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Abstract

We consider the approximation of solutions of the time-harmonic linear elastic wave equation by
linear combinations of plane waves. We prove algebraic orders of convergence both with respect to
the dimension of the approximating space and to the diameter of the domain. The error is measured in
Sobolev norms and the constants in the estimates explicitly depend on the problem wavenumber.

1 Introduction
In order to efficiently discretize the time-harmonic elastic wave equation (Navier equation), some non-
polynomial finite element methods with plane wave basis functions have been designed; see for instance
the schemes described in [4, 5]. A rigorous convergence analysis of these methods requires the proof of a
best-approximation estimate: a bound on the minimal error infvN∈VN ‖u − vN‖ where u is a given solution
of the considered PDE, VN is the discrete trial space, and ‖·‖ is a suitable norm.

For acoustic wave propagation, governed by the Helmholtz equation, approximation estimates have
been proven in [6] using Vekua’s theory, harmonic polynomial approximation results, and a careful resid-
ual estimate of Jacobi-Anger’s expansion. Here we use the results of [6] to prove similar bounds for
solutions of the time-harmonic Navier equation.

Using a balanced choice of pressure and shear waves, we obtain algebraic orders of convergence both
in the diameter of the considered domain and in the dimension of the approximating space; these param-
eters are relevant for the h– and p–convergence of the corresponding finite element methods. The error is
measured in weighted Sobolev norms on a bounded, star-shaped, Lipschitz domain. The dependence of
the constants on the wavenumbers of pressure and shear waves is made explicit.

The proof follows the corresponding one for the Maxwell problem described in [2, Sec. 4]. It is
based on a potential representation of time-harmonic elastic solutions (see Section 2 below), in particular
it relies on the approximation of the scalar and vector potentials using Helmholtz- and Maxwell-type
plane waves, respectively. The final convergence estimate is not expected to be sharp since one order
of convergence is lost through the representation formula; sharp bounds might be obtained by adapting
Vekua’s theory to the linear elasticity setting, but has not been accomplished yet.

2 Potential representation
In this section we define Navier’s equation and we briefly study a special Helmholtz decomposition of the
displacement field, sometimes called Lamé’s solution. For a more comprehensive treatment of potential
representations in (time-dependent) elasticity problems we refer to Sections 1 and 2 of [9]. A different
representation through a single vector potential that is solution of the iterated Helmholtz equation can be
found in [7].
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Time-harmonic elastic wave propagation in a homogeneous medium and in absence of body forces is
described in frequency domain by Navier’s equation (cf. [1, Sec. 5.1.1]):

(λ + 2µ)∇ div u − µ curl curl u + ω2ρu = 0 in D , (1)

supplemented by appropriate boundary conditions (see for example [4, eq. (2.4)]); here

D ⊂ R3 is an open domain,

u : D→ R3 is the displacement vector field,
ω > 0 is the angular frequency,

λ, µ > 0 are the Lamé constants, and
ρ > 0 is the density of the medium.

We assume λ, µ, ρ and ω to be constant in D, and define the wavenumber of pressure (longitudinal) and
shear (transverse) waves, respectively, as:

ωP = ω
(

ρ

λ + 2µ

) 1
2

, ωS = ω
(
ρ

µ

) 1
2

.

Remark 2.1. Thanks to the identity ∇ div = ∆+ curl curl, ∆ being the vector Laplacian, equation (1) can
be written as

(λ + µ)∇ div u + µ∆u + ω2ρu = 0 in D .

We denote by Dv the Jacobian of the vector field v, by DS v = 1
2 (Dv + D>v) the symmetric gradient (or

Cauchy’s strain tensor), by div the (row-wise) vector divergence of matrix fields, and by Id the 3 × 3
identity matrix. Using the identity 2 div DS = ∇ div +∆ = 2∇ div− curl curl, equation (1) can be written
in the form

divσ + ω2ρu = 0 ,
where σ = 2µDS u + λ Id div u is the Cauchy stress tensor.

