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Uniformly Convergent Adaptive Methods

for Parametric Operator Equations

Claude Jeffrey Gittelson∗

April 4, 2011

Abstract

We derive and analyze adaptive solvers for parametric boundary value problems.
These methods control the error uniformly in the parameters. Numerical compu-
tations indicate that they are more efficient than similar methods that control the
error in a mean square sense.

Introduction

Boundary value problems with unknown coefficients can be interpreted as parametric
equations, in which the unknown coefficients are permitted to depend on a sequence
of scalar parameters, for example by applying a series expansion. It may be possible
to interpret the unknown coefficients as random quantities, in which case the solution
to the boundary value problem is a random field. In this probabilistic setting, Galerkin
methods have been developed for approximating this random field in a parametric
form, see [DBO01, XK02, BTZ04, WK05, MK05, FST05, WK06, TS07, BS09, BAS10].

These methods generally require strong assumptions on the probability distribution
of the random coefficients. In particular, it is often assumed that the scalar parameters,
e.g. coming from a series expansion of the unknown coefficients, are independent. This
assumption is fundamental to the construction of polynomial chaos bases. To cover
the more realistic setting of non-independent parameters, an auxiliary measure is intro-
duced e.g. in [BNT07, NTW08], although this still requires fairly elusive assumptions
on the probability distribution.

To circumvent such assumptions, we consider numerical methods that converge
uniformly in the parameter. This implies mean square convergence with respect to any
probability measure on the parameter domain, in particular with respect to whatever
distribution is deemed physical.

Our goal is to compute a parametric representation of the solution that is reliable to a
given accuracy on the entire parameter domain. This can be combined with Monte Carlo

∗Research supported in part by the Swiss National Science Foundation grant No. 200021-120290/1.
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sampling in order to compute probabilistic quantities. Instead of solving the boundary
value problem independently at every sample point, one can evaluate the parametric
representation of the solution, which is generally much faster, see e.g. [WK09].

If insufficient statistical data is available for modeling unknown coefficients as ran-
dom variables, then methods based on the probabilistic structure of the parameter
domain do not make sense. However, uniform convergence does not make use of a
probability distribution, and is thus still well defined.

The main difficulty in applying stochastic Galerkin methods is the construction of
suitable spaces in which to compute approximate solutions. In [Git11b, Git11c], we
suggest adaptive methods based on techniques from the adaptive wavelet algorithms
[CDD01, CDD02, GHS07, DSS09]. We use an orthonormal polynomial basis on the
parameter domain in place of wavelets. An arbitrary discretization of the physical
domain can be used to approximate the coefficients of the random solution with respect
to this basis.

In order to ensure uniform convergence in the parameter, we deviate a bit further from
adaptive wavelet methods, which are formulated in a Hilbert space setting. We follow
the approach in [CDD02, Git11c], which is based on applying an iterative method
directly to the full parametric boundary value problem. Individual substeps of this
iteration, such as application of the parametric operator, are replaced by approximate
counterparts, realized by suitable adaptive algorithms. These keep track of errors
entering the computation, ensuring convergence of the algorithm, and providing an
upper bound on the error of the approximate solution.

In Section 1, we study parametric operator equations in an abstract setting. We show
that the parametric solution depends continuously on the parameter. In the setting
that the operator has a dominant nonparametric component, we derive a perturbed
stationary linear iteration, which forms the basis for our adaptive method. We also
present an illustrative example for a parametric boundary value problem.

Our method is formulated on the level of coefficients with respect to a polynomial
basis. In Section 2, we apply the Stone–Weierstrass theorem to show that continuous
functions can be approximated uniformly by polynomials in an infinite dimensional
setting. We construct suitable polynomial bases, and represent a class of parametric
operators in these bases.

We present our adaptive method in Section 3. A vital component is an adaptive
routine for applying the parametric operator, which is discussed in Section 3.1. In
Section 4, we present a variant of our adaptive solver which has the potential to reduce
the computational cost while maintaining the same accuracy.

In Section 5, we apply these adaptive solvers to a simple model problem. Numerical
computations demonstrate the convergence of the algorithms and compare them to the
adaptive methods from [Git11b, Git11c].

2



1 Parametric Operator Equations

1.1 Continuous Parameter Dependence

Let V and W be Banach spaces over K ∈ {R,C}. Denote by W∗ the space of bounded
antilinear maps from W toK, and byL(V,W∗) the Banach space of bounded linear maps
from V to W∗.

Let Γ be a nonempty topological space. A parametric linear operator from V to W∗

with parameter domain Γ is a continuous map

A : Γ→ L(V,W∗) , y $→ A(y) . (1.1)

For a given f : Γ→W∗, we are interested in determining u : Γ→ V such that

A(y)u(y) = f (y) ∀y ∈ Γ . (1.2)

Assumption 1.A. A(y) is bijective for all y ∈ Γ.

By the open mapping theorem, Assumption 1.A implies that A(y) is boundedly in-
vertible for all y ∈ Γ.

Theorem 1.1. Equation (1.2) has a unique solution u : Γ→ V. It is continuous if and only if
f : Γ→ W∗ is continuous.

Proof. By Assumption 1.A, (1.2) has the unique solution u(y) = A(y)−1 f (y).
Let D ∈ L(V,W∗) be boundedly invertible. For example, D could be equal to A(y)

for some y ∈ Γ. Then y $→ D−1A(y) is a continuous map from Γ into L(V). By the
abstract property [KR97, Prop. 3.1.6] of Banach algebras, the map inv: T $→ T−1 defined
on the multiplicative group of L(V) is continuous in the topology of L(V). Therefore,
y $→ inv(D−1A(y)) = A(y)−1D is continuous, and multiplying from the right by the
constant D−1, it follows that y $→ A(y)−1 is a continuous map from Γ to L(W∗,V).

Note that the application of an operator to a vector, i.e. the map mult : L(W∗,V)×W∗ →

V defined by mult(T, z) ! Tz, is continuous. Therefore, if y $→ f (y) is continuous, then
so is y $→ u(y) = mult(A(y)−1, f (y)). Similarly, since mult : L(V,W∗) × V → W∗ is
continuous, if y $→ u(y) is continuous, then so is y $→ f (y) = mult(A(y), u(y)). !

Example 1.2. Assumption 1.A is assured to hold if A(y) is a perturbation of a boundedly
invertible D ∈ L(V,W∗), i.e.

A(y) = D + R(y) , y ∈ Γ , (1.3)

with a continuous y $→ R(y) ∈ L(V,W∗) satisfying
∥

∥

∥D−1R(y)
∥

∥

∥

V→V
≤ γ < 1 ∀y ∈ Γ . (1.4)

Then A(y) can be decomposed as

A(y) = D(idV +D−1R(y)) , y ∈ Γ , (1.5)
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and consequently, using a Neumann series inL(V) to invert the second factor,

A(y)−1 =















∞
∑

n=0

(

−D−1R(y)
)n















D−1 , y ∈ Γ . (1.6)

In this setting, due to (1.4), (1.5) and (1.6), the parametric operators A(y) and A(y)−1 are
uniformly bounded,

∥

∥

∥A(y)
∥

∥

∥

V→W∗
≤ ‖D‖V→W∗ (1 + γ) ∀y ∈ Γ , (1.7)

∥

∥

∥A(y)−1
∥

∥

∥

W∗→V
≤

∥

∥

∥D−1
∥

∥

∥

W∗→V

1 − γ
∀y ∈ Γ . (1.8)

A sufficient condition for (1.4) is

∥

∥

∥R(y)
∥

∥

∥

V→W∗
≤

γ
∥

∥

∥D−1
∥

∥

∥

W∗→V

∀y ∈ Γ (1.9)

with γ < 1. Equation (1.9) does not depend on the precise structure of the operators
D−1R(y). Therefore, Assumption 1.A is always satisfied if the parametric component
R(y) of A(y) is sufficiently small. "

Assumption 1.B. Γ is a compact Hausdorff space.

