Plane wave approximation in linear elasticity

A. Moiola

Research Report No. 2011-20
April 2011
Seminar für Angewandte Mathematik
Eidgenössische Technische Hochschule
CH-8092 Zürich
Switzerland

Plane wave approximation in linear elasticity

Andrea Moiola

April 5, 2011

Abstract

We consider the approximation of solutions of the time-harmonic linear elastic wave equation by linear combinations of plane waves. We prove algebraic orders of convergence both with respect to the dimension of the approximating space and to the diameter of the domain. The error is measured in Sobolev norms and the constants in the estimates explicitly depend on the problem wavenumber.

1 Introduction

In order to efficiently discretize the time-harmonic elastic wave equation (Navier equation), some nonpolynomial finite element methods with plane wave basis functions have been designed; see for instance the schemes described in [4,5]. A rigorous convergence analysis of these methods requires the proof of a best-approximation estimate: a bound on the minimal error $\inf _{\boldsymbol{v}_{N} \in V_{N}}\left\|\boldsymbol{u}-\boldsymbol{v}_{N}\right\|$ where \boldsymbol{u} is a given solution of the considered PDE, V_{N} is the discrete trial space, and $\|\cdot\|$ is a suitable norm.

For acoustic wave propagation, governed by the Helmholtz equation, approximation estimates have been proven in [6] using Vekua's theory, harmonic polynomial approximation results, and a careful residual estimate of Jacobi-Anger's expansion. Here we use the results of [6] to prove similar bounds for solutions of the time-harmonic Navier equation.

Using a balanced choice of pressure and shear waves, we obtain algebraic orders of convergence both in the diameter of the considered domain and in the dimension of the approximating space; these parameters are relevant for the h - and p-convergence of the corresponding finite element methods. The error is measured in weighted Sobolev norms on a bounded, star-shaped, Lipschitz domain. The dependence of the constants on the wavenumbers of pressure and shear waves is made explicit.

The proof follows the corresponding one for the Maxwell problem described in [2, Sec. 4]. It is based on a potential representation of time-harmonic elastic solutions (see Section 2 below), in particular it relies on the approximation of the scalar and vector potentials using Helmholtz- and Maxwell-type plane waves, respectively. The final convergence estimate is not expected to be sharp since one order of convergence is lost through the representation formula; sharp bounds might be obtained by adapting Vekua's theory to the linear elasticity setting, but has not been accomplished yet.

2 Potential representation

In this section we define Navier's equation and we briefly study a special Helmholtz decomposition of the displacement field, sometimes called Lamé's solution. For a more comprehensive treatment of potential representations in (time-dependent) elasticity problems we refer to Sections 1 and 2 of [9]. A different representation through a single vector potential that is solution of the iterated Helmholtz equation can be found in [7].

Time-harmonic elastic wave propagation in a homogeneous medium and in absence of body forces is described in frequency domain by Navier's equation (cf. [1, Sec. 5.1.1]):

$$
\begin{equation*}
(\lambda+2 \mu) \nabla \operatorname{div} \boldsymbol{u}-\mu \operatorname{curl} \operatorname{curl} \boldsymbol{u}+\omega^{2} \rho \boldsymbol{u}=\mathbf{0} \quad \text { in } D, \tag{1}
\end{equation*}
$$

supplemented by appropriate boundary conditions (see for example [4, eq. (2.4)]); here

$$
\begin{aligned}
D \subset \mathbb{R}^{3} & \text { is an open domain, } \\
\boldsymbol{u}: D \rightarrow \mathbb{R}^{3} & \text { is the displacement vector field, } \\
\omega>0 & \text { is the angular frequency, } \\
\lambda, \mu>0 & \text { are the Lamé constants, and } \\
\rho>0 & \text { is the density of the medium. }
\end{aligned}
$$

We assume λ, μ, ρ and ω to be constant in D, and define the wavenumber of pressure (longitudinal) and shear (transverse) waves, respectively, as:

$$
\omega_{P}=\omega\left(\frac{\rho}{\lambda+2 \mu}\right)^{\frac{1}{2}}, \quad \omega_{S}=\omega\left(\frac{\rho}{\mu}\right)^{\frac{1}{2}}
$$