In this section we assume u to be a solution of (1) in the sense of distributions; we define the scalar
and vector potential, respectively, as

χ = −
λ + 2µ
ω2ρ

div u = −
div u
ω2

P

, ψ =
µ

ω2ρ
curl u =

curl u
ω2

S

. (2)

From (1), we can use these potentials to represent u:

u = −
λ + 2µ
ω2ρ

∇ div u +
µ

ω2ρ
curl curl u = ∇χ + curlψ , (3)

which is a Helmholtz decomposition of the displacement field. Moreover, the scalar and the vector
potentials satisfy Helmholtz’s and Maxwell’s equations, respectively:

−∆χ − ω2
Pχ

(2),∆=div∇
= div∇

div u
ω2

P

+ div u

(1)
=

1
ω2

P

div
( µ

λ + 2µ
curl curl u − ω2

Pu
)

+ div u div curl=0
= 0 ,

curl curlψ − ω2
Sψ

(2)
= curl curl

curl u
ω2

S

− curl u

(1)
=

1
ω2

S

curl
(λ + 2µ

µ
∇ div u + ω2

S u
)
− curl u curl∇=0

= 0 .

(4)

As a consequence, the vector potential ψ satisfies also divψ = 0 and the vector Helmholtz equation
−∆ψ − ω2

Sψ = 0.
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Remark 2.2. The potentials χ and ψ defined in (2) are the only couple of scalar and vector fields such
that: (i) they are solution of Helmholtz’s equation with wavenumber ωP and Maxwell’s equations with
wavenumber ωS , respectively; (ii) they constitute a Helmholtz decomposition (3) of u. Indeed, if χ̃ and ψ̃
satisfy conditions (i) and (ii), then

χ̃ = −ω−2
P ∆χ̃ = −ω−2

P div∇χ̃ = −ω−2
P div(u − curl ψ̃) = −ω−2

P div u = χ ,

ψ̃ = ω−2
S curl curl ψ̃ = ω−2

S curl(u − ∇χ̃) = ω−2
S curl u = ψ .

3 Approximation by plane waves
From now on, we assume for the domain D:

(D1) D ⊂ R3 is open, Lipschitz and bounded,

(D2) there exists ρ ∈ (0, 1/2] such that the ball with center in a point x0 and radius ρh is included in D,
where h is the diameter of D,

(D3) there exists ρ0 ∈ (0, ρ] such that D is star-shaped with respect to the ball with center in the same
point x0 and radius ρ0h.

For instance, every convex polyhedron satisfies these assumptions; this is not a severe restriction since D
is meant to be an element of a finite element mesh.

Given j ∈ N and ω̃ ∈ R, ω̃ > 0, we define the ω̃–weighted Sobolev norm

‖v‖2j,ω̃,D =

j∑
j0=0

ω̃2( j− j0) |v|2j0,D ∀ v ∈ H j(D) ,

where |·| j0,D is the usual Sobolev seminorm in H j0 (D). We use the same notation for the analogous norm
of vector fields in H j(D)3. We denote the unit sphere in R3 by S2 = {x ∈ R3, |x| = 1}.

We report in the following Lemma the result of Lemma 4.5 and Corollary 5.5 of [6] concerning the
approximation of solutions of Helmholtz equation by linear combinations of plane waves.

Lemma 3.1. Given k ∈ N, ω̃ ∈ R, ω̃ > 0, and a domain D satisfying (D1)–(D3), fix q ∈ N, q ≥ 2k + 1,
q ≥ 2(1 + 21/λD ), where λD is a positive parameter which depends only on the shape of K, as described
in [6, Th. 3.2]. Then, there exists a set of p = (q + 1)2 plane wave propagation directions {d`}1≤`≤p ⊂ S

2,
such that, for every 0 ≤ j ≤ k,∥∥∥∥∥∥∥∥v −

∑
1≤`≤p

α`eiω̃ x·d`

∥∥∥∥∥∥∥∥
j,ω̃,D

≤ C
(
1 + (ω̃h)q+ j−k+8

)
e( 7

4−
3
4 ρ)ω̃h hk+1− j

[
q−λD(k+1− j) + (ρ q)−

q−3
2 M

]
‖v‖k+1,ω̃,D

(5)

for every v ∈ Hk+1(D) that is solution of the homogeneous Helmholtz equation

−∆v − ω̃2v = 0 in D ,

and for some coefficients α1, . . . , αp ∈ C. Here, the constant C > 0 depends only on j, k and on the shape
of D, and the constant M satisfies M ≤ 2