Lemma 1.3. There exist constants ĉ, č ∈ R such that
∥

∥

∥A(y)
∥

∥

∥

V→W∗
≤ ĉ and

∥

∥

∥A(y)−1
∥

∥

∥

W∗→V
≤ č ∀y ∈ Γ . (1.10)

Proof. By assumption, the map y $→ A(y) is continuous. As shown in the proof of
Theorem 1.1, y $→ A(y)−1 is also continuous. Consequently, the maps y $→

∥

∥

∥A(y)
∥

∥

∥

V→W∗

and y $→
∥

∥

∥A(y)−1
∥

∥

∥

W∗→V
are continuous maps from Γ into R. Since Γ is compact by

Assumption 1.B, the ranges of these maps are compact inR, and therefore bounded. !

For any Banach space X, let C(Γ; X) denote the Banach space of continuous maps from
Γ to X with norm

‖v‖C(Γ;X) ! sup
y∈Γ

∥

∥

∥v(y)
∥

∥

∥

X
, v ∈ C(Γ; X) . (1.11)

In what follows, we abbreviate C(Γ) ! C(Γ;K).

Corollary 1.4. The operators

A : C(Γ; V)→ C(Γ; W∗) , v $→
[

y $→ A(y)v(y)
]

and (1.12)

A−1 : C(Γ; W∗)→ C(Γ; V) , g $→
[

y $→ A(y)−1g(y)
]

(1.13)

are well-defined, inverse to each other, and bounded with norms ‖A‖ ≤ ĉ and
∥

∥

∥A−1
∥

∥

∥ ≤ č.

Proof. The assertion is a direct consequence of Theorem 1.1 and Lemma 1.3. !
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1.2 A Perturbed Linear Iteration

We consider the setting of Example 1.2, i.e.A is a sum

A = D + R (1.14)

with D : C(Γ; V) → C(Γ; W∗) of the form (Dv)(y) = Dv(y) for a boundedly invertible
D ∈ L(V,W∗), and R : C(Γ; V)→ C(Γ; W∗) satisfies

∥

∥

∥D−1R
∥

∥

∥

C(Γ;V)→C(Γ;V)
≤ γ < 1 . (1.15)

Condition (1.15) implies thatD−1A can be inverted by a Neumann series in C(Γ; V), and

∥

∥

∥(D−1A)−1
∥

∥

∥

C(Γ;V)→C(Γ;V)
≤

1

1 − γ
. (1.16)

Therefore, for any f ∈ C(Γ; W∗), the solution u of the operator equation

Au = f (1.17)

is the limit of the sequence (uk)∞
k=0

with arbitrary u0 ∈ C(Γ; V) and

uk ! D
−1( f − Ruk−1) , k ∈N . (1.18)

We generalize (1.18) by allowing errors in the computation of f , the evaluation of R,
and the inversion ofD.

Let δ0 ≥ ‖u − u0‖C(Γ;V). For example, if u0 = 0, we may set

δ0 !

∥

∥

∥D−1
∥

∥

∥

W∗→V

1 − γ

∥

∥

∥ f
∥

∥

∥

C(Γ;W∗)
. (1.19)

For all k ∈N, let gk ∈ C(Γ; W∗) with

∥

∥

∥gk − ( f − Ruk−1)
∥

∥

∥

C(Γ;W∗)
≤ βδk−1

∥

∥

∥D−1
∥

∥

∥

−1

W∗→V
, (1.20)

and let uk ∈ C(Γ; V) satisfy
∥

∥

∥uk −D
−1gk

∥

∥

∥

C(Γ;V)
≤ αδk−1 , (1.21)

where δk−1 is an upper bound for ‖u − uk−1‖C(Γ;V) and α, β ≥ 0 are independent of k.

Theorem 1.5. Let uk and gk satisfy (1.20) and (1.21) for any δk−1 ≥ ‖u − uk−1‖C(Γ;V). Then

‖u − uk‖C(Γ;V) ≤ (α + β + γ)δk−1 " δk . (1.22)

In particular, if α + β < 1 − γ, then uk → u in C(Γ; V), and

‖u − uk‖C(Γ;V) ≤ (α + β + γ)kδ0 ∀k ∈N0 . (1.23)
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Proof. SinceDu = f − Ru,

u − uk = D
−1( f − Ru) −D−1( f − Ruk−1) +D−1( f − Ruk−1 − gk) +D−1gk − uk .

By triangle inequality,

‖u − uk‖C(Γ;V) ≤
∥

∥

∥D−1R(u − uk−1)
∥

∥

∥

C(Γ;V)
+
∥

∥

∥D−1
∥

∥

∥

W∗→V

∥

∥

∥gk − ( f − Ruk−1)
∥

∥

∥

C(Γ;W∗)

+
∥

∥

∥uk −D
−1gk

∥

∥

∥

C(Γ;V)

≤ γ ‖u − uk−1‖C(Γ;V) + βδk−1 + αδk−1 .

Equation (1.22) follows by the assumption that δk−1 is greater than ‖u − uk−1‖C(Γ;V). If
α + β + γ < 1, repeated application with δk defined as in (1.22) leads to (1.23). !

Remark 1.6. Theorem 1.5 uses a priori known quantities δk = (α + β + γ)kδ0 as upper
bounds for the error at iteration k ∈N0. However, better estimates may be available or
computable during an iteration. The residual at iteration k ∈N0 is given by

rk ! f −Auk = A(u − uk) ∈ C(Γ; W∗) . (1.24)

SinceA is invertible by a Neumann series,

‖u − uk‖C(Γ;V) ≤
∥

∥

∥A−1
∥

∥

∥

C(Γ;W∗)→C(Γ;V)
‖rk‖C(Γ;W∗) ≤

1

1 − γ

∥

∥

∥D−1
∥

∥

∥

W∗→V
‖rk‖C(Γ;W∗) . (1.25)

Therefore, if it is known that ‖rk‖C(Γ;W∗) ≤ ρk, we also have the upper bound

δ̄k !
1

1 − γ

∥

∥

∥D−1
∥

∥

∥

W∗→V
ρk (1.26)

of ‖u − uk‖C(Γ;V) for all k ∈N. "

1.3 The Parametric Diffusion Equation

As an illustrative example, we consider the isotropic diffusion equation on a bounded
Lipschitz domain G ⊂ Rd with homogeneous Dirichlet boundary conditions. For any
uniformly positive a ∈ L∞(G) and any f ∈ L2(G), we have

−∇ · (a(x)∇u(x)) = f (x) , x ∈ G ,

u(x) = 0 , x ∈ ∂G .
(1.27)

We model a as a parametric coefficient, depending affinely on a sequence of scalar
parameters in [−1, 1]. For the compact parameter domain Γ ! [−1, 1]∞, we have

a(y, x) ! ā(x) +
∞
∑

m=1

ymam(x) , y = (ym)∞m=1 ∈ Γ . (1.28)

Thus the parameters ym are coefficients in a series expansion of a(y, x) − ā(x).