Remark 2.1. Thanks to the identity ∇ div $=\Delta+\operatorname{curl}$ curl, Δ being the vector Laplacian, equation (1) can be written as

$$
(\lambda+\mu) \nabla \operatorname{div} \boldsymbol{u}+\mu \Delta \boldsymbol{u}+\omega^{2} \rho \boldsymbol{u}=\mathbf{0} \quad \text { in } D .
$$

We denote by $\boldsymbol{D} \boldsymbol{v}$ the Jacobian of the vector field \boldsymbol{v}, by $\boldsymbol{D}^{S} \boldsymbol{v}=\frac{1}{2}\left(\boldsymbol{D} \boldsymbol{v}+\boldsymbol{D}^{\top} \boldsymbol{v}\right)$ the symmetric gradient (or Cauchy's strain tensor), by div the (row-wise) vector divergence of matrix fields, and by Id the 3×3 identity matrix. Using the identity $2 \operatorname{div} \boldsymbol{D}^{S}=\nabla \operatorname{div}+\boldsymbol{\Delta}=2 \nabla \operatorname{div}$ - curl curl, equation (1) can be written in the form

$$
\operatorname{div} \boldsymbol{\sigma}+\omega^{2} \rho \boldsymbol{u}=\mathbf{0}
$$

where $\boldsymbol{\sigma}=2 \mu \boldsymbol{D}^{S} \boldsymbol{u}+\lambda \operatorname{Id} \operatorname{div} \boldsymbol{u}$ is the Cauchy stress tensor.
In this section we assume \boldsymbol{u} to be a solution of (1) in the sense of distributions; we define the scalar and vector potential, respectively, as

$$
\begin{equation*}
\chi=-\frac{\lambda+2 \mu}{\omega^{2} \rho} \operatorname{div} \boldsymbol{u}=-\frac{\operatorname{div} \boldsymbol{u}}{\omega_{P}^{2}}, \quad \psi=\frac{\mu}{\omega^{2} \rho} \operatorname{curl} \boldsymbol{u}=\frac{\operatorname{curl} \boldsymbol{u}}{\omega_{S}^{2}} . \tag{2}
\end{equation*}
$$

From (1), we can use these potentials to represent \boldsymbol{u} :

$$
\begin{equation*}
\boldsymbol{u}=-\frac{\lambda+2 \mu}{\omega^{2} \rho} \nabla \operatorname{div} \boldsymbol{u}+\frac{\mu}{\omega^{2} \rho} \operatorname{curl} \operatorname{curl} \boldsymbol{u}=\nabla \chi+\operatorname{curl} \psi \tag{3}
\end{equation*}
$$

which is a Helmholtz decomposition of the displacement field. Moreover, the scalar and the vector potentials satisfy Helmholtz's and Maxwell's equations, respectively:

$$
\begin{aligned}
&-\Delta \chi-\omega_{P}^{2} \chi \stackrel{(2), \Delta=\operatorname{div} \nabla}{=} \operatorname{div} \nabla \frac{\operatorname{div} \boldsymbol{u}}{\omega_{P}^{2}}+\operatorname{div} \boldsymbol{u} \\
& \stackrel{(1)}{=} \frac{1}{\omega_{P}^{2}} \operatorname{div}\left(\frac{\mu}{\lambda+2 \mu} \operatorname{curl} \operatorname{curl} \boldsymbol{u}-\omega_{P}^{2} \boldsymbol{u}\right)+\operatorname{div} \boldsymbol{u} \stackrel{\operatorname{div} \operatorname{curl}=0}{=} 0, \\
& \operatorname{curl} \operatorname{curl} \psi-\omega_{S}^{2} \psi \stackrel{(2)}{=} \operatorname{curl} \operatorname{curl} \frac{\operatorname{curl} \boldsymbol{u}}{\omega_{S}^{2}}-\operatorname{curl} \boldsymbol{u} \\
& \stackrel{(1)}{=} \frac{1}{\omega_{S}^{2}} \operatorname{curl}\left(\frac{\lambda+2 \mu}{\mu} \nabla \operatorname{div} \boldsymbol{u}+\omega_{S}^{2} \boldsymbol{u}\right)-\operatorname{curl} \boldsymbol{u} \stackrel{\operatorname{curl} \nabla=\mathbf{0}}{=} \mathbf{0} .
\end{aligned}
$$

As a consequence, the vector potential ψ satisfies also $\operatorname{div} \psi=0$ and the vector Helmholtz equation $-\Delta \psi-\omega_{S}^{2} \boldsymbol{\psi}=\mathbf{0}$.