√
π p.
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The bound on the constant M is given by an “optimal” choice of the directions which is not explicitly
available. A good choice is provided by the system of directions introduced in [8] and available on
the website [10]. In this case, the bound on M is only slightly weaker, namely, M ≤ 4

√
π pq (cf. [6,

Rem. 4.6]).
Our policy is to apply Lemma 3.1 to the potentials χ and ψ. Thus we use two kinds of plane wave

functions to approximate the solutions of Navier’s equation (1): pressure (longitudinal) waves

wP
d : x 7→ d eiωP x·d d ∈ S2 ,

and shear (transverse) waves

wS
d,A : x 7→ A eiωS x·d d, A ∈ S2, A · d = 0 .

Given d ∈ S2, there exist two linearly independent shear waves propagating along d (wS
d,A and wS

d,d×A)
and only one pressure wave (wP

d ). They satisfy the relations

div wP
d = iωP eiωP x·d , div wS

d,A = 0 ,

curl wP
d = 0 , curl wS

d,A = iωS d × A eiωS x·d = iωS wS
d,d×A ,

∇ div wP
d = −ω2

PwP
d , curl curl wS

d,A = −ω2
S wS

d,A ,

iωP wP
d = ∇

(
eiωP x·d) .

(6)

It is intuitive to guess that the two components of u, namely, ∇χ and curlψ, can be approximated sep-
arately by pressure and shear waves, respectively. This is the basic idea we will exploit in the proof of
Theorem 3.2.

Given p ∈ N distinct unit propagation directions {d`}1≤`≤p ⊂ S
2, we associate p unit amplitude vectors

{A`}1≤`≤p ⊂ S
2 such that d` · A` = 0 for 1 ≤ ` ≤ p. We use them to define the linear space

V3p =

{ p∑
`=1

αP
` d` eiωP x·d` + αS ,1

`
A` eiωS x·d` + αS ,2

`
(d` × A`) eiωS x·d` , αP

` , α
S ,1
`
, αS ,2

`
∈ C

}
= span

{
wP

d` , wS
d` ,A`

, wS
d` ,d`×A`

}
`=1,...,p

.

Notice that V3p depends on the choice of d`’s but not on A`’s, and that dim(V3p) = 3p.
Now we can state our main result.

Theorem 3.2. Let D ⊂ R3 be a domain satisfying the previous assumption, k and q ∈ N, q ≥ 2k + 1,
q ≥ 2(1 + 21/λD ), where λD is the positive parameter that depends only on the shape of K as described in
[6, Th. 3.2]. Then, there exists a set of p = (q + 1)2 propagation directions {d`}1≤`≤p ⊂ S

2, such that, for
every solution u of Navier’s equation (1) that belongs to

Hk+1(div; D) ∩ Hk+1(curl; D) =
{
v ∈ Hk+1(D)3 : div v ∈ Hk+1(D), curl v ∈ Hk+1(D)3

}
,

there exists ξ ∈ V3p, namely, a linear combination of p pressure and 2p shear plane waves, such that, for
1 ≤ j ≤ k,

‖u − ξ‖ j−1,ωS ,D ≤ C
(
1 + (ωS h)q+ j−k+8

)
e( 7

4−
3
4 ρ)ωS h hk+1− j

[
q−λD(k+1− j) + (ρ q)−

q−3
2 M

]
(
ω−2

P ‖div u‖k+1,ωP,D + ω−2
S ‖curl u‖k+1,ωS ,D

)
.

(7)

Here, the constant C > 0 depends only on j, k and on the shape of D, the constant M is bounded by
2
√
π p.
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Proof. This proof follows the lines of the one of Theorem 5.4 in [2].
We fix the directions {d`}1≤`≤p to be the ones provided by Lemma 3.1, and separately approximate the

two potentials χ and ψ.
In (4) we have seen that the scalar potential χ is solution of the Helmholtz equation with wavenumber

ωP; Lemma 3.1 provides a combination of scalar plane waves ξχ =
∑p
`=1 α

χ
`
eiωP x·d` such that, for 0 ≤ j ≤

k, ∣∣∣χ − ξχ∣∣∣ j,D ≤ C
(
1 + (ωPh)q+ j−k+8

)
e( 7

4−
3
4 ρ)ωPh hk+1− j

[
q−λD(k+1− j) + (ρ q)−

q−3
2 M

]
‖χ‖k+1,ωP,D . (8)