6



We define the parametric operator

A(y) : H1
0(G)→ H−1(G) , v $→ −∇ ·

(

a(y)∇v
)

, y ∈ Γ . (1.29)

By linearity, we can expand A(y) as

A(y) = D + R(y) , R(y) !
∞
∑

m=1

ymRm ∀y ∈ Γ , (1.30)

for

D : H1
0(G)→ H−1(G) , v $→ −∇ · (ā∇v) ,

Rm : H1
0(G)→ H−1(G) , v $→ −∇ · (am∇v) , m ∈N .

Note that ‖Rm‖H1
0(G)→H−1(G) ≤ ‖am‖L∞(G), and thus convergence in (1.30) and (1.28) is

assured if (‖am‖L∞(G))
∞
m=1 is summable.

Assuming that ā is bounded and uniformly positive, the operator D is invertible with

∥

∥

∥D−1
∥

∥

∥

H−1(G)→H1
0
(G)
≤
(

ess inf
x∈G

ā(x)
)−1
. (1.31)

2 Polynomial Expansion

2.1 Uniform Approximation by Polynomials in Infinite Dimensions

We consider polynomials on the compact domain Γ ! [−1, 1]∞. We denote a generic
element of Γ by y = (ym)∞m=1.

For any finite set F ⊂ N, let PF(Γ) denote the vector space of polynomials in the
variables (ym)m∈F. Then

P(Γ) !
⋃

F⊂N
#F<∞

PF(Γ) (2.1)

is the vector space of polynomials on the infinite dimensional domain Γ.

Theorem 2.1. The space P(Γ) is dense in C(Γ).

Proof. Since all polynomials are continuous, P(Γ) ⊂ C(Γ). Furthermore, P(Γ) is closed
under addition and pointwise multiplication, so it is a subalgebra of C(Γ). It contains
the constant functions on Γ, and for any y, z ∈ Γ, y # z, there is an m ∈ N such that
ym # zm. Therefore, y and z are separated by the linear polynomial ym. Consequently,
the assertion follows from the Stone–Weierstrass theorem, see e.g. [Sto48, Rud91]. !

A Banach space X is said to have the approximation property if, for every compact
set K ⊂ X and every ε > 0, there is a finite rank operator T ∈ L(X) such that

‖x − Tx‖X ≤ ε ∀x ∈ K . (2.2)
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We recall that every space with a Schauder basis has the approximation property. In
particular, every separable Hilbert space has this property.

Theorem 2.1 extends to functions with values in X under the assumption that X has
the approximation property. For any finite set F ⊂ N, let PF(Γ; X) denote the vector
space of polynomials in the variables (ym)m∈F with coefficients in X. As in (2.1), we
define

P(Γ; X) !
⋃

F⊂N
#F<∞

PF(Γ; X) . (2.3)

Theorem 2.2. If X has the approximation property, thenP(Γ; X) is dense in C(Γ; X).

Proof. Let f ∈ C(Γ; X) and ε > 0. Since Γ is compact, K ! f (Γ) ⊂ X is compact, and thus
there is a finite rank operator T ∈ L(X) such that (2.2) holds. We write T as

Tx =
n
∑

i=1

ψi(x)xi

withψi ∈ X∗ and xi ∈ X, scaled such that ‖xi‖X = 1. Since each of the mapsψi◦ f is in C(Γ),
Theorem 2.1 implies that there is a polynomial pi ∈ P(Γ) with

∣

∣

∣pi(y) − ψ( f (y))
∣

∣

∣ ≤ ε/n for
all y ∈ Γ. Consequently, for all y ∈ Γ,

∥

∥

∥

∥

∥

∥

∥

f (y) −
n
∑

i=1

pi(y)xi

∥

∥

∥

∥

∥

∥

∥

X

≤
∥

∥

∥ f (y) − T f (y)
∥

∥

∥

X
+

n
∑

i=1

∣

∣

∣ψi( f (y)) − pi(y)
∣

∣

∣ ‖xi‖X ≤ 2ε . !

2.2 Polynomial Systems in Infinite Dimensions

Let (Pn)∞n=0 be a sequence of polynomials on [−1, 1] satisfying P0(ξ) = 1, P1(ξ) = ξ and

ξPn(ξ) = π+n Pn+1(ξ) + π−n Pn−1(ξ) ∀n ∈N (2.4)

for all ξ ∈ [−1, 1]. In particular, it follows by induction that Pn is a polynomial of degree
n. We define π+0 ! 1 in order to achieve ξP0(ξ) = π+0 P1(ξ).

For example, Pn(ξ) = ξn if π+n = 1 and π−n = 0 for all n ∈N. If π+n and π−n are given by

π+n !
1

2
and π−n !

1

2
, (2.5)

then (Pn)∞n=0 are Chebyshev polynomials of the first kind. Alternatively, the values

π+n !
n + 1

2n + 1
and π−n !

n

2n + 1
(2.6)

lead to Legendre polynomials. More generally, identities of the type (2.4) follow from
recursion formulas for families of orthonormal polynomials with respect to symmetric
measures on [−1, 1], see e.g. [Gau04, Sze75].
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In both of the above examples,

|Pn(ξ)| ≤ 1 ∀ξ ∈ [−1, 1] , ∀n ∈N0 . (2.7)

We assume that the polynomials (Pn)∞n=0 are scaled in such a way that (2.7) holds.
We define the set of finitely supported sequences inN0 as

Λ!
{

µ ∈NN0 ; # suppµ < ∞
}

, (2.8)

where the support is defined by

suppµ !
{

m ∈N ; µm # 0
}

, µ ∈NN0 . (2.9)

Then countably infinite tensor product polynomials are given by

(Pµ)µ∈Λ , Pµ !
∞
⊗

m=1

Pµm , µ ∈ Λ . (2.10)

Note that each of these functions depends on only finitely many dimensions,

Pµ(y) =
∞
∏

m=1

Pµm(ym) =
∏

m∈suppµ

Pµm(ym) , µ ∈ Λ , (2.11)

since P0 = 1.

Proposition 2.3. If X is a Banach space with the approximation property, then for any f ∈
C(Γ; X) and any ε > 0, there is a finite set Ξ ⊂ Λ and xµ ∈ X, µ ∈ Ξ, such that

max
y∈Γ

∥

∥

∥

∥

∥

∥

∥

∥

f (y) −
∑

µ∈Ξ

xµPµ(y)

∥

∥

∥

∥

∥

∥

∥

∥

X

≤ ε . (2.12)

Proof. The assertion follows from Theorem 2.2 since (Pµ)µ∈Λ is an algebraic basis of the
vector space P(Γ; X). !

2.3 Representation of a Class of Parametric Operators

Let V and W be Banach spaces. Motivated by Example 1.2 and (1.30), we consider
Γ = [−1, 1]∞ and operatorsA : C(Γ; V)→ C(Γ; W∗) of the formA = D+Rwith (Dv)(y) =
Dv(y) for a boundedly invertible D ∈ L(V,W∗) and

(Rv)(y) !
∞
∑

m=1

ymRmv(y) , y ∈ Γ , v ∈ C(Γ; V) , (2.13)

for Rm ∈ L(V,W∗) satisfying

∞
∑

m=1

∥

∥

∥D−1Rm

∥

∥

∥

V→V
≤ γ < 1 . (2.14)
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We note that these assumptions imply (1.15). Truncating the series in (2.13), we approx-
imate R by

(R[M]v)(y) !
M
∑

m=1

ymRmv(y) , y ∈ Γ , v ∈ C(Γ; V) , (2.15)

for M ∈N, and R[0] ! 0.