Remark 2.2. The potentials χ and ψ defined in (2) are the only couple of scalar and vector fields such that: (i) they are solution of Helmholtz's equation with wavenumber ω_{P} and Maxwell's equations with wavenumber ω_{S}, respectively; (ii) they constitute a Helmholtz decomposition (3) of \boldsymbol{u}. Indeed, if $\widetilde{\chi}$ and $\widetilde{\boldsymbol{\psi}}$ satisfy conditions (i) and (ii), then

$$
\begin{aligned}
& \widetilde{\chi}=-\omega_{P}^{-2} \Delta \widetilde{\chi}=-\omega_{P}^{-2} \operatorname{div} \nabla \widetilde{\chi}=-\omega_{P}^{-2} \operatorname{div}(\boldsymbol{u}-\operatorname{curl} \widetilde{\boldsymbol{\psi}})=-\omega_{P}^{-2} \operatorname{div} \boldsymbol{u}=\chi, \\
& \widetilde{\psi}=\omega_{S}^{-2} \operatorname{curl} \operatorname{curl} \widetilde{\boldsymbol{\psi}}=\omega_{S}^{-2} \operatorname{curl}(\boldsymbol{u}-\nabla \widetilde{\chi})=\omega_{S}^{-2} \operatorname{curl} \boldsymbol{u}=\psi .
\end{aligned}
$$

3 Approximation by plane waves

From now on, we assume for the domain D :
(D1) $D \subset \mathbb{R}^{3}$ is open, Lipschitz and bounded,
(D2) there exists $\rho \in(0,1 / 2]$ such that the ball with center in a point \boldsymbol{x}_{0} and radius ρh is included in D, where h is the diameter of D,
(D3) there exists $\rho_{0} \in(0, \rho]$ such that D is star-shaped with respect to the ball with center in the same point \boldsymbol{x}_{0} and radius $\rho_{0} h$.

For instance, every convex polyhedron satisfies these assumptions; this is not a severe restriction since D is meant to be an element of a finite element mesh.

Given $j \in \mathbb{N}$ and $\widetilde{\omega} \in \mathbb{R}, \widetilde{\omega}>0$, we define the $\widetilde{\omega}$-weighted Sobolev norm

$$
\|v\|_{j, \widetilde{\omega}, D}^{2}=\sum_{j_{0}=0}^{j} \widetilde{\omega}^{2\left(j-j_{0}\right)}|v|_{j_{0}, D}^{2} \quad \forall v \in H^{j}(D)
$$

where $|\cdot|_{j_{0}, D}$ is the usual Sobolev seminorm in $H^{j_{0}}(D)$. We use the same notation for the analogous norm of vector fields in $H^{j}(D)^{3}$. We denote the unit sphere in \mathbb{R}^{3} by $\mathbb{S}^{2}=\left\{\boldsymbol{x} \in \mathbb{R}^{3},|x|=1\right\}$.

We report in the following Lemma the result of Lemma 4.5 and Corollary 5.5 of [6] concerning the approximation of solutions of Helmholtz equation by linear combinations of plane waves.

Lemma 3.1. Given $k \in \mathbb{N}, \widetilde{\omega} \in \mathbb{R}, \widetilde{\omega}>0$, and a domain D satisfying (D1)-(D3), fix $q \in \mathbb{N}, q \geq 2 k+1$, $q \geq 2\left(1+2^{1 / \lambda_{D}}\right)$, where λ_{D} is a positive parameter which depends only on the shape of K, as described in [6, Th. 3.2]. Then, there exists a set of $p=(q+1)^{2}$ plane wave propagation directions $\left\{\boldsymbol{d}_{\ell}\right\}_{1 \leq \ell \leq p} \subset \mathbb{S}^{2}$, such that, for every $0 \leq j \leq k$,

