explicit midpoint rule (EM) and explicit Euler (EE) on meshes with
different mesh sizes for the time intervall [0, 0.5π].
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the Euler method, because for the rotating flow the latter introduces a stronger drift
towards the center, which completely offsets outward numerical diffusion.
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Fig. 8 Example 3: Plot of the modulus of uh(0.5π) (left) and divRuh(0.5π) (right), with uh

obtained by the interpolation scheme with explicit midpoint rule on a mesh with mesh size
h = 0.0521 and κ = 0.8. Note the “div-pollution” emerging close to ∂Ω.
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