Lemma 2.4. For all M ∈N0,

∥

∥

∥R − R[M]

∥

∥

∥

C(Γ;V)→C(Γ;W∗)
≤

∞
∑

m=M+1

‖Rm‖V→W∗ . (2.16)

In particular, R[M] → R in L(C(Γ; V),C(Γ; W∗)).

Proof. For any M ∈N0, v ∈ C(Γ; V) and y ∈ Γ, since
∣

∣

∣ym

∣

∣

∣ ≤ 1,

∥

∥

∥(Rv)(y) − (R[M]v)(y)
∥

∥

∥

W∗
≤

∞
∑

m=M+1

∣

∣

∣ym

∣

∣

∣

∥

∥

∥Rmv(y)
∥

∥

∥

W∗
≤

∞
∑

m=M+1

‖Rm‖V→W∗ ‖v‖C(Γ;V) .

Furthermore, (2.14) implies that (Rm)m∈N ∈ .1(N;L(V,W∗)). !

According to the following statement,R[M] mapsP(Γ; V) intoP(Γ; W∗). We determine
the coefficients of R[M]v in terms of those of v ∈ P(Γ; V) with respect to a polynomial
basis (Pµ)µ∈Λ from Section 2.2.

Lemma 2.5. For any M ∈N and any v ∈ P(Γ; V), represented as

v(y) =
∑

µ∈Ξ

vµPµ(y) , y ∈ Γ , (2.17)

for a finite set Ξ ⊂ Λ, R[M]v ∈ P(Γ; W∗) has the form

(R[M]v)(y) =
∑

µ∈Ξ

M
∑

m=1

Rmvµ
(

π+µm
Pµ+εm(y) + π−µm

Pµ−εm(y)
)

, y ∈ Γ , (2.18)

where εm ∈ Λ is the Kronecker sequence (εm)n ! δmn, and we set Pµ ! 0 if any µm < 0.

Proof. By the definitions (2.15) and (2.17),

(R[M]v)(y) =
∑

µ∈Ξ

M
∑

m=1

RmvµymPµ(y) .

Equation (2.4) implies

ymPµ(y) = π+µm
Pµ+εm(y) + π−µm

Pµ−εm(y) . !

Combining Proposition 2.3, Lemma 2.4 and Lemma 2.5, one can representRv as a limit
of terms of the form (2.18) for any v ∈ C(Γ; V), provided that V has the approximation
property.
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3 A Uniformly Convergent Adaptive Solver

3.1 Adaptive Application of Parametric Operators

We consider operators R of the form (2.13). For all M ∈N, let ēR,M be given such that
∥

∥

∥R − R[M]

∥

∥

∥

C(Γ;V)→C(Γ;W∗)
≤ ēR,M . (3.1)

For example, by Lemma 2.4, these bounds can be chosen as

ēR,M !
∞
∑

m=M+1

‖Rm‖V→W∗ , (3.2)

or as estimates for these sums. We assume that (ēR,M)∞M=0 is nonincreasing and converges
to 0, and also that the sequence of differences (ēR,M − ēR,M+1)∞M=0 is nonincreasing. For
(3.2), the latter property holds if Rm are arranged in decreasing order of ‖Rm‖V→W∗ .

Alternative values for ēR,M are provided by the following elementary estimate, which
is a direct consequence of Lemma 2.4, see [Git11b, Prop. 4.4].

Proposition 3.1. Let s > 0. If either

‖Rm‖V→W∗ ≤ sδR,s(m + 1)−s−1 ∀m ∈N (3.3)

or the sequence (‖Rm‖V→W∗)
∞
m=1 is nonincreasing and















∞
∑

m=1

‖Rm‖
1

s+1

V→W∗















s+1

≤ δR,s , (3.4)

then
∥

∥

∥R − R[M]

∥

∥

∥

C(Γ;V)→C(Γ;W∗)
≤ δR,s(M + 1)−s ∀M ∈N0 . (3.5)

We consider the approximation of a vector w ∈ .1(Λ) by a sum w[1] + · · · + w[P] for
sections w[p] ! w|Λp , p = 1, . . . ,P, with mutually disjoint sets Λp ⊂ Λ. The section w[1]

can be thought of as containing the largest elements of w, w[2] the next largest, and so
on.

Such a partitioning can be constructed by the approximate sorting algorithm

BucketSort[w, ε] $→
[

(w[p])
P
p=1, (Λp)P

p=1

]

, (3.6)

which, given a finitely supported w ∈ .1(Λ) and a threshold ε > 0, returns index sets

Λp !

{

µ ∈ Λ ;
∣

∣

∣wµ
∣

∣

∣ ∈ (2−p ‖w‖.∞ , 2
−(p−1) ‖w‖.∞]

}

(3.7)

and w[p] ! w|Λp , see [Met02, Bar05, GHS07, DSS09]. The integer P is minimal with

2−P ‖w‖.∞(Λ) # supp w ≤ ε . (3.8)
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ApplyR[v, ε] $→ z

[·, (Λp)P
p=1]←− BucketSort

[

(
∥

∥

∥vµ
∥

∥

∥

V
)µ∈Λ,

ε
2ēR,0

]

for p = 1, . . . ,P do v[p] ←− (vµ)µ∈Λp

Compute the minimal . ∈ {0, 1, . . . ,P} s.t. δ ! ēR,0

∥

∥

∥

∥

∥

∥

∥

∥

v −
.
∑

p=1

v[p]

∥

∥

∥

∥

∥

∥

∥

∥

.1(Λ;V)

≤
ε
2

for p = 1, . . . , . do Mp ←− 0

while
∑.

p=1 ēR,Mp

∥

∥

∥v[p]

∥

∥

∥

.1(Λ;V)
> ε − δ do

q←− argmaxp=1,...,.(ēR,Mp − ēR,Mp+1)
∥

∥

∥v[p]

∥

∥

∥

.1(Λ;V)
/#Λp

Mq ←−Mq + 1

z = (zν)ν∈Λ ←− 0

for p = 1, . . . , . do

forall µ ∈ Λp do

for m = 1, . . . ,Mp do

w←− Rmvµ
zµ+εm ←− zµ+εm + π

+
µm

w
if µm ≥ 1 then zµ−εm ←− zµ−εm + π

−
µm

w

By [GHS07, Rem. 2.3] or [DSS09, Prop. 4.4], the number of operations and storage
locations required by a call of BucketSort[w, ε] is bounded by

# supp w +max(1, 0log(‖w‖.∞(Λ) (# supp w)/ε)1) , (3.9)

which is faster than exact comparison-based sorting algorithms.
Let v = (vµ)µ∈Λ be a finitely supported sequence in V, indexed by Λ. Such a vector

represents a polynomial v ∈ P(Γ; V) by

v(y) =
∑

µ∈suppvvv

vµPµ(y) , y ∈ Γ , (3.10)

where supp v = {µ ∈ Λ ; vµ # 0} is a finite subset of Λ by assumption. Due to the
normalization (2.7),

‖v‖C(Γ;V) = max
y∈Γ

∥

∥

∥v(y)
∥

∥

∥

V
≤
∑

µ∈Λ

∥

∥

∥vµ
∥

∥

∥

V
= ‖v‖.1(Λ;V) . (3.11)

The routine ApplyR[v, ε] adaptively approximates Rv for v ∈ P(Γ; V) in three distinct
steps. First, the elements of the coefficient vector v of v are grouped according to their
norm. Elements smaller than a certain tolerance are discarded. This truncation of the
vector v induces an error of at most δ ≤ ε/2.