$$
\begin{align*}
&\left\|v-\sum_{1 \leq \ell \leq p} \alpha_{\ell} e^{i \widetilde{\omega} x \cdot d_{t}}\right\|_{j, \widetilde{\omega}, D} \leq C\left(1+(\widetilde{\omega} h)^{q+j-k+8}\right) e^{\left(\frac{7}{4}-\frac{3}{4} \rho\right) \widetilde{\omega} h} h^{k+1-j} \tag{5}\\
& {\left[q^{-\lambda_{D}(k+1-j)}+(\rho q)^{-\frac{q-3}{2}} M\right]\|v\|_{k+1, \widetilde{\omega}, D} }
\end{align*}
$$

for every $v \in H^{k+1}(D)$ that is solution of the homogeneous Helmholtz equation

$$
-\Delta v-\widetilde{\omega}^{2} v=0 \quad \text { in } D
$$

and for some coefficients $\alpha_{1}, \ldots, \alpha_{p} \in \mathbb{C}$. Here, the constant $C>0$ depends only on j, k and on the shape of D, and the constant M satisfies $M \leq 2 \sqrt{\pi} p$.

The bound on the constant M is given by an "optimal" choice of the directions which is not explicitly available. A good choice is provided by the system of directions introduced in [8] and available on the website [10]. In this case, the bound on M is only slightly weaker, namely, $M \leq 4 \sqrt{\pi} p q$ ($c f$. [6, Rem. 4.6]).

Our policy is to apply Lemma 3.1 to the potentials χ and ψ. Thus we use two kinds of plane wave functions to approximate the solutions of Navier's equation (1): pressure (longitudinal) waves

$$
\boldsymbol{w}_{\boldsymbol{d}}^{P}: \boldsymbol{x} \mapsto \boldsymbol{d} e^{i \omega_{P} x \cdot d} \quad \boldsymbol{d} \in \mathbb{S}^{2}
$$

and shear (transverse) waves

$$
\boldsymbol{w}_{\boldsymbol{d}, \boldsymbol{A}}^{S}: \boldsymbol{x} \mapsto \boldsymbol{A} e^{i \omega_{S} x \cdot \boldsymbol{d}} \quad \boldsymbol{d}, \boldsymbol{A} \in \mathbb{S}^{2}, \quad \boldsymbol{A} \cdot \boldsymbol{d}=0
$$

Given $\boldsymbol{d} \in \mathbb{S}^{2}$, there exist two linearly independent shear waves propagating along $\boldsymbol{d}\left(\boldsymbol{w}_{\boldsymbol{d}, \boldsymbol{A}}^{S}\right.$ and $\boldsymbol{w}_{\boldsymbol{d}, \boldsymbol{d} \times \boldsymbol{A}}^{S}$) and only one pressure wave ($\boldsymbol{w}_{\boldsymbol{d}}^{P}$). They satisfy the relations

$$
\begin{array}{rlrl}
\operatorname{div} \boldsymbol{w}_{\boldsymbol{d}}^{P} & =i \omega_{P} e^{i \omega_{P} x \cdot \boldsymbol{d}}, & \operatorname{div} \boldsymbol{w}_{\boldsymbol{d}, \boldsymbol{A}}^{S} & =0, \\
\operatorname{curl} \boldsymbol{w}_{\boldsymbol{d}}^{P} & =0, & \operatorname{curl} \boldsymbol{w}_{\boldsymbol{d}, \boldsymbol{A}}^{S} & =i \omega_{S} \boldsymbol{d} \times \boldsymbol{A} e^{i \omega_{S} x \cdot \boldsymbol{d}}=i \omega_{S} \boldsymbol{w}_{\boldsymbol{d}, \boldsymbol{d} \times \boldsymbol{A}}^{S}, \\
\nabla \operatorname{div} \boldsymbol{w}_{\boldsymbol{d}}^{P} & =-\omega_{P}^{2} \boldsymbol{w}_{\boldsymbol{d}}^{P}, & \operatorname{curl} \operatorname{curl} \boldsymbol{w}_{\boldsymbol{d}, \boldsymbol{A}}^{S} & =-\omega_{S}^{2} \boldsymbol{w}_{\boldsymbol{d}, \boldsymbol{A}}^{S}, \\
i \omega_{P} \boldsymbol{w}_{\boldsymbol{d}}^{P} & =\nabla\left(e^{i \omega_{P} \boldsymbol{x} \cdot \boldsymbol{d}}\right) . &
\end{array}
$$

It is intuitive to guess that the two components of \boldsymbol{u}, namely, $\nabla \chi$ and $\operatorname{curl} \psi$, can be approximated separately by pressure and shear waves, respectively. This is the basic idea we will exploit in the proof of Theorem 3.2.