The three Cartesian components of the vector potential ψ are solutions of the Helmholtz equation with
wavenumber ωS . For every ` ∈ {1, . . . , p}, the three vectors d`, A` and d` × A` constitute an orthonormal
basis of R3. Thus, according to Lemma 3.1, ψ can be approximated by a linear combination of 3p vector
Helmholtz plane waves

ξψ =

p∑
l=1

α
ψ,1
`

d`eiωS x·d` + α
ψ,2
`

A`eiωS x·d` + α
ψ,3
`

d` × A`eiωS x·d`

with the error bound, for 0 ≤ j ≤ k,∣∣∣ψ − ξψ∣∣∣ j,D
≤ C

(
1 + (ωS h)q+ j−k+8

)
e( 7

4−
3
4 ρ)ωS h hk+1− j

[
q−λD(k+1− j) + (ρ q)−

q−3
2 M

]
‖ψ‖k+1,ωS ,D . (9)

Now we define

ξ = ∇ξχ + curl ξψ
(6)
= i

p∑
l=1

(
ωPd`α

χ
`
eiωP x·d` + ωSα

ψ,2
`

d` × A`eiωS x·d` − ωSα
ψ,3
`

A`eiωS x·d`
)

which clearly belongs to V3p. This vector field provides the desired approximation of the displacement u:

‖u − ξ‖ j−1,ωS ,D =
∥∥∥∇χ + curlψ − ∇ξχ − curl ξψ

∥∥∥
j−1,ωS ,D

≤

j−1∑
j0=0

ω
j−1− j0
S

∣∣∣∇(χ − ξχ) + curl(ψ − ξψ)
∣∣∣
j0,D

≤

j∑
j1=1

ω
j− j1
S

( ∣∣∣χ − ξχ∣∣∣ j1,D
+

∣∣∣ψ − ξψ∣∣∣ j1,D

)
(8),(9)
ωP<ωS
≤ C

( j∑
j1=1

ω
j− j1
S

(
1 + (ωS h)q+ j1−k+8

)
hk+1− j1

)
e( 7

4−
3
4 ρ)ωS h

[
q−λD(k+1− j) + (ρ q)−

q−3
2 M

] (
‖χ‖k+1,ωP,D + ‖ψ‖k+1,ωS ,D

)
≤ C

(
1 + (ωS h)q+ j−k+8

)
e( 7

4−
3
4 ρ)ωS h hk+1− j

[
q−λD(k+1− j) + (ρ q)−

q−3
2 M

]
(
‖χ‖k+1,ωP,D + ‖ψ‖k+1,ωS ,D

)
(2)
= C

(
1 + (ωS h)q+ j−k+8

)
e( 7

4−
3
4 ρ)ωS h hk+1− j

[
q−λD(k+1− j) + (ρ q)−

q−3
2 M

]
(
ω−2

P ‖div u‖k+1,ωP,D + ω−2
S ‖curl u‖k+1,ωS ,D

)
.

�
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Notice that, in order to have convergence in the bound (7), either in h or p, the potentials div u and
curl u have to belong to H2(K).

Since ωP < ωS , the bound (7) holds true also in the case where the norm on the left-hand side is
substituted by ‖u − ξ‖ j−1,ωP, j−1; on the contrary we can not substitute the algebraic and exponential terms
in ωS h on the right-hand side with the analogous ones containing ωph.

The bound proven in Theorem 3.2 shows algebraic orders of convergence both with respect to the size
h of the domain and to the dimension p of the approximating space. If the solution u can be smoothly
extended outside D, the order in p is exponential, see [6, Rem 3.3] and [3, Rem. 3.14]. The constant C
depends on the problem parameters ω, λ, µ and ρ only through ωP and ωS , with the dependence shown
in the bound.

In the almost incompressible case, i.e., for very large values of λ, both ωP and div u go to zero.
Therefore, estimate (7) is useful only if ω−2

P ‖div u‖k+1,ωP,D remains bounded. In the limit case we recover
Maxwell’s equations and Theorem 3.2 reduces to Theorem 5.4 of [2].
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