Next, a greedy algorithm is used to assign to each segment v[p] = v|Λp of v an approx-
imation R[Mp] of R. Starting with R[Mp] = 0 for all p = 1, . . . , ., these approximations are
refined iteratively until an estimate of the error is smaller than ε − δ.
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Finally, the operations determined by the previous two steps are performed. Each
multiplication Rmvµ is performed just once, and copied to the appropriate entries of z.
Then the polynomial

z(y) !
∑

µ∈supp zzz

zµPµ(y) , y ∈ Γ , (3.12)

is an approximation of Rv with error at most ε.

Proposition 3.2. For any ε > 0 and any v ∈ P(Γ; V) with coefficient vector v as in (3.10),
ApplyR[v, ε] produces a finitely supported z ∈ .1(Λ; W∗) such that

# supp z ≤ 2
.
∑

p=1

Mp#Λp (3.13)

and the polynomial z ∈ P(Γ; W∗) from (3.12) satisfies

‖Rv − z‖C(Γ;W∗) ≤ δ +
.
∑

p=1

ēR,Mp

∥

∥

∥v[p]

∥

∥

∥

.1(Λ;V)
, (3.14)

where Mp refers to the final value of this variable in the call of ApplyR. The total number of

products Rmvµ computed in ApplyR[v, ε] is
∑.

p=1 Mp#Λp.

Proof. For each µ ∈ Λp, Rmvµ is computed for m = 1, . . . ,Mp, and passed on to at most
two coefficients of z. This shows (3.13) and the bound on the number of multiplications.
Since ‖R‖C(Γ;V)→C(Γ;W∗) ≤ ēR,0, using (3.11),

‖Rv − Rw‖C(Γ;W∗) ≤ ēR,0 ‖v − w‖C(Γ;W) ≤ ēR,0 ‖v −w‖.1(Λ;V) = δ ≤
ε
2
,

where w !
∑.

p=1 v[p] and w is the polynomial (3.10) with coefficients w. For all p =
1, . . . , ., let v[p] ∈ P(Γ; V) denote the polynomial with coefficients v[p]. Due to (3.1) and
the termination criterion of the greedy subroutine in ApplyR,

.
∑

p=1

∥

∥

∥Rv[p] − R[Mp]v[p]

∥

∥

∥

C(Γ;W∗)
≤

.
∑

p=1

ēR,Mp

∥

∥

∥v[p]

∥

∥

∥

C(Γ;V)
≤

.
∑

p=1

ēR,Mp

∥

∥

∥v[p]

∥

∥

∥

.1(Λ;V)
≤ ε − δ .

The assertion follows since z =
∑.

p=1 R[Mp]v[p]. !

Remark 3.3. By Proposition 3.2, the cost of ApplyR is described by
∑.

p=1 Mp#Λp, and up
to the term δ from the truncation of v, the error is bounded by

.
∑

p=1

ēR,Mp

∥

∥

∥v[p]

∥

∥

∥

.1(Λ;V)
. (3.15)

Due to the assumption that (ēR,M − ēR,M+1)∞M=0 is nonincreasing, the greedy algorithm

used in ApplyR to determine Mp is guaranteed to minimize
∑.

p=1 Mp#Λp under the
condition that (3.15) is at most ε − δ. "
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3.2 Formulation of the Method

The adaptive application routine from Section 3.1 efficiently realizes the approximate
application routine of the operator R, which is a crucial component of the perturbed
linear iteration from Section 1.2. We assume that polynomial approximations of the right
hand side f ∈ C(Γ; W∗) in (1.17) are available with arbitrary precision. By Theorem 2.2,
such approximations are guaranteed to exist if W∗ has the approximation property. We
assume that a routine

RHS f [ε] $→ f̃ (3.16)

is available which, for any ε > 0, returns a finitely supported f̃ = ( f̃ν)ν∈Λ ∈ .1(Λ; W∗)
with

∥

∥

∥ f − f̃
∥

∥

∥

C(Γ;W∗)
≤ ε for f̃ (y) !

∑

ν∈Λ

f̃νPν(y) , y ∈ Γ . (3.17)

Of course, RHS f is trivial if f does not depend on y ∈ Γ.
Furthermore, let SolveD be a solver for D such that for any g ∈W∗ and any ε > 0,

SolveD[g, ε] $→ v ,
∥

∥

∥v −D−1g
∥

∥

∥

V
≤ ε . (3.18)

For example, SolveD could be an adaptive wavelet method, see e.g. [CDD01, CDD02,
GHS07], an adaptive frame method, see e.g. [Ste03, DFR07, DRW+07], or a finite element
method with a posteriori error estimation, see e.g. [Dör96, MNS00, BDD04].

A realization of the iteration from Section 1.2 using the above approximations is given
in SolveDirectA, f . We write ũ(k), uε and g(k) for the polynomials with coefficients ũ(k),

uε and g(k), respectively. The initial values can be set to

ũ(0)
! 0 and δ0 ! (1 − γ)−1

∥

∥

∥D−1
∥

∥

∥

W∗→V

∥

∥

∥ f
∥

∥

∥

C(Γ;W∗)
. (3.19)

Note that δ0 is an upper bound for the initial error
∥

∥

∥u − ũ(0)
∥

∥

∥

C(Γ;V)
. Values for the other

arguments are given below.

Theorem 3.4. For any ε > 0 and any ũ(0) ∈ P(Γ; V), if
∥

∥

∥u − ũ(0)
∥

∥

∥

C(Γ;V)
≤ δ0, α > 0, β0, β1 > 0

and α + β0 + β1 + γ < 1, then SolveDirectA, f [ũ
(0), δ0, ε,α, β0, β1,γ] terminates with

‖u − uε‖C(Γ;V) ≤ ε̄ ≤ ε . (3.20)

Furthermore, for all k ∈N reached in the iteration,
∥

∥

∥u − ũ(k)
∥

∥

∥

C(Γ;V)
≤ min(δk, δ̄k) ≤ (α + β0 + β1 + γ)kδ0 . (3.21)

Proof. We show that for all k ∈N,
∥

∥

∥u − ũ(k)
∥

∥

∥

C(Γ;V)
≤ min(δk, δ̄k) .

Let
∥

∥

∥u − ũ(k−1)
∥

∥

∥

C(Γ;V)
≤ min(δk−1, δ̄k−1). Then as in the proof of Theorem 1.5, since

Du = f − Ru,

u − ũ(k) = D−1( f − Ru) −D−1( f − Rũ(k−1)) +D−1( f − Rũ(k−1) − g(k)) +D−1g(k) − ũ(k) .
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SolveDirectA, f [ũ
(0), δ0, ε,α, β0, β1,γ] $→ [uε, ε̄]

for k = 1, 2, . . . do

ηk ←− δk−1

∥

∥

∥D−1
∥

∥

∥

−1

W∗→V

g(k) = (g(k)
µ )µ∈Λ ←− RHS f [β0ηk] − ApplyR[ũ(k−1), β1ηk]

ζk ←− αδk−1(# supp g(k))−1

forall µ ∈ supp g(k) do ũ(k)
µ ←− SolveD[g(k)

µ , ζk]

ũ(k) ←− (ũ(k)
µ )µ∈Λ

δ̄k−1 ←− (1 − γ)−1
(

∥

∥

∥ũ(k) − ũ(k−1)
∥

∥

∥

.1(Λ;V)
+ (α + β0 + β1)δk−1

)

δk ←− (α + β0 + β1)δk−1 + γmin(δk−1, δ̄k−1)
if δk ≤ ε then break

uε ←− ũ(k)

ε̄←− δk

Due to (1.15),
∥

∥

∥D−1( f − Ru) −D−1( f − Rũ(k−1))
∥

∥

∥

C(Γ;V)
=
∥

∥

∥D−1R(u − ũ(k−1))
∥

∥

∥

C(Γ;V)
≤ γmin(δk−1, δ̄k−1) .