Given $p \in \mathbb{N}$ distinct unit propagation directions $\left\{\boldsymbol{d}_{\ell}\right\}_{1 \leq \ell \leq p} \subset \mathbb{S}^{2}$, we associate p unit amplitude vectors $\left\{\boldsymbol{A}_{\ell}\right\}_{1 \leq \ell \leq p} \subset \mathbb{S}^{2}$ such that $\boldsymbol{d}_{\ell} \cdot \boldsymbol{A}_{\ell}=0$ for $1 \leq \ell \leq p$. We use them to define the linear space

$$
\begin{aligned}
V_{3 p} & =\left\{\sum_{\ell=1}^{p} \alpha_{\ell}^{P} \boldsymbol{d}_{\ell} e^{i \omega_{P} x \cdot \boldsymbol{d}_{\ell}}+\alpha_{\ell}^{S, 1} \boldsymbol{A}_{\ell} e^{i \omega_{S} \boldsymbol{x} \cdot \boldsymbol{d}_{\ell}}+\alpha_{\ell}^{S, 2}\left(\boldsymbol{d}_{\ell} \times \boldsymbol{A}_{\ell}\right) e^{i \omega_{S} \boldsymbol{x} \cdot \boldsymbol{d}_{\ell}}, \quad \alpha_{\ell}^{P}, \alpha_{\ell}^{S, 1}, \alpha_{\ell}^{S, 2} \in \mathbb{C}\right\} \\
& =\operatorname{span}\left\{\boldsymbol{w}_{\boldsymbol{d}_{\ell}}^{P}, \boldsymbol{w}_{\boldsymbol{d}_{\ell}, \boldsymbol{A}_{\ell}}^{S}, \boldsymbol{w}_{\boldsymbol{d}_{\ell}, \boldsymbol{d}_{\ell} \times \boldsymbol{A}_{\ell}}^{S}\right\}_{\ell=1, \ldots, p}
\end{aligned}
$$

Notice that $V_{3 p}$ depends on the choice of \boldsymbol{d}_{ℓ} 's but not on \boldsymbol{A}_{ℓ} 's, and that $\operatorname{dim}\left(V_{3 p}\right)=3 p$.
Now we can state our main result.
Theorem 3.2. Let $D \subset \mathbb{R}^{3}$ be a domain satisfying the previous assumption, k and $q \in \mathbb{N}, q \geq 2 k+1$, $q \geq 2\left(1+2^{1 / \lambda_{D}}\right)$, where λ_{D} is the positive parameter that depends only on the shape of K as described in [6, Th. 3.2]. Then, there exists a set of $p=(q+1)^{2}$ propagation directions $\left\{\boldsymbol{d}_{\ell}\right\}_{1 \leq \ell \leq p} \subset \mathbb{S}^{2}$, such that, for every solution \boldsymbol{u} of Navier's equation (1) that belongs to

$$
H^{k+1}(\operatorname{div} ; D) \cap H^{k+1}(\operatorname{curl} ; D)=\left\{\boldsymbol{v} \in H^{k+1}(D)^{3}: \operatorname{div} \boldsymbol{v} \in H^{k+1}(D), \operatorname{curl} \boldsymbol{v} \in H^{k+1}(D)^{3}\right\}
$$

there exists $\boldsymbol{\xi} \in V_{3 p}$, namely, a linear combination of p pressure and $2 p$ shear plane waves, such that, for $1 \leq j \leq k$,

$$
\begin{gather*}
\|\boldsymbol{u}-\boldsymbol{\xi}\|_{j-1, \omega_{S}, D} \leq C\left(1+\left(\omega_{S} h\right)^{q+j-k+8}\right) e^{\left(\frac{7}{4}-\frac{3}{4} \rho\right) \omega_{S} h} h^{k+1-j}\left[q^{-\lambda_{D}(k+1-j)}+(\rho q)^{-\frac{q-3}{2}} M\right] \tag{7}\\
\left(\omega_{P}^{-2}\|\operatorname{div} \boldsymbol{u}\|_{k+1, \omega_{P}, D}+\omega_{S}^{-2}\|\operatorname{curl} \boldsymbol{u}\|_{k+1, \omega_{S}, D}\right) .
\end{gather*}
$$

Here, the constant $C>0$ depends only on j, k and on the shape of D, the constant M is bounded by $2 \sqrt{\pi} p$.