Furthermore, using
∥

∥

∥D−1
∥

∥

∥

C(Γ;W∗)→C(Γ;V)
=
∥

∥

∥D−1
∥

∥

∥

W∗→V
, Proposition 3.2 and (3.17),

∥

∥

∥D−1( f − Rũ(k−1) − g(k))
∥

∥

∥

C(Γ;V)
≤
∥

∥

∥D−1
∥

∥

∥

W∗→V
(β0ηk + β1ηk) = (β0 + β1)δk−1 .

Finally, due to (3.11), (3.18) and ζk = αδk−1(# supp g(k))−1,
∥

∥

∥D−1g(k) − ũ(k)
∥

∥

∥

C(Γ;V)
≤

∑

µ∈supp ggg(k)

αδk−1(# supp g(k))−1 = αδk−1 .

By triangle inequality, these estimates imply
∥

∥

∥u − ũ(k)
∥

∥

∥

C(Γ;V)
≤ γmin(δk−1, δ̄k−1) + (β0 + β1)δk−1 + αδk−1 = δk .

The residual at iteration k is r(k)
! f −Aũ(k) = A(u − ũ(k)). We observe that by (1.16),

∥

∥

∥u − ũ(k)
∥

∥

∥

C(Γ;V)
≤
∥

∥

∥(D−1A)−1
∥

∥

∥

∥

∥

∥D−1r(k)
∥

∥

∥

C(Γ;V)
≤

1

1 − γ

∥

∥

∥D−1r(k)
∥

∥

∥

C(Γ;V)
.

Furthermore,D−1r(k) can be approximated by known quantities since, similarly toabove,
∥

∥

∥ũ(k+1) − ũ(k) −D−1r(k)
∥

∥

∥

C(Γ;V)
=
∥

∥

∥ũ(k+1) −D−1( f − Rũ(k))
∥

∥

∥

C(Γ;V)
≤ (α + β0 + β1)δk .

Consequently, using (3.11),

∥

∥

∥u − ũ(k)
∥

∥

∥

C(Γ;V)
≤

1

1 − γ

(

∥

∥

∥ũ(k+1) − ũ(k)
∥

∥

∥

C(Γ;V)
+ (α + β0 + β1)δk

)

≤ δ̄k .

Equation (3.21) follows since δk ≤ (α + β0 + β1 + γ)δk−1. !
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Remark 3.5. The error bounds in SolveDirectA, f can be improved if each of the sub-
routines RHS f , ApplyR and SolveD returns an estimate of the error it attains. These
values can replace αδk−1, β0δk−1 and β1δk−1 in the definitions of δ̄k−1 and δk. For better
legibility, we refrain from making this explicit. "

4 Alternating Subspace Correction

4.1 Motivation

By (2.13) and (2.15), if v ∈ C(Γ; V) is an even function, i.e. v(−y) = v(y), then Rv and
R[M]v are odd functions, i.e. v(−y) = −v(y). Similarly, if v is odd, then Rv and R[M]v are
even. SinceD does not depend on y,Dv is even if v is even, and odd if v is odd.

Let [n] ! n + 2Z denote the equivalence class modulo two of n ∈ Z, i.e. [n] = [m] if
n −m is even.

The right hand side f ∈ C(Γ; W∗) of (1.17) can be divided into even and odd parts as
f = f [0] + f [1] for

f [0](y) !
1

2

(

f (y) + f (−y)
)

and f [1](y) !
1

2

(

f (y) − f (−y)
)

. (4.1)

Then the iteration (1.18) is equivalent to uk = u[k]
k
+ u[k−1]

k
for

u[k]
k
! D−1

(

f [k] − Ru[k−1]
k−1

)

and u[k−1]
k
! D−1

(

f [k−1] − Ru[k]
k−1

)

. (4.2)

We note that u[k]
k

only depends on u[k−1]
k−1

and u[k−1]
k

only depends on u[k]
k−1

. We can therefore
perform just one of these iterations, say

u[k]
k
! D−1

(

f [k] − Ru[k−1]
k−1

)

, (4.3)

and reconstruct an approximation of u as u[k]
k
+ u[k−1]

k−1
.

For polynomials v ∈ P(Γ; V), the separation into even and odd parts carries over to
the coefficients of v in V. We define the index sets

Λ[n]
!

{

µ ∈ Λ ; [
∣

∣

∣µ
∣

∣

∣] = [n]
}

, n ∈ Z , (4.4)

where
∣

∣

∣µ
∣

∣

∣ =
∥

∥

∥µ
∥

∥

∥

.1(N)
. Then

Λ = Λ[0] 2 Λ[1] . (4.5)

We call µ ∈ Λ even if µ ∈ Λ[0] and odd if µ ∈ Λ[1].

Remark 4.1. A finitely supported sequence (vµ)µ∈Λ defines a polynomial function

v(y) =
∑

µ∈Λ

vµPµ(y) , y ∈ Γ . (4.6)

The function v is even if and only if vµ = 0 for all µ ∈ Λ[1] and odd if and only if vµ = 0
for all µ ∈ Λ[0] since Pµ is even for µ ∈ Λ[0] and odd for µ ∈ Λ[1], and the representation
(4.6) is unique. "
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4.2 Formulation of the Method

We assume that routines RHS[0]
f

and RHS[1]
f

are available similar to RHS f from (3.16) to

construct approximations of f [0] and f [1] from (4.1), such that the approximations of f [0]

are even and those of f [1] are odd.
The method ApplyRRR from Section 3.1 already respects even and odd functions in the

sense that if v in z ! ApplyR[v, ε] is supported in Λ[n], then z is supported in Λ[n+1].

SolveAlternateA, f [ũ
(−1), δ−1, ε,α, β0, β1,γ] $→ [uε, ε̄]

for k = 0, 1, 2, . . . do

ηk ←− δk−1

∥

∥

∥D−1
∥

∥

∥

−1

W∗→V

g(k) = (g(k)
µ )µ∈Λ[k] ←− RHS

[k]
f

[β0ηk] − ApplyR[ũ(k−1), β1ηk]

ζk ←− αδk−1(# supp g(k))−1

forall µ ∈ supp g(k) do ũ(k)
µ ←− SolveD[g(k)

µ , ζk]

ũ(k) ←− (ũ(k)
µ )µ∈Λ[k]

δk ←− (α + β0 + β1 + γ)δk−1

if δk−1 + δk ≤ ε then break

uε ←− ũ(k−1) + ũ(k)

ε̄←− δk−1 + δk

As in (4.1), let

u[k](y) !
1

2

(

u(y) + (−1)ku(−y)
)

, (4.7)

such that u = u[k−1] + u[k] for any k ∈ Z.

Theorem 4.2. For any ε > 0 and any finitely supported ũ(−1) ∈ .1(Λ[−1]; V), if α + β0 +

β1 + γ < 1 and
∥

∥

∥u[−1] − ũ(−1)
∥

∥

∥

C(Γ;V)
≤ δ−1, then SolveAlternateA, f [ũ

(−1), δ−1, ε,α, β0, β1,γ]

terminates with
‖u − uε‖C(Γ;V) ≤ ε̄ ≤ ε . (4.8)

Furthermore, for all k ∈N reached in the iteration,
∥

∥

∥u[k] − ũ(k)
∥

∥

∥

C(Γ;V)
≤ δk ≤ (α + β0 + β1 + γ)k+1δ−1 . (4.9)

Proof. SinceDu[k] = f [k] − Ru[k−1],

u[k] − ũ(k) = D−1( f [k] − Ru[k−1]) −D−1( f [k] − Rũ(k−1))

+D−1( f [k] − Rũ(k−1) − g(k)) +D−1g(k) − ũ(k) .

Due to (1.15),
∥

∥

∥D−1( f [k] − Ru[k−1]) −D−1( f [k] − Rũ(k−1))
∥

∥

∥

C(Γ;V)
≤ γ
∥

∥

∥u[k−1] − ũ(k−1)
∥

∥

∥

C(Γ;V)
.
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By definition of g(k), using
∥

∥

∥D−1
∥

∥

∥

C(Γ;W∗)→C(Γ;V)
=
∥

∥

∥D−1
∥

∥

∥

W∗→V
,

∥

∥

∥D−1( f [k] − Rũ(k−1) − g(k))
∥

∥

∥

C(Γ;V)
≤
∥

∥

∥D−1
∥

∥

∥

W∗→V
(β0ηk + β1ηk) = (β0 + β1)δk−1 .

Also, by (3.18),

∥

∥

∥D−1g(k) − ũ(k)
∥

∥

∥

C(Γ;V)
≤
∥

∥

∥

∥

(D−1g(k)
µ ) − ũ(k)

∥

∥

∥

∥

.1(Λ;V)
≤

∑

µ∈supp ggg(k)

αδk−1(# supp g(k))−1 = αδk−1 .

Combining these estimates leads to
∥

∥

∥u[k] − ũ(k)
∥

∥

∥

C(Γ;V)
≤ (α + β0 + β1)δk−1 + γ

∥

∥

∥u[k−1] − ũ(k−1)
∥

∥

∥

C(Γ;V)
.

Consequently, if
∥

∥

∥u[k−1] − ũ(k−1)
∥

∥

∥

C(Γ;V)
≤ δk−1, then

∥

∥

∥u[k] − ũ(k)
∥

∥

∥

C(Γ;V)
≤ δk, and (4.9) fol-

lows by induction. !

Remark 4.3. As in Remark 1.6 the error bounds δk can be refined using an approxima-
tion of the residual analogously to SolveDirectA, f . As in the proof of Theorem 3.4, it
follows that

∥

∥

∥u − (ũ(k−1) + ũ(k))
∥

∥

∥

C(Γ;V)
≤

1

1 − γ

( ∥

∥

∥ũ(k+1) − ũ(k−1)
∥

∥

∥

.1(Λ;V)
+ (α+ β0 + β1)(δk−1 + δk)

)

. (4.10)

This term can be used as an alternative upper bound for the errors
∥

∥

∥u[k] − ũ(k)
∥

∥

∥

C(Γ;V)
and

∥

∥

∥u[k−1] − ũ(k−1)
∥

∥

∥

C(Γ;V)
. However, since it applies to the total error instead of directly to the

even or odd part, we expect it to be less useful than the bound δ̄k in SolveDirectA, f . "

Remark 4.4. Comparing the convergence estimates (3.21) and (4.9), it appears that
SolveDirectA, f and SolveAlternateA, f converge at the same rate. Therefore, since
the latter method updates only half of the solution vector in each iteration, it should
be roughly twice as efficient. However, Remark 4.3 suggests that SolveDirectA, f may
provide a sharper bound for the error. It is not clear a priori which of these effects is
more significant; numerical computations presented in Section 5.2 indicate that the two
solvers are equally efficient. "

5 Numerical Computations

5.1 A Model Problem

We consider as a model problem the diffusion equation (1.27) on the one dimensional
domain G = (0, 1). For two parameters k and γ, the diffusion coefficient has the form

a(y, x) = 1 +
1

c

∞
∑

m=1

ym
1

mk
sin(mπx) , x ∈ (0, 1) , y ∈ Γ = [−1, 1]∞ , (5.1)
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Figure 1: Realizations of a(y, x) (left) and u(y, x) (right).

where c is chosen as

c = γ
∞
∑

m=1

1

mk
, (5.2)

such that
∣

∣

∣a(y, x) − 1
∣

∣

∣ is always less than γ. We set the parameters to k = 2 and γ = 1/2. A
few realizations of a(y) and the resulting solutions u(y) of (1.27) are plotted in Figure 1.

On the parameter domain, we consider Chebyshev polynomials of the first kind
and Legendre polynomials. We use a multilevel finite element discretization with
piecewise linear basis functions on uniform meshes. The residual-based a posteriori
error estimator from [Git11b] is used to estimate the error in SolveD. In order to
isolate the discretization of the parameter domain, we also consider a fixed spatial
discretization, using linear finite elements on a uniform mesh of (0, 1) with 1024 elements
to approximate all coefficients. We refer to these simpler versions of the numerical
methods as single level discretizations. All computations were performed in Matlab on
a workstation with an AMD Athlon™ 64 X2 5200+ processor and 4GB of memory.

5.2 Convergence of Solvers with Uniform Error Control

The convergence of SolveDirectA, f and SolveAlternateA, f is plotted in Figure 2. We
use Chebyshev polynomials on the parameter domain Γ, and the parameters of both
methods are set to α = 1/20, β0 = 0 and β1 = 1/10.

The solid lines in Figure 2 refer to the error estimate δk, which is an upper bound for
the error in C(Γ; V). We use Remark 4.3 to take advantage of information on the residual
when determining this upper bound for SolveAlternateA, f . The original formulation
of SolveDirectA, f already makes use of this.

The dashed lines represent the maximal error on a sample set ΓS of 64 points y in Γ,
which is a lower bound for the actual error. The sample set ΓS is chosen as a subset of
the boundary of Γ. Each y ∈ ΓS consists of randomly chosen ym ∈ {−1, 0, 1} for m ≤ 250
and ym = 0 for m > 250. Realizations of a(y) and u(y) for the first eight points y ∈ ΓS are
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Figure 2: Convergence of SolveDirectA, f and SolveAlternateA, f . Solid lines refer to

the error estimate δk, dashed lines are maximal errors on ΓS.
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Figure 3: Convergence of SolveDirectA, f (left) and SolveAlternateA, f (right) with
Chebyshev and Legendre polynomial bases. Solid lines refer to the error
estimate δk, dashed lines are maximal errors on ΓS.

20



 

 1

103 104 105 106 107

10−1

10−2

10−3

10−4

10−5

SolveDirect
SolveAlternate

degrees of freedom

er
ro

r
in

C
(Γ

;V
N

)

 

 1

104 105 106 107 108 109

10−1

10−2

10−3

10−4

10−5

SolveDirect
SolveAlternate

estimated computational cost

er
ro

r
in

C
(Γ

;V
N

)

Figure 4: Convergence of SolveDirectA, f and SolveAlternateA, f with a fixed finite
element discretization. Solid lines refer to the error estimate δk, dashed lines
are maximal errors on ΓS, compared with a finite element solution on the same
level.

given in Figure 1. We assume that the maximal error on ΓS is a good approximation of
the maximal error on all of Γ.