Proof. This proof follows the lines of the one of Theorem 5.4 in [2].
We fix the directions $\left\{\boldsymbol{d}_{\ell}\right\}_{1 \leq \ell \leq p}$ to be the ones provided by Lemma 3.1, and separately approximate the two potentials χ and ψ.

In (4) we have seen that the scalar potential χ is solution of the Helmholtz equation with wavenumber ω_{P}; Lemma 3.1 provides a combination of scalar plane waves $\xi_{\chi}=\sum_{\ell=1}^{p} \alpha_{\ell}^{\chi} e^{i \omega_{P} x \cdot d_{\ell}}$ such that, for $0 \leq j \leq$ k,

$$
\begin{equation*}
\left|\chi-\xi_{\chi}\right|_{j, D} \leq C\left(1+\left(\omega_{P} h\right)^{q+j-k+8}\right) e^{\left(\frac{7}{4}-\frac{3}{4} \rho\right) \omega_{P} h} h^{k+1-j}\left[q^{-\lambda_{D}(k+1-j)}+(\rho q)^{-\frac{q-3}{2}} M\right]\|\chi\|_{k+1, \omega_{P}, D} . \tag{8}
\end{equation*}
$$

The three Cartesian components of the vector potential ψ are solutions of the Helmholtz equation with wavenumber ω_{S}. For every $\ell \in\{1, \ldots, p\}$, the three vectors $\boldsymbol{d}_{\ell}, \boldsymbol{A}_{\ell}$ and $\boldsymbol{d}_{\ell} \times \boldsymbol{A}_{\ell}$ constitute an orthonormal basis of \mathbb{R}^{3}. Thus, according to Lemma 3.1, ψ can be approximated by a linear combination of $3 p$ vector Helmholtz plane waves

$$
\boldsymbol{\xi}_{\psi}=\sum_{l=1}^{p} \alpha_{\ell}^{\psi, 1} \boldsymbol{d}_{\ell} e^{i \omega_{S} \boldsymbol{x} \cdot \boldsymbol{d}_{\ell}}+\alpha_{\ell}^{\psi, 2} \boldsymbol{A}_{\ell} e^{i \omega_{s} \boldsymbol{x} \cdot \boldsymbol{d}_{\ell}}+\alpha_{\ell}^{\psi, 3} \boldsymbol{d}_{\ell} \times \boldsymbol{A}_{\ell} e^{i \omega_{s} \boldsymbol{x} \cdot \boldsymbol{d}_{\ell}}
$$

with the error bound, for $0 \leq j \leq k$,

$$
\begin{equation*}
\left|\boldsymbol{\psi}-\boldsymbol{\xi}_{\psi}\right|_{j, D} \leq C\left(1+\left(\omega_{S} h\right)^{q+j-k+8}\right) e^{\left(\frac{7}{4}-\frac{3}{4} \rho\right) \omega_{s} h} h^{k+1-j}\left[q^{-\lambda_{D}(k+1-j)}+(\rho q)^{-\frac{q-3}{2}} M\right]\|\boldsymbol{\psi}\|_{k+1, \omega_{S}, D} \tag{9}
\end{equation*}
$$