On the left, the errors are plotted against the total number of basis functions used in the
discretization. On the right, we plot the errors against an estimate of the computational
cost. This estimate takes scalar products, matrix-vector multiplications and linear solves
into account. The total number of each of these operations on each discretization level
is tabulated during the computation, weighted by the number of degrees of freedom
on the discretization level, and summed over all levels. The estimate is equal to seven
times the resulting sum for linear solves, plus three times the value for matrix-vector
multiplications, plus the sum for scalar products. These weights were determined
empirically by timing the operations for tridiagonal sparse matrices in Matlab.

We can see in Figure 2 that δk is a coarse upper bound for the actual error. Furthermore,
the convergence rate of δk in this example is only 1/3, compared to a rate of 1/2 for the
estimate of the error. This leads to an over-estimation of the error by almost two orders
of magnitude towards the end of the computation. This effect is not visible in [Git11a],
where a larger k is used in the model problem, i.e. the series in (5.1) converges faster.

As anticipated, the error bound for SolveAlternateA, f is slightly coarser than that
of SolveDirectA, f . However, the convergence of the two methods is very similar.

Figure 3 compares the Chebyshev basis used in Figure 2 to the Legendre basis. There
does not seem to be much of a difference between these two choices.

Figure 4 shows the convergence of the single level variants of SolveDirectA, f and
SolveAlternateA, f that use a fixed finite element discretization. The spatial discretiza-

tion error of approximately 2 · 10−4 is suppressed in the convergence plot. The dashed
lines refer to the maximal difference between the adaptively computed parametric so-
lutions on the sample set, and the Galerkin projections computed individually for each
point y ∈ ΓS in this set. The solid lines represent the error bounds δk, which are only an
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Figure 5: Convergence in C(Γ; V) of SolveDirectA, f with Chebyshev polynomials (left)
and Legendre polynomials (right). The two versions of SolveDirectA, f con-

trol the error in C(Γ; V) and L2
π(Γ; V), respectively.

upper bound for the parametric error for single level methods, and do not capture the
spatial discretization error.

The single level solvers in Figure 4 simulate SolveDirectA, f and SolveAlternateA, f
with no spatial discretization. In this setting, a theoretical asymptotic approximation
rate of 1 is shown in [CDS10b, CDS10a]. We observe a rate of approximately 1/2 for our
adaptive solvers, although the convergence rate of the error of SolveAlternateA, f on
the sample set approaches one.

For the fully discrete system, i.e. Figures 2 and 3, the assumptions of the approximation
results in [CDS10b, CDS10a] are not satisfied, and thus no convergence is shown there.
However, we still observe the rates 1/3 for the error bounds δk and 1/2 for the actual
error, as mentioned above.

5.3 Comparison to Other Adaptive Methods

We compare the convergence ofSolveDirectA, f to that of similar methods from [Git11b,

Git11c], which control the error in L2
π(Γ; V) for a probability measureπ on the parameter

domain Γ. In the following, this probability measure is always chosen in such a way that
the polynomial basis (Pµ)µ∈Λ is orthogonal. For example, for Legendre polynomials, π
is a countable product of uniform distributions on [−1, 1].

Since the solvers from [Git11b, Git11c] do not provide bounds for the error in C(Γ; V),
we do not consider computationally accessible error estimates such as δk. We ap-
proximate the error in C(Γ; V) by the maximal error on the finite sample set ΓS, as in
Section 5.2, and errors in L2

π(Γ; V) refer to the difference to a reference solution, evaluated
using Parseval’s identity.

In Figure 5, the convergence ofSolveDirectA, f in C(Γ; V) is compared to an analogous

method from [Git11c], which is set in L2
π(Γ; V) instead of C(Γ; V). We observe that the

method which controls the error in C(Γ; V) converges slightly faster, although the other
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Figure 6: Convergence in L2
π(Γ; V) of SolveDirectA, f with Legendre polynomials. The

two versions of SolveDirectA, f control the error in C(Γ; V) and L2
π(Γ; V),

respectively.

method also converges uniformly in the parameter y ∈ Γ.
Surprisingly, SolveDirectA, f with error control in C(Γ; V) also converges faster in

L2
π(Γ; V), as shown in Figure 6. Here, the reference solution has an error of approximately

5 · 10−5, which may explain the slight flattening of the convergence curves.
In Figure 7 the convergence in C(Γ; V) of SolveDirectA, f with error control in C(Γ; V)

is compared to that of the adaptive method SolveGalerkinA, f from [Git11b], which

controls the error in the energy norm on L2
π(Γ; V). The parameters of SolveGalerkinA, f

are chosen as in [Git11b]. The latter method includes a coarsening step, which ensures
that the approximate solutions are sparse, i.e. for a given error tolerance in L2

π(Γ; V),
the approximate solution constructed by SolveGalerkinA, f should contain a minimal
number of degrees of freedom, up to a constant factor. Without such a coarsening pro-
cedure, SolveDirectA, f produces approximate solutions with almost identical sparsity
if the error is measured in C(Γ; V). However, the computational cost of SolveDirectA, f
is two orders of magnitude lower than that of SolveGalerkinA, f .

Conclusion and Outlook

Our adaptive methods are proven to converge uniformly in the parameter, which is
assumed to be in an infinite dimensional cube. The convergence rates we observe in
numerical computations presented in Section 5.2 differ from those suggested by the
approximation results in [CDS10b, CDS10a]. In a semidiscrete setting, the observed
convergence rates are lower, but the fully discrete algorithms converge faster than
predicted by these approximation results.

The comparisons in Section 5.3 indicate that, for constructing a reliable parametric
representation of the solution to a parametric boundary value problem, the adaptive
methods presented here are more efficient than similar methods that control the error
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Figure 7: Convergence in C(Γ; V) of SolveDirectA, f with Chebyshev polynomials and
error control in C(Γ; V) compared to that of SolveGalerkinA, f with Chebyshev

polynomials (solid) and Legendre polynomials (dashed).

in L2
π(Γ; V) rather than C(Γ; V).

Our methods provide a reliable upper bound for the error in C(Γ; V). We observed
that this bound may overestimate the actual error. It would be desirable to have a less
conservative upper bound. Also, the addition of a coarsening step may lead to an even
more efficient algorithm. These points are the subject of ongoing research.
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[Git11c] Claude Jeffrey Gittelson. Adaptive stochastic Galerkin methods: Beyond the
elliptic case. Technical Report 2011-12, Seminar for Applied Mathematics,
ETH Zürich, 2011.

[KR97] Richard V. Kadison and John R. Ringrose. Fundamentals of the theory of operator
algebras. Vol. I, volume 15 of Graduate Studies in Mathematics. American
Mathematical Society, Providence, RI, 1997. Elementary theory, Reprint of
the 1983 original.

[Met02] A. Metselaar. Handling Wavelet Expansions in Numerical Methods. PhD thesis,
University of Twente, 2002.

[MK05] Hermann G. Matthies and Andreas Keese. Galerkin methods for linear and
nonlinear elliptic stochastic partial differential equations. Comput. Methods
Appl. Mech. Engrg., 194(12-16):1295–1331, 2005.

[MNS00] Pedro Morin, Ricardo H. Nochetto, and Kunibert G. Siebert. Data oscillation
and convergence of adaptive FEM. SIAM J. Numer. Anal., 38(2):466–488
(electronic), 2000.
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