Now we define

$$
\boldsymbol{\xi}=\nabla \xi_{\chi}+\operatorname{curl} \boldsymbol{\xi}_{\psi} \stackrel{(6)}{=} i \sum_{l=1}^{p}\left(\omega_{P} \boldsymbol{d}_{\ell} \alpha_{\ell}^{\chi} e^{i \omega_{P} x \cdot d_{\ell}}+\omega_{S} \alpha_{\ell}^{\psi, 2} \boldsymbol{d}_{\ell} \times \boldsymbol{A}_{\ell} e^{i \omega_{S} x \cdot \boldsymbol{d}_{\ell}}-\omega_{S} \alpha_{\ell}^{\psi, 3} \boldsymbol{A}_{\ell} e^{i \omega_{S} x \cdot \boldsymbol{d}_{\ell}}\right)
$$

which clearly belongs to $V_{3 p}$. This vector field provides the desired approximation of the displacement \boldsymbol{u} :

$$
\begin{aligned}
&\|\boldsymbol{u}-\boldsymbol{\xi}\|_{j-1, \omega_{S}, D}=\left\|\nabla \chi+\operatorname{curl} \psi-\nabla \xi_{\chi}-\operatorname{curl} \xi_{\psi}\right\|_{j-1, \omega_{S}, D} \\
& \leq \sum_{j_{0}=0}^{j-1} \omega_{S}^{j-1-j_{0}}\left|\nabla\left(\chi-\xi_{\chi}\right)+\operatorname{curl}\left(\boldsymbol{\psi}-\boldsymbol{\xi}_{\psi}\right)\right|_{j_{0}, D} \\
& \leq \sum_{j_{1}=1}^{j} \omega_{S}^{j-j_{1}}\left(\left|\chi-\xi_{\chi}\right|_{j_{1}, D}+\left|\boldsymbol{\psi}-\boldsymbol{\xi}_{\psi}\right|_{j_{1}, D}\right) \\
& \begin{array}{c}
(8)(,) \\
\omega_{P} P\left(\omega_{S}\right. \\
\leq
\end{array} C\left(\sum_{j_{1}=1}^{j} \omega_{S}^{j-j_{1}}\left(1+\left(\omega_{S} h\right)^{q+j_{1}-k+8}\right) h^{k+1-j_{1}}\right) e^{\left(\frac{7}{4}-\frac{3}{4} \rho\right) \omega_{s} h} \\
& \quad\left[q^{-\lambda_{D}(k+1-j)}+(\rho q)^{-\frac{q-3}{2}} M\right]\left(\|\chi\|_{k+1, \omega_{P}, D}+\|\psi\|_{k+1, \omega_{S}, D}\right) \\
& \leq C\left(1+\left(\omega_{S} h\right)^{q+j-k+8}\right) e^{\left(\frac{7}{4}-\frac{3}{4} \rho\right) \omega_{S} h} h^{k+1-j}\left[q^{-\lambda_{D}(k+1-j)}+(\rho q)^{-\frac{q-3}{2}} M\right] \\
& \quad\left(\|\chi\|_{k+1, \omega_{P}, D}+\|\psi\|_{k+1, \omega_{S}, D}\right) \\
& \stackrel{(2)}{=} C\left(1+\left(\omega_{S} h\right)^{q+j-k+8}\right) e^{\left(\frac{7}{4}-\frac{3}{4} \rho\right) \omega_{s} h} h^{k+1-j}\left[q^{-\lambda_{D}(k+1-j)}+(\rho q)^{-\frac{q-3}{2}} M\right] \\
& \quad\left(\omega_{P}^{-2}\|\operatorname{div} \boldsymbol{u}\|_{k+1, \omega_{P}, D}+\omega_{S}^{-2}\|\operatorname{curl} \boldsymbol{u}\|_{k+1, \omega_{S}, D}\right) .
\end{aligned}
$$

Notice that, in order to have convergence in the bound (7), either in h or p, the potentials $\operatorname{div} \boldsymbol{u}$ and curl \boldsymbol{u} have to belong to $H^{2}(K)$.

Since $\omega_{P}<\omega_{S}$, the bound (7) holds true also in the case where the norm on the left-hand side is substituted by $\|\boldsymbol{u}-\boldsymbol{\xi}\|_{j-1, \omega_{P}, j-1}$; on the contrary we can not substitute the algebraic and exponential terms in $\omega_{S} h$ on the right-hand side with the analogous ones containing $\omega_{p} h$.

The bound proven in Theorem 3.2 shows algebraic orders of convergence both with respect to the size h of the domain and to the dimension p of the approximating space. If the solution \boldsymbol{u} can be smoothly extended outside D, the order in p is exponential, see [6, Rem 3.3] and [3, Rem. 3.14]. The constant C depends on the problem parameters ω, λ, μ and ρ only through ω_{P} and ω_{S}, with the dependence shown in the bound.

In the almost incompressible case, i.e., for very large values of λ, both ω_{P} and $\operatorname{div} \boldsymbol{u}$ go to zero. Therefore, estimate (7) is useful only if $\omega_{P}^{-2}\|\operatorname{div} \boldsymbol{u}\|_{k+1, \omega_{P}, D}$ remains bounded. In the limit case we recover Maxwell's equations and Theorem 3.2 reduces to Theorem 5.4 of [2].

References

[1] K. F. Graff, Wave motion in elastic solids., Oxford Engineering Science Series. Oxford: Clarendon Press; Oxford University Press. XVII, 649 p., 1975, reprint 1991.
[2] R. Hiptmair, A. Moiola, and I. Perugia, Error analysis of Trefftz-discontinuous Galerkin methods for the time-harmonic Maxwell equations, Technical report 2011-09, SAM-ETH Zürich, Zürich, Switzerland, 2011.
[3] , Plane wave discontinuous Galerkin methods for the 2D Helmholtz equation: analysis of the p-version, SIAM J. Numer. Anal., 49 (2011), pp. 264-284.
[4] T. Huttunen, P. Monk, F. Collino, and J. P. Kaipio, The ultra-weak variational formulation for elastic wave problems, SIAM J. Sci. Comput., 25 (2004), pp. 1717-1742.
[5] P. Ladevèze, L. Arnaud, P. Rouch, and C. Blanzé, The variational theory of complex rays for the calculation of medium-frequency vibrations., Eng. Comput. (Bradf.), 18 (2001), pp. 193-214.
[6] A. Moiola, R. Hiptmair, and I. Perugia, Plane wave approximation of homogeneous Helmholtz solutions, Tech. Rep. 25PV10/23/0, IMATI-CNR Pavia, 2010. To appear in Z. Angew. Math. Phys.
[7] W. Noll, Verschiebungsfunktionen für elastische Schwingungsprobleme, Z. Angew. Math. Mech., 37 (1957), pp. 81-87.
[8] I. H. Sloan and R. S. Womersley, Extremal systems of points and numerical integration on the sphere, Adv. Comput. Math., 21 (2004), pp. 107-125.
[9] E. Sternberg, On the integration of the equations of motion in the classical theory of elasticity, Arch. Rational Mech. Anal., 6 (1960), pp. 34-50.
[10] R. S. Womersley and I. H. Sloan, Interpolation and cubature on the sphere. http://web.maths. unsw.edu.au/~rsw/Sphere/.

Research Reports

No. Authors/Title

11-20 A. Moiola
Plane wave approximation in linear elasticity
11-19 C.J. Gittelson
Uniformly convergent adaptive methods for parametric operator equations
11-18 E. Kokiopoulou, D. Kressner, M. Zervos and N. Paragios
Optimal similarity registration of volumetric images
11-17 D. Marazzina, O. Reichmann and Ch. Schwab
$h p$-DGFEM for Kolmogorov-Fokker-Planck equations of multivariate Lévy processes

11-16 Ch. Schwab and A.M. Stuart
Sparse deterministic approximation of Bayesian inverse problems
11-15 A. Barth and A. Lang
Almost sure convergence of a Galerkin-Milstein approximation for stochastic partial differential equations
11-14 X. Claeys
A single trace integral formulation of the second kind for acoustic scattering
11-13 W.-J. Beyn, C. Effenberger and D. Kressner
Continuation of eigenvalues and invariant pairs for parameterized nonlinear eigenvalue problems

11-12 C.J. Gittelson
Adaptive stochastic Galerkin methods: beyond the elliptic case
11-11 C.J. Gittelson
An adaptive stochastic Galerkin method
11-10 C.J. Gittelson
Stochastic Galerkin approximation of operator equations with infinite dimensional noise

11-09 R. Hiptmair, A. Moiola and I. Perugia
Error analysis of Trefftz-discontinuous Galerkin methods for the timeharmonic Maxwell equations

11-08 W. Dahmen, C. Huang, Ch. Schwab and G. Welper Adaptive Petrov-Galerkin methods for first order transport equations

